DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY

				BLE 2GEOLOGIC CHARACTERIST	ICS OF SURFICIAL UNITS			1	FOOTNOTES
Geologic characteristics	Colluvium Qco	Post-Piney Creek alluvium. Qpp (Scott, 1960)	Piney Creek Alluvium Qp (Hunt, 1954)	Eolian sand Qes	Loess Qlo	Broadway Alluvium Qb (Scott, 1960)	Louviers Alluvium Q1 (Scott, 1960)	Slocum Alluvium Qs (Scott, 1960)	Table 1
Dominant sediments	Stony sand, silt, and clay.	Sand, silt, and fine gravel; some clay.	Silt, sand, clay, and fine gravel.	Sand; some silt.	Silt; some fine sand.	Clayey silt, sand, and gravel.	Sand, silt, and gravel.	Sand, silt, and gravel.	¹ Thicknesses were measured in the field in feet, and were converted
Maximum observed thickness	15 ft (4.6 m) in roadcut; commonly mantles slopes to depths less than 5 ft (1.5 m).	15 ft (4.6 m) by hand auger; may be thicker in stream valleys.	15 ft (4.6 m) in excavation. May be thicker in stream valleys.	30 ft (9.1 m) by power hand auger.	22 ft (6.7 m) by power hand auger. Thickes on upper parts of southeast-facing slopes.	^{ot} 25 ft (7.5 m) in stream cut.	20 ft (6 m) with power hand auger.	25 ft (7.5 m) with power hand auger.	arithmetically to metric measurements. 2 Color designations are from Goddard and others (1948). 3 See sorting entries on tables 4 and 5.
Color	Generally shades of brown and gray, depend- ent on source unit.	Light yellowish gray to grayish yellow.	Brown, brownish gray, and pale brown.	Reddish orange to reddish brown.	Reddish brown, yellowish brown, grayish brown.	Dark yellowish brown to medium gray.	Light reddish brown to yellowish brown.	Dark reddish brown, yellowish brown, and olive gray.	Table 2
Bedding ⁴ (fig. 1)	Chaotic to poorly graded bedding.	Trough-shaped crossbedding; local gravel bars.	Trough-shaped crossbedding; tabular and lenticular layers; local gravel bars.	Trough-shaped and tangential crossbedding.	Tangential crossbedding, poorly developed.	Tangential and trough-shaped crossbedding; lenticular layers.	Low-angle trough-shaped and tangential crossbedding.	Trough-shaped crossbedding dominant.	⁴ Bedding according to classification of Potter and Pettijohn (1963, p. 69). See Pettijohn (1957, fig. 25). ⁵ From Pettijohn (1957, p. 33, fig. 17).
Grain size (fig. 2)	Ranges from clay to boulders.	Mostly less than 1 mm.	Mostly less than 0.5 mm.	Mostly less than 0.125 mm.	Mostly less than 0.05 mm.	Mostly 0.02-4 mm.	Mostly 0.01-0.25 mm; local boulder gravel as large as 25 mm.	Mostly 0.01-0.25 mm; local boulder gravel as large as 25 mm.	 ⁶ From Pettijohn (1957, p. 56 and fig. 25). ⁷ From Pettijohn (1957, p. 59 and fig. 28). ⁸ Unconfined compressive strength, based on field tests with pocket
	Unsorted to moderately sorted.	Well sorted in horizontal layers; poorly sorted vertically.	Moderately well sorted.	Well sorted.	Poorly sorted; contains some secondary fine gravel and sand.	Poorly sorted.	Unsorted.	Unsorted to moderately well sorted.	Penetrometer (Soiltest Model CL-700) and converted to the following scale (Geological Society Engineering Group Working Party, 1972):
Grain shape ⁶	Equant, tabular.	Equant, tabular.	Mostly equant; some tabular.	Equant.	Equant.	Equant, tabular.	Equant, tabular.	Equant.	Consistency kN/m ² Tons/ft ²
Grain roundness ⁷	Mostly subrounded to rounded.	Subrounded to subangular.	Mostly subrounded to rounded; some subangular.	Mostly subrounded; some subangular.	Mostly angular to subrounded.	Mostly rounded.	Mostly rounded; some subangular.	Mostly well rounded.	Hard >288 >3 Stiff 144-288 1.5 -3
Grain surface	Variable from rough and broken to smooth.	Frosted, pitted, smooth.	Frosted, pitted, smooth.	Frosted, pitted.	Rough, pitted; some quartz grains frosted.	Mostly smooth; some rough.	Smooth to irregular.	Mostly smooth.	Firm 72-144 0.75-1.5 Soft 36-72 0.38-0.75
Composition, in order of abundance	Variable; depends on composition of source unit.	Quartz, mica, feldspar, minor rock fragments, organic debris.	Quartz, mica, organic debris, rock fragments, clay.	Quartz; some kaolinized feldspar.	Clay (kaolinite, illite, some montmorill- onite, mixed-layer), quartz, feldspar.	Quartz, clay, mica, organic debris, rock fragments.	Quartz, feldspar, mica, clay, ironstone, rock fragments.	Quartz, kaolinized feldspar, mica, clay, metamorphic rock fragments.	Very soft <36 <0.75
