

STRUCTURE CONTOUR MAP
Base map from Wyoming State Highway Department compilation, map series 1:125,000, chain highway system, updated to 1969. Land grid and roads in T39-40N and T70W through center of T72W revised to conform with U.S. Geological Survey Bently Reservoir quadrangle (1:62,500).

DISCUSSION

The Wyodak and Anderson coal beds in the Powder River Basin are the most important strip-mined coal beds in the Powder River Basin, and constitute one of the world's largest coal deposits. The coal occurs as a single bed or as a series of thin, closely spaced, interbedded beds of noncyclic rock in the upper part of the Fort Union. The beds range in thickness from 0 to 176 feet. The Wyodak coal bed is the most prominent in the western part of the area where the stratigraphically lower coal bed, the Canyon is present and thick or thin, and is also present in the northeast corner of the area. The name Wyodak is used where the Wyodak Coal bed is the most prominent in the eastern part of the area (see Denson and others, 1970, and isopach map J). As used in this report, Wyodak coal is either a single coal bed without shale partings, or it contains two merging coal beds that are separated by noncyclic rocks generally less than 12 feet thick. Where the Canyon Coal bed is present, Wyodak coal is also present, but this exceeds the thickness of either coal, then they are referred to separately as the Anderson and Canyon coal beds. In areas where the Canyon coal is stratigraphically lower than the Anderson coal bed, the terms Wyodak and Anderson are not equivalent.

The Wyodak and Anderson coal beds underlie about 1,175 mi² in the Reno-Junction-Antelope Creek area, as well as large regions to the north and west.

In most of the area, the east edge of the Wyodak and Anderson beds is marked either by the limit of the coal or by absence of coal. In the northern part of the map where the Anderson is thin and coal exposures are poor, a line of fine dots on the map shows the approximate base of the coal. In the southern part of the map, it is 5 ft or more thick. Generally, coal beds are poorly exposed because they are weathered and covered by overlying clinkers. The Anderson coal bed, which is easily recognized by its conspicuous red and purple colors, is hard-baked or partly fused rock and is easily distinguished from the noncombustible residue (ash) of coal itself.

The structure contours show that (1) the base of the Wyodak and Anderson coal beds generally slope (dip) gently to the north in the southern part of the map, and (2) in the northern part of the map, it is 50 feet/mile (equivalent to one-half degree of dip or less). (2) structural irregularities, such as the 3,600 feet structure contour, which is shown on the adjacent Gillette Folio (Denson and Keeler, 1974) to the northwest corner of the Reno Junction-Antelope Creek area, actually lies further to the west.

The structure contours show that (1) the base of the Wyodak and Anderson coal beds generally slope (dip) gently to the north in the southern part of the map, and (2) in the northern part of the map, it is 50 feet/mile (equivalent to one-half degree of dip or less). (2) structural irregularities, such as the 3,600 feet structure contour, which is shown on the adjacent Gillette Folio (Denson and Keeler, 1974) to the northwest corner of the Reno Junction-Antelope Creek area, actually lies further to the west.

The structure contours show that (1) the base of the Wyodak and Anderson coal beds generally slope (dip) gently to the north in the southern part of the map, and (2) in the northern part of the map, it is 50 feet/mile (equivalent to one-half degree of dip or less). (2) structural irregularities, such as the 3,600 feet structure contour, which is shown on the adjacent Gillette Folio (Denson and Keeler, 1974) to the northwest corner of the Reno Junction-Antelope Creek area, actually lies further to the west.

STRUCTURE CONTOUR MAP

The structure contour map shows structure contours on the base of the Wyodak and Anderson coal beds. Because the base of the Wyodak is at the same stratigraphic level as the base of the Anderson, the two are contoured together. This difference has no effect whatever on structural interpretation within an area contoured solely on one or the other. The Wyodak coal bed is the most prominent in the area underlain only by the Anderson coal bed, or within the area of Wyodak coal alone; a line of heavy dots lies between the two areas (see Denson and others, 1970, and isopach map J). As used in this report, Wyodak coal is either a single coal bed without shale partings, or it contains two merging coal beds that are separated by noncyclic rocks generally less than 12 feet thick. Where the Canyon Coal bed is present, Wyodak coal is also present, but this exceeds the thickness of either coal, then they are referred to separately as the Anderson and Canyon coal beds. In areas where the Canyon coal is stratigraphically lower than the Anderson coal bed, the terms Wyodak and Anderson are not equivalent.

The Wyodak and Anderson coal beds underlie about 1,175 mi² in the Reno-Junction-Antelope Creek area, as well as large regions to the north and west.

