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B Figure 4.—Stacked seismic-reflection profile from Morro Bay to the San Andreas Fault. Data were processed as described in the text.
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and other geologic features in central California (adapted from Page, 1981). The box
outlines the area of figure 1B. B,,Simplified geologic map of central California west of
the San Andreas fault, showing the location of the seismic-reflection profile, and the
sources and receivers for the seismic-refraction profile
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granitic plutons similar in age and composition to the rocks of the Sierra reflections terminate abruptly just to the east of the Rinconada fault. We 2 i = AT -
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defined a smoothed common depth point (CDP) line with a CDP spacing of to changes in the velocity model and very similar sections are obtained for ! | S - o e §: T, = ol Y
34 m and only accepted source receiver pairs for which the bottoming point constant velocity migrations when veloecity is varied from 4.5 to 6.0 km/s. o b ~ N \ T e
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Geophysicists) with a sampling rate of 4 ms. Because the data were Interpreting these reflection data in conjunction with large-offset T o R l NCONADA We ge SAN ANDREAS
collected with an upsweep (a sweep in which frequency increases with data, we suggest that the eastward-dipping reflections at 16-24 km e —
time), it was possible to append 8 s of zeros to the end of the field data and correspond to the low-velocity zone inferred from the large-offset data. = FA ULT FAULT FAU LT ZONE
recorrelate the augmented data set to yield a 14-s record, a method This implies the presence of sedimentary material beneath the coast ranges el .
described by Okaya (1986). With this method, the high frequencies in the of central California. Details of this interpretation have been discussed by =
source are progressively lost below 6 s in the correlated data. Because of Trehu and Wheeler (1987). Although a low-velocity zone has been inferred

the long field sweep used in this experiment, a source frequency band of
10-40 Hz remains at a time of 14 s in the recorrelated data. We consider
this to be an adequate bandwidth for studying the lower crust because the
observed lower crustal reflections in the Vibroseis data contain primarily
10- to 20-Hz energy.

In order to minimize the effect of spurious noise sources, such as
passing vehicles, an AGC (automatic gain control) that had a window length
of 3 s was applied to the data before correlation with the sweep. This also
has the effect of whitening the background noise in the correlated data
(Coruh and Costain, 1983). A sample of data was also processed without
applying an AGC before correlation in order to preserve amplitude
information.

After correlation, the data were sorted and resampled at an 8 ms
sampling rate. Static corrections were applied to normalize the traces to a
datum of 300 m, the average elevation of the profile. Surface-consistant
residual statics were also calculated for the portion of the profile overlain
by a Miocene to Holocene sedimentary basin. The strong reflector at the
base of the basin was used as a reference. This greatly increased the
continuity of reflectors within the basin, but had little effect on the deeper
reflectors. A spherical divergence correction was applied to compensate
for the effect of spherical spreading, and the data were pass-band filtered
with a pass band of 5-50 Hz from 0-2 s and 5-30 Hz from 4-14 s (with a
linear interpolation of the two filters from 2-4s). Experiments with
deconvolution operators did not produce a noticeable improvement in the
data; therefore, no deconvolution was applied for the final section.

Velocities for the normal moveout correction were determined for
the upper 3-4 s from visual observation of the moveout obtained from a
series of velocity functions. For the deeper structure, and in places where
no clear shallow reflectors could be observed, velocities suggested by the
refraction data were used. Because of the small maximum offset, the
reflection data are insensitive to velocity uncertainties in the lower crust.

After normal moveout, the data were muted and stacked. The
stacked data were pass-band filtered (5-30 Hz) and an AGC with a window
length of 3 s was applied. Selected portions of the data were migrated
using a finite-difference algorithm. Both the unmigrated and migrated
sections were converted to depth using a velocity model derived from both
the refraction and reflection data.

DATA INTERPRETATION -

Figure 4 shows the first 11.5 s of the full seismie section. No
reflections were observed below 11.5 s. A line drawing interpretation is
shown in figure 5. The stacking velocities are shown by the solid contours
in figure 6. No continuous reflectors are observed beneath the region
where Franciscan rocks are exposed on the surface (km 0 to km 25) but a
band of discontinuous reflections is observed between 1 and 2 s. Unstacked
shot and CDP gathers show that in this region most of the energy is
refracted in the near-surface because of a very strong near-surface
velocity gradient. Reflectors showing normal moveout can be observed in
both CDP and shot gathers, but they are not continuous for more than a
few CDP gathers. The energy is probably being scattered by irregular
blocks within the Franciscan melange with dimensions on the order of tens

* The use of trade names is for descriptive purposes only and does not
constitute endorsement by the U.S. Geological Survey.

to exist in the lower crust beneath several regions in central California on
the basis of large offset data (Blumling and Prodehl, 1983; Blumling and
others, 1985), the data displayed here represent the first observation in
coincident reflection data of a laminated structure at a corresponding
depth. The eastward dip of the structure observed in this reflection data
suggests that the sedimentary wedge was subducted beneath a now inactive
trench offshore to the west. Adgitional reflection and large-offset data
from the offshore region are needed to test this hypothesis.
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Figure 5.——Annotated line drawing of the seismic-reflection profile shown in figure 4 and bar graph of the surface geology (see figure 1B for

explanation of patterns).
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Figure 6.--Root-mean-squared velocity model used for normal-moveout correction of CDP data (solid contours), and interval velocity model used for
migration of stacked data (dashed contours). Numbers are in units of km/s.
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Figure 7.--Example of seisnic data to which no AGC has been
applied. True amplitude relationships are therefore
preserved. In addition to the spherical divergence correction,
an exponential gain was applied from 3 to 12 s with the gain at
7.5 s relative to 3 s beiny 6 decibels.

Figure 8.--A, Depth section of a part of the seismic-reflection profile. The velocity model for calculating the
depth section is superimposed. Numbers are in units of km/s. B, Migrated depth section. The velocity

model shown by dashed contours in figure 6 was used for migration; the migrated time section was
converted to depth using the same model as in A.
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