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Geology compiled

This report is a result of recent studies of the Cenozoic stratigraphy
and structure of the San Joaquin Valley that were directed at Cenozoic
depositional and tectonic history. Most previous work on the Cenozoic has
focused on the Quaternary surficial deposits and on the outcrops of older
rocks at the margins of the valley, although ground-water resource studies of
the upper Cenozoic deposits have used subsurface information (for example,
Davis and others, 1959; Croft, 1972). One purpose of this report is to show
the distribution and stratigraphic relations of Tertiary units under the
valley and represents, in part, an attempt to extend correlations from
Tertiary units previously recognized in outcrop at the margins of the valley
into the subsurface. A second purpose is to depict the structure of the
Tertiary rocks by cross sections and by a structure contour map of a middle
Tertiary horizon.

The emphasis in this report is on the Tertiary rocks of the northern part
of the San Joaquin Valley, although pre-Tertiary stratigraphic units are
shown on the cross sections where information was available. They serve to
emphasize the discordance between the Neogene and the clder units. Correla-
tions of units in the Great Valley sequence (Late Jurassic to earliest
Tertiary) are based mostly, with some modification, on the work of Hoffman
(1964) and Callaway (1964), although the informal stratigraphic names used by
those workers are not applied here.

Methods

The structure map and cross sections of this report are based on the
author's correlations of electric logs (E-logs) from approximately 230 wells
(not all used on the map) from the northern San Joaquin Valley. For most of
the map area, this represents virtually all exploratory oil and gas wells for
which E-logs are available. The choice of wells becomes more selective in the
vicinity of gas fields, where wells are more densely distributed, particularly
in the northwestern part of the map.

The formation contacts shown on the cross sections are based on E-log
correlations, although a limited amount of lithologic information from core
descriptions was helpful in correlating the subsurface units with outerop
units. The Eocene Kreyenhagen Shale is easily recognizable on E-logs, but
formations become increasingly difficult to identify with any confidence up-
section from the Kreyenhagen, and the contacts of the younger nonmarine
Tertiary units are hardly more than educated guesses. Some aid to subsurface
correlation was provided by gas-field reports of the California Division of
0il and Gas, correlation sections published by the Pacific Section of the
American Association of Petroleum Geologists (Church and Krammes, 1958; Clark,
1951; Edmondson, 1967), and by the stratigraphic work of Payne (1962).

The post-Eocene unconformity was the horizon chosen for the structure
contour map chiefly because it is present throughout the map area. It has the
additional advantage of showing mostly the effects of Neogene deformation.

The data were contoured by hand and the spacing of the contours estimated by
eye; the map, therefore, is purely interpretive and represents, to a degree,
the personal bias of the author.

reverse sense of movement seems most compatible with the regional framework
and is favored here (section B-B').

The fault pattern in the area of Corral Hollow and Lone Tree Creek is
complex. Several of the major northwest-southeast-trending faults in the
area, however, have been interpreted as reverse faults and appear to be
associated with northwest-southeast-trending folds (Huey, 1948; Raymond,
1969) .

Few faults have been recognized in the subsurface of the northern San
Joaquin Valley, perhaps in part because the area has not been as intensively
drilled as the southern part of the valley. The largest of these is the
Stockton fault, a large reverse fault with displacements of up to 1100 m that
trends transverse to the regional structure and bounds the Stockton arch on
the north. Teitsworth (196l4) suggested left-lateral movement during latest
Cretaceous or early Tertiary time followed by vertical slip in a reverse
sense, but Hoffman (1964) maintained that there is no evidence of extensive
strike-slip movement. It has been suggested that a south-facing scarp on the
basement surface that was apparently present during deposition of Upper
Cretaceous strata was due to an early episode of normal faulting (Teitsworth,
1964). It is equally possible for such a scarp to form by left-lateral offset
of a west-sloping basement surface. The timing of the vertical movement is
predominantly post-Eocene (Hoffman, 1964), and the latest movements appear to
have been subsequent to deposition of the basal part of the Valley Springs
Formation (fig. 1), probably during Miocene -time.

The Vernalis fault is a major reverse fault with a northwest-southeast
trend that bounds the Tracy-Vernalis anticlinal trend on the northeast. East-
side-down movement of as much as 460 m probably took place at the same time as
the major movements on the Stockton fault (Hoffman, 1964).

The inferred fault shown in the Merced-Chowchilla area is based mostly on
the apparent offset of the post-Eocene unconformity as shown here, and to a
lesser degree on similar but less well controlled offset of the basement
surface (Bartow, 1983). Its inferred trace, although not closely constrained
by the data, appears to coincide with a major but diffuse surface lineament
visible on satellite imagery that was originally described by Antonnen and
others (1974).

The Stockton arch is a broad transverse structure that has had a strong
influence on the distribution of Tertiary units (fig. 1), but which is not
readily apparent on structure contour maps of either the post-Eocene uncon-
formity (this map) or the basement surface (Bartow, 1983). The arch is
bounded on the north by the Stockton fault, but a crest line or a southern
1imit are more difficult to define. The line of truncation of Paleogene
strata just south of Modesto can serve as a convenient southern Yimit.
Indications of northward-shallowing marine facies in the lower Paleogene
sequence suggests that the arch was present by Paleocene time. It apparently
had an influence on Eocene sedimentation as well (Bartow and others, in
press). Erosion during Oligocene time apparently reduced whatever
physiographic expression the arch may have had, and left a nearly flat plain
prior to deposition of the later Tertiary units.
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