In most of the area, the east edge of the Wyodak and Anderson beds is marked either by the limit of the coal or by absence of coal. In the northern part of the map where the Anderson is thin and coal exposures are poor, a line of fine dots on the map shows the approximate base of the coal. In the southern part of the map, it is 5 ft or more thick. Generally, coal beds are poorly exposed because they are weathered and covered by overlying clinkers. The Anderson coal bed, which is easily recognized by its conspicuous red and purple colors, is hard-baked or partly fused rock and is easily distinguished from the noncombustible residue (ash) of coal itself.

The structure contours show that (1) the base of the Wyodak and Anderson coal beds generally slope (dip) gently to the north in the southern part of the map, and (2) in the northern part of the map, it is 50 feet/mile (equivalent to one-half degree of dip or less). (2) structural irregularities, such as the 3,600 feet structure contour, which is shown on the adjacent Gillette Folio (Denson and Keeler, 1974) to the northwest corner of the Reno Junction-Antelope Creek area, actually lies further to the west.

The structure contours show that (1) the base of the Wyodak and Anderson coal beds generally slope (dip) gently to the north in the southern part of the map, and (2) in the northern part of the map, it is 50 feet/mile (equivalent to one-half degree of dip or less). (2) structural irregularities, such as the 3,600 feet structure contour, which is shown on the adjacent Gillette Folio (Denson and Keeler, 1974) to the northwest corner of the Reno Junction-Antelope Creek area, actually lies further to the west.

The structure contours show that (1) the base of the Wyodak and Anderson coal beds generally slope (dip) gently to the north in the southern part of the map, and (2) in the northern part of the map, it is 50 feet/mile (equivalent to one-half degree of dip or less). (2) structural irregularities, such as the 3,600 feet structure contour, which is shown on the adjacent Gillette Folio (Denson and Keeler, 1974) to the northwest corner of the Reno Junction-Antelope Creek area, actually lies further to the west.

The structure contours show that (1) the base of the Wyodak and Anderson coal beds generally slope (dip) gently to the north in the southern part of the map, and (2) in the northern part of the map, it is 50 feet/mile (equivalent to one-half degree of dip or less). (2) structural irregularities, such as the 3,600 feet structure contour, which is shown on the adjacent Gillette Folio (Denson and Keeler, 1974) to the northwest corner of the Reno Junction-Antelope Creek area, actually lies further to the west.

The structure contour map shows structure contours on the base of the Wyodak and Anderson coal beds. Because the base of the Wyodak is at the same stratigraphic level as the base of the Anderson, the two are contoured together. This difference has no effect whatever on structural interpretation within an area contoured solely on one or the other. The Wyodak coal bed is the most prominent in the area underlain only by the Anderson coal bed, or within the area of Wyodak coal alone; a line of heavy dots lies between the two areas (see Denson and others, 1970, and isopach map J). As used in this report, Wyodak coal is either a single coal bed without shale partings, or it contains two merging coal beds that are separated by noncyclic rocks generally less than 12 feet thick. Where the Canyon Coal bed is present, Wyodak coal is also present, but this exceeds the thickness of either coal, then they are referred to separately as the Anderson and Canyon coal beds. In areas where the Canyon coal is stratigraphically lower than the Anderson coal bed, the terms Wyodak and Anderson are not equivalent.

The Wyodak and Anderson coal beds underlie about 1,175 mi² in the Reno-Junction-Antelope Creek area, as well as large regions to the north and west.

In most of the area, the east edge of the Wyodak and Anderson beds is marked either by the limit of the coal or by absence of coal. In the northern part of the map where the Anderson is thin and coal exposures are poor, a line of fine dots on the map shows the approximate base of the coal. In the southern part of the map, it is 5 ft or more thick. Generally, coal beds are poorly exposed because they are weathered and covered by overlying clinkers. The Anderson coal bed, which is easily recognized by its conspicuous red and purple colors, is hard-baked or partly fused rock and is easily distinguished from the noncombustible residue (ash) of coal itself.

The structure contours show that (1) the base of the Wyodak and Anderson coal beds generally slope (dip) gently to the north in the southern part of the map, and (2) in the northern part of the map, it is 50 feet/mile (equivalent to one-half degree of dip or less). (2) structural irregularities, such as the 3,600 feet structure contour, which is shown on the adjacent Gillette Folio (Denson and Keeler, 1974) to the northwest corner of the Reno Junction-Antelope Creek area, actually lies further to the west.

