MS. Dislogical Survey. E Minuse investigations

MS. Dislogical Survey. E Minuse investigations

MR series; text to

accompany map I MR-15

DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY

TO ACCOMPANY MAP MR-15

no an

LEAD IN THE UNITED STATES

(Exclusive of Alaska and Hawaii)

By E. T. McKnight, W. L. Newman, and A. V. Heyl, Jr.

Introduction

The productive lead districts in the United States (exclusive of Alaska and Hawaii) are shown on the accompanying map. The map is at a scale of 1:3,168,000, (50 miles to the inch). Only those districts known or believed to contain 1,000 short tons or more of lead are shown; individual deposits within districts are not represented.

Three categories of districts are distinguished: those containing 1,000 to 50,000 tons, those containing 50,000 to 1 million tons, and those containing more than 1 million tons of lead. The estimated total quantity of metal present before mining was used to rate districts according to size; both production and reserves are included without distinction.

Symbols show the approximate centers of the districts. Some of the more prominent districts are identified by name; and all are numbered to correspond to the Locality Index on the following pages. District names may not correspond to locality names. Because a name established through common usage may not be the legal name of the mining district, more than one name is given in the index for some localities. The index, arranged alphabetically by states, includes a brief description of major geologic features for most districts. Both published and unpublished data were used; principal published sources are given in the Locality Index and identified in the section References Cited.

Distribution of deposits

Most of the lead districts are within a relatively few broadly defined structural units: 1) the Basin and Range region of Nevada, western Utah, southeastern California, southern Arizona, and southern New Mexico; 2) the Rocky Mountain Cordillera, extending from the Canadian to the Mexican borders; 3) a few broad flat domical uplifts within the Mississippi Valley; and 4) the Appalachian Cordillera. The few districts outside these four areas are relatively minor. Deposits in the Mississippi Valley have dominated the domestic lead-mining industry during most of the last century.

Lead is commonly associated with zinc and in most districts is subordinate to zinc in total tonnage. The outstanding exception is southeastern Missouri, which, although it has been a major lead-producing region since the 1870's, has yielded zinc from relatively few areas and no zinc at all from several major areas. Most Utah districts also show a decided dominance of lead over zinc, but the Park City region within the last decade has yielded less lead than zinc.

The Coeur d'Alene region, which dominates the base metal production of Idaho, formerly produced more lead than zinc, but in recent years it has produced roughly equal tonnages of the two metals.

Silver is associated with lead in most deposits in the Western States, the amount varying from a minor byproduct to the major value of the ore. Many of the lead deposits mined during the latter part of the nineteenth century were shallow oxidized deposits worked chiefly for their silver content.

Geology

In the upper part of the earth's crust lead is an oxyphile element, commonly occurring in trace amounts in silicate and phosphate minerals such as potash feldspar and apatite. Through magmatic processes, however, lead combines readily with sulfur to form valuable deposits. Galena, the lead sulfide, is' the important lead mineral in primary deposits and is the sole lead mineral in most. Its most common associates among the metallic minerals are sphalerite and pyrite or marcasite; less common and usually in subordinate quantity are chalcopyrite, arsenopyrite, tetrahedrite, tennantite, and enargite. Silver, where present, is commonly carried as an impurity in the galena. Gangue minerals are quartz, dolomite, calcite or ankerite, siderite, and barite. Galena is resistant to weathering, but in thoroughly oxidized deposits it is converted to the carbonate, cerussite, with the sulphate, anglesite, appearing as an intermediate product. Plumbojarosite, another lead sulfate, is a principal final product in many western oxidized deposits.

Most of the lead-zinc ore bodies in the United States are replacement deposits in limestone or dolomite. Other types of deposits, however, are also of major importance. The deposits in the Coeur d'Alene region, for example, occur as replacements in fine-grained quartzite; those at Butte, Montana, are veins in quartz monzonite; and those in the San Juan region of Colorado are mostly veins in extrusive rocks, particularly andesite.

Western States.--The deposits of the Western States are in rocks that have been folded and faulted to varying degrees. They occur in areas where intrusive igneous rocks of intermediate to acidic composition are prominent. Particularly striking is the association of lead and zinc with the narrow zone of intrusives in the Colorado mineral belt. In some districts only the dikes and sills that are the normal accompaniment of larger intrusive masses are revealed. In a few districts where no intrusive is

exposed, there may be evidence that one exists in depth, as indicated by metamorphism of the country rock or by structural doming which is commonly associated with mineralized districts of igneous affiliation (Wisser, 1960).

The lead-zinc deposits are generally found in the bordering rocks, commonly at some distance from the intrusives, but they may also occur in intrusive rock, as at Butte. Regardless of their precise localization, the ores are related to structural breaks that developed after consolidation of the igneous rock, and they are believed to have been deposited from solutions of deep-seated origin. The ore may occur in veins closely confined to the original fractures in the rock, or it may replace the adjacent wall rocks. Where these are carbonate rock, the ore may replace certain beds for considerable distances.

The igneous bodies with which the deposits are affiliated are typically small bodies of porphyritic texture whose apices are truncated by erosion. Where deposits are associated with larger igneous batholiths, such association is with apical parts, usually the smaller satellitic protuberances or cupolas that project upward from the flatter parts of the roof into the invaded rock. Large phaneritic igneous massifs such as the Sierra Nevada and Idaho batholiths, which have been eroded many thousands of feet below their roofs, contain no important lead-zinc deposits. Furthermore, the adjacent ground bordering steeply inclined sides of such batholiths is in general unfavorable.

Although the host rocks of the deposits range from Precambrian to late Tertiary in age, most leadzinc deposits of the Western States are of rather limited age span, for they appear to be related to igneous rocks that were intruded from about the end of the Jurassic period to near the end of the Miocene. The peak of lead-zinc deposition appears to coincide with the Laramide revolution, which began at the end of Cretaceous time and extended into early Tertiary time. Only two deposits of significant lead content in Precambrian rocks are described as of Precambrian age, the Iron King deposit in the Big Bug district, Arizona, and the Pecos deposit in the Willow Creek district, New Mexico. Evidence that the lead in the Coeur d'Alene district, Idaho, is also Precambrian has been published recently (Long and others, 1960), but Fryklund (1960) believes that the Main period of mineralization occurred in Cretaceous time.

Post-Laramide lead ores include some of mesothermal type, and they may occur in older sedimentary or igneous rocks and be difficult to date. Many of the important post-Laramide ores are in Tertiary extrusive rocks, however, particularly in andesites and related pyroclastic rocks of Miocene age. These deposits formed in the epithermal ore zone of Lindgren, probably less than 4,000 feet below the topographic surface at time of mineralization. Although Tertiary volcanic rocks are widespread in the West, the epithermal deposits that are largely confined to them carry base metals in only a few places; extensive areas of such terrain as the Columbia River basalt and younger volcanic rocks contain no deposits of

any type.

Central States.--The lead-zinc deposits of the Central States form a group of disputed origin commonly called the Mississippi Valley type. They are replacement deposits in relatively undisturbed rocks that have been uplifted, gently warped, and faulted to only a minor extent. Most are on the flanks of broad, flat uplifts, as the Ozark dome and the Wisconsin arch, but the southern Illinois-western Kentucky deposits are not far from the axis of the Illinois structural basin, though clustered about a sharply uplifted, faulted dome. All are in Paleozoic limestones or dolomites. The mineralogic associations are simple, and the galena is remarkably lean in silver, though the associated sphalerite in certain areas may contain some silver.

For the most part the deposits of the Central States lack the outstanding characteristic of the western deposits, namely the visible association with intrusive igneous rocks. Exceptions are dikes and pipes of basic rock and explosion pipes (diatremes) in the southern Illinois-western Kentucky region and only a few miles from ore deposits in the southeast Missouri region, which may indicate the presence of intrusive bodies at depth. The association is not close, however, suggesting rather the loose affiliation that western epithermal deposits show with igneous intrusives. Schmitt (1950) has suggested that the Mississippi Valley deposits are simply the epithermal type in carbonate rather than lava wall rocks.

There is no satisfactory basis for dating these deposits. The igneous rocks of central and western Arkansas, some of which are similar to those exposed near ore-bearing districts, are Cretaceous in age. All the known igneous rocks may not be contemporaneous, however, and there is no evidence to suggest that ore deposits in areas where no igneous rocks are exposed are contemporaneous with the others. Ages ranging from late Paleozoic to Recent have been advocated by different authors.

Eastern States .-- The eastern deposits occur in the Appalachian Cordillera and on the western side of the Adirondack Mountains in New York. In most deposits zinc predominates over lead, and zinc occurs without lead in numerous deposits which have essentially the same geologic setting. All the deposits are in rocks that have been folded and faulted to a considerable extent. The host rocks include Precambrian dolomite on the west side of the Adirondacks, Precambrian or Cambrian schists in the districts east of the Blue Ridge in North Carolina and Virginia, early Paleozoic dolomites west of the Blue Ridge in Tennessee and Virginia, Silurian conglomerate in southeastern New York, and both Precambrian granitic rocks and Triassic red beds and diabase in southeastern Pennsylvania.

The spatial proximity of igneous intrusive rocks to which the deposits can be related genetically varies from district to district. The western Adirondack deposits are associated with Precambrian granite intrusives, and those east of the Blue Ridge are not far from batholithic masses of granite to which a late Paleozoic age has been ascribed. In other areas, and most notably in the important districts west of the

Introduction (cont'd.)

Blue Ridge, no igneous rocks are exposed. The age of these deposits is uncertain and their mode of origin is controversial.

Locality Index

District or region	Lat. N. Long. W.
ARIZONA	
1. Hualapai (Chloride Camp). Veins in Precambrian granite, gneiss, schist and amphilbolite. Dings, 1951; Thomas, 1949.	35°25' 114°11'
2. Hualapai (Cerbat Camp). Veins in Precambrian granite, gneiss, schist and amphibolite. Dings, 1951; Thomas, 1949.	35°19' 114°08'
 Eureka (Bagdad). Vein and re- placement lenses along faults in Precambrian mica and chlorite schists. Anderson and others, 1956. 	34°35' 113°13'
 Owens (McCracken mine). Veins in Precambrian quartz mica schist. Bancroft, 1911. 	34°28' 113°46'
 Big Bug (Iron King mine). Re- placement lenses in silicified Precambrian schist. Anderson and Creasey, 1958. 	34°30' 112°15'
Osborn. Veins in Tertiary andes- ite and rhyolite. Tenney, 1928.	33°37' 112°52'
7. Silver. Veins along faults between Precambrian granite and lower Tertiary (?) andesitic breccia and tuff, or in Precambrian schist. Wilson, 1951a.	33°06' 114°36'
8. Castle Dome. Veins along fault zones in and along diorite porphyry dikes of Cretaceous (?) age and in Cretaceous shale. Wilson, 1951b.	33°02' 114°11'
9. Superior (Pioneer) (Magma mine). Replacement veins along faults in quartz-monzonite porphyry, diabase, and quartzite; bedded replacement deposits in Devonian limestone. Short and others, 1943; Webster, 1958.	33°18' 111°06'
Ray (Mineral Creek) (Ray Silver-Lead mine).	33°10' 111°00'
11. Banner (Seventy-nine mine). Vein-replacement bodies in and bordering a sheared dike of rhyolite porphyry; replacement bodies in Pennsylvanian limestone along bedding and bordering igneous masses. Kiersch, 1951.	33°04' 110°48'
12. Aravaipa. Veins and replace-	32°59' 110°20'

ARIZONA (cont'd.)

ment bodies on fault breccia
in Pennsylvanian limestone;
veins in intrusive rhyolite.
Ross, 1925; Wilson, 1950a.

