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granltlc rocks. ; 3 97 present in the clinopyroxene, the V may be substituting for Fe in  the Graunltiec rocks ;300.0
= clinopyroxene. 5
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7 JURASSIC with the comparable data for peridotite. Mn and Ni abundances are low whereas Sedimentary rocks $700.0
Ca, Fe, Ti, and V are higher. The decline in the Mn and Ni (which are present
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clinopyroxene) match the decline in the ratio of olivine to clinopyroxene. Gabbro >i,,000-0
0.01 54 Ju The mutual correlations of V and Ti with Fe within the pyroxenite suggest that eraiitic roiks $1.500.0
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Jg, gabbroic rocks Element abundances for gabbro are presented in figure 10, and element Sod fmentar k $700.0
£ i y rocks .
Ju, ultramafic rocks; predominantly correlations are presented in figure 11. These samples were collected from
metacumulate peridotite cumulate, massive, and hornblende gabbroic rocks. Many of the differences 7Zn Zinc Dunite >150.0
< shown in table 3 may reflect the effects of comparing published gabbro Pyroxenite >500.0
- - analyses of gabbro from ophiolites with a mixture of analyses of ophiolite and Gabbro >300.0
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- = which may be of economic importance, have remained unchanged during
/ / a IZI AGE UNKNOWN serpentinization. Only Co and Fe show a strong correlation, similar to that Ag Silver Peridotite 5.3
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! ’_/ BOUNDARY OF KAIMIOPSIS WILDERNESS Element abundances for volcanic rocks are shown in figure 16, and element Sedimentary rocks 3.0
A 17 Correlation between elements in volcanic rocks. correlations are shown in figure 17. Comparisons with gabbros and granitic
Figure . rocks show that the volcanic rocks are intermediate between the two with i
W Tungsten Sedimentary rocks >50.0
/ respect to the mafic elements. This relative position may reflect the
e OUTLINE OF INFORMAL ASSOCTATIONS andesitic to dacitic compositions of the volcanic rocks. Significant large lLower limits of unexplai. ! abundance were developed for each rock type
corrrelations in figure 14 are between Co, Cr, Ni, V, and Fe.

unexplained abundance. In ome cases, subjective judgments were made to
. LOCATION OF ANOMALOUS SAMPLE--Anomalous elements or Element abundances for the sedimentary rocks are presented in figure 18 s S U = e n P L SR WU Wieipiatoed
» abundances did not exist.
4 d element correlations are presented in figure 19. These rocks are mostly 3
gossan indicated an 5 All samples containing t.e indicated abundances of these. elements were
graywacke and shale (micrograywacke). Because element abundances for the 1
plotted on the map. Samples containing the other elements were plotted only
sedimentary rocks resemble those of the volcanic rocks, these clastic rocks if the
y contained more than one unexplained high abundance.
are probably derived from the volcanic sequences. SA]_]_ Sanol ;
ples of gossan were plotted inasmuch as gossans may represent
* potential ores.
Gossans
Fe The element abundances for gossans are shown in figure 20, and the
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100000.0 | H Ca Au, are to be expected in such rocks. The element correlations for the
The Wilderness Act (Public Law 88-577, September 3, 1964) and related gossans are typical of deposits formed by mineralizing fluids, but probably Table 2.--Defini s
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10000.0 | Cr o v l certain areas on TFederal lands to determine their mineral resource different types of ore deposifts.
