DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

STUDIES RELATED TO WILDERNESS

The Wilderness Act (Public Law 88-577, September
3, 1964) and related acts require the U.S. Geological
Survey and the U.S. Bureau of Mines to survey certain
areas on Federal lands to determine their mineral
values, if any, that may be present. Results must be
made available to the public and be submitted to the
President and the Congress. This report presents the
results of a mineral survey of the West (W 4613) and
East (E 4613) Palisades Roadless Areas, Targhee and
Bridger National Forests, Teton and Bonneville
Counties, Idaho, and Teton and Lincoln Counties,
Wyoming. The West and East Palisades Roadless Areas
were classified as further planning areas during the
Second Roadless Area Review and Evaluation (RARE II)
by the U.S. Forest Service, January 1979.

SUMMARY

The West and East Palisades Roadless Areas lie
within the Idaho-Wyoming thrust belt that contains
hydrocarbon source beds, reservoir formations, fluid
seals, structures, and hydrocarbon thermal maturities
comparable to those in producing oil and gas fields
farther south in the belt. Therefore, the areas have
high potential for 0il and gas resources; all parts of
the study area are under lease application for oil and
gas. High-grade phosphate beds within the study area
contain 98 million tons of inferred phosphate-rock
resources, but they are in thinner and less accessible
beds than those being mined from structurally higher
thrust sheets to the southwest. Coal seams in the
northern part of the area are too thin, sparsely
distributed, and lenticular to constitute a
resource. Moderately pure limestone is present, but
it is available from other sources closer to
markets. Abundant sand and gravel deposits lie along
the boundaries and just outside of the roadless areas,
but sand and gravel are also available from sources
closer to markets. Silver, copper, molybdenum, and
Tead geochemical anomalies for stream-sediment and
rock samples offer little promise for the occurrence
of metallic mineral resources, except for those metals
that may augment the value of phosphate in the
Phosphoria Formation. The potential for geothermal
resources is untested by drilling but regarded as low.

GEOGRAPHIC SETTING

The Palisades study area encompasses 247,090
acres, or about 386 sq mi, of the Snake River Range
along the Idaho-Wyoming border. The area extends from
the Snake River at Alpine, Wyoming northward to the
Teton Basin near Victor, Idaho. Jackson, Wyoming,
lies 7 mi east of the northern part of the area.
Altitudes range from 10,025 ft at Mount Baird and
above 9,500 ft at numerous other peaks to about 5,500
ft in Swan Valley.

Only pack trails traverse the rugged and
relatively inaccessible roadless areas. Helicopters
were used for field work, begun by the Bureau of Mines
during the summer of 1979, and by the U.S. Geological
Survey in the summer of 1980, and completed in 1982.

GEOLOGY, GEOPHYSICS, AND GEOCHEMISTRY

The West and East Palisades Roadless Areas lie
within the northern part of the arcuate Idaho-Wyoming-
Utah salient of the Cordilleran foreland thrust
belt. The salient, here designated the Idaho-Wyoming
thrust belt, extends southward from the Snake River
Plain and then southwestward toward the western end of
the Uinta Mountains in north-central Utah.

The area, like other parts of the thrust belt, is
underlain mainly by westward-thickening Paleozoic and
Mesozoic resistant limestone, quartzite, and dolomite,
and weaker mudstone, claystone, and sandstone. The
rock units are summarized in figure 3 and in the
description of map units.

Regional compression moved the strata tens of
miles eastward and northeastward during Cretaceous and
early Tertiary time, forming large thrust sheets that
are folded and also cut by imbricate thrust slices
(9riel and Moore, 1985). Principal thrust sheets are,
from west to east (and from uppermost to lowest, and
generally from oldest to youngest), the St. John, the
Absaroka, the Darby, and the Jackson (or Prospect
Mountain; fig. 4). Igneous rocks, now exposed in
several small bodies at Indian Peak, intruded thrust
strata, probably in mid-Eocene time.

The Palisades region was deformed most recently
by extensional stresses, which formed the Snake River
Plain volcanic rift and Basin and Range Provinces,
whose eastern boundaries overlap (are overprinted on)
the thrust belt. The Snake River Range has been
rising since Miocene time, while the bounding Swan
Valley asymmetrical graben has been sinking, and both
have been tilted and rotated down to the northeast.
The Teton Range block, which adjoins the Palisades
area on the north, has also been rising and rotating
(down to the west) since Miocene time (Oriel and
Moore, 1985); these movements tilted and deformed
adjoining older thrust sheets, overturning folds
within them (Dimitre Dunn, 1983). Very coarse to fine
detritus was shed, during Miocene and Pliocene time,
by the rising mountain blocks into adjoining grabens
and basins (Swan Valley, Jackson Hole, and Teton
Basin), which were also invaded by volcanic flows and
volcaniclastics.