- Bunker Hill (Blue Bird mine).
 Vein in granodiorite stock of Laramide (?) age. Kuhn, 1951.
- 14. Old Hat (Mammoth), Replacement veins along shear zones in Mesozoic or Tertiary andesite, dacite, and rhyolite, and in Precambrian (?) quartz monzonite. Creasey, 1950.
- Silver Bell. Contact metamorphic deposits in Carboniferous
 limestone. Stewart, 1912;
 Richard and Courtright, 1954.
- Pima (San Xavier mine). Replacement pipes along fissures in Mississippian and Permian limestones. Wilson, 1950b.
- 17. Empire. Replacement bodies and pipes along fissures in Permian limestone, and at contacts with porphyry dikes and sills. Wilson, 1951c.
- California (Hilltop mine). Veins and contact deposits.
- Tombstone. Replacement bodies along fissures on tops of folds in Pennsylvanian and Lower Cretaceous limestones, quartzites, and shales, and in sheared granodiorite dikes. Butler and others, 1938.
- Turquoise. Replacement bodies along fractures and faults in Pennsylvanian limestone. Wilson, 1927; 1951d.
- Swisshelm. Replacement bodies in fractured Pennsylvanian limestone above a diorite porphyry sill. Galbraith and Loring, 1951.
- Tyndall. Veins in quartz diorite, quartz monzonite, and quartz latite porphyry. Schrader, 1915.
- Oro Blanco (Montana mine). Replacement lode along shear zone between intrusive diorite and igneous-pebble conglomerate, or in latter. Fowler, 1938.
- 24. Harshaw (Trench and Flux mines). Veins along shear zones in intrusive igneous rocks and replacement bodies in Pennsylvanian (?) limestone. Schrader, 1915.

32°46' 110°28'

- 32°43' 110°41'
- 32°25' 111°31'
- 31°58' 111°05'
- 31°53' 110°36'
- 31°59' 109°14'
- 31°42' 110°04'
- 31°44' 109°49'
- 31°42' 109°32'
- 31°36' 110°52'
- 31°28' 111°14'
- 0. 40
- 31°28' 110°44'

Locality Index (cont's	d.)	CALIFORNIA (cont'd	.)
ARIZONA (cont'd.)		Mackevett, 1958; Norman and	
25. Patagonia (Duquesne). Contact metamorphic and replacement deposits in Devonian and Pennsylvanian limestones adjacent to intrusive quartz monzonite. Schrader, 1915.	31°23' 110°42'	Stewart, 1951. 8. Carbonate (Queen of Sheba mine). Replacement bodies along bedding of Paleozoic (?) dolomitic limestone. Norman and Stewart, 1951.	36°00' 116′53'
26. Bisbee (Warren). Replacement bodies along fractures or adjacent to porphyry dikes and sills in Devonian and Mississippian	31°27' 109°54'	 Slate Range. Replacement bodies along bedding fissures in steeply- dipping Paleozoic (?) limestone. Norman and Stewart, 1951. 	35°49' 117°17'
limestones. Hogue and Wilson, 1950.		 Resting Springs (Tecopa). Re- placement bodies along fault intersections in Cambrian dolo- 	35°50' 116°06'
ARKANSAS		mite and limestone. Carlisle and others, 1954; Sampson,	
1. Ponca. Replacement bodies a-	36°01' 93°22'	1937.	
long bedding at fracture inter- sections in Mississippian limestone, chert, and sandstone. McKnight, 1935.		 Clark Mountain (Ivanpah in part). Replacement bodies, in part localized by fractures near quartz monzonite sill, in Mis- 	35°29' 115°34'
 Upper Cave Creek (Bald Mountain, Confederate mines). Replacement bodies along bedding 	35°54' 92°58'	sissippian limestone and Devo- nian dolomite. Wright and others, 1953; Hewett, 1956.	
at fracture intersections in Mississippian limestone and chert. McKnight, 1935.	quartzite-diorite contact.	 Eagle Mountain. Vein along quartzite-diorite contact. Tucker and Sampson, 1945. 	33°53' 115°33'
CALIFORNIA		13. Paymaster (Paymaster mine).	33°12' 114°54'
 Cow Creek (Ingot) (Afterthought mine). Replacement bodies in fractured soda rhyolite and ad- 	40°44' 122°04'	Vein along fault (?) contact between diorite and granite. Sampson and Tucker, 1942.	
jacent limy shale of Triassic age. Albers, 1953.		 Santa Catalina Island. Lodes in Jurassic hornblende schist and in andesite. Tucker, 1927 	33°21' 118°22'
 Blind Spring. Veins along par- allel faults in Jurassic granite stock. Ransome, 1940. 	37°46' 118°29'	COLORADO	
 Ubehebe. Veins and replacement bodies within shatter zones in Ordovician and Devonian dolo- mite. McAllister, 1955. 	36°45' 117°35'	 Jamestown (Central). Veins along faults in Precambrian schist and granite; filling of breccia zones in early Tertiary granodiorite. Lovering and 	40°08' 105°23'
4. Cerro Gordo, Replacement	36°32' 117°48'	Goddard, 1950.	
bodies near axis of plunging anticline in Devonian limestone. Knopf, 1918a; Norman and Stewart, 1951.		 Gold Hill (Sugar Loaf). Veins and stockworks along faults in Precambrian granite. Lovering and Goddard, 1950. 	40°03' 105°23'
5. Lee (Santa Rosa). Parallel veins across bedding in tactitic Permian limestone and ore shoots along bedding fractures in Mississippian limestone, Hall and Mackevett, 1958,	36°25' 117°43'	 Caribou-Grand Island. Veins along faults in monzonite stock of Laramide age and in Precambrian schist, gneiss and granite. Lovering and Goddard, 1950. 	39°59' 105°34'
6. Darwin. Replacement bodies near and along faults in tactitic Pennsylvanian limestone adjacent to granodiorite stock. Hall and Mackevett, 1958.	36°17' 117°36'	 Lawson-Dumont (Montana). Veins in Precambrian gneiss, granite and pegmatite. Lovering and Goddard, 1950. Central City-Idaho Springs (in- 	39°46' 105°38' 39°45' 105°32'
7. Modoc. Bedded replacement bodies along small faults in Carboniferous limestone. Hall and	36°16' 117°28'	cluding Trail Creek). Veins a- long faults and foliation in Precambrian gneiss, pegmatite	0, 10 100 02

Locality Index (cont'd.) COLORADO (cont'd.) COLORADO (cont'd.) sissippian limestones. Emmons and others, 1927. and schist; may follow porphyry 39°13' 106°10' dikes of Laramide age. Lovering 16. Horseshoe-Sacramento (Hilltop and Goddard, 1950. mine). Replacement pipes at intersections of faults and frac-39°42' 105°43' 6. Georgetown-Silver Plume, Veins tures with favorable dolomite along faults and locally following beds in Devonian and Missisporphyry dikes in Precambrian sippian strata, Behre, 1953; granite, pegmatite, gneiss and Singewald and Butler, 1941. schist, Lovering and Goddard, 39°11' 106°49' 17. Roaring Fork (Aspen). Breccia filling and replacement bodies 39°39' 105°47' 7. Argentine, Veins, partly along in shattered Carboniferous faults, in Precambrian granite, dolomite and limestone. Vangneiss, and schist. Lovering, derwilt, 1935; Spurr, 1898; 1935. Knopf, 1926. 39°35' 105°51' 8. Montezuma (Snake River). Veins, 18. Rock Creek, Replacement 30°04' 107°06' partly along faults, in Precambodies along bedding or cross brian gneiss and granite and in fractures in limestone beds of Eocene quartz monzonite. Lover-Devonian to Cretaceous age. ing, 1935. Vanderwilt, 1937. 9. Red Cliff (Gilman Battle Moun-39°32' 106°23' 19. Dorchester-Taylor Park, Veins 38°57' 106°40' tain) (Eagle mine). Replacement and replacement bodies in Carpipes along intersecting joints boniferous dolomite and limeor faults in Devonian and Misstone, Vanderwilt, 1947. sissippian limestones. Tweto 20. Elk Mountain (Keystone mine). 38°52' 107°03' and Lovering, 1947. Veins and breccia filling along 10. Breckenridge. Veins along faults 39°29' 106°01' faults in Cretaceous sandstone. in Eocene (?) monzonite porphyry Emmons and others, 1894. and in Cretaceous quartzite; 38°43' 106°29' 21. Tincup. Bedded replacement stockwork in Eocene (?) quartz monzonite porphyry. Lovering, bodies and veins in Mississippian and Ordovician limestone and dolomite; fissure 39°25' 106°12' 11. Kokomo (Tenmile). Replacement veins in Ordovician and Depipes along fractures in Pennvonian quartzite and in quartz sylvanian limestone beds bemonzonite porphyry of early (?) tween unfavorable rock types. Tertiary age. Dings and Robin-Koschmann and Wells, 1946. son, 1957. 12. Upper Blue River, Replacement 39°23' 106°04' 38°40' 106°21' 22. Chalk Creek (Mary Murphy bodies adjacent to fractures mine). Lodes in quartz monzocutting Devonian, Pennsylvanian, nite of early Tertiary age. and Permian limestone beds be-Dings and Robinson, 1957. tween unfavorable rock types. 23. Gold Brick, Replacement veins 38°37' 106°35' Singewald, 1951. along faults in Precambrian 39°18' 106°06' 13. Alma (Mosquito, Buckskin, Congneiss and schist. Crawford solidated Montgomery). Veins and Worcester, 1916. along faults in or adjoining lower Tertiary porphyry sills or in 24. White Pine (Tomichi). Replace-38°32' 106°23' ment bodies within fault zones Ordovician quartzite; replaceor along adjacent bedding in ment bodies within shattered Ordovician and Mississippian zones in Ordovician and Mislimestone and dolomite. Dings sissippian limestones. Singeand Robinson, 1957. wald and Butler, 1933; 1941. 14. Sugar Loaf-St. Kevin (Indepen-39°17' 106°23' 25. Monarch (Garfield). Replace-38°32' 106°18' ment bodies, mostly adjacent dent). Lodes within shear zones to faults, in dominantly Ordoin Precambrian granite, schist vician limestone and dolomite. and gneiss. Singewald, 1955. Dings and Robinson, 1957. 39°15' 106°16' 15. Leadville (California), Replace-38°19' 106°08' 26. Kerber Creek (Bonanza). Veins ment bodies along fissures and

chiefly below porphyry sills or shale, in Ordovician and Misin Oligocene (?) andesite and

latite, Burbank, 1932.

Locality Index (cont'd.) COLORADO (cont'd.) stone; veins along fractures COLORADO (cont'd.) in sandstone and arkose. 27. Oak Creek (Ilse) (Terrible mine). 38°13' 105°15' Burbank and others, 1947; Lodes within shattered zones ad-Ransome, 1901; Cross and jacent to faults in Precambrian Spencer, 1900. granite. Hunter, 1914. 28. Hardscrabble (Silver Cliff, 38°09' 105°27' IDAHO Westcliff). Veins and stockworks 1. Port Hill (Idaho Continental 48°56' 116°53' in lower Tertiary rhyolite and mine). Replacement bodies along tuff and in Precambrian granite shear zones and fissures in Preand gneiss. Emmons, 1896. cambrian sericitic quartzite. 29. Uncompangre (Ouray), Veins 38°03' 107°40' Kirkham and Ellis, 1926. and replacement bodies along 2. Clark Fork, Replacement veins 48°10' 116°10' fissures and bedding and withalong shear zones in Precamin breccias in quartzites, sandbrian argillite, quartzite, and stones, and shales ranging from limestone, Anderson, 1947a. Pennsylvanian to Cretaceous in age. Burbank, 1940. 48°08' 110°29' 3. Talache (Pend Oreille in part) (Armstead mine). Fissure veins 38°01' 107°22' 30. Lake City (Galena, Lake), Veins in Precambrian argillite. Sampin Miocene andesite, latite, and son, 1928. rhyolite, along fissures in caldera rift zone. Burbank, 1947: 4. Lake View. Ore shoots in breccia 47°54' 116°27' Irving and Bancroft, 1911. along fault fissures in Precambrian quartzite and argillite. 31. Upper Uncompangre, Pough-37°57' 107°37' Sampson, 1928. keepsie, and Mineral Point. Veins and lodes along faults 5. East Coeur d'Alene. Composite 47°31' 115°50' and filling of breccia chimreplacement veins along shear neys in Miocene extrusive zones in Precambrian sericitic and intrusive igneous rocks. quartzite. Ransome and Calkins, Kelley, 1946. 1908; Umpleby and Jones, 1923. 32. Sneffels and Telluride (Upper 37°57' 107°46' 6. West Coeur d'Alene. Composite 47°31' 116°09' San Miguel). Lode veins, replacement veins along shear partly along dikes, in Miocene zones in Precambrian sericitic volcanic rocks. Burbank and quartzite. Ransome and Calkins, others, 1947; Ransome, 1901; 1908; Umpleby and Jones, 1923; Burbank, 1941. Shenon and McConnel, 1939. 33. Red Mountain. Filling of vol-37°54' 107°42' 7. Deadwood (Cascade) (Deadwood 44°28' 115°35' canic breccia pipes with remine). Replacement bodies in placement or veining of adjavertical shear zone in "granite." cent volcanic rocks of Miocene Campbell, 1930. age. Burbank, 1941. 8. Seafoam, Replacement bodies in 44°35' 115°04' 34. Eureka. Lode veins in Miocene 37°54' 107°36' Cambrian (?) dolomitic limestone andesite and latite. Burbank and occurring as xenolith in Idaho others, 1947. batholith. Treves and Melear, 1953. 35. Ophir (Iron Springs) (Alta mine). 37°52' 107°50' Lode veins in Tertiary extrusive 9. Bayhorse, Replacement bodies 44°21' 114°23' intrusive igneous rocks, and in in Cambrian and Ordovician conglomerate and sandstone of dolomite and argillite. Ross. Permian and Eocene age. Bur-1937. bank and others, 1947. 10. Blue Wing. Veins in Precam-44°32' 113°41' 36. Animas (Silverton). Lode veins, 37°48' 107°36' brian quartzitic slates and partly along dikes, in Tertiary schists. Callaghan and Lemmon, extrusive and instrusive igneous rocks. Burbank, 1933. 11. Junction (Leadville mine). Re-44°42' 113°18' 37. Creede, Veins along faults in 37°52' 106°56' placement bodies adjacent to Miocene rhyolite, Emmons and fault in Paleozoic limestone.

