INTRODUCTION

PURPOSE OF INVESTIGATION

This report summarizes information on the thickness, grade, lateral continuity, phosphate resources, and ownership of phosphate-bearing units in the Meade Peak Phosphatic Shale Member of the Phosphoria Formation in the Sage Valley quadrangle. This report is one of a series of quadrangle reports prepared by the Idaho Bureau of Mines and Geology under U.S. Geological Survey cost-sharing contract #14-08-0001-17925 to calculate phosphate resources in southeastern Idaho (fig. 1).

ACKNOWLEDGMENTS

The project was supervised by Bill Bonnichsen of the Idaho Bureau of Mines and Geology and Peter Oberlindacher of the Bureau of Land Management. J.R. Simplot Company provided their geologic maps and drill-hole and trench data on the understanding that this confidential information would be used only in a regional analysis of phosphate resources. We thank the College of Mines and Earth Resources and the College of Forestry, University of Idaho, for the use of their cartographic facilities.

METHODS OF INVESTIGATION

The Sage Valley quadrangle phosphate resource maps are based on published and unpublished data from university, industry, State, and Federal sources.

The interpretation of the structure of the Meade Peak Phosphatic Shale Member in the subsurface is based on cross sections constructed from Conner's (1980) geologic map, supplemented by discussions with Mr. Conner and Bureau of Land Management geologists. Phosphate rock thickness and \(P_2O_5 \) assay values are used from only those drill holes and trenches in the eastern part of the adjacent Stewart Flat quadrangle whose locations can be accurately plotted for elevation and land coordinates. Structure contours and overburden isopachs on the stratigraphic top of the Meade Peak are extended 600 feet along strike from the last known exposure of the Phosphoria Formation and are extrapolated to a depth of 1,500 feet. Phosphate resources of the Meade Peak are calculated for three categories of overburden thickness: 0 to 300 feet, 300 to 600 feet, and 600 to 1,500 feet (fig. 2).

Identified phosphate resources (U.S. Bureau of Mines and U.S. Geological Survey, 1980) are computed for the upper and lower phosphate units of the Meade Peak (fig. 3). Resource tonnages were determined according to the method used by Montgomery and Cheney (1967, p. 41) and Oberlindacher and Hovland (1979, p. 7). For the Sage Valley quadrangle, twelve resource blocks (not shown on the map sheets) were constructed based on structural similarities. The volume (V) of phosphate resource in each block is calculated by multiplying the true area of the stratigraphic top of the Meade Peak by the cumulative average thickness (t) of the upper and lower phosphate units. The true area is the planimetered map surface area (A) of each block multiplied by the secant of the average dip (d) of the Meade Peak (fig. 4):

\[
(1) \ V = A \times \frac{1}{\sin d}
\]

Resource tonnages (R) are calculated by multiplying the volume (V) of phosphate resource by the average density (\(\rho \)) of the phosphate rock:

\[
(2) \ R = V \times \rho
\]

An average density of 2.0787 short tons per cubic foot, derived from Oberlindacher and Hovland's (1979) average density value of 2.52 metric tons per cubic meter, is applied to convert the volume of phosphate resource (calculated in cubic feet) to short tons of phosphate resource (sheets 2 and 3).

Thickness, phosphate content, and stratigraphic position are the three factors that determine whether a sampling interval is included within the phosphate units to calculate resource tonnages. A "sampling interval" is a rock sample of known thickness and phosphate content, as derived from a drill-hole or trench log. In this report, the Meade Peak is subdivided into five informally named units based on Hale's (1967) subdivisions of a typical section in the upper Dry Valley area, Caribou County, Idaho (fig. 3). These units are, from bottom to top: the lower waste, the lower phosphate, the middle waste, the upper phosphate, and the upper waste. Only the units considered in the resource calculations in this report were the lower and upper phosphate units (fig. 3). Isolated minor phosphate beds in the waste units are excluded from consideration.

The following guidelines used in this report to define phosphate units are based on Montgomery and Cheney (1967), Oberlindacher and Hovland (1979), and generally accepted phosphate mining practices in southeastern Idaho:

1. The upper and lower boundaries of the phosphate units are defined by the uppermost and lowermost sampling intervals that are 1 foot or more thick and contain at least 16 percent \(P_2O_5 \), except when adjoining sampling intervals contain less than 1 foot thick with 16 or more percent \(P_2O_5 \) are added together to meet the 1-foot thickness requirement. Within a phosphate unit, all sampling intervals with 16 or more percent \(P_2O_5 \) are included in the resource calculation regardless of thickness.

2. Within the phosphate units, sampling intervals and sequences of contiguous sampling intervals containing less than 16 percent \(P_2O_5 \) and measurable at least 2 feet thick are excluded from the resource calculation.
(3) Within the phosphate units, isolated sampling intervals less than 2 feet thick with less than 16 percent P₂O₅ are included in the resource calculation.