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Cu 1000.0 the President and the C Thi . et Mejor Represented Represented Number of
Mn ‘ ! ongress. 8 report presents the results of a rock type map units rock types samples
: ‘ | = eochemical survey of the Kalmiopsis Wilderness in the Siski National . ;
R B Cu 8 o 3 you Nation
e 1000.0 B Co =_ Co Forest, Curry and Josephine Count Oregon. KRalmiopsis Wilderness was INEARLATNED RICH ABUNDANCES OF ELOVNDE. [N Boghs $
\ 2 Po Vs P Dunite Josephine Peridotite (J3j) Dunite 75
4 ; E L = B i B RITAbLIghTd By blic Tow 88-537, Rovtenhor WS Anomalous samples as defined earlier are shown in table 4 where they are Peridotite (Jpt)
e < {00.0 2638 3 257 S 261 grouped into informal associations. Each association is formed from sampleg Ultramafic rocks (Ju)
i E 10.0 238 198 with similar anomalous elements, similar geologic settings, and (or) similar 2
8 38 38 e 264 rock types. These associations are the Mount FEmily association, the Peridotite Josephine Peridotite (Jj) Peridotite 228
E {26 38 = 262 263 262 INTRODUCTION volcanogenic association, the cumulate sulfide association, and the Peridotite (Jpt)
10.0
-] - L0 hydrothermal association. There 1s also an unassigned sample categsry. The Ultramafic rocks (Ju)
a2 31 <8 This report summarizes 1,307 semiquantitative chemical analyses of rocks arrangement within each association shown in the table is intended to =
4 | collected to aid in the evaluation of the mineral resources of the Kalmiopsis emphasize chemical similarities between samples. For example, the first Eyroxenite Ultramafic rocks (Ju) Pyroxenite 72
1.0 P
Wilderness, Oreg. . Chemical analyses and sample location maps are presented by sample in the table is a volcanic rock that contains anomalous abundances of : =
0.1 Grimes, Leinz, and Speckman (1981). The area is located in the Klamath Ba, Pb, Mo, Sn, and Be. Below it is a very similar anomalous sample that is e Piandes dikes (I41) Gebhro o
0.1 1 Mountains geomorphic province of southwestern Oregon, and the area's location also a volcanic rock and that contains anomalous abundances of Pb, Mo, Sn, and Cobbrate roeln (Tx) e L
and boundaries are shown on the accompanying map. Be. To the right of the first sample is an anomalous sample of sedimentary Dike Complex (Jd) Diabase 13
0. 01 - rock that is somewhat similar in that i1t also contains anomalous abundances of Troctolite 5
'0_‘01 The geology of the study area is described by Page and others (1981), Ba, Mo, and Be as well as anomalous abundances of Cu, Az, and Cr. FEach = E
Gray (1980), and Ramp (1975). The rocks of the area consist of dismembered asociation is also shown schematically on the map ds a heavy line enclosing ota
ophiolite, island-arc, and sedimentary rock sequences that 1ie within the locations of anomalous samples of that association. The actual houndaries of = : = :
e Western Jurassic belt of the Klamath Mountains. All units normally found each association are undoubtedly complex, but not enough information 1s e e Pyroxene—'bearing Beta b s
| Figure 12, Element abundance diagram for serpentinite within these assemblages are present; however, thrusting and subsequent normal presently available to define them. These associations may or may not volcanic rocks (Jp) Basalt 16
« / - e , faulting have disrupted the geometric relations, producing a complexly faulted indicate the presence of economic mineral deposits. The likelihood of Necavolesale panks (Inv) Daclte 14
0 o5 gl = series of imbricate thrust slices. economic mineral deposits may be small, and these associations should be Dothan Formation and Greenstone 53
regarded only as indications of the direction that further exploration could Colebrooke Schist (KJdc) Rhyodacite 2
METHODOLOGY take. N g‘i’iphy’g d;“‘lp) ﬁzdles“e . :
acite es glomerate
Grab samples were collected during the summers of 1976, 1977, and 1978 The Mount Emily association, in the south tip of t.he study area, consists Porphyry 1
during the course of detailed geologic mapping. The locations of the samples of samples from light-colored plagloclase porphyry dikes intruded iInto the s
a;:le showri in figure 1. There was no formal effort statistically to randomize J;Siﬁhir;ikl’eri%dotite{i ;hethDothan Fc:)eration, ind the Colebroz;l;e Sc};ist:;1 Many Total 120