37°42' 108°01'

Larsen, 1923; Larsen, 1929.

tures in Pennsylvanian lime-

38. Rico (Pioneer). Replacement bodies along bedding and frac-

Umpleby, 1913.

12. Texas. Replacement bodies a-

long fissures and bedding in

Paleozoic limestone. Umpleby,

44°28' 113°18'

	IDAHO (cont'd.)			and others, 1930; Anderson and others, 1950.	
13.	Nicholia (Viola mine). Replacement bodies along fractures in Upper Ordovician or Devonian limestone. Anderson and Wagner, 1944.	44°22'	112°59'	24. South Mountain. Contact meta- morphic deposits and replace- ment veins along vertical fractures in limestone. Soren- son, 1927.	116°56'
14.	Birch Creek. Replacement	44°09'	112°50'	ILLINOIS	
	bodies along bedding in lime- stone of Late Ordovician, De- vonian and Pennsylvanian ages. Anderson and Wagner, 1944.			1. Upper Mississippi Valley, Re- placement bodies and veins along joints, shears, and faults in Or- dovician dolomite and limestone.	90°25'
15.	Dome (Wilbert mine). Replace- ment bodies along fracture zones in Ordovician quartzitic dolomite.	43°58'	113°01'	Heyl and others, 1955; 1960; Agnew and others, 1956.	000121
	Ross, 1933; Anderson, 1947b.			 Cave in Rock. Lode veins and re- placement bodies in fault blocks 	88°12'
16.	Boulder Creek (Livingston mine). Replacement bodies a- long shear zones in Missis- sippian siliceous argillite and	44°08'	114°36'	of Mississippian limestone. Oesterling, 1952; Currier and Hubbert, 1944.	
	in shattered rhyolite porphyry dikes of Mesozoic or Tertiary			IOWA	
	age. Kiilsgaard, 1949.			1. Upper Mississippi Valley. Re- placement bodies and veins along	90°42'
17.	East Fork. Replacement bodies along conjugate fractures in Mississippian argillite, and a- long shear zones in quartz diorite stock. Ross, 1937.	44°00'	114°39'	joints, shears, and faults in Ordovician dolomite and limestone. Heyl and others, 1955; 1960; Agnew and others, 1956.	
18.	Alder Creek. Replacement veins	43°54'	113°41'	KANSAS	
	in tactitic Mississippian lime- stone or along its contact with quartz diorite stock. Ross, 1930.			1. Crestline-Badger Peacock. Smith 37°10' and Siebenthal, 1907.	94°39'
19.	Warm Springs. Replacement bodies along shear zones in Mississippian argillite. Umpleby and others, 1930; Kiilsgaard,	43°40'	114°17'	 Galena. Replacement bodies with- in breccias in Mississippian lime- stone and chert. Smith and Sieben- thal, 1907. 	94°39'
	1950.			KENTUCKY	
20.	Rosetta (Little Smoky). Veins and replacement bodies along crushed zones in Pennsylvanian	43°36'	114°42'	1. Central Kentucky. Veins along faults in Ordovician limestone and shale. Beck, 1949.	84°58'
	(?) limestone. Ross, 1930; Umpleby, 1914.			2. Western Kentucky. Lode veins 37°15' and replacement bodies in fault	88°12'
21.	Muldoon (Little Wood River) (Muldoon mine). Replacement bodies along faults in Carbon-	43°37'	113°53'	blocks of Mississippian limestone. Oesterling, 1952.	
	iferous limestone, slate and quartzite, and along contact			MISSOURI	008404
20	with quartz diorite sill. Anderson and Wagner, 1946.			1. Fortuna. Deposit in matrix of 38°35' breccia in filled sinks in Cambrian dolomite. Van Horn, 1905;	92°49'
22.	Lava Creek. Fissure veins and replacement bodies within brec-	43°33'	113°37'	Marbut, 1908; Mather, 1946. 2. High Point. Interstitial filling of 38°29'	92°35'
	ciated zones in Miocene (?) andesite and latite and in Mississippian limestone. Anderson, 1929; Anderson, 1947c.			breccia within collapsed sinks in Ordovician dolomite. Van Horn, 1905.	
23.	Mineral Hill (Wood River). Fissure veins in Carboniferous calcareous shale bordering a monzonitic batholith. Umpleby	43°29'	114°22'	3. Russellville. Irregular bodies 38°28' within breccia near outer edges of collapsed sinks in Ordovician dolomite. Schmidt, 1874.	92°25'

Locality Index (cont'd.)

IDAHO (cont'd.)

	Locality Index (cont'd.)				MISSOURI (cont'd.)		
4.	MISSOURI (cont'd.) Saline diggings. Filling of joints, pipes, and cave breccias in Or-	38°18'	92°26'	17.	Viburnum. Replacement bodies within algal reef facies in Cambrian dolomite on flanks of buried Precambrian knobs.	37°44'	91°05'
5.	dovician dolomite; masses in residual clay. Ball and Smith, 1903. Morrellton. Replacement bodies	38°20'	91°05'	18.	Doe Run. Bedded replacement bodies in Cambrian dolomite and granite pebble conglomerate near buried Precambrian ridges.	37°45'	90°30'
	along bedding at joint zone inter- sections and within caves in Or- dovician dolomite; masses in residual clay. Winslow, 1894.			19.	Winslow, 1894; Buckley, 1909. Fredericktown. Bedded replacement bodies in Cambrian sandy	37°35'	90°18'
6.	Mount Hope (Virginia mine). Fissure filling in Ordovician dolomite and sandstone. Winslow,	38°18'	90°55'		dolomite near buried Precambrian ridges. Winslow, 1894; James, 1949.		
	1894.			20.	Annapolis.	37°22'	90°421
7.	Sandy Mines. Replacement pods along crevices in Ordovician dolomite. Winslow, 1894.	38°17'	90°31'	21.	Corry mines. Ore masses in residual clay, partly in sink holes, in Mississippian limestone and chert. Winslow, 1894.	37°28'	93°44'
8.	Thomas mine. Winslow, 1894.	38°14'	91°03'	22		279171	029261
9.	Richwoods. Replacement bodies along bedding at joint zone inter- sections in Cambrian dolomite;	38°10'	90°50'	22.	Ash Grove. Bedded replacement bodies along crevices in Missis- sippian limestone. Shepard, 1898.	37°17'	93°36'
	masses in residual clay. Winslow, 1894.	200001	008401	23.	Joplin (including Carl Junction, Cave Springs, Sherwood, Zinc- ite, Waco, Alba-Neck City,	37°08'	94°29′
10	 Mammoth-Frumet, Replacement bodies along bedding at joint in- tersections and within caves in Cambrian and Ordovician dolo- mites. Winslow, 1894. 	38°08'	90°40'		Carthage, Oronogo-Webb City- Duenweg, and Spring City-Beef Branch areas). Replacement bodies along bedding and within breccias and collapsed sinks in		
1	 Indian Creek. Replacement bodies within algal reef facies in Cambrian dolomite on flanks of buried Precambrian knobs. 	38°03'	90°55'	24	Mississippian limestone and chert. Smith and Siebenthal, 1907. Pickerel Creek. Replacement	37°11'	93°33'
12	Christiansen and others, 1959. 2. Old Mines. Replacement bodies along bedding at joint zone intersections in Cambrian dolo-	38°01'	90°45'	21,	bodies along bedding at crevice intersections in Mississippian limestone; masses in residual clay. Shepard, 1898.	37 11	90 00
1	mite; masses in residual clay. Dake, 1930; Winslow, 1894. 3. Valle Mines. Replacement	38°01'	90°30'	25.	Springfield (Pierson Creek). Replacement bodies and breccia	37°10'	93°12'
1.	bodies along bedding at joint zone intersections and along fracture in Cambrian dolomite.	36 01	90 30	26.	filling along crevices in Missis- sippian shale. Shepard, 1898. Spurgeon. Replacement bodies	36°56'	94°29'
1	 Potosi. Replacement bodies a- long bedding at joint zone inter- sections in Cambrian dolomite; masses in residual clay. Dake, 	37°57'	90°47'		along bedding at fracture zone intersections, and in breccia along graben block in Mississippian limestone, chert, and sandstone. Siebenthal, 1908.		
1	1930. 5. Flat River-Bonne Terre. Bedded replacement bodies in Cambrian dolomite near buried Precambrian ridges. Tarr, 1936;	37°52'	90°33'	27.	Granby. Replacement bodies along bedding at joint zone in- tersections, and cavity fillings in Mississippian limestone and chert. Buckley and Buehler, 1906.	36°54'	94°16'
1	Buckley, 1909. 6. Palmer. Replacement bodies along bedding at joint zone intersections in Cambrian dolomite;	37°51'	90°59'	28.	Aurora. Replacement bodies along bedding at joint zone intersections in Mississippian limestone and chert. Winslow, 1894.	36°58!	93°43'
	masses in residual clay. Winslow 1894: Dake 1930			29	Ozark, Fissure filling and re-	36°591	93°12'

1894; Dake, 1930.