Consistency (firm- ness) of engi- neering soils ⁸	Mostly hard when dry; stiff when wet. Moderately cohesive. Locally poorly drained.	Soft when dry; moderately stiff when wet. Noncohesive. Well drained.	Very stiff when dry; soft and sticky when wet. Locally poorly drained. Moderate- ly cohesive.	Incoherent; loose when dry; gains some cohesion when wet.	Moderately hard when dry; very soft when wet. Cohesion provided by clay.	Moderately hard when dry; very soft and sticky when wet.	Moderately firm when dry; locally soft and sticky when wet.	Stiff to hard when dry; stiff to firm when wet.	Table 3 ⁹ This is the most subjective, or judgment, evaluation of this table. Because of the nonurbanized nature of the quadrangle, most bedrock units
Distribution	Mantles slopes and forms lens-shaped deposits at bases of slopes.	Valley floors and beds of modern streams and some adjacent flood plains.	Forms low terraces adjacent to modern streams. Occupies valley floors, some drainageways.	Mantles low rounded slopes in western part of the quadrangle.	Mantles ridges and upland slopes in central part of the quadrangle.	Low terraces in stream valleys, 10-30 ft (3-9 m) above modern streams.	Terraces on upland surfaces, 30-80 ft (9-24 m) above principal streams in east part of quadrangle.	Pediment deposit on gently sloping upland surfaces 50-200 ft (15-60 m) above principal streams.	either have not been excavated for foundations, or the foundations of buildings are not old enough to have a history of performance. This evaluation is based on field observations of relative permeability, frost-heave susceptibility, erosion susceptibility, natural-slope sta-
	Uneven, irregular; depends on character-	Sand and sandy clay. Soil zone locally as	Thin sandy clay, calcareous, as deep as	Clayey sand; silty where locally mixed with	h Silty sandy clay. Blocky. Contains layers	Silty sandy clay with layers of fine gravel	1. Clayey silty sand with fine gravel layers,	Silty sand; some clay; some thin beds of	bility, shrink-swell potential, and natural susceptibility to compaction
Development of soil zone	istics of source unit.	much as 2 ft (0.6 m) deep. Noncalcareous.	6 ft (1.8 m).	loess; as deep as 4 ft (1.2 m). Non- calcareous.	of fine gravel. Very calcareous. Best agricultural land.	Soil zone as deep as 3 ft (0.9 m). Non- calcareous.	slightly to noncalcareous, as deep as 5 ft (1.5 m).	fine gravel. Zone as deep as 4 ft (1.2 m). Calcareous; caliche films on particles and	Tables 4 and 5
							(1.0 m).	caliche blocks at 1.5-3 ft depths (0.45- 0.9 m).	¹⁰ Other surficial units not tested, except for one sample each of Piney Creek Alluvium and post-Piney Creek alluvium, tested for particle- size distribution. Results of these tests are shown on figure 2.
General remarks	Derived by gravity, slopewash, and weather- ing from bedrock and surficial geologic units.	Derived by erosion and reworking of old soils, sediments, and bedrock. Very susceptible to flooding.	Includes post-Piney Creek deposits too small to map. Very susceptible to seasonal flooding.	Deposited by northwesterly winds; derived from sediments in the South Platte River valley.	Deposited by northwesterly winds; derived from sediments west of and in the South Platte River valley. Very high shrink- swell potential.		r Deposited by meandering streams, eroded fro older sediments and bedrock to the south.	m Deposited by aggrading streams, overlies interbedded Dawson sandstone and claystone in this quadrangle.	¹¹ Field observations indicate that loess has a high shrinkage poten- tial when the material is wetted. Loess that is wetted, compacted, and allowed to dry expands slightly upon re-wetting, as shown above. ¹² Standard deviation: within the range of the mean plus and minus, one standard deviation will fall 68.3 percent of the values for the

