



Table 1.—Chronological listing of earthquakes for the State of Nebraska

YEAR	MONTH	DAY	ORIGIN TIME(UTC)	LAT.	LONG.	DEPTH	HYPOCENTER		MAGNITUDE	INTENSITY				
							H	M	S	QUAL	REF	USGS	OTHER	MM
1867	APR	28	40.7	95.9	..	H	105	IV	105			
1872	OCT	09	16	42.7	97.0	..	H	253	V	38			
1875	DEC	09	09	40.7	95.9	..	G	105	III	105			
1877	NOV	15	17 45 ..	41.0	97.0	..	G	105	VII	105			
1884	MAR	17	20 00 ..	41.4	100.8	..	G	105	IV	105			
1886	FEB	16	11 56 ..	42.6	95.3	..	G	105	III	105			
1898	SEP	16	09 59 ..	42.6	97.3	..	G	105	IV	105			
1902	JUL	28	18 00 ..	42.0	97.6	..	G	105	VI*	105			
1904	DEC	01	09 00 ..	41.8	96.7	..	G	105	III	105			
1909	JAN	26	20 15 ..	42.3	97.8	..	H	105	IV*	105			
1910	SEP	26	08 00 ..	41.4	97.3	..	G	38	IV*	38			
1915	SEP	16	19 00 ..	42.8	99.3	..	G	105	IV*	105			
1916	SEP	16	20 00 ..	41.4	104.4	..	H	105	IV	105			
1923	SEP	10	06 30 ..	41.7	96.2	..	G	105	III*	105			
1924	SEP	24	11 00 ..	40.9	100.1	..	H	105	IV	105			
1925	AUG	25	06 27 ..	42.8	97.4	..	G	105	IV	105			
1927	OCT	14	16 10 ..	41.6	98.9	..	G	105	IV	105			
1929	OCT	06	12 30 ..	42.8	97.4	..	G	105	V	105			
1933	AUG	05	41.5	103.7	..	G	105	IV*	105			
1934	JUL	30	07 20 ..	42.7	103.0	..	G	38	IV	38			
1934	NOV	08	04 45 ..	42.6	100.2	..	G	105	IV*	105			
1935	MAR	01	11 00 ..	40.3	96.2	..	G	38	VI	38			
1935	MAR	01	11 04 ..	40.3	96.2	..	G	105	**	**			
1935	MAR	22	22 45 ..	42.2	99.5	..	B	105	III*	105			
1938	MAR	24	13 11 ..	42.2	103.4	..	G	105	IV	105			
1940	APR	01	14	41.4	104.6	..	G	105	III*	105			
1949	JUL	13	04 15 ..	42.5	99.0	..	G	105	IV	105			
1955	FEB	25	01 45 ..	41.3	98.6	..	G	105	IV	105			
1963	MAR	09	15 25 ..	42.8	103.0	..	G	105	III*	105			
1963	JUN	08	02 47 ..	40.7	96.2	..	G	253	III	253			
1964	JUN	28	10 08 45.0	42.9	101.6	041	B	37	VII	37			
1972	OCT	16	05 47 33.4	42.34	104.0	023	B	45	3.7	3.7	3.7			
1973	MAR	07	05 52 15.5	42.2	99.45	020	B	81	4.3	3.5	3.5			
1977	MIC	18	10 26 26.6	41.4	98.58	005	C	239	2.7	2.7	2.7		
1977	DEC	01	13 22 45.4	40.23	99.89	..	C	250	2.7	2.7	2.7		
1978	FEB	03	00 25 49.0	40.08	100.32	005	C	239	2.7	2.7	2.7		
1978	MAY	07	16 06 19.6	42.30	101.92	015	B	240	4.3GS	2	IV	240	
1978	SEP	06	06 20.4	40.67	100.4	005	C	250	2.8	2.8	2.8		
1979	JUN	08	22 00 16.6	41.01	99.05	005	B	222	4.1GS	2	IV	222	
1979	JUN	06	16 16 21.5	40.23	100.40	005	B	232	2.7	2.7	2.7		
1979	JUL	16	00 03 47.3	40.18	100.38	005	B	233	3.2	3.2	3.2		

Table 2.—List of data sources

37. von Hake, C. A. and Cloud, W. K., 1966, United States Earthquakes 1964: U. S. Coast and Geodetic Survey, p. 1-91.

38. Coffman, J. L. and von Hake, C. A., 1973, Earthquake History of the United States: U. S. National Oceanic and Atmospheric Administration, No. 41-1 (through 1970), p. 1-208.

45. Coffman, J. L. and von Hake, C. A., 1974, United States Earthquakes 1972: U. S. National Oceanic and Atmospheric Administration, p. 1-19.

88. Person, W. J., Simon, R. B., and Stover, C. W., 1977, Earthquakes in the United States, April-June 1975: U. S. Geological Circular 749-B, p. 1-27.

105. Docekal, J., 1970, Earthquakes of the stable interior, with emphasis on the midcontinent, v. 2, A dissertation presented to the faculty of the graduate college in the University of Nebraska at Lincoln in partial fulfillment of requirements for the degree of Doctor of Philosophy: Ann Arbor, Michigan, University Microfilms Ltd., p. 1-32.

