

# **2019 Minerals Yearbook**

# **NIOBIUM [ADVANCE RELEASE]**

# NIOBIUM

### By Amy C. Tolcin

#### Domestic survey data and tables were prepared by Robin C. Kaiser, statistical assistant.

In 2019, U.S. niobium apparent consumption (measured in niobium content) was 9,370 metric tons (t), 8% less compared with 10,100 t in 2018 (table 1). No domestic mine production of niobium ore was reported. The niobium content of world mine production was 97,000 t, 23% more than that of the previous year (tables 1, 4). The United States imported 10,100 t of niobium contained in niobium-bearing metal, alloys, ores, and concentrates, 9% less compared with 11,200 t in 2018 (table 1). In the same period, the United States exported 668 t of niobium contained in niobium-bearing alloys, ores, and concentrates, a decrease of 30% compared with exports in 2018. Trade of niobium materials included ferroniobium and niobium metal, ores and concentrates, and scrap. Ferroniobium was the leading traded niobium material by weight as well as value in the United States. The leading reported end use of niobium was as an alloying element in superalloys, followed by carbon steel and stainless steel (table 2).

#### **Legislation and Government Programs**

Niobium was first added to the U.S. Government stockpile in 1943 (as columbite ore), and the U.S. Congress designated niobium as a strategic and critical material in 1946 by means of the Strategic and Critical Materials Stock Piling Act as amended through P.L. 79–520, July 23, 1946 (DeMille, 1947, p. 135). The Defense Logistics Agency Strategic Materials (DLA Strategic Materials), U.S. Department of Defense, did not designate niobium materials for potential acquisition or disposal from the National Defense Stockpile under its fiscal year 2020 Annual Materials Plan (Defense Logistics Agency Strategic Materials, 2019a, b).

#### Production

Globally, pyrochlore was the leading mineral mined for niobium. Niobium minerals typically were converted to ferroniobium and other value-added products at the mine site. The primary marketable niobium materials were ferroniobium and niobium metal, ore, and oxide. Most niobium resources in the United States are of low grade and not commercially recoverable at current prices. As a result, domestic supply has been a concern during every national military emergency since World War I. In 2019, no domestic niobium mine production was reported. Recycled materials and stocks were the only domestic sources of niobium.

NioCorp Developments Ltd. (Centennial, CO), a resource company developing a niobium deposit in Elk Creek, NE, announced in December that it had received a Special Use Permit from Johnson County, NE, for the project. According to the company, the Elk Creek project would be the only niobium mine and primary niobium processing facility in the United States. According to a feasibility study completed on the project in 2019, Elk Creek would be an underground mining operation with onsite hydrometallurgical and pyrometallurgical plants that would produce 169,000 t of payable niobium in the form of ferroniobium, 3,410 t of scandium oxide, and 419,000 t of titanium dioxide over a 36-year mine life. The company needed to approve a construction program and budget before construction could begin on the project (NioCorp Developments Ltd., 2019a, p. 26, 29–30; 2019b).

#### Consumption

Domestic consumption data for niobium materials were developed by the U.S. Geological Survey by means of the "Columbium (Niobium) and Tantalum," "Consolidated Consumers," and "Specialty Ferroalloys" surveys sent to niobium consumers.

Total apparent domestic consumption of niobium (measured in niobium content) was 9,370 t in 2019, an 8% decrease compared with that in 2018 (table 1). Reported consumption of niobium by the steel industry was 5,100 t in 2019, a 4% decrease compared with 5,310 t of reported consumption in 2018 (table 2). Ferroniobium, the most commonly traded niobium material, was typically consumed in the production of high-strength low-alloy (HSLA) steel and stainless steel. Other uses included the fabrication of nonferrous and niobium alloys and production of niobium carbides and chemicals.

#### Prices

Niobium materials were not openly traded on exchanges; purchase contracts were confidential between buyer and seller. Based on U.S. Census Bureau data for 2019, the average unit value of traded (imported plus exported) niobium-containing materials was \$35.42 per kilogram for niobium oxide (slightly more than that in 2018), \$11.33 per kilogram for niobium ores and concentrates (25% less than that in 2018), and \$22.71 per kilogram for ferroniobium (8% more than that in 2018) (tables 1, 3).