TABLE 3.--COMPARISON OF GEOLOGIC UNITS ACCORDING TO SELECTED ENGINEERING CHARACTERISTICS [Based on field observation and interpretation of physical properties tests]

Geologic units	Relative	Relative		Relative	Relati		in Stability	Relative stability	Relative				Lo	pess ¹¹ Qlo			Slocum	n Alluvium Qs			Louvier	s Alluvium Ql	
	permeability	frost-hea susceptibil	ve	fficability	erosio susceptib	Il investigation	d natural	of dry cut (manmade) slopes	foundation stability ⁹	Geotechnical characte	eristics	No. of samples	Dango	Standard ¹²	Maan 13	No. of samples	Paperso	Standard	Maan	No. of samples	Domas	Standard	No.
Bedrock units cr Castle Rock Conglomerate Dawson Arkose, upper part da Arkosic sandstone facies dc Conglomerate facies ds Sandstone facies do Claystone facies dv Variegated claystone facies	Highest Tcr Tdc Tda Tdes Tds Tdo Tdv		'dec Best 'do 'dv 'des 'ds 'da 'da 'da	Dry We Tcr Tc Tdc Td Tda Td Tda Td Tdes Td Tdes Td Tdo Td Tdv Td	r Highest c es a ec s	Tdo Easiest Tds Tdv Tdec Tdes Tda Tdc	Tdo Most Tda Tdv Tcr Tds Tds Tdec Tdes Tdc Tdc Tda Tdv Tcr Tdo	Tda Tds	Tdes Tdo	fig. 2)	Very coarse and coarse sand Medium sand Fine and very fine sand Silt Clay	9	Range 0-2 0-9 1-10 8-22 31-53 28-45	deviation 0.9 2.7 2.9 4.3 7.0 7.2	Mean Y 1 2.3 3 .9 3 .9 13 .3 43 .2 37 .2	tested 3	Range 0-28 0-35 7-46 7-33 0-31 0-29	18.2 19.5 14.4 15.2	Mean Y 18 0.9 20 .9 27 .7 14 1 11 1.4 10 1.7	tested 3	Range 0-22 5-28 5-7 9-18 14-29 20-52	deviation N 12.7 12.5 1 1 4.9 1 8.4 2 16.1 3	
Denver Formation, upper tongue des Sandstone facies dec Claystone facies Surficial units		Lowest	Cr Worst	Tdec Td		Tcr Most difficul			s Least Tdec	No. 35 sieve, 0.5 mm)	Liquid limit Plastic limit Plasticity index Plasticity index/Percent clay	13	28-64 21-43 7-34	9.4 5.9 6.9	46 28 18 0.5	4	32-54 20-28 12-29	3.6 7.1	46 25 21 0.7	5	37-71 21-38 14-33		53 29 24 0.7
pp Post-Piney Creek alluvium p Piney Creek Alluvium es Eolian sand lo Loess	Highest Qes-Qpp Qlo (vertical Qlo (horizont Qp		p Best lo b s	Qs Qs Q1 Q1 Qb Qes Qp Qp	Highest	Qpp Easiest Qes Qlo Qp	Qpp Most Qs Qes Q1 Qp Qb Qb Q10	Most Qs Q1 Qb Qb	Most Qs Q1 Qb Qes	(tested on part of sample passing No. 10 sieve2 mm)	lb/ft ² kN/m ² Mean rating (1-10) Classification	13	600-3,200 29-153 0.6-3.9 Mar		873 90 2.3	4	43-196 1.1-5.2		30 16 3.0		400-6,900 19-331 0.3-8.2 Ma	128 14	
 Broadway Alluvium Louviers Alluvium Slocum Alluvium 	Qb Q1 Lowest Qs	Lowest C	1 es pp Worst	Qlo Qb Qes Qp Qpp Qlo	Lowest	Qb Q1 Qs Most difficul	Qf Qpp Qs Qp Qlo Least Qes	Qpp Qp	Qp Qpp Least 010	Heave ¹⁶	Percent	1	7.1-7.7	6 0.3	7.6		'Not 1	tested	7.75		Not.	tested	6.5