The information about ownership of surface and phosphate rights was obtained for Federal lands from the U.S. Bureau of Land Management's leaseable mineral and master title plats and for State lands from the Idaho Department of Lands' land plats. These sources also were used to locate Federal phosphate leases, Preference Right Lease Applications (PRLAs), Known Phosphate Leasing Areas (KPLAs), and State phosphate leases. Titles to surface and phosphate rights on private land are from both the Federal and State plats. Private phosphate leases, leases on land with private title to both surface and phosphate rights, are not shown.

LOCATION AND TOPOGRAPHY

The Sage Valley quadrangle is about 25 miles east of Soda Springs, Idaho (fig. 1). The quadrangle boundary includes parts of Tps. 8 and 9 S., R. 46 E., Boise Principal Meridian. The area is accessible by graveled roads.

Major topographic features in the Idaho portion of the quadrangle include the north-trending Tygee Ridge and Sage Valley, and the northeast-trending Crow Creek Valley. Tygee Creek, Sage Creek, Crow Creek, and their tributaries drain the area. Elevations range from 6,270 feet where Crow Creek crosses the Idaho-Wyoming border to 7,930 feet on the ridge between Smoky Canyon and Pole Canyon.
Identified Phosphate Resources

FIGURE 2.—Diagrammatic cross section showing identified phosphate resources of the Meade Peak Phosphatic Shale Member of the Phosphoria Formation.

FEDERAL LAND STATUS

Five combinations of titles to surface and phosphate rights occur in the Idaho portion of the Sage Valley quadrangle as shown on sheet 3: (1) Federal phosphate on Federal surface, (2) Federal phosphate on private surface, (3) State phosphate on State surface, (4) State phosphate on private surface, and (5) private phosphate on private surface. The Federal government holds phosphate title to 50 percent and surface title to 32 percent of the land in the Idaho portion of the Sage Valley quadrangle. As of August 1980, about 12 percent of the Federal phosphate title was leased.

GEOLOGY OF THE MEADE PEAK PHOSPHATIC SHALE MEMBER OF THE PHOSPHORIA FORMATION

STRATIGRAPHY

In Idaho, the Phosphoria Formation of Permian age unconformably overlies the Park City Formation of Pennsylvanian and Permian age and is unconformably overlain by the Dinwoody Formation of Triassic age (McKelvey and others, 1959; Peterson, 1980). The Phosphoria grades northward into the Shedhorn Sandstone in south-central Montana and northwestern Wyoming, and southward and eastward into the Park City Formation in northeastern Utah and west-central Wyoming (McKelvey and others, 1959). The Park City Formation, a carbonate sequence, in turn grades eastward into the Goose Egg Formation, a red-bed evaporite sequence (McKelvey and others, 1959).

The Phosphoria Formation is subdivided into six members, four of which are recognized at the type locality at Phosphoria Gulch, Bear Lake County, Idaho (McKelvey and others, 1959). The four members are, from bottom to top: the Meade Peak Phosphatic Shale Member, the Rex Chert Member, the cherty shale member, and the Retort Phosphatic Shale Member. The other two members are the lower chert member, which is laterally continuous with the Meade Peak, and the Tosi Chert Member, which is laterally continuous with the upper part of the Retort and with the cherty shale member (McKelvey and others, 1959, p. 21). As discussed in the "Methods of Investigation" section, the Meade Peak has been subdivided into five informally named units based on lithology and P$_2$O$_5$ content (fig. 3). The two phosphate units defined by Hale (1967; fig. 3, this report) consist of interbedded phosphorite, mudstone, and limestone. The waste units consist of interbedded shale, mudstone, siltstone, and thin phosphorite beds. The base of the Meade Peak is characterized by a thin phosphorite bed containing abundant fish scales, bones, and small nodules (McKelvey and others, 1959, p. 23), known as the fish-scale marker bed (Hale, 1967). The top of the Meade Peak is not as well defined. In southeastern Idaho, the uppermost bed is either a thin, nodular phosphorite, commonly containing gastropods resembling Omphalotrochus, or a thin, soft mudstone locally overlying the nodular phosphorite (McKelvey and others, 1959, p. 23).

In the Sage Valley quadrangle, the Meade Peak Phosphatic Shale Member is approximately 148 feet thick, determined from selected drill-hole and trench data in the eastern part of the adjacent Stewart Flat quadrangle. Within the Sage Valley quadrangle, the Meade Peak crops out over a discontinuous strike length of about 4 miles. Based on available drill-hole and trench data, the phosphate rock within the Meade Peak in the Sage Valley quadrangle averages 64 feet in thickness with a weighted average of 25.8 percent P$_2$O$_5$.

STRUCTURE

The Idaho part of the Sage Valley quadrangle is characterized by several imbricate westward-dipping thrust faults and a few folds, all of which trend northward. These structures are broken by small east-trending tear faults. The Meade Peak Phosphatic Shale Member crops out on both the upper and lower plates of the West Sage Valley Branch thrust fault (Conner, 1980).