© the samples and, consequently, some sampling bias may be caused by a tendenc - = £S5 FEAM WG €3¢ SaMBEO axs tdcon are top swall to e shown ol
L 15 156 16 15 15 ! g 83| 36| 82| 83)264 264264264 264| 83 = to select unusual rock types . Any such sampling bias is probabl}z’ diluted b}}: the map. Typical dikes as much as several inches wide and as much as several i pocks . Dleeite and qumite dinnie Aplite 3
the large number (1,307) of samples collected for analysis. Restricting the tens of feet. long. One exceptionally large body is shown on the map as a (Jdq) Granite 5
> [264] 40 |26/{264 26426 264/264]264 > sampled population to available outcrops may have caused additional sampling Tertiary dacite dike. Elements with unexplained high abundances in this Placite i
bias, as descri { association are Ba, Pb, Mo, Sn, Be, Cu and Cr. This association 1is Granodiorite 5
E - escribed by Miesch (1967). . e s > s > Ag,
38 38 38 38 > ] 2 2 4|264 264l typica o the ate-stage magmatic setting (Levinson, 1974, p. 60), g
> E 264] 40 126/{2641264|26 7 Chemical analyses were prepared using the six-step seilqusntitarive particularly involving alkaline intrusive bodies. The Mount Emily association Total 89
, — 4] / = emission spectrographic method as described by Myers., Haven D is named for Mount Emily, an alkaline intrusion of Tertiary age that lies
42°15 = [264] 40 |26}264/264|264|264] y » (1961), Ward and others (1963), and Grimes and M};rrgnzin,o (19685;’. e mert:hgg about 8 mi southwest of the Wilderness; we believe that the dikes from which Seppentiniie Serpentinite (Jsp) Serpentinite 38
7 these samples came are genetically linked to the intrusion of the Mount Fmily Ultramafic rocks (Ju)
= 38 38 38 E % &5 / is semiquantitative, that is, element abundances are reported as 1, 1.5, 2, 3 P 8 y Y e
= a 264| 40 |26} 264‘264 264 A V. A B 5, and 7 times the powers of 10. Units are reported in parts per millio; B Gossan n.a Gos 15
s B 7 s (ppm) or percent. The method allows rapid and relatively inexpensive chemical . =
7 / % [264] 40 |26}|264]|264 A analyses for exploration purposes. Statistical properties of data. generated Most samples in the volcanogenic assoclation are from localities -along . = = . - . —
- 4 : . ! ry othan Formation an raywac
TTII77 7, by this method have been described by Motooka’ and Grimes (1976). the east boundary of the study area, at lat 42°15' N. south of the center. ecimenta
8 38 38 / / 8 264| 40 |261264] ////// // 8 : - ) Three other areas are located in the northwest corner of the area. All rocks Colebrooke Schist (KJdc) Sandstone 12
A A NNl L 4 Re 5 samples are volcanic rocks or gossans. The volcanic rocks are sheared or Myrtle Group (KJm) Conglomerate 13
vy trieval and statistical reduction of the chemical analyses were =
7’ &% lee4 40 |26 // & performed using the RASS and STATPAC systems of computer programs described by fractured and commonly altered and may contain iron stains and visible Umpqua Formation (Tu) Shale 44
! /A VanTrump and Miesch (1977). Graphic displays of dat e sulfides. Many of them occupy shear zones between thrust slices. FElements Mudstone 16
. k type were
€| 38 / 7 A, : - L bal T rocc T with lained high abund in thi 1ati 1, C Siltstone 5
prepared using unpublished computer programs created by Carlson. unexpane £11 abundances in Ehis association ate N, Cr, Ba, Mo, Ouj
7/ o [264] 40 % //%% o . d lack shal
/A // // // // and Ag. These abundances may reflect the presence of volcanogenic massive Black shale 3
7 V) Y, Three types of graphical summaries are shown: Shindon. i sulfide deposits, a possibility noted in the area during the course of ==
B g €140 /‘// /4 / _E correlation diagrams, and locations of samples with unexplainelggrﬁ?z},n 3e°]i'°53° fmappi{_:gd (Pafe a“ld ;ther:’ 1:81)'(1 ks del"’sﬁs are belleved to ba Total 264
7, Y /s T %/ abundances. The abundance diagrams show the geometric means, the geometric Srye £9D.hydrotherma epasltstorned eayngenatically with jchelvolcands
E. //% RRX% % '// E deviations, and the ranges of all elemental abundances for oach i jor rock rocks at a spreading center and since transported as sheared masses along TOTAL 1,307
FE N co NI v He < v ¥ v < v 3 type. The elements are arranged in increasing atomic number from left to thraet faulte.