TABLE 5.--GEOTECHNICAL CHARACTERISTICS OF SELECTED BEDROCK UNITS [All test data are results of tests on fresh and moderately weathered samples. Laboratory tests performed by George S. Erickson and Philip S. Powers, U.S. Geological Survey, 1971-73.]

										Dawson A	Arkose, u	pper part												Denver 1	Formation	n, upper t	ongue		
Geotechnical charac	cteristics		Arkosic sa	andstone f. Tda	acies				one facies Tds					one facies Tdo				Variegated c	laystone f dv	acies			one facies Tdes					tone facies Tdec	
		No. of samples tested	Range	Standar deviati	d ¹² on Mean	y ¹³	No. of samples tested	Range	Standard deviatio		sa	o. of amples ested	Range	Standard deviation	Mean	Y	No. of samples tested	Range	Standard deviation	Mean Y	No. of samples tested	Range	Standard deviatio		γ	No. of samples tested	Range	Standard deviatio	n Mean γ
Particle-size distribution, in percent (whole-rock, hydrometer, and sieve analysissee fig. 2)	t Gravel Very coarse to coarse sand Medium sand Fine to very fine sand Silt Clay	13	0-44 12-69 8-27 4-28 2-27 0-32	15.3 16.8 5.8 8.1 9.0 10.6	36 14 15 10	0.96 .47 .41 .54 .9 1.18	16	0-16 0-46 1-42 16-65 6-35 2-33	0.4 13.2 13 12.8 9.2 9.4	12 1 21 35 18	0 1 6 4 5 7	25	0-26 0-10 0-25 3-44 16-50 4-70	5.2 2.6 5.5 10.9 10.3 14.9	1 1	5 3 1.4 .7 .3 .4	5	0-5 0-9 12-38 22-47 26-57	2.2 3.8 11.4 10.7 11.9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	0-4 0-40 3-50 13-54 10-52	1.8 14.1 17.3 14.7 16.3	2 11 22 35	 0.9 1.3 .8 .4 .5	9	0-4 1-29 37-65 12-55	1.3 9.7 9.8 14.6	1 1. 14 . 48 . 37 .
Grain specific density (average).		3		2.64			1		2.77			1		2.66			1		2.65		1		2.70						
Plasticity characteristics ¹⁴ , in per- cent (tested on part of sample passing No. 35 sieve0.5 mm)	Liquid limit Plastic limit Plasticity index Plasticity index/Percent clay	15	0-51 0-36 0-23	17.1 14 8.4	15	0.53 .93 1.1	13	21-56 0-37 0-23	9.5 14 9.1	19).2 .7 .1	23	37-87 25-56 9-31	11 9.1 6.7	55 37 18 0.4	0.2 .3 .4	4	40-65 26-45 3-16	10 7.8 5.9	48 0.2 36 .2 12 .5 0.29	6	43-74 0-45 14-66	12.9 16.2 18.1	30 31	0.2 .5 .6	15	51-95 28-59 11-52	10.8 8.4 10.2	68 0. 44 . 24 . 0.65
Potential volume change ¹⁵ (tested on part of sample passing No. 10 sieve2 mm)	lb/ft ² kN/m ² Mean rating (1-10) Classification	14			45	1.4 1.4	15	(0-3.8)	1;075 51.5 			19	52.7-313.7 (1.2-8.0)		151.3	0.4 .4	6	1,400-3,500 67.1-167.6 (1.6-4.5) Mar		,750 0.4 131.7 .4 (3.3)	6	1,250-9,900 59.9-474.1 (1.4->9.0) Very	156	251	0.6 .6	15	2,300-11,40 110.2-546 (2.8->9) Very	116	5,133 0. 294 . 7.5
Heave ¹⁶	Percent		Not	tested			1		6			10	2-13	3.7	6.3	0.6	4	2-10	3.4	6 0.6		Not	tested			7	10-23	4.5	14 0.
_{pH} 17		12	6.5-8.0	0.6	7.4	0.1		5.9-7.9	0.75	7.0 0	.1	19	4.9-7.9	0.6	7.2	0.1	4	7.1-7.9	0.4	7.3 0.1	4	7.5-7.7	1.2	7.6	0.2	15	6.8-7.5	0.2	7.2 0.
Other tests		Co Sh	confined com 2160-4320 tons/ft ² (207-414 MN/m ²) mpressional 6,400 ft/sec ear wave vel 2,660 ft/sec	1527 (146) wave velo c (1,92) locity	3240 (310) city 0 m/sec)	0.5					Min Qua Cla	neral	f sample 20 65 15	ole): Clay fract Montmorill Kaolinite Illite Chlorite	of onite	rcent total 65 30 5 race					3 C	tons/f (6-47 MN/m ²) Compressional 6,400-8,880 ft/sec (1,920-2,664 m/sec) Shear wave ve 2,660-4,900 ft/sec	215 t ² (21) wave veloc 1,243 (373) (2 locity	299 (29) city 7,690 2,307) 3,640	0.72 .72 0.2 .2 0.3 .3				