#### **Foreign Trade**

According to the U.S. Census Bureau, the United States exported niobium materials valued at \$12.5 million in 2019 (a decrease of 37% from that in 2018) and imported niobium materials valued at \$441 million (a 7% decrease from that in 2018) (table 3). Traded niobium materials included ferroniobium and niobium concentrates, metal, ores, and oxide. In 2019, exports of ferroniobium (niobium content) were 29% less than those in 2018 and imports for consumption decreased by 12% (table 1). Ferroniobium was the leading niobium material traded, by value, accounting for 61% of the total import value and 90% of the total export value (table 3). In 2019, Brazil continued to be the leading supplier of ferroniobium and niobium metal and oxides. Mexico, the Netherlands, and Taiwan were leading destinations of United States ferroniobium exports.

#### World Industry Structure

Niobium ore was mined primarily in Brazil, Canada, and countries in the Great Lakes region of Africa, including Congo (Kinshasa) and Rwanda, and typically was beneficiated to concentrates containing 55% to 60% niobium oxide ( $Nb_2O_5$ ). Concentrates were further processed to produce ferroniobium or niobium metal and oxides. Ferroniobium, the leading commercial niobium-containing material, typically contained 66% niobium (Roskill Information Services Ltd., 2018, p. 67).

In 2019, world production of niobium contained in concentrates increased by 23% from that in 2018 to an estimated 97,000 t owing mostly to a significant increase in production in Brazil (table 4). Brazil and Canada were the leading producers of niobium mineral concentrates, accounting for nearly 99% of global niobium mineral concentrates production. In Brazil, the leading producers were Companhia Brasileira de Metalurgia e Mineração (CBMM) and Niobras Mineração Ltda. [a subsidiary of China Molybdenum Co., Ltd. (China)]. In Canada, the leading producer was Niobec Inc. (a subsidiary of Magris Resources Inc.).

#### World Review

*Brazil.*—CBMM reported that it produced 123,000 t (gross weight) of niobium products in 2019, including 109,400 t of ferroniobium, at its mining and industrial complex in Araxa, Minas Gerais State. This represented a 31% increase from the 93,800 t of niobium products produced in 2018. During the year, CBMM continued to advance a project that would increase its production capacity to 150,000 metric tons per year of niobium products, and the company expected the expansion project to be completed in 2020 (Companhia Brasileira de Metalurgia e Mineração, 2020).

Mineração Taboca S.A. [a subsidiary of MINSUR S.A. (Peru)] operated the Pitinga-Pirapora Mine complex in Amazonas State. The company reported that it produced 3,900 t (gross weight) of niobium and tantalum ferroalloys with an average combined niobium and tantalum content of 59%. This represented a slight decrease from total ferroalloy production in 2018 (MINSUR S.A., 2020, p. 27).

Niobras Mineração, a subsidiary of China Molybdenum, operated the Boa Vista Mine and ferroalloy plant in Goias State. China Molybdenum reported that it produced 7,490 t of niobium contained in ferroniobium in 2019, 16% less compared with that in 2018 (China Molybdenum Co., Ltd., 2020, p. 23).

**Russia.**—LLC Lovozero GOK operated the Lovozero Mine in the Murmansk region. The company produced loparite mineral concentrates that were consumed by JSC Solikamsk Magnesium Works to produce niobium compounds at its facility in the Perm region. Solikamsk reported 659 t of niobium oxide contained in shipments of niobium compounds in 2019, a slight decrease compared with that in 2018. More than 90% of shipments were sent to consumers in Russia, with most of the remaining amount sent to the Americas followed by Europe (JSC Solikamsk Magnesium Works, 2020, p. 10, 12).

*Venezuela.*—The Government of Venezuela exported columbite-tantalite ore from artisanal mining. In addition, state-owned CVG Ferrominera Orinoco C.A. operated a mill in Bolivar State that processed columbite-tantalite ore. The mill had a daily ore-processing capacity of 160 t (Depablos, 2018a, b).

#### Outlook

Currently, operating niobium mines have adequate reserves to meet global demand for the foreseeable future. The steel industry is the largest consumer of niobium (mainly in HSLA steel) and niobium content of HSLA steel is greatest in developed countries, indicating that niobium use in steel could increase in developing nations. Potential new sources of niobium are typically associated with the production of other mineral deposits, niobium being a byproduct. Several potential new niobium sources were in development during 2019, mostly in Australia and Canada.

#### **References** Cited

China Molybdenum Co., Ltd., 2020, 2019 annual report: Beijing, China, China Molybdenum Co., Ltd., 268 p. (Accessed November 14, 2020, at https://www1.hkexnews.hk/listedco/listconews/ sehk/2020/0423/2020042301655.pdf.)