Aeromagnetic and reconnaissance gravimetric
surveys were conducted in the Palisades area. Most
anomalies on the residual aeromagnetic map of the
region (U.S. Geological Survey, 1981) can be explained
by volcanic, Archean, and intrusive units mapped on
the surface. A broad, elliptical anomaly at the bend
of the Snake River near Astoria Hot Springs cannot be
related to exposed rocks.

Major negative gravity anomalies in the valleys
suggest about 5,000 ft of fill in Swan Valley, perhaps
more in Teton Basin, and about 10,000 ft in Jackson
Hole. Gravity data are insufficient within the Snake
River Range to define such local features as the
intrusives at Indian Peak, or sites of major thrust
sheets.

Samples of 603 rocks, stream sediments, panned
concentrates, and waters were analyzed (Antweiler and
others, 1984; Hopkins and others, 1984). Geochemical
anomalies for several metals are evident for three
different geologic settings: stratabound silver and
copper in the mid-Mesozoic Nugget Sandstone; base
metals and molybdenum associated with Tertiary
intrusive igneous rocks; and silver, chromium, lead,
vanadium and zinc in the Permian Phosphoria Formation.

EXPLORATION AND MINING ACTIVITIES
A11 of the Palisades area is under lease
application for oil and gas. Several helicopter-
supported, seismic-reflection surveys in and near the
study area were underway during the summers of 1979
through 1983. More than a half-dozen proprietary
reflection lines cross the area.

Although parts of the federally withdrawn
phosphate-bearing lands of Idaho and Wyoming lie
within the Snake River Range, no leases or lease
applications for phosphate have been issued in the
Palisades area.

The vaguely defined Pine Creek coal mining
district is the only one within the study area
(Benham, 1983), but very 1ittle coal has been mined.

"Limerock" placer-claims were staked in Mike
Harris and Pole Canyons from 1922 to 1928. Limestone,
quarried on a small scale from Pole Canyon, was used
for rip-rap.

The mining claims located within the study area
include 13 Tlode, 19 coal, 35 limestone, and 4
placer. There are no active or patented claims.

Southwestern parts of the Palisades area have
been classified by the U.S. Geological Survey as
potentially valuable for geothermal steam and
associated geothermal resources, but no applications
for geothermal leases have been submitted.

ASSESSMENT OF MINERAL RESOURCE POTENTIAL

0i1 and Gas

The highest resource potential for the Palisades
area is for the occurrence of 0il and gas. The area
lies in the northern part of the Idaho-Wyoming thrust
belt, in which many large and prolific oil and gas
fields have been found (Petroleum Information, 1981;
Ver Ploeg and De Bruin, 1982; Lamerson, 1982; Powers,
1983). The same rock formations are present
throughout the belt, including the same hydrocarbon
source beds, the same potential reservoir rocks, and
the same impermeable seals. Comparable structures,
including anticlines that may entrap 0il and gas both
above and below thrust faults, are also present, as is
comparable thermal maturity of source rocks.

Moreover, eastward thinning and facies changes of most
Paleozoic and Mesozoic units, which are inclined
predominantly to the west, are favorable for the
presence of numerous stratigraphic, as well as
structural, traps.

Hydrocarbon source-beds within the thrust belt
(see fig. 3) include organic-rich shales in all
Cretaceous units above the Gannett Group and in the
Phosphoria Formation; the total organic carbon content
of these rocks is one weight percent or more (Warner,
1982). Significant source beds are also present in
Mississippian strata (Sando and others, 1981, p. 1442)
and probably in most other Paleozoic and Tower
Mesozoic units, which have been studied insufficiently
but contain locally abundant organic debris. Thermal
maturation and peak generation of hydrocarbons from
Paleozoic sources probably preceded thrusting; the
assumption that these hydrocarbons migrated out of the
region before the development of favorable structural
traps (Warner, 1982), overlooks the probable role of
stratigraphic traps in retaining some hydrocarbons.

Reservoir beds in the thrust belt are present in,
and produce from, almost all stratigraphic units from
the Ordovician Bighorn Dolomite to Cretaceous
sandstones. The Nugget Sandstone has the greatest
production, but Mississippian limestones and
Pennsylvanian sandstones are also productive.
Intergranular porosity in sandstones and clastic
lTimestones, and intercrystalline porosity in coarser
dolomites are augmented by fracture porosity produced
during compressive deformation. Sufficient shales are
present throughout the sequence to provide required
seals.

Intrusives within the Snake River Range and
evidence of elevated geothermal gradients north and
west of the range prompted sampling for thermal data
at 34 sites. Conodont color alteration indices (CAI)
for all samples range from 1.0 to 2.0 (B. R. Wardlaw
written commun., Nov. 11, 1983), well within the range
(0il-generation "window") of optimum thermal maturity
for oil.

