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Figure 1. Isopach map of post-middle Cretaceous sediments (east of long 90°W); salt structires after Martin (1980), Figure 2, Dlstributlo? of the middle Cretaceous unconformity (MCU) and pre-MCU sediment outcrops in the eastern Figure 3. Track chart showing single-channel and multichannel seismic data used in this study.
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Part of multichannel seismic line showing salt in the Challenger unit that forms deeply
buried, pillowlike mounds that pinch out just seaward of the Campeche Escarpment base.

These salt features slightly arch the middle Cretaceous unconformity (MCU) and overlying
sediments.
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Figure 8.

Part of multichannel seismic line (MV Seismic Explorer) showing post-middle Cretaceous sediments thinning against the West Florida Escarpment,

that form an abutment for the middle Cretaceous unconformity reflector., The MCU cannot be traced between the

salt ridges.

MAPS SHOWING DISTRIBUTION OF THE MIDDLE CRETACEOUS UNCONFORMITY

IN THE EASTERN GULF OF MEXICO
By
L. M. Massingill and R. H. Wells
1987

In addition to seismic coverage, drill-hole intormation
from the Deep Sea Drilling Project was useds Two DSDP
drilling programs were undertaken in the southeastern
Gulf: leg 10 (Worzel and others, 1973) and leg 77 (Buffler
and others, 1984). Leg 10 had 13 drill sites, but only
sites 94-97 were in the eastern section of the Gulf (fig.

2). In 1980, leg 77 (sites 535-540) concentrated its
drilling effort in the western Straits of Florida (fig. 2).

The stratigraphic framework for the Florida Escarpment
was established by a sampling program conducted in 1982
aboard the USNS Lynch, cruise LY82A (Freeman-Lynde, 1983).
The seven dredge areas were located from long 24°00' N. to
long 28°20' N. (fig. 4).

SEISMIC CHARACTERISTICS

Seismic units in the eastern Gulf of Mexico are (from
oldest to youngest) the Challenger unit, the Campeche unit,
the Mexican Ridges unit, the Cinco de Mayo unit, and the
Sigsbee unit (fig. 5). .Each has a unique seismic
characteristic and is of substantial areal extent.

In 1976, Ladd and others studied the geological
structure and history of the central Gulf of Mexico.
authors divided the sedimentary section in the Gulf of
Mexico into six seismic units, with the oldest being the
Viejo unit. The Viejo unit is described by Ladd and others
(1976) as "a series of weak and discontinuous reflectors”
occurring about 9.5 seconds (two-way travel time) in the
Abyssal Plain of the western Gulf of Mexico. Watkins and
others (1978) believe the unit consists of clastic rocks,
pre-Middle Jurassic, deposited soon after the formation of
the oceanic crust, Hyperbolic diffractions on seismic-
reflection data and high velocities on seismic-refraction
data from the unit below the Viejo strongly suggest ocean
crust. Because of its depth and weak seismic signal, the
Viejo is not recognized in the eastern Gulf of Mexico and
will not be discussed further.

Seismic characteristics of the Challenger unit
(Jurassic to middle Cretaceous) were studied by Watkins and
others (1978), who described it as underlying a prominent
upper reflection sequence consisting of carbonate turbidites
that inhibit flow of the pure and mobile salt in the
seismically transparent lower portion. Other
characteristics include an undulating upper surface, planar
lower surface, and strong diffractions marking the tops of
salt diapirs and pillows.

overlying the Challenger, the Campeche unit (middle
Cretaceous(?) to early Tertiary(?)) is acoustically
transparent and produces strong, discontinuous reflections
in the lower part of the section. The lithology is mostly
fine-grained, homogeneous, pelagic or hemipelagic sediments
and possibly some turbiditic sediments (Ladd and others,
1976; Worzel and Burk, 1979).

Strong, irregular reflectors in the top part underlain
by a largely ‘reflectionless lower part and a strong,
discontinuous reflector as a lower boundary characterize the
Mexican Ridges unit (early Tertiary(?) to middle Miocene).
Ladd and others (1976), Watkins and others (1978), and
Worzel and Burk (1979) agree that the lithology consists of
sandy, coarse-grained middle Miocene turbidites, a fact

confirmed by DSDP holes 90 and 91. The Mexican Ridges unit
corresponds to a middle Tertiary filling of the deep Gulf
basin with terrigenous material originating mostly from the
west and north and deposited by turbidity currents (Worzel
and Burk, 1979).

The Cinco de Mayo unit is late Miocene and Pliocene and
consists of hemipelagic mud and some low-energy turbidite
sediments. 1Its seismic characteristics display weak,
uniform reflectors and a prominent zone of large-scale
crossbeds in the middle of the section (Worzel and Burk,
1979). The Cinco de Mayo thickens slightly to the north,
but appears to thin and disappear to the east and south.

The youngest unit, the Sigsbee, consists of many
closely spaced seismic reflectors identified as flat-lying
Pleistocene turbidite deposits and has a prominent
unconformity at the base. This unit has its thickest
sediment accumulation (approximately 3 km) across the
Mississippi Cone (Moore and others, 1979), thinning toward
the east, south, and west. Worzel and Burk (1979) note that
the most extensive of these Pleistocene turbidite deposits
reach as far south as the approaches to the Florida Straits
in the eastern Gulf of Mexico.