233. Stover, C. W., Stover, C. W., Person, W. J., and Smith, P. K., 1981, Earthquakes in the United States, July-September 1979: U. S. Geological Survey Circular 836-C, 39 p.

239. Luza, K. V. and Lawson, J. E., 1979, Seismicity and tectonic relationships of the Nemaha Uplift in Oklahoma, Part II: Oklahoma Geological Survey, prepared for U. S. Nuclear Regulatory Commission, NUREG/CR-0875, 8 p.

240. Stover, C. W. and von Hake, C. A., 1978, United States Earthquakes 1978: U. S. Department of Interior, Geological Survey and U. S. Department of Commerce, National Oceanic and Atmospheric Administration, 112 p.

250. Burchett, R. R. and Maroney, D. G., 1979, Regional tectonics and seismicity of eastern Nebraska: Annual Report, June 1977-May 1978, Nebraska Geological Survey, prepared for U. S. Nuclear Regulatory Commission NUREG/CR-0876, p. 21-28.

253. Burchett, R. R., 1979, Earthquakes in Nebraska: Educational Circular No. 4, Conservation and Survey Division, Institute of Agriculture and Natural Resources, University of Nebraska, 20 p.

262. Stover, C. W. and von Hake, C. A., 1981, United States Earthquakes 1979: U. S. Geological Survey and U. S. National Oceanic and Atmospheric Administration, (unpublished data).

INTRODUCTION

The earthquake data shown on this map and listed in table 1 are a list of earthquakes that were originally used in preparing the Seismic Risk Studies in the United States (Algermissen, 1969) which have been recompiled and updated through 1979. These data have been reexamined which resulted in some minor changes in the locations and magnitudes of some events. The data are limited to events that previously had none assigned. Only earthquakes located within the boundary of the State are listed in table 1 even though earthquakes in bordering states or countries may have been felt or caused damage within the state. Some events listed in table 1 were not available at the time of original compilation. Some epicenters were relocated on the basis of new information. The data shown in table 1 are estimates of the most accurate epicenter, magnitude, and intensity of each event. The data are limited to events with available information. Some of the after-shocks from large earthquakes are listed here, are incomplete in many instances, especially for ones that occurred before seismic instruments were in universal usage.

The data in table 1 were used to compile the seismicity map. The latitude and longitude were rounded to the nearest tenth of a degree and sorted so that all identical locations were grouped together and counted. A triangle represents the epicenter plotted to a tenth of a degree.

The number of triangles is the number of events and the number to the right of the triangle is the maximum Modified Mercalli intensity (MM) of all the events at that geographic position. The absence of an intensity value indicates that no intensities have been assigned to earthquakes at that location. A year shown below a triangle is the latest year for which the maximum intensity was recorded.

EXPLANATION OF THE TABLES

The data are listed chronologically in table 1 in the following categories: date, origin time, N. latitude, W. longitude, depth, hypocenter, and intensity. The intensity is the Modified Mercalli Intensity (MM) and the hypocenter is the location of the epicenter. The data are limited to events in terms of the size (magnitude or intensity) of the earthquakes listed. Prior to 1965 all recorded felt earthquakes are listed, after 1965 only felt earthquakes or those with magnitudes above the 2.5-3.0 range are listed; the most magnitude levels apply to the United States. The no magnitude value was used for events that were not included in the earthquake lists. The no magnitude value was also used for events that were not included in the earthquake lists. The no magnitude value was also used for events that were not included in the earthquake lists.

Listed below is an explanation of the symbols and codes used in the tables:

3. The letter code in the HYPOCENTER, QUAL column is defined below:
a. Determination of instrumental hypocenters are estimated to be accurate within the ranges of latitude and longitude listed below; each range is letter coded as indicated:
A 0.1-0.2°
B 0.1-0.25°
C 0.2-0.5°
D 0.5-1.0°
E 1.0° or larger

b. Determination of noninstrumental epicenters from felt data are estimated to be accurate within the ranges of latitude and longitude listed below; each range is letter coded as indicated:
F 0.0°-0.5°
G 0.5-1.0°
H 1.0° or larger

4. The reference identification number in the HYPOCENTER, REF and INTENSITY, REF column indicate the sources of the hypocenter and intensity. The code is listed in numerical order in table 2.

5. The magnitudes listed under "USGS" are ab values (Gutenberg and Richter, 1956) published in the Preliminary Determination of Epicenters (PDE) by the National Earthquake Information Service, U. S. Geological Survey, very well determined, and associated with the reference code. The magnitudes listed under "OTHER" are the source code and type. Type is defined by 1 = ML (Richter, 1958), 2 = mbg (Nuttli, 1973), 3 = MS (Bath, 1966 or Gutenberg, 1945), 4 = ab (Gutenberg and Richter, 1956), and 5 = P (National Earthquake Information Service (and predecessor organizations), U. S. Geological Survey, Denver, Colo., KGS, Kansas Geological Survey, Lawrence, Ks., SLM, St. Louis University, St. Louis, Mo., TUL, Oklahoma Geophysical Observatory, Oklahoma Geological Survey, Leonard, Okla.).

6. An asterisk (*) in the INTENSITY, MM column indicates that the intensity was assigned by the