Structures (antiforms and fault-truncated wedges)
favorable for the entrapment of oil, besides those now
exposed to erosion, must also be present at depth, as
indicated by folds that plunge beneath thrust sheets.

Therefore, the high potential we and others
(Powers, 1978, 1983; Spencer, 1983) assign to the
Palisades area for oil and gas, is based on favorable
source beds, potential reservoirs and seals,
structural and stratigraphic traps, and a favorable
thermal regime, comparable to those in the already
proven, highly productive southern part of the Idaho-
Wyoming thrust belt.

Phosphate Rock
Phosphate rock is present within the extensively

but discontinuously exposed and faulted Permian
Phosphoria Formation in the Palisades area.
Moderately rich phosphorite beds (containing as much
as 36 percent P,0; in one seam), are present at four
stratigraphic levels within the Phosphoria Formation,
but only those within the basal Meade Peak Phosphatic
Shale Member are sufficiently thick to be of
commercial interest.

Twenty-three stratigraphic sections of the member
have been sampled for analyses along a total strike
length of 74 mi and each of the sections was examined
for phosphate rock zones containing at least 14
percent P,05. Using a dip mining distance of 250 ft
to calculate resource tonnage, the Palisades area
contains 98 million tons of inferred phosphate-rock
resources (Benham, 1983). These strata also contain
an average of 2.39 percent fluorine that could be
recovered as a byproduct, and lesser amounts of
vanadium and uranium (Sheldon, 1963; Gere and others,
1966).

Units of phosphate rock that contain 24 or more
percent of P,05 are thinner and less accessible in the
Palisades area than those 20 to more than 30 ft thick
now being mined in the structurally higher Meade
thrust sheet in the Soda Springs and Pocatello areas
to the southwest (U.S. Geological Survey, 1977, v. 1,
p. 48).

Coal

The Cretaceous Frontier and Bear River Formations
contain coal seams and beds that trend northwest along
the northeastern part of the Snake River Range. The
seams are thin, steeply dipping, and discontinuous.
Two areas have been mined for small amounts of coal,
the Shu-Fly No. 2 Claim containing volatile C
bituminous and an unnamed prospect containing lignite
(Benham, 1983).

Limestone

The Mississippian Mission Canyon Limestone,
exposed in the Jackson, Absaroka, and St. John thrust
sheets, contains relatively pure limestone. Exposures
of the formation in the Jackson sheet trend
northwesterly along ridges from south of Teton Pass to
Pole Canyon, a distance of 12 mi, and are as much as
1/2 mi wide; beds dip 10° to 659 sy.

Two groups of claims were located along these
Timestone exposures: the Silver King Nos. 1-10 claims,
and the Trail Creek Nos. 1-8 with their associated
Birch Limerock Placers Nos. 1-8 claims. Only one
property, the Silver King, has produced, supplying
rip-rap for local use.

The limestone 1is of good quality, averaging 95.7
and 93.8 percent CaC03, respectively, and is suitable
as flux for smelters and for use in glass making,
sugar-beet refining, and paper making, as well as for
rip-rap. However, other Timestone sources are closer
to markets, and deposits in the Palisades area are
useful only for local needs (Benham, 1983). Crushed
and broken Timestone is readily available in large
volumes from the rock avalanche deposit along Blowout
Canyon.

Sand and Gravel

Sand and gravel deposits are abundant along most
margins of, and just outside of, the Palisades area,
especially on alluvial terraces along the Snake
River. The sand and gravel supplies far exceed
projected Tocal needs, so that deposits along the
major roads outside the Palisades area are more than
adequate.

Base and Other Metals

Despite the significant geochemical anomalies,
described above and by Antweiler (1984), our data are
inadequate to ascertain with assurance the resource
potential for metals detected; the potential is
probably Tow. Stratabound metal deposits in the
Nugget Sandstone are low-grade, small, and
discontinuous. ATthough the intrusives at and near
Indian Peak, together with the associated
mineralization, may possibly represent the top of a
porphyry system, the low conodont color alteration
indices for nearby strata and the absence of
significant gravity or magnetic anomalies imply that
no large intrusive mass is present at moderately
shallow depths. Vanadium and associated metals in the
Phosphoria Formation could probably be extracted
profitably only if recovered as by-products of
phosphate mining.

Geothermal Resource

Heat-flow data are not available for the
Palisades area but thermal phenomena are known from
nearby localities. Although a geothermal resource is
unproved in the Palisades area, such a resource is
possible but the potential is Tow.
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TABLE 1.--CLAIMS AND PROSPECTS IN THE PALISADES AREA

[from Benham, 1983]

(Modified from Hayes, 1976, p. 80, and Powers, 1983,

Map Name
no.