29. Ozark. Fissure filling and re-

36°59' 93°12'

	Locality Index (cont'd.))			MONTANA (cont'd.)		
	MISSOURI (cont'd.)				and in Cambrian, Silurian, and		
	placement bodies along bedding within linear shatter zones in				Devonian limestones and shales, Emmons and Calkins, 1913.		
	Ordovician dolomite and Mississippian limestone, chert, and shale. Ballinger, 1948a; 1948b.			12.	Marysville. Fissure veins in Precambrian hornstone bordering a quartz monzonite stock. Pardee and Schrader, 1933.	46°45'	112°19'
	MONTANA			13.	Scratch Gravel. Contact meta-	46°40'	112°05'
1.	Troy (Grouse Mountain) (Snow- storm mine). Replacement veins and fissure filling in metadiorite dikes that intrude Precambrian argillite. Gibson, 1948.	48°27'	115°59'		morphic deposits in Precambrian shale, quartzite, and limestone, and in adjacent quartz monzonite stock. Pardee and Schrader, 1933.		
2.	Libby, Replacement veins along shear zones in Precambrian argillite, Gibson, 1948.	48°13'	115°38'	14.	Elliston. Veins in andesite and quartz monzonite of Laramide age. Pardee and Schrader, 1933.	46°27'	112°24'
3.	Hog Heaven. Replacement bodies in stockwork in porphyritic latite dike of late Tertiary (?) age. Shenon and Taylor, 1936.	47°56'	114°34'	15,	Zosell (Emery). Replacement veins along faults in Upper Cretaceous (?) andesite. Pardee and Schrader, 1933; Robertson,	46°22'	112°36'
4.	Eagle (Jack Waite mine). Re-	47°40'	115°44'		1953.		1118401
	placement veins along shears in Precambrian fine-grained quartz- ite and argillite. Hosterman, 1956.			16.	Beaver Creek (Winston). Veins in andesite and quartz monzonite of Laramide age. Pardee and Schrader, 1933; Reed, 1951.	46°25'	111°42'
5.	Packer Creek (Last Chance, Silver Cable mines). Replace- ment veins along faults and fractures in Precambrian argillite and quartzite. Wallace	47°28'	115°34'	17.	Clancy (Lump Gulch). Veins along fault zones in quartz monzonite and aplite of Laramide age. Pardee and Schrader, 1933.	46°28'	112°01'
6.	and Hosterman, 1956. Keystone (Iron Mountain) (Iron Mountain, Nancy Lee mines). Replacement veins parallel to	47°16'	114°54'	18.	Colorado (Wickes). Veins in latitic andesite and quartz mon- zonite of Laramide (?) age. Pardee and Schrader, 1933.	46°22'	112°.07'
7	foliation in Precambrian quartz- ite and argillite.	.=200		19.	Park (Indian Creek) (Iron Mask mine). Veins in lower Tertiary	46°20'	111°39'
	Heddleston (Mike Horse mine). Tabular breccia filling with some replacement in Precambrian argillite and quartzite and in igneous rocks. Pardee and Schrader, 1933.	47.02	112°22'		(?) andesite. Stone, 1911. Cataract (Basin) and Boulder (Comet, Gray Eagle, Hope-Katie mines). Replacement veins in quartz monzonite and aplite of Laramide age.	46°17'	112°13'
8.	Copper Cliff (Cramer Creek)	46°47'	113°32'		Pardee and Schrader, 1933.		
	(Blacktail mine). Replacement bodies in Cambrian (?) mag- nesian limestone. Sahinen, 1957.			21.	Elkhorn (Elkhorn mine). Replacement bodies in Cambrian dolomite, Klepper and others,	46°16'	111°57'
9.	Curlew (Curlew mine). Fissure	46°28'	114°10'		1957.		
	filling along fault contact between granite (or Pleistocene gravel?) and Precambrian (?) quartzite and limestone. Sahinen, 1957.			22.	Radersburg (Cedar Plains). Veins in andesite and latite of early Tertiary (?) age and in rocks of Paleozoic and Meso- zoic ages. Pardee and Schrader,	46°10'	111°42'
10). Dunklehera Veins near axis of	46°311	113°05'		1933: Reed. 1951.		

ll. Philipsburg (Flint Creek). Replacement veins in granodiorite 46°20' 113°16'

10. Dunkleberg. Veins near axis of

sills; replacement bodies in

1953.

anticline in rocks of Cretaceous

age, and in dioritic and gabbroic

limestone. Pardee, 1917; Popoff,

1933; Reed, 1951.

23. Butte (Summit Valley). Replace-

ment lodes and veins in quartz

monzonite of early Tertiary (?)

age. Sales, 1914; Perry, 1933.

24. Whitehall (Cardwell). Veins in

46°01' 112°32'

46°31' 113°05'

Lo	cality Index (cont'd.))			NEVADA		
sandstone, and	MONTANA (cont'd.) d limestone, and kkes. Winchell,			r 1	Delano (Cleveland and Delano mines). Replacement bodies a- long bedding in brecciated Paleozoic dolomite (?). Granger and others, 1957.	41°40'	114°15'
on anticlinal o). Replacement bedding in dolomite crests near contact onzonite batholith, 448; Winchell, 1914.	45°36'	112°55'	1	Tecoma (Jackson mine). Re- placement bodies along fissures on low anticline in Devonian limestone. Granger and others, 1957.	41°26'	114°04'
replacement h	schist and gneiss; podies along frac- nitic limestone.	45°37'	112°29'	i	Leadville (Leadville mine). Veins in diorite porphyry dike and in andesite of Tertiary age. Overton, 1947.		119°25'
27. Tidal Wave (T	`win Bridges). in Precambrian	45°35'	112°10'		Barrett Springs. Veins in shale. Vanderburg, 1938a.	41°08'	117°49'
gneiss and ear quartz monzor bodies along f ding in limest	rly Tertiary (?) nite; replacement issures and bed- one of Paleozoic and others, 1933.			1	Merrimac (Rip Van Winkle mine). Veins and bedding replacement bodies along faults bordering a graben in Mississippian shale and limestone. Granger and	41°07'	116°00'
	artz monzonite of age. Pardee and	46°28'	112°15'	6. I	others, 1957. Battle Mountain. Veins and replacement bodies along faults in Carboniferous hornfels, conglom-		117°07'
bedding in Pr	ns and replace- long faults and ecambrian lime- ble. Tansley and	45°28'	112°08'	7. 1	erate, and quartzite. Roberts, 1951. Railroad (Bullion). Replacement bodies in near-vertical chimneys at fracture intersections in Ordovician limestone; some contact		116°00'
30. Argenta. Repl along bedding	acement bodies and fissures in	45°18'	112°53'		metamorphic deposits. Granger and others, 1957.		
sissippian lim veins in Prec	vonian, and Mis- nestones; fissure ambrian shale and zonite of Laramide n, 1931.			1 3 1	Spruce Mountain. Replacement bodies along bedding, fractures, and faults in Mississippian limestone, partly at contact with porphyry dikes. Granger and	40°34'	114°50'
with Cambria ferous limest and others, 19	ure vein in and at contact n or Carboni- one. Jackson 935; Weed, 1900;	47°05'	110°39'	9. 1	others, 1957; Schrader, 1931. Lewis. Veins, in part with replacement, in granodiorite and in Carboniferous quartzite, limestone, and slate. Vanderburg, 1939.	40°27'	116°52'
A Company of the Comp	ana). Sheeted re- ns in Precambrian artzite. Schafer,	46°57'	110°44'	10.	Arabia, Fissure veins in Cretaceous (?) granodiorite and in xenoliths of Jurassic hornfels, Knopf, 1918b; Vander- burg, 1936.	40°22'	118°24'
tures in Miss Cambrian lim along porphyr	pedding and frac-	46°27'	110°41'	11.	Bullion. Fissure veins and sheeted lodes in Carboniferous limestone, quartzite, and shale and in andesite and granodiorite. Vanderburg, 1939; Emmons, 1910.		116°44'
Roby, 1950.				12.	Cortez. Replacement bodies	40°09'	116°35′

45°02' 109°57'

34. New World (Cooke City). Con-

tact metamorphic deposits,

Lovering, 1930; Reed, 1950.

limestone and dolomite.

veins, and replacement bodies in Cambrian and Ordovician

Vanderburg, 1938b.

13. Mineral Hill. Replacement

within sheeted zones parallel to

porphyry dikes, in Ordovician (?) limestone. Emmons, 1910;

40°09' 116°06'

Locality Index (cont'c	.)		NEVADA (cont'd.)
NEVADA (cont'd.)			long sides of alaskite porphyry
bodies cutting across bedding in Paleozoic limestone. Vanderbur			dike. Vanderburg, 1937; Knopf, 1921.
1938b. 14. Union. Replacement bodies in limestone. Vanderburg, 1938b.	40°03'	116°03'	27. Hawthorne. Vein along or near 38°28' 118°40' contact of granodiorite with Mesozoic limestone. Hill, 1915; Vanderburg, 1937.
 Hunter, Replacement bodies in breccia along fault contact of Devonian dolomitic limestone with porphyry dikes. Hill, 1916. 	39°37'	115°00'	28. Tybo. Replacement bodies along 38°22' 116°24' a fault in quartz latite porphyry dikes that intrude Cambrian and Ordovician limestones. Ferguson,
 Aurum, Replacement bodies a- long faults and bedding in Cam- brian limestone. Hill, 1916. 	39°37'	114°32'	1933; Kral, 1951. 29. Candelaria (Columbus). Veins in 38°09' 118°05'
17. Eureka. Replacement bodies a- long fissures, partly along bed- ding, in Cambrian limestone.	39°30'	116°00'	Ordovician (?) argillites and felsites. Knopf, 1922; Page, 1959; Vanderburg, 1937.
Sharp, 1948. 18. Duck Creek. Replacement bodies along bedding fissures in Ordovician limestone. Hill, 1916.		114°45'	30. Lone Mountain. Replacement 37°57' 117°25' bodies in Cambrian limestone along contact with porphyry dike or with granite intrusive. Ball, 1907.
19. White Pine (Hamilton). Replacement bodies along veins and bed ding in Ordovician dolomite. Hague, 1870.		115°30'	31. Bristol (Jackrabbit). Replace- ment bodies along intersections of fissures in Cambrian lime- stone. Westgate and Knopf, 1932.
 Ely (Robinson). Replacement bodies along veins and bedding, and contact metamorphic de- posits in Devonian and Carboni- ferous limestones. Spencer, 	39°15'	114°59'	31. Pioche. Replacement vein and bedded deposits along fissures in Cambrian limestone; veins in quartzite. Westgate and Knopf, 1932.
1917. 21. Ward. Veins and replacement bodies along contact of quartz monzonite porphyry dikes with	39°05'	114°53'	33. Comet. Bedded replacement 37°53' 114°37' bodies in Cambrian limestone; veins in quartzite. Westgate and Knopf, 1932.
Pennsylvanian limestone. Hill, 1916.			34. Groom (Groom mine). Replace- 37°20' 115°46' ment bodies along bedding and
22. Galena (Commonwealth mine). Veins in metamorphosed tuff and hornfels. Overton, 1947.	39°21'	119°46'	fissures in Cambrian limestone. Humphrey, 1945.
23. Quartz Mountain (San Rafael mine). Veins in Triassic limestone along contact with intrusive granodiorite porphyry. Kral, 1951.	39°03'	117°58'	35. Las Vegas (Three Kids mine). 36°05' 114°54' By-product from sedimentary manganese deposit in Plio- cene (?) tuffaceous sandstone lake (playa) beds. Hunt and others, 1942; McKelvey and
24. Lodi (Illinois mine). Veins in Triassic limestone and limy shale at contact with intrusive granodiorite. Kral, 1951.	39°00'	117°53'	others, 1949. 36. Yellow Pine (Goodsprings). Replacement bodies along fissures or folds in Mississippian dolo-
25. Union (Grantsville, Berlin). Replacement bodies in Triassic limestone; veins in Permian (?) meta-andesite, Triassic slate, conglomerate and limestone, and Tertiary andesite, Kral, 1951; Ferguson and Muller, 1949.	38°53'	117°35'	mite. Albritton and others, 1954; Hewett, 1931. 37. Searchlight. Breccia veins in metamorphosed early Tertiary (?) andesite porphyry, in older volcanic rocks, and in Precambrian gneiss. Callaghan, 1939.
26. Simon (Bell, Cedar Mountains) (Simon mine). Replacement bodies in Triassic limestone a-	38°34'	117°52'	NEW MEXICO 1. Willow Creek (Pecos mine). Replacement lenses in shear zone 35°46' 105°40'