FE MN B m 0 CR CU NI PB V He right. Wherever the number of determinations is judged to be too small to Th 1 1fid fati is £ d :
yield useful statistics, the data for that element are not shown. Geometric € ool At o £ dssoslatlon i3 ngile @ four dreas:  EBhe northyess
o . statistics were chosen because of the common tendency of rock Stalgies e o corner, the central part and in two small areas east and southeast of the Table 3.——Ratios of arithmetic mean abundances for rocks in the Kalmiopsis area to
Correlation between elements in serpentinite. Flaups 10 Correlatiin between elements in sedimentary rocks. lognormal distributions. An explanation of the symbols used in the abundance center of the study area. The samples conisist of numerous gossans, several those reported in the lite.erat:ure -
- = : : e e g . diagrams is given in figure 2. altered pyroxenites containing visible sulfides, a conglomerate containing a [--, not available; Values for pyroxenite from Bailey, Irwin, and Jones (1964);
sulfide-bearing quartz vein, a sheared iron-stained amphibolite with tale, others from Coleman (1977)]
= = = lcite, and quartz veins, and one sample each of peridotite, gabbro, granitic
Correlations between elements within rtock t h o - 2 p s ?
correlation diagrams using Spearman Rank Cor‘iaei(;tions (Snzgee:ora:id‘ scg:;lra;n rock, and laterite. Elements with unexplained high abundances in this Major rock types
b
1967, p. 193). Rank correlations are more demanding than Pearson Correlations iiszifzitio;gi::tgg,agi; Zn,lfgg, A}gl, Hg;:hax;d Au.t gisedetelzents i;e beli]e_VEd Granitic Volcanic
and reduce the 1likelihood of spurious correlations resulting from the 7 &L - ohonta s = = cnatq ; = -
semiquantitative nature of the reported values. All correlations shown are uitramific an:iliabZrc;ic sgcti}c:ns = thv.a ephiolite sequsuee, | ey may havy Hlemsars il Ferldocite e Sl rachs Rapks
statistically significant at the 95 percent or better confidence level using S2NCE veen 1o Lo o Magnesium 0.26 0.23 0.44 0.44 0.79
the methods described by Snedecor and Cochran (1967, p. 1955, estionable = * * * . = 5
correlations were examined graphically and subjec,tively rejec?:ued if the The hydrothermal association, located in the northeast corner of the map Galcimm —— 4 33 2.38 .99 .78 =4 .85
7 : area, consists of three small areas of altered gabbro and diorite.containin
correlations appeared to be caused by skewed distributions. An explanation of 5
: visible sulfides. FElements showing unexplained high abundances are Au Vanadium -- -- 3.52 == 1.65 4.47 W45
the patterns used on the correlation diagrams is shown in figure 3. £
- Cu, Mo, Ba, and Pb. These few anomalies may reflect the presence of Cheoni = .97 e ¢ <.57 $22.10 2. 44
> 1369175l172| 56 |365365365365365369 54 O F A review of the data showed that some reported abundances were very high hyd;othermal s;lfldlei veir}fs depgsited tin dl}osfj:. racks hin con}_;]unctign Witkh thy M 95 1.14 1.57 1.86 2.89 1.11
o T 154 54| 54|53| 54|54 | 54| 64|54 7/ ) - . and ?ig}‘lt ;ot be explained by the usual variation within each rock type. The emplacement and cooling ef BeRlRP HBE ] EE Pyl L ks o : : E L £ -
T 100000. 0 Ca E statistical distribution for each element was therrefore reviewed, for each - - Tron ———=—— 1-35 1.32 2.06 7 1.39 .88
' : : = 15 major rock type. More than 200 abundances were identified as unexpectedly The unassigned samples conprise fuo major rock typea: aslimentaey rocks
406 ; 365175172 56 365365665365365 = Cu high. Of these, 84 samples contained a single unexplained abundance, and 32 sud  pyroxeniien; Four Of 18 fLge oedfmemtary 3ock Swples contalg - 130 = . 371 e
10000. 0 178 Crln N . 7 V 10000. 0 samples contained unexplained abundances for more than one element. One une);plaim}aldhili}glh a:}llmdances l"f lNi am;i Cr. - Thelse samples probably represent Nickel ———- .95 1.15 .46 1.56 2.50 .89
175 Cu Ba B [368175/172 56 365365365365 // A 8 s Cr N1 unexplained abundance within a single sample might be the result of ordinary :;:isnrf;cantg e;‘he i{n_:]o;?‘imali tr?:iabcl anre vro Car::ic clas;is B o pr;:bably e 2.64 — 4.29 74.00 2.33
v Co 5 36 e k651365365 = g 13 W variance, but the chance ‘that two or more unexplained abundances would occur clasis of Mo ;nd W minoerals and };.spalso piobaglssf:sisg:ifsiecan“::enté;;e}::ai(;ce t:i;h i - ' g :
1 817 X in a single sample i ch lower d these abundan onsi C e = == = 5 3 z
s = 7 V/ /N 7 1000.0 11V Co anomalous.g Manyp anal}s;sel:u for 0;:15 :r?d mercury wuzlare ;239_ aEZincgon:tizis(—i 1s no known limestone in the area, there is little likelihood that this rock = L L .