The Meade Peak dips north to northeast at low angles at the north end of Boulder Creek anticline. On the east flank of the anticline, several minor folds warp the unit in the subsurface (sheet 1, sections $A-A'$ and $B-B'$). The unit is tightly folded into an overturned syncline at depth adjacent to the West Sage Valley Branch thrust fault (sheet 1, section $C-C'$). Phosphate resources with between 600 and 1,500 feet of overburden are cut off by the thrust.

Further south along strike, the Meade Peak crops out discontinuously on the west side of Sage Valley on the lower plate of the West Sage Valley Branch thrust fault. The Meade Peak is steeply dipping to overturned, but swings back to a moderate easterly dip in the subsurface before being terminated by the East Sage Valley Branch thrust fault (sheet 1, section $D-D'$).

On the west limb of Boulder Creek anticline, a small exposure of the Meade Peak dips west at a low angle. The unit approaches a horizontal dip at depth and is then terminated by a high-angle fault. Only phosphate resources with less than 300 feet of overburden exist in this area.
MINERALOGY AND GEOCHEMISTRY

Altered phosphorite within the Meade Peak Phosphatic Shale Member consists, for the most part, of medium-grained, rounded pellets of microcrystalline apatite aggregates (Emigh, 1958; Gulbrandsen, 1966). The typical Meade Peak phosphorite is approximately 80 percent apatite, 10 percent quartz, 5 percent muscovite-illite, 2 percent organic matter, 1 percent dolomite-calcite, 1 percent iron oxide, and 1 percent other components (Gulbrandsen, 1966).

According to Gulbrandsen (1966), the apatite is a fluorapatite, Ca$_5$(PO$_4$)$_3$F, with sodium substituting for calcium, and carbonate and sulfate substituting for the phosphate radical. Also substituting, to a lesser extent, for calcium are strontium, uranium, thorium, yttrium, lanthanum, neodymium, and ytterbium. Pelletal and oolitic phosphate beds with greater than 31 percent P$_2$O$_5$ and greater than 3 feet in thickness generally contain 0.01 to 0.02 percent uranium (McKelvey and Carswell, 1967). Several elements—arsenic, cadmium, chromium, copper,
Explanation and sequence of calculations:

1. \(V_a = A_a (\sec d) \)
2. \(R_a = V_a \rho \)

- \(V_a \): volume of resources under less than 300' of overburden
- \(A_a \): measured map surface area of resources under less than 300' of overburden
- \(t \): cumulative average thickness of the upper and lower phosphate units
- \(d \): average dip of the Meade Peak Phosphatic Shale Member of the Phosphoria Formation

\(R_a \): resources under less than 300' of overburden
\(R_h \): resources under 300' to 600' of overburden
\(R_c \): resources under 600' to 1500' of overburden
\(\rho \): average density of phosphate rock = 0.0787 short tons per cubic foot

FIGURE 4.—Block diagram showing method of calculating phosphate resources.

molybdenum, nickel, antimony, selenium, vanadium, zinc, and silver (?)—occur in the organic fraction of the phosphorite (Gulbrandsen, 1966).

Vanadium occurs within several shale and mudstone beds of the Meade Peak. One zone of economic interest (about 5 to 10 feet below the upper phosphate unit) averages 4 feet in thickness and 0.7 percent vanadium pentoxide, and is associated with small amounts of selenium, molybdenum, zinc, nickel, cobalt, titanium, and cadmium (Love, 1967). Desborough (1977) found vanadium in, or associated with, organic material in leached samples from thin beds of vanadium-rich shale and mudstone in phosphate-rich zones; chromium in a 10-A mica in unleached phosphate nodule samples; zinc and cadmium in sphalerite; silver associated with the organic material and not as a silver sulfide phase; selenium in pyrite, sulfur in pyrite, sphalerite, and the organic material; titanium in titanium dioxide; and molybdenum in powellite.

The Meade Peak has been altered and naturally beneficiated by postdepositional weathering (supergene enrichment). Unaltered phosphorite is hard, carbonaceous, calcareous to dolomitic, and lower in phosphate content than altered phosphorite, whereas the altered rock is partly consolidated, low in organic matter and carbonate minerals, and 3 to 10 percent higher in phosphate content (Hale, 1967). The weathered-unweathered interface in the rock is believed to be highly irregular and gradational.

IDENTIFIED RESOURCES

A total of 313 million short tons of identified phosphate resources with a weighted average of 25.8 percent P_2O_5 is within the Meade Peak Phosphatic Shale Member in the Sage Valley quadrangle: 107 million short tons of resources with less than 300 feet of overburden, 61.4 million short tons of resources with 300 to 600 feet of overburden, and 145 million short tons of resources with 600 to 1,500 feet of overburden. Thickness and P_2O_5 data from two drill holes and one trench from the west limb of Boulder Creek anticline in the Stewart Flat quadrangle were used to calculate these resources. Resources are based on data from the drill holes and/or trenches situated along the same structural feature.

1Resources calculated to three significant figures for phosphate rock containing 16 or more percent P_2O_5.
REFERENCES