Locality Index (cont'd.)			NEW MEXICO (cont'd.)
NEW MEXICO (cont'd.)			latite porphyry dikes. Harley,
in Precambrian micaceous diorite. Krieger, 1932; Harley, 1940.			1934; Jicha, 1954. 15. Cook's Peak. Replacement bodies 32°33' 107°43' on broad anticlinal arches in Si-
Cerrillos. Veins and replace- ment bodies along shear zones	35°29'	106°08'	lurian limestone. Anderson, 1957; Jicha, 1954. 16. Organ. Replacement bodies a- 32°26′ 106°36′
in post-Cretaceous monzonite porphyry. Lindgren and others, 1910.			16. Organ. Replacement bodies a- 32°26' 106°36' long fracture zones or adjacent to porphyry sheets in Ordovician and Silurian dolomite; con-
 New Placers. Replacement pipe at intersection of fractured zone with Pennsylvanian limestone bed. Lindgren and others, 1910. 	35°15'	106°12'	tact metamorphic deposits in Carboniferous limestone; veins in lower Tertiary (?) quartz monzonite. Dunham, 1935.
4. Gallinas Mountains. Anderson, 1957.		105°45'	17. Lordsburg, Veins along faults 32°18′ 108°46′ in granodiorite stock of Lara-
 Magdalena. Replacement bodies in Mississippian limestone, mostly along crests of low folds. Loughlin and Koschmann, 1942. 	34 03	10/12	mide age. Lasky, 1938. 18. San Simon. Replacement bodies 32°09' 109°00' near granite porphyry dikes in Precambrian limestone. Ander-
6. Hansonburg (Carthage). Veins	33°50'	106°21'	son, 1957.
and breccia filling along faults in silicified Pennsylvanian lime- stone. Anderson, 1957; Lasky, 1932; Kottlowski, 1953.			19. Victorio. Replacement bodies in 32°10' 108°06' Ordovician and Silurian limestones. Anderson, 1957.
7. Hermosa (Palomas). Irregular replacement bodies along a faulted gentle anticline in Pennsylvanian limestone. Harley, 1934.	33°10'	107°43'	20. Hachita (Eureka). Veins and re- placement bodies commonly a- long igneous dikes and sills in Cretaceous limestone. Lasky, 1947.
8. Kingston. Replacement bodies along fractures on axes of anti- clines in Silurian limestone. Harley, 1934.	32°55¹	107°43'	21. Tres Hermanas. Veins in rhyo- lite and granite porphyry; con- tact metamorphic deposits in adjacent Permian limestone. Anderson, 1957.
9. Swartz (Carpenter). Replacement bodies along bedding, shear zones,	32°52'	107°48'	NEW YORK
and fractures in Ordovician limestone. Anderson, 1957.			1. Rossie (Bigelow, Macomb). Veins 44°25' 75°38' in limestone and sandstone of Pre-
10. Pinos Altos (Cleveland mine). Replacement bodies along frac- tures in Pennsylvanian lime-	32°52'	108°14'	cambrian and Cambrian ages. Neumann, 1952.
stone. Anderson, 1957; Paige, 1911.			2. Balmat-Edwards, Replacement 44°18' 75°20' bodies along channels of microbreccias in Precambrian lime-
11. Steeple Rock. Lode veins in Tertiary extrusive and intru- sive rocks. Lindgren and	32°51'	108°59'	stone. Brown, 1936; 1947. 3. Shawangunk mine. Fissure fill- 41°37' 74°26'
others, 1910; Anderson, 1957.			ing along fault in Silurian con- glomerate. Sims and Hotz, 1951;
 Central (Hanover). Replacement veins on faulted contact between porphyry dikes and Carboniferous 		108°06'	Eilertsen, 1950. NORTH CAROLINA
limestone, or in the dikes; contac metamorphic deposits. Anderson, 1957; Lasky, 1936; Schmitt, 1935.	t		1. Silver Hill. Replacement bodies 35°43' 80°14' and disseminated ore in volcanic rocks. Pardee and Park, 1948.
13. Sacramento (High Rolls). Dis- seminated sulfides in Permian arkosic sandstone. Anderson,	32°54'	105°50'	OKLAHOMA
1957. 14. Macho. Veins in Tertiary andes-	32°38'	107°35'	1. Picher field. Replacement bodies 36°59' 94°50' along bedding and within breccias in Mississippian limestone and
ite and replacement veins within			chert. Weidman, 1932.

	Locality Index (cont'd.)		UTAH (cont'd.)		
	OKLAHOMA (cont'd.)			pipes, and fault breccia filling a-		
2.	Peoria. Replacement bodies along bedding in Mississippian lime- stone. Snider, 1912. OREGON	36°55'	94°40'	long crosscutting fissures in Cambrian, Devonian, and Mississippian limestones and dolomites; veins in Precambrian and Cambrian quartzite and shale. Calkins and Butler, 1943.		
1.	Bohemia. Veins and replacement bodies along breccia zones in ex- trusive and intrusive volcanic rocks of Miocene (?) age. Callag- han and Buddington, 1938.	43°35'	122°38'	4. Bingham (West Mountain). Bedded replacement bodies along faults in Pennsylvanian limestone beds between quartzite beds. Hunt and Peacock, 1948;	40°31'	112°09'
	PENNSYLVANIA			Boutwell, 1905.		
1.	Phoenixville. Veins along joints and faults in Triassic red beds and diabase dikes, and in Pre- cambrian gneisses and grano- diorites. Reed, 1949; Miller,	40°06¹	75°31'	replacement bodies along fissures in Pennsylvanian limestone beds between quartzite beds. Gilluly, 1932.		112°20'
	1924.			 Ophir. Bedded replacement bodies, pipes, and veins along 	40°23'	112°15'
	SOUTH DAKOTA			fissures in Cambrian, Devonian,		
1.	Galena (Bear Butte). Bedded re- placement bodies along fractures in Cambrian dolomitic quartzite	44°20'	103°38'	and Mississippian limestone, dolomite, and hornfels. Gilluly, 1932.		
	and sandy dolomite. Connolly and O'Harra, 1929.			7. Park City. Bedded replacement and lode deposits along fissures in Pennsylvanian, Permian, and	40°37'	111°31'
	TENNESSEE			Triassic limestone; lode deposits		
1.	New Prospect-Straight Creek, Replacement bodies and fissure filling along fractures and faults in Ordovician dolomite. Secrist,	36°25'	83°43'	in Pennsylvanian quartzite and in Upper Cretaceous (?) diorite por- phyry. Boutwell, 1933; 1912. 8. American Fork. Bedded replace-	40°321	111°37'
	1924.			ment bodies in Cambrian lime-	10 32	111 37
2.	Embreeville. Ore masses within residual clay; veinlets and disseminations in Cambrian dolomite. Secrist, 1924.	36°10'	82°29'	stone; fissure veins in Precambrian and Cambrian quartzite. Calkins and Butler, 1943.		
3.	Cleveland. Disseminated ore in chimney near fault. Secrist, 1924	35°06'	84°53'	bodies along fractures in Cam- brian and Carboniferous lime-	10°10'	113°50'
	TEXAS			stones and dolomites; veins along faults in Tertiary quartz		
1.	Sierra Blanca. Veins within	31°11'	105°30'	monzonite. Nolan, 1935.		
	sheeted zone in quartz syenite porphyry of post-Cretaceous age. Sellards and Baker, 1934.			mine). Replacement bodies in Cambrian limestone (?). Butler	10°00'	113°52'
2.	Shafter. Replacement bodies a-	29°48'	104°20'	and others, 1920; Nolan, 1935.	20°501	113°12'
	long fracture zones and thrust faults in Permian limestone. Ross, 1943.			placement along faults in Cam- brian and Mississippian quartz- ite, limestone and dolomite.	39 39	113 12
	UTAH			Butler and others, 1920.		
1.	Lucin. Replacement bodies adjacent to fissures in Carboniferous limestone. Butler and others, 1920.	41°15'	114°00'	bodies along fissures and along wall of porphyry dike in Ordo- vician (?) and Silurian (?) lime-	39°51'	113°27'
2.	Lakeside. Butler and others, 1920.	40°52'	112°48'	stone. Butler and others, 1920.		
3.	Little Cottonwood and Big Cotton- wood. Bedded replacement bodies,	40°36'	111°38'	13. North Tintic, Bedded replace- ment bodies along fissures in Mississippian (?) limestone.	10°03'	112°12'
				10		

Locality Index (cont'd.)

UTAH (cont'd.)

Lindgren and Loughlin, 1919.

14. Tintic. Replacement bodies along fractures in Cambrian, Ordovician and Mississippian limestone and dolomite; veins in Tertiary igneous rocks. Lindgren and Loughlin, 1919; Billingsley and Crane, 1933.

39°51' 112°25'

38°28' 113°17'

38°22' 113°08'

38°24' 112°18'

38°06' 77°51'

78°26'

80°57'

37°341

36°51'

- 15. West Tintic. Replacement bodies along fissures in Paleozoic dolomite and limestone. Butler and others, 1920; Stringham, 1942.
- 16. Mount Nebo. Veins, pipes, and bedded replacement bodies adjacent to faults in Cambrian and Mississippian limestone. Butler and others, 1920.
- 17. San Francisco and Preuss (Horn Silver, Cactus mines). Replacement veins along faults in Tertiary quartz latite or at its contact with Cambrian (?) limestone. Butler and others, 1920.
- 18. Star. Replacement bodies, including pipes, along fissures in Silurian (?), Mississippian (?), and Triassic limestones, Butler and others, 1920.
- Ohio and Mount Baldy. Bedded replacement bodies in Jurassic limestone; veins along faults in Jurassic quartzite and Tertiary dacite. Butler and others, 1920.

VIRGINIA

- Valzinco-Mineral area. Veins along fissures and faults in Precambrian and Cambrian schists. Grosh, 1949; Currier, 1935.
- Dillwyn. Disseminated ore in schist. Pardee and Park, 1948; Park, 1936.
- Austinville-Ivanhoe. Ore along limb of anticline in brecciated Cambrian dolomite. Currier, 1935; Watson, 1905.

WASHINGTON

 Oroville-Nighthawk. Fissure veins in marginal areas of granodiorite of Laramide age. Patty, 1921.
 Oroville-Nighthawk. Fissure 48°57' 110°40'

WASHINGTON (cont'd.)

- Northport. Replacement bodies along bedding and within shear zones in Cambrian (?) dolomite. Jenkins, 1924; Weaver, 1920.
- 3. Metaline. Replacement bodies in 48°52' 117°22' Cambrian dolomite and brecciated dolomitic limestone. Park and Cannon, 1943.
- Bossburg. Replacement bodies a- 48°44' 117°58' long fractures and bedding in Cambrian (?) limestone and argillite.
 Jenkins, 1924; Weaver, 1920.
- 5. Colville (Old Dominion mine).
 Replacement bodies along low-dipping fractures in Cambrian (?) limestone. Weaver, 1920;
 Jenkins, 1924.
- 6. Springdale (Cleveland mine). 48°07' 118°01' Replacement veins along bedding fractures in dolomitic limestone and argillite of Paleozoic age. Jenkins, 1924.

WISCONSIN

1. Upper Mississippi Valley. Replacement bodies and veins along joints, shears, and faults in Ordovician dolomite and limestone. Heyl and others, 1955; 1960.