3 Tha " — -~ P T m— - o i e = .3 - - - a2 i —.
a B 56 406 8 |3eg175172| 56 p65[365 ‘é / / 8 2 absorption methods, and abundances above 0.1 ppm are also shown as s a skarn. The pyroxenite samplés may be patt of the cumulate sulfide
& 100.0 - = E % B 15 Ba anomalous. The location of all anomalous samples is indicated on the feEdz fbion; bu queh o Telasion 14 g oE
] 651751172 56 365 ~ 100.0 accompanying simplified geologic map. Gossans, by their nature, may be guid
8 40530 ﬁ = 7/ § w H 11 to potential ores, and they gtoo alz'e shown or; ti:e map. Tabl;_ T ypreseg:ts e: CONCLUSIONS Table 4.--Anomalous samples grouped into informal associations
Q . = 15 guide to the symbols used to indicate th .
- 10.0 {131 358 £ B65175(172| 56 7/ = | 15 8 e o 2l €08 saligies g8 the map This study produced the following conclusions regarding the geochemical
=] 406 392 _ v 7 7, a 100 {4 8 & 8 8 MOUNT EMILY ASSOCIATION
3 39 & |56]56]53 // // // (S E 15 fig GEOCHEMICAL DESCRIPTION OF THE MAJOR ROCK TYPES characteristics of rocks in the Kalmiopsis Wilderness. Most, if not all, the
g = 7/ /f=— 3 15 element correlations reported here are typical of the associated rock type. Vol i K Sedi K Gabb
olcanic rocks edimentary rocks ro
1.0 S 1721172 S = 1.0 Hg Many of the map units presented in the accompanying simplified map gzili‘;iigenslszzﬁzg:ncfe:r r:fsl:steir:r:rihiasreariz Zigadfo:gzei?nﬁ?lr;i Zitt t?ig; S
contain more than one rock type. For e le, the Doth. F, ti d i e
@ 75 % 7/ % g 4 Au Colebrooke Schist contain sy;ndstone )s(}axlange ; voi‘l_ac:an:[can):‘ocokl;mél cohr:arin ;E: similar geolgmie eowlromnencs. Tirfy two eamples were Hdemilfled aq - g:’ go, gn, ge e o
0.1 1 = /) / /7 =] i 2 ? 2 containing unexplained high abundances for two or more elements. These L
s s 77V, 0.1 Pd schist. Because the chemistry may vary substantially between such rock types Pb, Mo, Sn, Be
E 7/7/ / // /A// E % 5 we believe that important distinctions would be lost if the analyses wer; anomalous samples were assigned to five informal associations on the baels of ! Mo’ Sn’ Be
N/ /s Z presented by map unit. Therefore, analyses of approximately similar rock similar chemical abundances. These informal assoclatfons cen be ¢ plataed 1p Mo’ Sn’ Be
0.01 FE MG CR TI MN BA CO CR CU NI SC V i 7 Eynes ave’ grouned togsther avel Whai n T o R T R terms of the geologic context of the area. o
. 3 different ages and somewhat dissimilar environments. TFor example, dunite from Pb Be
L2 1 - oh ( > the peridotite unit and the Josephine Peridotite is grouped with the dunite REFR e Hg
= ¥ ro . RJde from the ultramafic rocks unit. Table 2 shows th nit d k
Figure 10. 11. Correlation between elements in ga ~ K q a1 B P s e map units and rock types
£ Y S ST ! ) 5 Zonils o ioure 20. Element abundance agra g € included withi h k : . Bailey, H. E., Irwin, W. P., and Jones, D. L., 1964, Franciscan and related
/ ) 7 NN // 7 B \Flgw i Ny belo: i S il el . 0 srounings deserdbed r:)cks and their significance 1in the geology of western California: VOLCANOGENIC ASSOCIATION
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