By John O. Maberry and Robert M. Lindvall 1974

TABLE 2 -- GEOLOGIC CHARACTERISTICS OF SURFICIAL UNITS

TABLE 4.--GEOTECHNICAL CHARACTERISTICS OF SELECTED SURFICIAL UNITS¹⁰ [All test data are results of tests on moderately weathered samples. Laboratory tests performed by George S. Erickson and Philip S. Powers, U.S. Geological Survey, 1971-73.]

GEOLOGIC MAP AND ENGINEERING DATA FOR THE HIGHLANDS RANCH QUADRANGLE, ARAPAHOE AND DOUGLAS COUNTIES, COLORADO

samples tested.

samples tested. ¹³ γ :coefficient of variation, the ratio $\frac{\sigma}{\overline{x}} \left(\frac{\text{standard deviation}}{\text{mean}} \right)$. ¹⁴ Liquid limit: percentage of water contained in a sample when the sample passes from the plastic state into the liquid state; that is, when it begins to flow. The higher the liquid limit, the more compressible the material.

Plastic limit: percentage of water contained in a sample when the sample passes from the solid state into the plastic state; that is, when it will deform without rebound or rupture. Plasticity index: the difference between liquid limit and plastic

limit. The higher the plasticity index, the more plastic the sample is in its natural undisturbed state. Plasticity index/Percent clay: activity of clays, a derived indicator of clay behavior under load.

¹⁵ Potential volume change is the pressure, due to expansion upon wetting, that may be exerted by the material on a restraining structure. Pressure here is expressed in pounds per square foot and in kilonewtons per square meter. One $kN/m^2 = 145X10^{-3}$ lb/in². Mean rating is on a scale of 1 to 10, and indicates the necessity of using sound engineering practice in overcoming the instability of the material.