References Cited

- Agnew, A. F., Heyl, A. V., Jr., Behre, C. H., Jr., and Lyons, E. J., 1956, Stratigraphy of Middle Ordovician rocks in the zinc-lead district of Wisconsin, Illinois, and Iowa: U. S. Geol. Survey Prof. Paper 274-K.
- Albers, J. P., 1953, Geology and Ore deposits of the Afterthought mine, Shasta County, California: California Div. Mines Spec. Rept. 29,
- Albritton, C. C., Jr., Richards, Arthur, Brokaw, A. L., and Reinemund, J. A., 1954, Geologic controls of lead and zinc deposits in Goodsprings (Yellow Pine) district, Nevada: U. S. Geol. Survey Bull. 1010.
- Anderson, A. L., 1929, Geology and ore deposits of Lava Creek district, Idaho: Idaho Bur. Mines and Geology Pamph. 32.
- 1947a, Geology of the lead-silver deposits of the Clark Fork district, Bonner County, Idaho: U. S. Geol, Survey Bull, 944-B.
- 1947b, Structural control and wall-rock alteration at the Wilbert mine, Dane district,

- Butte County, Idaho: Econ. Geology, v. 42, no. 4.
- Last Chance and Hornsilver mines, Lava Creek district, Butte County, Idaho: Geol. Soc. America Bull. 58, no. 5.
- Anderson, A. L., and Wagner, W. R. T., 1944, Lead-zinc-copper deposits of the Birch Creek district, Clark and Lemhi Counties, Idaho: Idaho Bur. Mines and Geology Pamph. 70.
- _____1946, A geological reconnaissance in the Little Wood River (Muldoon) district, Blaine County, Idaho: Idaho Bur. Mines and Geology Pamph. 75.
- Anderson, A. L., Kiilsgaard, T. H., and Fryklund, V. C., Jr., 1950, Detailed geology of certain areas in the Mineral Hill and Warm Springs mining districts, Blaine County, Idaho: Idaho Bur. Mines and Geology Pamph. 90.
- Anderson, E. C., 1957, The metal resources of New Mexico and their economic features through 1954: New Mexico Bur. Mines and Mineral Resources Bull. 39.
- Anderson, C. A., and Creasey, S. C., 1958, Geology and ore deposits of the Jerome area, Yavapai County, Arizona: U. S. Geol. Survey Prof. Paper 308.
- Anderson, C. A., Scholz, E. A., and Strobell, J. D., Jr., 1956, Geology and ore deposits of the Bagdad area, Yavapai County, Arizona: U.S. Geol. Survey Prof. Paper 278.
- Ball, S. H., 1907, A geologic reconnaissance in southwestern Nevada and eastern California; U. S. Geol. Survey Bull. 308.
- Ball, S. H., and Smith, A. F., 1903, The geology of Miller County [Missouri]: Missouri Bur. Geol. and Mines, 2d ser., v. 1.
- Ballinger, H. J., 1948a, Churn drilling at Mary Arnold zinc-lead mines, Christian County, Missouri; U. S. Bur. Mines Rept. Inv. 4313.
- Ballinger, H. J., 1948b, Mon-Ark zinc-lead mines, Christian County, Missouri: U. S. Bur. Mines Rept. Inv. 4297.
- Bancroft, Howland, 1911, Reconnaissance of the ore deposits in northern Yuma County, Arizona: U.S. Geol. Survey Bull. 451.
- Beck, W. A., 1949, Investigation of the K. T. Dome Zinc-Lead Mine, Owen and Henry Counties, Kentucky: U. S. Bur. Mines Rept. Inv. 4575.
- Behre, C. H., Jr., 1953, Geology and ore deposits of the west slope of the Mosquito Range [Colorado]:

- U. S. Geol. Survey Prof. Paper 235.
- Billingsley, Paul, and Crane, G. W., 1933, Tintic mining district, in The Salt Lake region: Internat. Geol. Cong. 16th, United States 1933, Guidebook 17.
- Boutwell, J.M., 1905, Economic geology of the Bingham mining district, Utah: U. S. Geol. Survey Prof. Paper 38.
- Boutwell, J. M., 1912, Geology and ore deposits of the Park City district, Utah: U. S. Geol. Survey Prof. Paper 77.
- 1933, Park City mining district: Internat. Geol. Cong., 16th, United States 1933, Guidebook 17.
- Brown, J. S., 1936, Structure and primary mineralization of the zinc mine at Balmat, N. Y.: Econ. Geology, v. 31, no. 3.
- Edwards and Balmat, New York: Geol. Soc. America Bull., v. 58, no. 6.
- Buckley, E. R., 1909, Geology of the disseminated lead deposits of St. Francois and Washington Counties [Missouri]: Missouri Bur. Geology and Mines, v. 9, pt. 1.
- Buckley, E. R., and Buehler, H. A., 1906, The geology of the Granby area, [Missouri]: Missouri Bur. Geol. and Mines, 2d ser., v. 4.
- Burbank, W. S., 1932, Geology and ore deposits of the Bonanza mining district, Colorado: U. S. Geol. Survey Prof. Paper 169.
- Basin and regional geologic structure in the Silverton and Telluride quadrangles, Colorado: Colorado Sci. Soc. Proc. v. 13, no. 5.
- 1940, Structural control of ore deposition in the Uncompander district, Ouray County, Colorado: U. S. Geol. Survey Bull. 906-E.
- 1941, Structural control of ore deposition in the Red Mountains, Sneffels, and Telluride districts of the San Juan Mountains, Colorado: Colorado Sci. Soc. Proc. v. 14, no. 5.
- 1947, The San Juan region, Lake City area, Hinsdale County, [Colorado], in Mineral resources of Colorado: Colorado Mineral Resources Board [Pub.], pt. 2.
- Burbank, W. S., Eckel, E. B., and Varnes, D. J., 1947, The San Juan region, in Mineral resources of Colorado: Colorado Mineral Resources Board [Pub.], pt. 2.
- Butler, B. S., Loughlin, G. F., Heikes, V. C., and others, 1920, The ore deposits of Utah: U. S.

- Geol. Survey Prof. Paper 111.
- Butler, B. S., Wilson, E. D., and Rasor, C. A., 1938, Geology and ore deposits of the Tombstone district, Arizona: Arizona Bur. Mines Bull. 143, Geol. Ser. 10.
- Calkins, F. C., and Butler, B. S., 1943, Geology and ore deposits of the Cottonwood-American Fork area, Utah: U. S. Geol. Survey Prof. Paper 201.
- Callaghan, Eugene, 1939, Geology of the Searchlight district, Clark County, Nevada: U.S. Geol. Survey Bull. 906-D.
- Callaghan, Eugene, and Buddington, A. F., 1938, Metalliferous mineral deposits of the Cascade Range in Oregon: U. S. Geol. Survey Bull. 893.
- Callaghan, Eugene, and Lemmon, D. M., 1941, Tungsten resources of the Blue Wing district, Lemhi County, Idaho: U. S. Geol. Survey Bull. 931-A.
- Campbell, Stewart, 1930, Bunker Hill and Sullivan Mining and Concentrating Co.: Idaho Mining Industry 32d Ann. Rept. for 1930.
- Carlisle, Donald, Davis, D. L., Kildale, M. B., and Stewart, R. M., 1954, Base metal and iron deposits of southern California, in Jahns, R. H., ed., Geology of southern California: California Div. Mines Bull. 170, chap. 8, pt. 5.
- Christiansen, C. R., Calhoun, W. A., and Brown, W. F., 1959, Mining and milling methods and costs at the Indian Creek mine, St. Joseph Lead Co., Washington County, Missouri: U. S. Bur. Mines Inf. Circ. 7875
- Connolly, J. P., and O'Harra, C. C., 1929, The mineral wealth of the Black Hills: South Dakota School Mines Bull. 16.
- Crawford, R. D., and Worcester, P. G., 1916, Geology and ore deposits of the Gold Brick district, Colorado: Colorado Geol. Survey Bull. 10.
- Creasey, S. C., 1950, Geology of the St. Anthony (Mammoth) area, Pinal County, Arizona, in Arizona zinc and lead deposits: Arizona Bur. Mines Bull. 156, Geol. Ser. 18, pt. 1, chap. 6.
- Cross, C. W., and Spencer, A. C., 1900, Geology of the Rico Mountains, Colorado: U. S. Geol. Survey 21st Ann. Rept., pt. 2.
- Currier, L. W., 1935, Zinc and lead region of southwestern Virginia: Virginia Geol. Survey Bull. 43.
- Currier, L. W., and Hubbert, M. K., 1944, Geological and geophysical survey of fluorspar areas in Hardin County, Ill.: U. S. Geol. Survey Bull. 942.
- Dake, C. L., 1930, The geology of Potosi and Edgehill

- quadrangles: Missouri Bur. Geology and Mines, 2d ser., v. 23.
- Dings, M. G., 1951, The Wallapai mining district, Cerbat Mountains, Mohave County, Arizona: U.S. Geol. Survey Bull. 978-E.
- Dings, M. G., and Robinson, C. S., 1957, Geology and ore deposits of the Garfield quadrangle, Colorado; U. S. Geol. Survey Prof. Paper 289.
- Dunham, K. C., 1935, The geology of the Organ Mountains, with an account of the geology and mineral resources of Dona Ana County, New Mexico: New Mexico School Mines Bull. 11.
- Eilertsen, N. A., 1950, Investigation of Shawangunk mine zinc-lead deposit, near Summitville, Sullivan County, New York: U. S. Bur. Mines Rept. Inv. 4675.
- Emmons, S. F., 1896, The mines of Custer County, Colorado: U. S. Geol. Survey 17th Ann. Rept., pt. 2-C.
- Emmons, S. F., Cross, C. W., and Eldridge, G. H., 1894, Description of the Elk Mountains [Colorado]: U. S. Geol. Survey Geol. Atlas, Folio 9.
- Emmons, S. F., Irving, J. D., and Loughlin, G. F., 1927, Geology and ore deposits of the Leadville mining district, Colorado: U. S. Geol. Survey Prof. Paper 148.
- Emmons, W. H., 1910, A reconnaissance of some mining camps in Elko, Lander, and Eureka Counties, Nevada: U. S. Geol. Survey Bull. 408.
- Emmons, W. H., and Calkins, F. C., 1913, Geology and ore deposits of the Philipsburg quadrangle, Montana: U. S. Geol. Survey Prof. Paper 78.
- Emmons, W. H., and Larson, E. S., 1923, Geology and ore deposits of the Creede district, Colorado: U. S. Geol. Survey Bull. 718.
- Ferguson, H. G., 1933, Geology of the Tybo district, Nevada: Nevada Univ. Bull., v. 27, no. 3.
- Ferguson, H. G., and Muller, S. W., 1949, Structural geology of the Hawthorne and Tonopah quadrangles, Nevada: U. S. Geol. Survey Prof. Paper 216.
- Fowler, G. M., 1938, Some Arizona ore deposits; part 2, Mining districts, Montana Mine, Ruby: Arizona Bur. Mines Bull. 145, Geol. Ser. 12.
- Fryklund, V. C., Jr., 1960, Origin of the Main period veins, Coeur d'Alene district, Idaho, in U. S. Geological Survey, short papers in the geological Sciences: U. S. Geol. Survey Prof. Paper 400-B, p. B29-B30.
- Galbraith, F. W., and Loring, W. B., 1951, Swisshelm district, in Arizona zinc and lead deposits:

- Arizona Bur. Mines Bull. 158, Geol. Ser. 19, pt. 2, chap. 3.
- Gibson, Russel, 1948, Geology and ore deposits of the Libby quadrangle, Montana: U. S. Geol. Survey Bull. 956.
- Gilluly, James, 1932, Geology and ore deposits of the Stockton and Fairfield quadrangles, Utah: U. S. Geol. Survey Prof. Paper 173.
- Granger, A. E., Bell, M. M., Simmons, G. C., and Lee, Florence, 1957, Geology and mineral resources of Elko County, Nevada: Nevada Bur. Mines Bull. 54.
- Grosh, W. A., 1949, Investigation of Valzinco leadzinc mine, Spotsylvania County, Virginia: U. S. Bur. Mines Rept. Inv. 4403.
- Hague, Arnold, 1870, Geology of the White Pine district [Nevada]: U. S. Geol. Explor. 40th Parallel (King), v. 3.
- Hall, W. E., and Mackevett, E. M., 1958, Economic geology of the Darwin quadrangle, Inyo County, California: California Div. Mines Spec. Rept. 51.
- Harley, G. T., 1934, The geology and ore deposits of Sierra County, New Mexico: New Mexico School Mines Bull, 10.
- 1940, The geology and ore deposits of northeastern New Mexico (exclusive of Colfax County): New Mexico School Mines Bull. 15.
- Hewett, D. F., 1931, Geology and ore deposits of the Goodsprings quadrangle, Nev.: U. S. Geol. Survey Prof. Paper 162.
- 1956, Geology and mineral resources of the Ivanpah quadrangle, California and Nevada: U. S. Geol, Survey Prof. Paper 275.
- Heyl, A. V., Jr., Agnew, A. F., Lyons, E. J., and Behre, C. H., Jr., 1960, The geology of the upper Mississippi Valley zinc-lead district: U. S. Geol. Survey Prof. Paper 309.
- Heyl, A. V., Jr., Lyons, E. J., Agnew, A. F., and Behre, C. H., Jr., 1955, Zinc-lead-copper resources and general geology of the upper Mississippi Valley district: U. S. Geol. Survey Bull. 1015-G.
- Hill, J. M., 1915, Some mining districts in northeastern California northwestern Nevada: U. S. Geol. Survey Bull. 594.
- 1916, Notes on some mining districts in eastern Nevada: U. S. Geol. Survey Bull. 648.
- Hogue, W. G., and Wilson, E. D., 1950, Bisbee or Warren district, in Arizona zinc and lead de-