These

EFFECTS OF SALT ON MCU DISTRIBUTION

Salt structures play a significant role in determining
the mapping characteristics for the MCU in the eastern Gulf
of Mexico. The distribution of salt structures is
characterized by spatial relationships and variations in
morphology. The differences in salt structures on the
eastern Gulf of Mexico slope and basin are functions of the
amount of salt originally in place and the differential
rates of sediment loading (Watkins and others, 1978; Martin,
1980).

In the northern Gulf of Mexico, salt domes and ridges
pierce and uplift Mesozoic and Cenozoic strata from the
inner Gulf Coastal Plain to the Continental Rise and lower
Mississippi Fan provinces of the central Gulf basin. The
ridges are areas of vertical intrusion and lateral flow of
large volumes of Middle to Upper Jurassic salt in response

Gulf of Mexico and (2) study the post-MCU sedimentary and
paleo-oceanographic history of the western Straits of
Florida. :

The MCU is characterized by truncation of older
sediments and onlap of younger sediments. Because of
sedimentation variations, the MCU changes character
throughout the basin. Lithologic studies from the
southeastern Gulf show the MCU to be a boundary between
underlying carbonate-rich sediments and overlying carbonate-
poor sediments. Around Jordon Knoll it appears to separate
siliciclastics and carbonate aprons; in other places
dissolution and scouring of the Cretaceous deep-sea
carbonates before the placement of siliciclastics left an
erosional unconformity (Schlager and others, 1984).

In the deep southeastern Gulf the MCU represents a
large break in time. At DSDP sites 536, 537, and 538A the
abbreviated Upper Cretaceous section is represented by a few
meters of carbonate ooze and volcanic ash with numerous
hiatuses (Schlager and others, 1984). Schlager and others
(1984) explain the scarcity of the Late Cretaceous section
as a combination of three factors: (1) low sediment input
resulting from drowning of carbonate platforms during the
Albian and Cenomanian (Arthur and Schlager, 1979; Schlager,
1981); (2) current scouring, which is a funneling effect of
deep-sea currents caused by the Cuban arc converging from
the south and the proximity of the southern margin of the
Bahama-Florida Platform (Malfait and Dinkleman, 1972; Sykes
and others, 1982); and (3) slumping in tectonically
steepened slopes (site 540 shows evidence of creep and
slumping during the late Albian interval).

Schlager (1981) sees platform drowning during rising
sea levels as the principal cause of the MCU. He believes
that four rapid rises of sea level (early and late Albian
and early and late Cenomanian) coupled with unfavorable
environmental factors (reduction of benthic growth due to
extreme global salinity changes or regional deterioration
during plate drift of conditions favorable for carbonate
development) caused the drowning of such platforms as Jordan
Knoll, Edwards Shelf, and Golden Lane (Schlager, 1981).
Other platforms, such as the Campeche and Florida Platforms,
receded landward. Sediment input was obstructed and
depositional entry points were shifted to the west and north
(Shaub and others, 1984).

RESULTS OF DREDGING ALONG THE WEST FLORIDA ESCARPMENT

In late 1982, a dredging program was conducted along
the Florida Escarpment during the USNS Lynch Cruise LY
82A. Forty-two dredge stations and two core stations were
situated in seven areas from lat 24°00' N. to 28°20' N.
(fig. 4). Sparker seismic surveys were run immediately
before dredging to allow the interpretation of the
stratigraphy at the escarpment to be extended toward the
platform interior.

The seismic survey was conducted by means of a 15,000-
joule sparker energy source and a 25- to 125-Hz filter. The
MCU is easily identified as the deepest major reflector on
the profiles. The unconformity overlies a sequence of
reverberant reflectors varying in thickness from south to
north from 0 to 1 second. The MCU crops out near the top of
the escarpment at about 2,000 m below sea level (Freeman-
Lynde, 1983).

Middle Cretaceous shallow-water carbonates were
recovered at 31 stations. Of the 31 stations, 28 yielded
carbonate samples that were deposited in restricted, low-
energy, interior bank environments, including tidal flats
and lagoons. Their lithologies are dominantly bioturbated,
miliolid-mollusk wackestone-packstone, algal-laminated
muds tone-wackestone, and algal-laminated and bioturbated
dolomites (Freeman-Lynde, 1983).

The results of the dredging divide the recovered
sediments into three groups: (1) Aptian to Albian or
presumed middle Cretaceous carbonate rocks deposited in

shal low-water carbonate-platform environments; (2) Late
Cretaceous and Tertiary pelagic and foreslope carbonates
(limestone and chalk); and (3) Quaternary calcareous mud,
marl, and pteropod ooze and deep-water coral (Freeman-Lynde,
1983). Few sediments were deposited in high-energy
environments.

SUMMARY

The Middle Cretaceous unconformity is mappable, for the
most part, throughout the eastern Gulf of Mexico. In the
northern Gulf of Mexico, where salt domes and ridges pierce
and uplift the Mesozoic and Cenozoic strata, the MCU is
extremely difficult to trace. Another area of hindered
seismic interpretation of the MCU is the southern part of
the West Florida Platform (south of lat 26°30' N.). Here
the prominent reflector is masked by a "ringing"” effect from
shallow beds of dense carbonate rocks. The present post-MCU
sediment configuration is due primarily to a major
terrigenous influx from the west and north resulting from
Laramide orogenic activity in the western interior of the
continent (Martin, 1980).

The thickest post-MCU sediments are in the middle slope
region of the Mississippi Fan provice. They measure
approximately 8,200 m in thickness. The sediments pinch out
at the base of the east Florida and Campeche Escarpments and
thin to less than 500 m in thickness in the Straits of
Florida.
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