	POTENTIAL VOLU (From Lambe		2					
1b/ft ² range	kN/m ² range	Rating	Classification					
1,700	0- 81	1	Noncritical					
>1,700-<3,200	>81-<153	2	Marginal					
		3						
2 200 -1 700	153-<225	4	Critical					
3,200-<4,700	133-<223	5						
		6						
4,700-<8,000	225-<382	7	Very critical					
-,140 -0,000	225 -502	8	, cry criticut					
		9						
>8,000	> 383	9	Hypercritical					

¹⁶ Heave: the amount of heaving, expressed as percent volume increase of a sample in a consolidometer, is measured for a low confining pressure (200 lb/ft²; 9.6 kN/m²) after the sample is given access to water. ¹⁷ pH: a measure of the relative acidity of the sample. pH of 7.0 is neutral; more than 7.0 is alkaline and less than 7.0 is acidic. Alkalinity and acidity increase away from neutrality. Excessively alkaline or acidic material requires special engineering techniques to prevent harmful chemical reactions in dams, foundations, pilings, and other works of man.

Figures 5 and 6

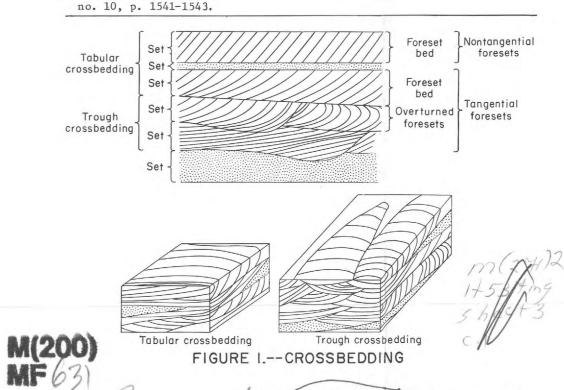
Shad

¹⁸ Coefficient of sorting (So = $\sqrt{Q_3/Q_1}$) is a statistical measure of the dominance of size ranges in a unit. In this study, well-sorted units have So <3.1; moderately to moderately well sorted units have So <5.6; poorly sorted units have So >5.6; the three samples of Louviers Alluvium gave So = 17.3 and are classed as unsorted.

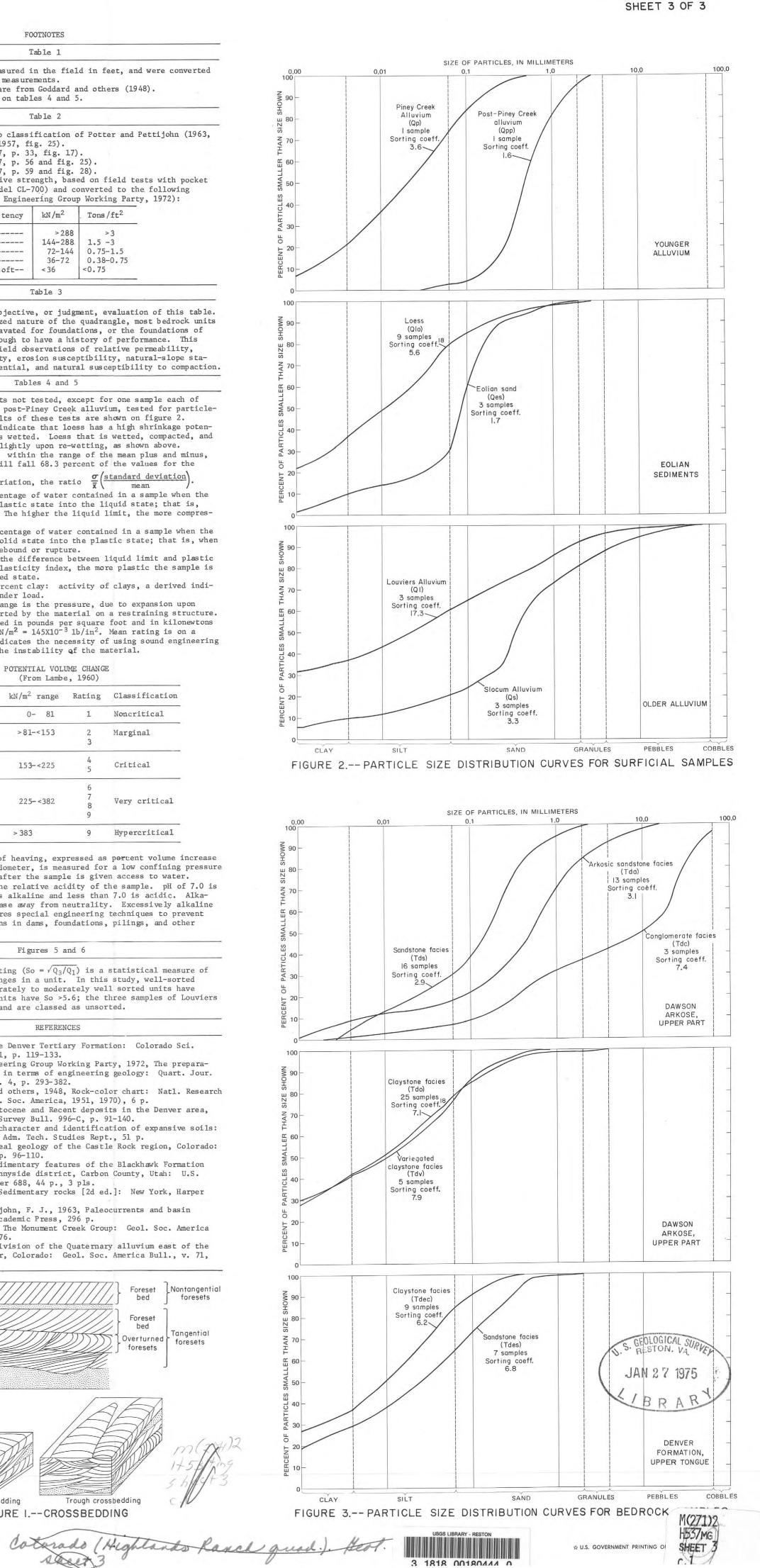
REFERENCES Cross, Whitman, 1888, The Denver Tertiary Formation: Colorado Sci.