- posits: Arizona Bur. Mines Bull. 156, Geol. Ser. 18, pt. 1, chap. 2.
- Hosterman, J. W., 1956, Geology of the Murray area, Shoshone County, Idaho: U. S. Geol. Survey Bull. 1027-P.
- Humphrey, F. L., 1945, Geology of the Groom district, Lincoln County, Nevada: Nevada Univ. Bull., v. 39, no. 5.
- Hunt, C. B., McKelvey, V. E., and Wiese, J. H., 1942, The Three Kids manganese district, Clark County, Nevada: U. S. Geol. Survey Bull. 936-L.
- Hunt, R. N., and Peacock, H. G., 1948, Lead and leadzinc of the Bingham district, Utah, in Dunham, K. C., ed., Symposium on the geology, paragenesis and reserves of the ores of lead and zinc: Internat. Geol. Cong., 18th, London 1948.
- Hunter, J. F., 1914, Some cerusite deposits in Custer County, Colorado: U. S. Geol. Survey Bull. 580-C.
- Irving, J. D., and Bancroft, Howland, 1911, Geology and ore deposits near Lake City, Colo.: U. S. Geol. Survey Bull. 478.
- Jackson, C. F., Knaebel, J. B., and Wright, C. A., 1935, Lead and zinc mining and milling in the United States; current practices and costs: U. S. Bur, Mines Bull, 381.
- James, J. A., 1949, Geologic relationships of the ore deposits in the Fredericktown area, Missouri: Missouri Geol. Survey and Water Res. Rept. Inv. 8.
- Jenkins, O. P., 1924, Lead deposits of Pend Oreille and Stevens Counties, Washington: Washington Geol. Survey Bull. 31.
- Jicha, H. L., Jr., 1954, Geology and mineral deposits of Lake Valley quadrangle, Grant, Luna, and Sierra Counties, New Mexico: New Mexico Bur. Mines and Mineral Resources, Bull. 37.
- Karlstrom, T. N. V., 1948, Geology and ore deposits of the Hecla mining district, Beaverhead County, Montana: Montana Bur. Mines and Geology Mem. 25.
- Kelly, V. C., 1946, Geology, ore deposits, and mines of the Mineral Point, Poughkeepsie, and upper Uncompander districts, Ouray, San Juan, Hinsdale Counties, Colorado: Colorado Sci. Soc. Proc. v. 14, no. 7.
- Kiersch, G. A., 1951, Seventy-nine mine area, in Arizona zinc and lead deposits: Arizona Bur. Mines Bull. 158, no. 19, pt. 2, chap. 8.
- Kiilsgaard, T. H., 1949, The geology and ore deposits of the Boulder Creek mining district, Custer County, Idaho: Idaho Bur, Mines and Geology Pamph. 88,

- 1950, The geology and ore deposits of the Triumph-Parker mine mineral belt, in Anderson, A. L., Kiilsgaard, T.H., and Fryklund, V. C., Jr., Detailed geology of certain areas in the Mineral Hill and Warm Springs mining districts, Blaine County, Idaho: Idaho Bur. Mines and Geology Pamph. 90.
- Kirkham, V. R. D., and Ellis, E. W., 1926, Geology and ore deposits of Boundary County, Idaho: Idaho Bur. Mines and Geology Bull. 10.
- Klepper, M. R., Weeks, R. A., and Ruppel, E. T., 1957, Geology of the southern Elkhorn Mountains, Jefferson and Broadwater Counties, Montana: U. S. Geol. Survey Prof. Paper 292.
- Knopf, Adolph, 1918a, A geologic reconnaissance of the Inyo Range and the eastern slope of the southern Sierra Nevada, California: U. S. Geol. Survey Prof. Paper 110.
- _____1918b, The antimonial silver-lead veins of the Arabia district, Nevada: U. S. Geol. Survey Bull. 660-H.
- _____1921, Ore deposits of Cedar Mountain, Mineral County, Nevada: U. S. Geol. Survey Bull. 725-H.
- 1922, The Candelaria silver district, Nevada: U. S. Geol. Survey Bull. 735-A.
- 1926, Recent developments in the Aspen district, Colorado: U.S. Geol. Survey Bull. 785-A.
- Koschmann, A. H., and Wells, F. G., 1946, Preliminary report on the Kokomo mining district, Colorado: Colorado Sci. Soc. Proc., v. 15, no. 2.
- Kottlowski, F. E., 1953, Geology and ore deposits of a part of the Hansonburg mining district, Socorro County, New Mexico: New Mexico Bur. Mines and Mineral Resources Circ. 23.
- Kral, V. E., 1951, Mineral Resources of Nye County, Nevada: Nevada Univ. Bull., Geology and Mining Ser. 50.
- Krieger, Philip, 1932, Geology of the zinc-lead deposit at Pecos, New Mexico: Econ. Geology, v. 27, no. 4.
- Kuhn, T. H., 1951, Bunker Hill district, in Arizona zinc and lead deposits: Arizona Bur. Mines Bull. no. 158, Geol. Ser., no. 19, pt. 2, chap. 7.
- Larsen, E. S., 1929, Recent mining developments in the Creede district, Colorado: U. S. Geol. Survey Bull. 811-E.
- Lasky, S. G., 1932, The ore deposits of Socorro County, New Mexico: New Mexico School Mines Bull. 8.

- Bayard area, Central mining district, N. Mex.: U. S. Geol. Survey Bull. 870.
- 1938, Geology and ore deposits of the Lordsburg mining district, Hidalgo County, New Mexico: U. S. Geol. Survey Bull. 885.
- 1947, Geology and ore deposits of the Little Hatchet Mountains, Hidalgo and Grant Counties, New Mexico: U. S. Geol. Survey Prof. Paper 208.
- Lindgren, Waldemar, Graton, L. C., and Gordon, C. H., 1910, The ore deposits of New Mexico: U. S. Geol. Survey Prof. Paper 68.
- Lindgren, Waldemar, and Loughlin, G. F., 1919, Geology and ore deposits of the Tintic mining district, Utah: U. S. Geol. Survey Prof. Paper 107.
- Long, A., Silverman, A. J., and Kulp, J. L., 1960, Isotopic composition of lead and Precambrian mineralization of the Coeur d'Alene district, Idaho: Econ. Geology, v. 55, no. 4.
- Loughlin, G. F., and Koschmann, A. H., 1942, Geology and ore deposits of the Magdalena mining district, New Mexico: U. S. Geol. Survey Prof. Paper 200.
- Lovering, T. S., 1930, The New World or Cooke City mining district, Park County, Montana: U.S. Geol. Survey Bull. 811-A.
- 1934, Geology and ore deposits of the Breckenridge mining district, Colorado: U. S. Geol. Survey Prof. Paper 176.
- 1935, Geology and ore deposits of the Montezuma quadrangle, Colorado: U. S. Geol. Survey Prof. Paper 178.
- Lovering, T. S., and Goddard, E. N., 1950, Geology and ore deposits of the Front Range, Colorado: U. S. Geol. Survey Prof. Paper 223.
- Marbut, C. F., 1908, The geology of Morgan County [Missouri]: Missouri Bur. Geol. and Mines, v. 7, 2d ser.
- Mather, W. B., 1946, The mineral deposits of Morgan County, Mo.: Missouri Geol. Survey and Water Res. Rept. Inv. 2.
- McAllister, J. F., 1955, Geology of mineral deposits in the Ubehebe Peak quadrangle, Inyo County, California: California Div. Mines Spec. Rept. 42.
- McKelvey, V. E., Wiese, J. H., and Johnson, V. H., 1949, Preliminary report on the bedded manganese of the Lake Mead region, Nevada and Arizona: U. S. Geol. Survey Bull. 948-D.
- McKnight, E. T., 1935, Zinc and lead deposits of northern Arkansas: U. S. Geol. Survey Bull. 853.

- Miller, B. L., 1942, Lead and zinc ores of Pennsylvania: Pennsylvania Geol. Survey, 4th ser., Bull. M5.
- Neumann, G. L., 1952, Lead-zinc deposits of southwestern St. Lawrence County, N. Y.: U. S. Bur. Mines Rept. Inv. 4907.
- Nolan, T. B., 1935, The Gold Hill mining district, Utah: U. S. Geol. Survey Prof. Paper 177.
- Norman, L. A., Jr., and Stewart, R. M., 1951, Mines and mineral resources of Inyo County [California]: California Jour. Mines and Geology, v. 47, no. 1.
- Oesterling, W. A., 1952, Geologic and economic significance of the Hutson zinc mine, Salem, Kentucky--its relation to the Illinois-Kentucky Fluorspar district: Econ. Geology, v. 47, no. 3.
- Overton, T. D., 1947, Mineral resources of Douglas, Ormsby, and Washoe Counties [Nevada]: Nevada Univ. Mackay School Mines Bull., v. 46, no. 9, Geol. and Mining ser. 46.
- Page, B. M., 1959, Geology of the Candelaria mining district, Mineral County, Nevada: Nevada Bur. Mines Bull, 56.
- Paige, Sidney, 1911, The ore deposits near Pinos Altos, New Mexico: U. S. Geol. Survey Bull. 470-B.
- Pardee, J. T., 1917, The Dunkleberg mining district, Granite County, Montana: U. S. Geol. Survey Bull. 660-G.
- Pardee, J. T., and Park, C. F., Jr., 1948, Gold deposits of the southern Piedmont: U. S. Geol. Survey Prof. Paper 213.
- Pardee, J. T., and Schrader, F. C., 1933, Metalliferous deposits of the Greater Helena mining region, Montana: U. S. Geol. Survey Bull. 842.
- Park, C. F., Jr., 1936, Preliminary report on gold deposits of the Virginia Piedmont: Virginia Geol. Survey Bull. 44.
- Park, C. F., Jr., and Cannon, R.S., Jr., 1943, Geology and ore deposits of the Metaline quadrangle, Washington: U. S. Geol. Survey Prof. Paper 202.
- Patty, E. N., 1921, The metal mines of Washington: Washington Geol. Survey Bull. 23.
- Perry, E. S., 1933, The Butte Mining district, Montana: Internat. Geol. Cong., 16th, United States 1933, Guidebook 23.
- Popoff, C. C., 1953, Lead-zinc deposits of the Dunkleberg district, Granite County, Montana: U.S. Bur. Mines Rept. Inv. 5014.

- Ransome, A. L., 1940, General geology and ores of the Blind Spring Hill mining district, Mono County, Calif.: California Jour. Mines and Geology, v. 36, no. 2.
- Ransome, F. L., 1901, A report on the economic geology of the Silverton quadrangle, Colorado: U. S. Geol. Survey Bull. 182.
- Ransome, F. L., and Calkins, F.C., 1908, The geology and ore deposits of the Coeur d'Alene region, Idaho: U. S. Geol. Survey Prof. Paper 62.
- Reed, D. F., 1949, Investigation of Pickering Creek lead-zinc deposits, Chester County, Pennsylvania: U. S. Bur. Mines Rept. Inv. 4451.
- Reed, G. C., 1950, Mines and mineral deposits (except fuels), Park County, Mont.: U. S. Bur. Mines Inf. Circ. 7546.
- Reed, G. C., 1951, Mines and mineral deposits (except fuels), Broadwater County, Mont.: U. S. Bur. Mines Inf. Circ. 7592.
- Richard, K. E., and Courtright, J. H., 1954, Structure and mineralization at Silver Bell, Arizona: Mining Eng., v. 6, no. 11.
- Roberts, R. J., 1951, Geology of the Antler Peak quadrangle, Nevada: U. S. Geol. Survey Geol. Quad Map GQ-10, scale 1:62,500.
- Robertson, A. F., 1951, Mines and mineral deposits (except fuels), Cascade County, Mont.: U. S. Bur. Mines Inf. Circ. 7589.
- Robertson, F. S., 1953, Geology and mineral deposits of the Zosell (Emery) mining district, Powell County, Montana: Montana Bur. Mines and Geology Mem. 34.
- Roby, R. N., 1950, Mines and mineral deposits (except fuels), Meagher County, Montana: U. S. Bur. Mines Inf. Circ. 7540.
- Ross, C. P., 1925, Geology and ore deposits of the Aravaipa and Stanley mining districts, Graham County, Arizona: U. S. Geol. Survey Bull. 763.
- 1930, Geology and ore deposits of the Seafoam, Alder Creek, Little Smoky and Willow Creek mining districts, Custer and Camas Counties, Idaho: Idaho Bur. Mines and Geology Pamph. 33.
- County, Idaho: Idaho Bur. Mines and Geology Pamph. 39.
- Bayhorse region, Custer County, Idaho: U. S. Geol. Survey Bull. 877.
 - 1943, Geology and ore deposits of the

