

GEOLOGY OF THE ROUSSEAU TALC PROSPECT
CAMBRIDGE, VERMONT

By
Alfred H. Chidester

INTRODUCTION

The Rousseau talc prospect is in northern Cambridge township, Lamoille County, Vermont, 2.1 miles N. 59° E. of Cambridge Junction. (See index map.) The deposit lies on the south side of the Lamoille River, near the base of the northernmost mountain of the Sterling Range. Within the map area is about 150 feet of maximum relief with a range of elevation from 800 to 900 feet. The deposit on the south side of the stream of 515 and 565 feet above sea level, above 60 to 110 feet above the flood plain of the Lamoille River. The mapped area is drained by a small intermittent stream that flows northward into the Lamoille River about 1,000 feet northwest of the prospect. The northern and southeastern parts of the talc property are in open pasture. The rest of the area is covered with a dense growth of small spruce, balsam, and cedar.

To reach the locality from Johnson village, drive westward on State Highway 15 for 5.9 miles from the center of the village. The old mine dump is plainly visible about 200 feet south of the highway. The St. Johnsbury & Lamoille County Railroad (formerly the St. Johnsbury & Lake Champlain Railroad) is adjacent to the north side of the prospect, immediately north of the highway.

During 1915 and 1916 an adit and openings that total about 225 feet were driven in the deposit from an outcrop of talc ore, and six diamond-drill holes that total about 1,100 feet were bored. The outline of the talc deposit and the locations of the adit and openings (numbered 1 to 8) are shown on the accompanying map. Billings and Chidester (1930) mapped the surface and underlying geology of the talc prospect in 1945, as part of the Strategic Minerals Investigations program of the U. S. Geological Survey. In July 1950 Mr. Chidester, G. W. Stewart, and D. Morris extended the mapping of Billings and Chidester to assist in the location of additional diamond-drilling sites; eight new holes (numbered 1 to 8) were drilled by the Geological Survey in July

and August. The accompanying map and structure sections include the recent additions and modifications and incorporate the information obtained from the new diamond-drill holes.

The Geological Survey is indebted to the Eastern Magnesia Talc Company for the collection and use of numerous talc samples of talc as observed in diamond-drill holes. The Survey also wishes to acknowledge the cooperation of M. L. and M. N. Perrier, of Cambridge, Vt., owners of the surface rights, and the Eastern Magnesia Talc Co., owner of the mineral rights, during the investigations.

GEOLOGIC FORMATIONS

Quartz-chlorite-sericite schist, chlorite-albite schist, stearite (a rock composed essentially of talc), and grit (a term here used to designate a rock composed essentially of talc and carbonate in roughly equal proportions) are exposed in the map area. The distribution of rock types is shown on the accompanying map and in the structure sections. Grit and stearite are shown by the same pattern; it is impractical to separate them because the stearite unit is poorly exposed.

The schists have been formed by the metamorphism of sedimentary rocks of Cambrian age that contained interbedded volcanic material. The quartz-chlorite-sericite schist is probably derived from slate, and the chlorite-albite schist is believed to have formed from shale with interbedded basaltic volcanic detritus. All of the grit and most of the stearite are probably derived from ultramafic rocks of Ordovician or later age; a small part of the stearite, and a comparatively large part locally, has been formed by the alteration of quartz-chlorite-sericite schist and chlorite-albite schist.

QUARTZ-CHLORITE-SERICITE SCHIST

Quartz-chlorite-sericite schist is the predominant rock type in the area, and forms the largest outcrops. The rock ranges in color from light gray to light gray. Commonly the schist is fine-grained, interbedded, but quartz and chlorite are generally dominant. Graphite occurs locally in moderate amounts and forms concentrations along planes of schistosity that parallel the bedding. Small garnets are locally abundant. The schistosity is commonly wavy, and is locally much folded and contorted. A well-defined slip cleavage is commonly prominent where the schistosity is folded; it parallels the axial planes of the folds. This rock type is gradational into chlorite-albite schist.

CHLORITE-ALBITE SCHIST

Chlorite-albite schist forms about 10 percent of the country rock in the map area. Although this schist is variable in composition and gradational into quartz-chlorite-sericite schist, one bed immediately west of the talc deposit is apparently a talc-bearing deposit, fairly well defined and seems a reliable key bed. Another, lower bed was encountered in several drill holes, but as it does not crop out and was not intersected in all the drill holes, this lower bed is neither shown on the map nor interpolated in the structure sections.

The chlorite-albite schist is commonly mottled by white albite porphyroblasts in a matrix of green chlorite. The matrix of the albite content is low, and where the albite is contained, the rock is uniform gray or light green. The albite content of the rock ranges from a few percent to more than 50 percent. Chlorite is the other principal mineral, but irregular crystals and aggregates of carbonate are common. Biotite occurs locally and increases at the expense of chlorite; in a few places the rock is a chlorite-albite-sericite schist. Some garnet may occur in small amounts at most places, but where they are more abundant the rock may grade insensibly into quartz-chlorite-sericite schist.

A well-defined, rather coarse schistosity is conspicuous in nearly all outcrops of schist and is parallel to lithologic units, believed to be bedding, that are as much as 1 foot thick. The stearite generally has a good schistosity that is parallel to that of the nearby schist, and a well-defined schistosity is also present in the talc deposit. The talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the plunge of the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

A well-defined, rather coarse schistosity is conspicuous in nearly all outcrops of schist and is parallel to lithologic units, believed to be bedding, that are as much as 1 foot thick. The stearite generally has a good schistosity that is parallel to that of the nearby schist, and a well-defined schistosity is also present in the talc deposit. The talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist is folded in a few places. The fold axes plunge rather gently south parallel to the axis of the anticlinorium at this latitude. The folds are of the drag type, with the longer limbs of the anticlinorium on the side away from the anticlinorium axis, or the west in this vicinity.

The talc deposit is on the western limb of the Green Mountain anticlinorium, about 2 miles from the axis. The structures within the mapped area reflect the folds of the anticlinorium and are therefore believed to have been formed during the same period of folding. The structural features include folds, a prominent bedding schistosity, and a well-defined axial plane. Some of the talc samples from the talc deposit and the schist