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/ ‘--__________________,,,—’\ 18.7 The Lower Cretaceous J sandstone of the Dakota o
; Group is present in the Denver basin in eastern |
/ : - t NEBRASKA / -
L / KIMBALL Colorado, southeastern Wyoming, and southwestern WYOMING LY l / J 41000

/ 1? i Nebraska. Deposited during a regression of the 41000 e s - = o
- i Cretaceous epicontinental sea, this informally N

E CHEYENNE named unit is composed primarily of sandstone and / COLORADO
: shale of deltaic and nearshore-marine origin. The
J sandstone can be divided into an upper

| transgressive sand, a middle marginal-marine and

@
10.8 deltaic facies, and a lower prodelta sequence
¢ ' (Clark, 1978). The depth from the surface to the
n.e . | top of the J sandstone increases from about 4,000
; il ft on the gently-dipping eastern flank of the basin
‘ : to more than 8,000 ft at the basin axis near the

: steeply-dipping western flank. _,—”’
Porosity data compiled in this study were :y

determined from J sandstone cores from 134 widely

l -) spaced boreholes. Porosity in areas of poor core

o . MING N EBRAS KA coverage was determined from neutron density logs

- from an additional 20 boreholes (corrected to core l
10 i 10.5 /—\ : \ 4_‘]000' average grain density). Median, rather than e + + *
41 OO + +F S o average, porosity was used in order to minimize the .
/ i statistical effect of anomalously high and low
/ COLO RADO porosity values. Thirty-five oil companies and
)

independent operators supplied core porosity data. ~
| Core porosities were determined by means of helium
porosimetry, primarily by Core Laboratories of
Denver, Colo,
o
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The sampled cores vary as to the tested O
\\ ol i interval and thickness of J sandstone, but cores & N
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marginal-marine and deltaic facies. Prodelta 40°00' < - g 47 + 40000'
TR | sandstones were sampled in a few wells when middle
unit sandstone porosities were not available, and
i porosities of those samples are also included in
i the data set. Core was submitted to Core
Laboratories for analysis over a 25 year period,
although data analyzed from 1975 to present were
used wgere available. Cores were sampled in J-»———erLj:ij
‘ one-foot increments, from intervals ranging in ~
thickness from 8 to more than 60 ft, and averaging N,
. about 30 ft. 1DENVER]
&P ! Plots of median porosity and of third-order ‘5 - \\hﬁ
median porosity trends were constructed using the é; 3 1
Dynamic ?raphics, Inc., Interactive Surface ' ’{
Modeling™ (ISM) computer mapping package. Trend |
analysis utilizes polynomial equations to determine (r
the slope of a plane that is the "best fit" of the rj + 3 i + +
{

PHILLIPS

i data. The degree of polynomial chosen in the trend
analysis depends upon which map features are to be
delineated. For example, a first-order trend, /
requiring a first-order polynomial equation, only ‘
/

- shows broad regional trends while successively

_r higher order surfaces fit the data more closely, /
' showing more local effects. For a detailed
23.0 explanation of trend-surface analysis refer to '/}
Davis (1986).
-A third-order trend surface was chosen for J
-t Sandstone porosity because it shows regional ’
porosity effects and large-scale local effects,
such as areas of high porosity where delta systems \ g
enter the basin. Higher order trends can be used
i to identify successively smaller local features; I
however, effects of noise and computational errors 39000 !
may also be introduced. G ¥ I + 5 b
Cross section A-A’ illustrates changes in
permeability, porosity, and degree of thermal 1
i maturation (as indicated by vitrinite reflectance) 105000' : ; | 104000 103000
with depth across the basin. The relationships Lambert conformal conic projection
among these variables is also indicated on figures SCALE 1:1 000000
1-3. The least-squares linear regression of the
two correlated variables on each figure is the 25 0 25 50 MILES
i regression line. This line is the "best fit" of ‘ : : ; : . B
the data. 25 0 25 50 KILOMETERS
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DISCUSSION

! MEDIAN-PCROSITY TREND CONTOUR MAP

YUMA Porosity trends in the Denver basin are
40000. interpreted as follows:

1. The deepest parts of the basin are about 3.000
along a line joining Denwver, Colo., and Cheyenne, i
Wyo. 1In general, the lowest porosity and

permeability and the highest vitrinite

reflectance values are found here.

40000
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2. Porosity decreases markedly from east to

west as burial depth increases in the basin,

ranging from a high of 25 percent porosity at

i 5,000 ft depth to 5 percent at 7,800 ft. The

relationship between porosity and depth (fig. 1)

is approximately linear, and the correlation

coefficient is -0.92. This relationship accounts

i for the approximate north-south alignment of
porosity contours.
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3. A region of high porosity extends from the
southeast to the northwest and covers most of the
i southeastern quarter of the contour map. This
region corresponds in size and location to a
large northwesterly-prograding delta system
interpreted by Haun (1963). The delta system
contains high-porosity and high-permeability
distributary-channel sandstones. This area is
visible on the porosity trend map. The
high-porosity area results in trend contours that
are convex towards the basin center. Haun also
- = o identified a small delta system which enters the
basin from the southwest, but existing data
points are insufficient to delineate this system.
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4. Porosity increases approximately linearly 8,000+

with an exponential increase in permeability,
(cross section A-A' and fig. 2). The correlation
coefficient of porosity to permeability is 0.5. :
The low correlation coefficient is due largely to : 00;

the highly variable permeabilitg values of Ehe 9.000 : ; ; : : : ; : :
core samples; values may range from below the ¢

detection limit to hundreds of millidarcies for 4 & 8 " 1= 4 e 18 8 4z 24 2

samples from within a small vertical or MEDIAN POROSITY, IN PERCENT

horizontal distance of one another.

Figure l.--Linear regression of median porosity
5. Porosity decreases linearly with an against sample depth for the J sandstone.
exponential increase in RR (vitrinite
reflectance) (fig. 3). THe correlation
KIT CARSON coefficient of porosity to vitrinite reflectance
is 0.67. The porosity-R_ relationship is
primarily a function of a third variable, burial
depth (and associated temperature effects), which
strongly affects the magnitude of both porosity
and vitrinite reflectance.
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6. 1Indicated on cross section A-A’ are general 1
relationships among vitrinite reflectance, .
porosity, permeability, and depth across the
H basin. Both major trends and local effects are
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indicated on the cross section; for example,

compared to porosity and permeability for the

i cross section as a whole, porosity and permeabil-
ity appear anomalously low for corehole number 5.

Local depositional effects are indicated by the

lower porosity and permeability of nonchannel

THLLBR EL PASO MR o =o - — ‘ sandstones of corehole number 5 than of the

| 39000, channel sandstones of corehole number 6.

(@) 1
39 OO - - -+ -+ g CHEYENNE 7. Numerous porosity anomalies on the map, as

evidenced by small, closed contour patterns
("bulls-eyes"), result from the core sampling
and analysis methods, the highly variable

105°00" 104°00" ‘]03000' porosities and permeabilities in cores, and the

computer mapping method used. The mapping
Lambert conformal conic projection SCALE 1:500 000 technique involves strict mathematical
10 0 10 20 30 40 50 MILES calculation of contours with a nearest-neighbor
m ; { } type of gridding algorithm.
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Figure 2.--Linear regression of median permeability

against median porosity for the J sandstone.
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