Soc. Proc., v. 3, pt. 1, p. 119-133. Geological Society Engineering Group Working Party, 1972, The preparation of maps and plans in terms of engineering geology: Quart. Jour.

Eng. Geology, v. 5, no. 4, p. 293-382. Goddard, E. N., chm., and others, 1948, Rock-color chart: Natl. Research Council (repr. by Geol. Soc. America, 1951, 1970), 6 p.


Hunt, C. B., 1954, Pleistocene and Recent deposits in the Denver area, Colorado: U.S. Geol. Survey Bull. 996-C, p. 91-140. Lambe, T. W., 1960, The character and identification of expansive soils: [U.S.] Federal Housing Adm. Tech. Studies Rept., 51 p.

Lee, W. T., 1902, The areal geology of the Castle Rock region, Colorado: Am. Geologist, v. 29, p. 96-110. Maberry, J. O., 1971, Sedimentary features of the Blackhawk Formation


(Cretaceous) in the Sunnyside district, Carbon County, Utah: U.S. Geol. Survey Prof. Paper 688, 44 p., 3 pls. Pettijohn, F. J., 1957, Sedimentary rocks [2d ed.]: New York, Harper

& Brothers, 718 p. Potter, P. E., and Pettijohn, F. J., 1963, Paleocurrents and basin analysis. New York, Academic Press, 296 p. Richardson, G. B., 1912, The Monument Creek Group: Geol. Soc. America

Bull., v. 23, p. 267-276.
Scott, G. R., 1960, Subdivision of the Quaternary alluvium east of the Front Range near Denver, Colorado: Geol. Soc. America Bull., v. 71,

Piney Creek Alluvium (Qp) I sample Post-Piney Creek alluvium (Qpp) Sorting coeff. I sample 3.6~ Sorting coeff. Loess (Qlo) 9 samples Sorting coeff. 5.6 Eolian sand (Qes) 3 samples Sorting coeff. Louviers Alluvium (Q1) 3 samples Sorting coeff. Slocum Alluvium 3 samples Sorting coeff. 3.3 GRANULES SAND CLAY SILT SIZE OF PARTICLES, IN MILLIMETERS Sandstone facies (Tds) 16 samples Sorting coeff. Claystone facies (Tdo) 25 samples Sorting coeff. Variegated laystone facies 5 samples