Location

Workings

Sample data

1 Unnamed coal
prospect

2 Shu-Fly
No. 2 coal

3 Silver King
Nos. 1-10

4 Trail Creek

Nos. 1-10
Birch Placers

(1ime rock)

Nos. 1-8
5 Arts Happy Day
Nos. 1, 2, 3
Lodes

6 Bluebird Lodge

7 Townview
20 acre placer
(south of study
area boundary)

8 Tripoli No. 1
160 acre
(65 ha) placer

9 Virginia Gold
No. 14
160 acre
(65 ha) placer

NE1/4NW1/4 sec. 30, T. 3 N.,
R. 45 E., Idaho. In Wood Canyon; Lower
Cretaceous Bear River Formation adit

SW1/4SW1/4 sec. 5, T. 2 N.,
R. 45 E., Idaho. Along North Fork
Rainey Creek; Upper Cretaceous
Frontier Formation

NW1/4NW1/4 sec. 26, T. 2 N.,
R. 45 E., Idaho. In Pole Canyon;
Mississippian Mission Canyon
Limestone

NE1/4NE1/4 sec. 36, T. 2 N.,
R. 45 E., Idaho. Along Mike Harris
Creek; Mississippian Mission
Canyon Limestone

Sec. 19 and 20, T. 1 N., R. 45 E., None
Idaho. On and near Palisades
Creek; St. John thrust fault,

with altered zones, crosses the
claim; country rock is limestone

SW1/4SW1/4 sec. 32. T. 1 N.
R. 45 E., Idaho. In Sheep Creek
Canyon; Quartzite and 1 ft
quartzite conglomerate.
No economic minerals

NW1/4NW1/4 sec. 8, T. 1 S., None
R. 45 E., Idaho. 1/4 mi east
of Palisades; Talus consisting
of unconsolidated andesite
cobbles, silt, and clay

W1/2W1/2 sec. 27, T. 2 S., None
R. 46 E., Idaho. Unconsolidated
sand and gravel

NE1/4 sec. 284, T. 39 N., R. 117 W., None
Wyo. 1/2 mi west of mouth of
Coburn Creek; unconsolidated
sand and gravel

Five-inch coal
seam in caved

Two-foot coal
bed with calcite
stringers in
caved adit

Two limestone
quarries

Two small pits
and dozer scrape

One pit-
8 ft by 4 ft,

deep

One sample
analyzed as
lignite A coal

Two samples
analyzed as high
volatile C
bituminous coal

Ca0 in eight
samples ranged
from 51.2 to 56.1
percent

Ca0 in five samples
ranged from
44.9 to 56.1
percent

Three samples; no
significant assays

One sample; no
significant assays

Two pan sampies; one
contained three very
small particles of
gold

Two pan samples; no
gold detected

Five pan samples; no
qold detected
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FIGURE 4.--MAP SHOWING SIMPLIFIED GEOLOGY AND MINERAL
RESOURCE POTENTIAL IN THE PALISADES ROADLESS
AREAS, IDAHO AND WYOMING.

TABLE 2.--DRY HOLES DRILLED FOR PETROLE!M NEAR PALISADES STUDY AREA

By

Steven S. Oriel, John C. Antweiler, and David W. Moore, U.S. Geological Survey,

and

John R. Benham, U.S. Bureau of Mines
with contributions by Don R. Mabey, U.S. Geological Survey

1985

IDAHO AND WYOMING

Map Operator Borehole Location Completion Total depth

no. date (feet)

1 Edwin Allday 43-24 Federal NE1/4SE1/4 sec. 24, T. 1 N., Unknown 5,760
R. 44 E., Ida.

2 Shell 0il 23-8 Teton Federal NE1/4SW1/4 sec. 8, T. 39 N., 11-23-81 10,299
R. 117 W., Wyo.

3 Getty 0il 1-Teton NE1/4SE1/4 sec. 8, T. 39 N.
R. 117 W., Wyo. 4-25-79 9,300

4 Chevron USA 1-21 Astoria Unit-  SE1/4SE1/4 sec. 21, T. 39 N., 10-11-82 16,350

Federal R. 116 W., Wyo.

5 Dethi 0il1 Corp. 1-A Unit SE1/4SW1/4 SE1/4 sec 25., 12-22-50 4,699
T. 37 N., R. 117 W., Wyo.

6 True 011 44-25 Greys River SE1/4SE1/4 sec. 25, T. 37 N., 1-17-72 14,861
R. 117 W., Wyo.

(South Sunmark 1 Praeter Mountain SE1/4SE1/4 sec. 15, T. 35 N., 10-30-81 14,284

of
map)

Exploration --Federal R. 118 W., Wyo.
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