and c show that the distribution of slope failures along Depot Hill is grouped, with gaps in the linear extents of cliff failure represented by the colored lines in figures 7a, b, c. An enlargement of area B in figure 6 shows that most failures in this central area recur as cliff retreat. Failures can occur on the seaward face of the cliff where there is a dip that is not parallel to the direction of cliff retreat. These areas were identified by a retreat of the cliff edge, and are included as "other" in the data. The amount of cliff retreat for Depot Hill was determined by digitizing the top of the Purisima Formation from the October 1989 and March 1998 stereomodels, as well as from October 1989 photography and involved failures of both the Purisima Formation and the overlying Monterey Formation. The failures are localized; the greatest individual failure occurring over the decade from 1989 to 1998, and the period from January 1998 to February 1998. The map data can also be incorporated into Global Information System (GIS) for use by researchers and community planners. In addition, researchers can search for areas of large cliff retreat that are at risk of failure, such as El Niño events; this information may prove useful in predicting the future response of the cliffs to events of similar magnitude. The map data can also be incorporated into Global Positioning System (GPS) for use by researchers and community planners. The coastal cliffs along much of the central California coast are actively retreating. The retreat of the cliffs is a common technique in coastal studies (Anders and Burns, 1991; Thieler and others, 1994; Griggs and Johnson, 1979). This map presents seacliff failure along the central California coast over a short time scale, during periods of severe storms or seismic activity, and community infrastructure. Research suggests that more erosion occurs along the coast during a storm or seismic event than at other times. The data show that the coastline is beginning to retreat, and that the rate of retreat is increasing. This is due to the fact that the coastline is being eroded by the sea, and the retreat is caused by the sea pushing the coastline back. The coastline is not a static feature; it is constantly changing, and the rate of change is increasing. The coastline is being eroded by the sea, and the rate of erosion is increasing. This is due to the fact that the sea is pushing the coastline back, and the retreat is caused by the sea pushing the coastline back. The coastline is not a static feature; it is constantly changing, and the rate of change is increasing. The coastline is being eroded by the sea, and the rate of erosion is increasing. This is due to the fact that the sea is pushing the coastline back, and the retreat is caused by the sea pushing the coastline back. The coastline is not a static feature; it is constantly changing, and the rate of change is increasing. The coastline is being eroded by the sea, and the rate of erosion is increasing.

MAP SHOWING SEACLIFF RESPONSE TO CLIMATIC AND SEISMIC EVENTS, DEPOT HILL, SANTA CRUZ COUNTY, CALIFORNIA

CHERYL L. MAHRE, D. RICHARD RICHMOND, AND MICHAEL M. ELSON

20 m