The structure contours show that (1) the base of the Wyodak and Anderson coal beds generally slope (dip) gently to the north in the southern part of the map, and (2) in the northern part of the map, it is 50 feet/mile (equivalent to one-half degree of dip or less). (2) structural irregularities, such as the 3,600 feet structure contour, which is shown on the adjacent Gillette Folio (Denson and Keeler, 1974) to the northwest corner of the Reno Junction-Antelope Creek area, actually lies further to the west.

The structure contours show that (1) the base of the Wyodak and Anderson coal beds generally slope (dip) gently to the north in the southern part of the map, and (2) in the northern part of the map, it is 50 feet/mile (equivalent to one-half degree of dip or less). (2) structural irregularities, such as the 3,600 feet structure contour, which is shown on the adjacent Gillette Folio (Denson and Keeler, 1974) to the northwest corner of the Reno Junction-Antelope Creek area, actually lies further to the west.

The structure contours show that (1) the base of the Wyodak and Anderson coal beds generally slope (dip) gently to the north in the southern part of the map, and (2) in the northern part of the map, it is 50 feet/mile (equivalent to one-half degree of dip or less). (2) structural irregularities, such as the 3,600 feet structure contour, which is shown on the adjacent Gillette Folio (Denson and Keeler, 1974) to the northwest corner of the Reno Junction-Antelope Creek area, actually lies further to the west.

EXPLANATION

STRUCTURE CONTOUR MAP
—STRUCTURE CONTOUR CONSTRUCTED ON THE BASE OF WYODAK OR ANDERSON COAL BEDS—Dashed where projected above ground level in eastern part of map; contour line, where projected below ground level in western part of map.
—STRUCTURE CONTOUR DEFINING A CLOSED STRUCTURAL DEPRESSION—Contour interval 100 feet.
—AXIAL TRACE OF ANTICLINE SHOWING DIRECTION OF PLUNGE
—AXIAL TRACE OF SYNCLINE SHOWING DIRECTION OF PLUNGE
—DRILL HOLE USED FOR MAP CONTROL—Subsurface data from electrical and radioactivity logs available as
ELEVATION TAKEN FROM PUBLISHED REPORT—Elevation at base of Wyodak or Anderson coal beds (or at base of its clinker where coal is burned)
—EAST EDGE OF WYODAK OR ANDERSON COAL BEDS—Represents eastern contact of Wyodak or Anderson coal with clinker (ash) rock, where dotted in southern part of map, indicates approximate subsurface limit of Anderson coal that is 5 feet or more thick
—HIGH-ANGLE FAULT INFERRED FROM CONFIGURATION OF STRUCTURE CONTOURS ONLY—Base and bottom on downthrown side as inferred from separation of contoured datum horizon.
—HIGH-ANGLE FAULT INFERRED FROM CONFIGURATION OF STRUCTURE CONTOURS ONLY—Base and bottom on downthrown side as inferred from separation of contoured datum horizon.
—TOPOGRAPHIC LINEMENT REPRESENTING LINEAR STREAM COURSE OR ALINED TOPOGRAPHIC FEATURES
—DRILL HOLE USED IN CONSTRUCTING FENCE DIAGRAM A-K (See Map 1a)
—DRILL HOLE USED IN CONSTRUCTING STRUCTURAL SECTIONS a-1 and j-1
—COAL MINE
—ISOPACH LINE SHOWING THICKNESS IN FEET OF WYODAK OR ANDERSON COAL BED—Separates categories of Wyodak or Anderson coal bed thicknesses

INDEX TO TOPOGRAPHIC QUADRANGLE MAPS
IN THE RENO JUNCTION-ANTELOPE CREEK AREA
7 1/2-Minute Quadrangle Maps
(1:24,000 scale)
A. BENTLY, Savageton 15° map
B. Eger, Rock Creek
C. Neil Butte
D. Rock Creek
E. Jim Creek
F. Savageton
G. Teton Ranch
J. South Butte
K. South Butte
M. Reservoir
N. Piney Canyon NE
O. Piney Canyon SW
P. Piney Creek
R. Teekla
S. Piney Canyon SW
U. Coal Bank Draw
V. Piney Creek Ranch
15-Minute Quadrangle Maps
(1:62,500 scale)
AA. North Star School
BB. Tunnercrast
CC. Ross
DD. Coal
EE. Berry Reservoir

Scale 1:125,000

0 2 4 6 8 10 MILES
0 2 6 8 10 KILOMETERS

Scale 1:125,000

0 2 6 8 10 KILOMETERS

Scale 1:125,