- Shafter mining district, Presidio County, Texas: U. S. Geol. Survey Bull. 928-B.
- Sahinen, U. M., 1939, Geology and ore deposits of the Rochester and adjacent mining districts, Madison County, Montana: Montana Bur. Mines and Geology Mem. 19.
- Missoula and Ravalli Counties, Montana: Montana
 Bur. Mines and Geology Bull. 8.
- Sales, R. H., 1914, Ore deposits at Butte, Montana: Am. Inst. Mining Engineers Trans. v. 46.
- Sampson, Edward, 1928, Geology and silver ore deposits of the Pend Oreille district, Idaho: Idaho Bur. Mines and Geology Pamph. 31.
- Sampson, R. J., 1937, Mineral resources of the Resting Springs region, Inyo County [California]: California Jour. Mines and Geology, v. 33, no. 4.
- Sampson, R. J., and Tucker, W. B., 1942, Mineral resources of Imperial County [California]: California Jour. Mines and Geology, v. 38, no. 2.
- Schafer, P. A., 1935, Geology and ore deposits of the Neihart mining district, Cascade County, Montana: Montana Bur. Mines and Geology Mem. 13.
- Schmidt, Adolf, 1874, The lead region of central Missouri, in Report of the Geological Survey of the State of Missouri, including field work of 1873-1874.
- Schmitt, H. A., 1935, The central mining district, N. Mex.: Am. Inst. Mining Metall. Engineers Trans., v. 115.
- 1950, The genetic classification of the bed rock hypogene mineral deposits: Econ. Geology, v. 45, p. 676.
- Schrader, F. C., 1915, Mineral deposits of the Santa Rita and Patagonia Mountains, Arizona: U. S. Geol. Survey Bull. 582.
- _____1931, Spruce Mountain district, Elko County and Cherry Creek (Egan Canyon) district, White Pine County [Nevada]: Nevada Univ. Bull., v. 25, no. 7.
- Secrist, M. H., 1924, Zinc deposits of East Tennessee: Tennessee Dept. Education, Div. Geol., Bull. 31.
- Sellards, E. H., and Baker, C. L., 1934, The geology of Texas; structural and economic geology: Texas Univ. Bull. 3401, v. 2.
- Sharp, William, 1948, The story of Eureka: Am. Inst. Mining Metall. Engineers Trans., v. 178.
- Shenon, P. J., 1931, Geology and ore deposits of

- Bannack and Argenta, Montana: Montana Bur. Mines and Geology Bull. 6.
- Shenon, P. J., and McConnel, R. H., 1939, The silver belt of the Coeur d'Alene district, Idaho: Idaho Bur. Mines and Geology Pamph. 50.
- Shenon, P. J., and Taylor, A. V., 1936, Geology and ore occurrence of the Hog Heaven mining district, Flathead County, Montana: Montana Bur. Mines and Geology Mem. 17.
- Shepard, E. M., 1898, A report on Greene County [Missouri]: Missouri Geol. Survey, v. 12, pt. 1.
- Short, M. N., Galbraith, F. W., Harshman, E. N., Kuhn, T. H., and Wilson, E. D., 1943, Geology and ore deposits of the Superior mining area, 'Arizona: Arizona Bur. Mines Bull. 151, Geol. Ser. 16.
- Siebenthal, C. E., 1908, Mineral resources of northeastern Oklahoma: U.S. Geol. Survey Bull. 340-C.
- Sims, P. K., and Hotz, P. E., 1951, Zinc-lead deposit at Shawangunk mine, Sullivan County, New York: U. S. Geol. Survey Bull. 978-D.
- Singewald, Q. D., 1951, Geology and ore deposits of the upper Blue River area, Summit County, Colorado: U. S. Geol. Survey Bull. 970.
- 1955, Sugar Loaf and St. Kevin mining districts, Lake County, Colorado: U. S. Geol. Survey Bull. 1027-E.
- Singewald, Q. D., and Butler, B. S., 1933, Suggestions for prospecting in the Alma district, Colorado: Colorado Sci. Soc. Proc., v. 13, no. 4.
- London fault, Colorado: U. S. Geol. Survey Bull.
- Smith, W. S. T., and Siebenthal, C. E., 1907, Description of the Joplin district [Missouri-Kansas]: U. S. Geol. Survey Geol. Atlas, Folio 148.
- Snider, L. C., 1912, Preliminary report on the lead and zinc of Oklahoma: Oklahoma Geol. Survey Bull. 9.
- Sorenson, R. E., 1927, The geology and ore deposits of the South Mountain mining district, Owyhee County, Idaho: Idaho Bur. Mines and Geology Pamph, 22.
- Spencer, A. C., 1917, The geology and ore deposits of Ely, Nevada: U. S. Geol. Survey Prof. Paper 96.
- Spiroff, Kiril, 1938, Geological observations of the Block P mine, Hughesville, Mont.: Econ. Geology, v. 33, no. 5.
- Spurr, J. E., 1898, Geology of the Aspen mining district, Colorado, with atlas: U. S. Geol. Survey

- Stewart, C. A., 1912, The geology and ore deposits of the Silverbell mining district [Arizona]: Am. Inst. Mining Metall. Engineers Trans., v. 43.
- Stringham, B. F., 1942, Mineralization in the West Tintic mining district, Utah: Geol. Soc. America Bull. 53, no. 2.
- Stone, R. W., 1911, Geologic relation of ore deposits in the Elkhorn Mountains, Montana: U. S. Geol. Survey Bull. 470.
- Tansley, Wilfred, Schafer, P. A., and Hart, L. H., 1933, A geological reconnaissance of the Tobacco Root Mountains, Madison County, Montana: Montana Bur. Mines and Geology Mem. 9.
- Tarr, W. A., 1936, Origin of the southeastern Missouri lead deposits, pts. 1-2: Econ. Geology, v. 31, nos. 7-8.
- Tenney, J. B., 1928, The mineral industries of Arizona: Arizona Bur. Mines Bull. 125, no. 1.
- Thomas, B. E., 1949, Ore deposits of the Wallapai district, Arizona: Econ. Geology, v. 44, no. 8.
- Treves, S. B., and Melear, J. D., 1953, The geology and ore deposits of the Seafoam mining district, Custer County, Idaho: Idaho Bur. Mines and Geology Pamph. 96.
- Tucker, W. B., 1927, Mineral resources of Santa Catalina Island [California]: California Mining Bur., 23d Rept. State Mineralogist, v. 23, no. 1.
- Tucker, W. B., and Sampson, R. J., 1945, Mineral resources of Riverside County [California]: California Jour. Mines and Geology, v. 41, no. 3.
- Tweto, Ogden, and Lovering, T. S., 1947, The Gilman district, Eagle County [Colorado], in Mineral resources of Colorado: Colorado Mineral Resources Board [Pub.], pt. 2.
- Umpleby, J. B., 1913, Geology and ore deposits of Lemhi County, Idaho: U. S. Geol. Survey Bull. 528.
- quadrangle, Blaine and Custer Counties, Idaho: U. S. Geol. Survey Bull. 580.
- Umpleby, J. B., and Jones, E. L., Jr., 1923, Geology and ore deposits of Shoshone County, Idaho: U.S. Geol. Survey Bull. 732.
- Umpleby, J. B., Westgate, L. G., and Ross, C. P., 1930, Geology and ore deposits of the Wood River region, Idaho: U. S. Geol. Survey Bull. 814.
- Vanderburg, W. O., 1936, Reconnaissance of mining districts in Pershing County, Nev.: U. B. Bur.

- Mines Inf. Circ. 6902.
- 1937, Reconnaissance of mining districts in Mineral County, Nevada: U. S. Bur. Mines Inf. Circ. 6941.
- 1938a, Reconnaissance of mining districts in Humboldt County, Nevada: U. S. Bur. Mines Inf. Circ. 6995.
- ______1938b, Reconnaissance of some mining districts in Eureka County, Nevada: U. S. Bur. Mines Inf. Circ. 7022.
- 1939, Reconnaissance of mining districts in Lander County, Nevada: U. S. Bur. Mines Inf. Circ. 7043.
- Van Horn, F. B., 1905, The geology of Moniteau County [Missouri]: Missouri Bur. Geol. and Mines, v. 3, 2d ser.
- Vanderwilt, J. W., 1935, Revision of structure and stratigraphy of the Aspen district, Colorado, and its bearing on the ore deposits: Econ. Geology, v. 30, no. 3.
- 1937, Geology and mineral deposits of the Snowmass Mountain area, Gunnison County, Colorado: U. S. Geol. Survey Bull. 884.
- 1947, Gunnison County [Colorado], in Metals, nonmetals, and fuels: Colorado Mineral Resources Board [Pub.], pt. 1.
- Wallace, R. E., and Hosterman, J. W., 1956, Reconnaissance geology of western Mineral County, Montana: U. S. Geol, Survey Bull. 1027-M.
- Watson, T. L., 1905, Lead and zinc deposits of Virginia: Virginia Geol. Survey Bull. 1.
- Weaver, C. E., 1920, The mineral resources of Stevens County [Washington]: Washington Geol. Survey Bull. 20.
- Webster, Russell, 1958, Exploration extends magma's future: Mining Eng., v. 10, no. 10.
- Weed, W. H., 1900, Geology of the Little Belt Mountains, Montana, with notes on the mineral deposits of the Neihart, Barker, Yogo, and other districts, accompanied by a report on the petrography of the igneous rocks of the district by L. V. Pirsson: U. S. Geol: Survey 20th Ann. Rept. pt. 3-C.
- Weidman, Samuel, 1932, The Miami-Picher zinc-lead district, Oklahoma: Oklahoma Geol. Survey Bull. 56.
- Westgate, L. G., and Knopf, Adolph, 1932, Geology and ore deposits of the Pioche district, Nevada: U.S. Geol. Survey Prof. Paper 171.
- Wilson, E. D., 1927, Geology and ore deposits of the Courtland-Gleeson region, Arizona: Arizona Bur.

Mines Bull. 123, Geol. Ser. 5.

- 1950a, Aravaipa district, in Arizona zinc and lead deposits: Arizona Bur. Mines Bull. 156, Geol. Ser. 18, pt. 1, chap. 5.
- 1950b, Pima district, in Arizona zinc and lead deposits: Arizona Bur. Mines Bull. 156, Geol. Ser. 18, pt. 1, chap. 4.
- Arizona zinc and lead deposits: Arizona Bur.
 Mines Bull. 158, Geol. Ser. 19, pt. 2, chap. 9.
- Wilson, E.D., 1951b, Castle Dome district, in Arizona zinc and lead deposits: Arizona Bur. Mines Bull. 158, Geol. Ser. 19, pt. 2, Chap. 10.
- 1951c, Empire district, in Arizona zinc and lead deposits: Arizona Bur. Mines Bull. 158, Geol. Ser. 19, pt. 2, chap. 6.
- 1951d, Dragoon Mountains, in Arizona zinc and lead deposits: Arizona Bur. Mines Bull. 158, Geol. Ser. 19, pt. 2, chap. 2.
- Winchell, A. N., 1914, The mining districts of the Dillon quadrangle, Montana, and adjacent areas: U. S. Geol. Survey Bull. 574.
- Winslow, Arthur, 1894, Lead and zinc deposits [Missouri]: Missouri Geol. Survey v. 7.
- Wisser, Edward, 1960, Relation of ore deposition to doming in the North American Cordillera: Geol. Soc. America Mem. 77.
- Wright, L. A., Stewart, R. M., Gay, T. E. Jr., and Hazenbush, G. C., 1953, Mines and mineral deposits of San Bernardino County, California: California Jour. Mines and Geology, v. 49, nos. 1-2.