Companhia Brasileira de Metalurgia e Mineração, 2020, 2019 sustainability report—Operational and financial results: Araxa, Brazil, Companhia Brasileira de Metalurgia e Mineração. (Accessed February 2, 2021, at https://cbmm.com/assets/sustainability-report-2019/en/#resultados-operacionais-e-economico-financeiros.)

Defense Logistics Agency Strategic Materials, 2019a, Annual Materials Plan for FY 2020 (potential acquisitions): Fort Belvoir, VA, Defense Logistics Agency Strategic Materials announcement, DLA–SM–20–3167, October 4, 1 p. (Accessed October 4, 2019, at via https://www.dla.mil/HQ/Acquisition/ StrategicMaterials/Announcements/.)

Defense Logistics Agency Strategic Materials, 2019b, Annual Materials Plan for FY 2020 (potential disposals\*): Fort Belvoir, VA, Defense Logistics Agency Strategic Materials announcement, DLA–SM–20–3166, October 4, 1 p. (Accessed October 4, 2019, via https://www.dla.mil/HQ/Acquisition/ StrategicMaterials/Announcements/.)

DeMille, J.B., 1947, Strategic minerals—A summary of uses, world output, stockpiles, procurement: New York, NY, McGraw-Hill Book Co., Inc., 642 p. (Accessed July 2, 2018, at https://ia801405.us.archive.org/24/items/ strategicmineral031804mbp/strategicmineral031804mbp.pdf.)

Depablos, K., 2018a, Venezuela inaugural la planta de concentración de coltán más grande de Latinoamérica [Venezuela inaugurates the largest coltan concentration plant in Latin America]: Caracas, Venezuela, Ministerio del Poder Popular para Desarrollo Minero Ecológico news release, October 18. (Accessed November 25, 2019, at http://www.desarrollominero.gob.ve/ venezuela-inaugura-la-planta-de-concentracion-de-coltan-mas-grande-delatinoamerica/.) [In Spanish.]

Depablos, K., 2018b, Venezuela realiza primera exportación oficial de coltán [Venezuela makes first official export of coltan]: Caracas, Venezuela, Ministerio del Poder Popular para Desarrollo Minero Ecológico news release, May 11. (Accessed May 23, 2018, at http://www.desarrollominero.gob.ve/ venezuela-realiza-primera-exportacion-oficial-de-coltan/.) [In Spanish.]

JSC Solikamsk Magnesium Works, 2020, Annual report 2019: Solikamsk, Russia, JSC Solikamsk Magnesium Works, 38 p. (Accessed December 1, 2020, via https://www.spglobal.com/marketintelligence/en/.)

MINSUR S.A., 2020, Memoria anual 2019 [Annual report 2019]: Lima, Peru, MINSUR S.A., 58 p. (Accessed February 2, 2021, at https://www.minsur.com/wp-content/uploads/pdf/Memoria%20Anual/ESP/ MINSUR Memoria 2019.pdf.) [In Spanish.]

NioCorp Developments Ltd., 2019a, Form 10–K—For the fiscal year ended June 30, 2019: U.S. Securities and Exchange Commission, September 4. (Accessed September 4, 2019, at https://www.sec.gov/Archives/edgar/ data/1512228/000121390019017175/f10k2019\_niocorpdevelop.htm.)

NioCorp Developments Ltd., 2019b, NioCorp secures critical local permit for its Elk Creek superalloy materials project: Centennial, CO, NioCorp Developments Ltd. news release, December 24. (Accessed December 24, 2019, at https://www.niocorp.com/niocorp-secures-criticallocal-permit-for-its-elk-creek-superalloy-materials-project/.)

Roskill Information Services Ltd., 2018, Niobium—Global industry, markets and outlook to 2027 (14th ed.): London, United Kingdom, Roskill Information Services Ltd., 210 p.

#### **GENERAL SOURCES OF INFORMATION**

#### **U.S. Geological Survey Publications**

Historical Statistics for Mineral and Material Commodities in the United States. Data Series 140.

Niobium (Columbium). Ch. in Mineral Commodity Summaries, annual.

Niobium (Columbium) and Tantalum. International Strategic Minerals Inventory Summary Report, Circular 930–M, 1993.

Niobium and Tantalum. Ch. in Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply, Professional Paper 1802, 2017.

#### Other

Columbium (Niobium). Ch. in Mineral Facts and Problems,

U.S. Bureau of Mines Bulletin 675, 1985.

Company reports and press releases.

Mining Journal, weekly.

S&P Global Platts Metals Daily, daily.

Tantalum-Niobium International Study Center.

## TABLE 1 SALIENT NIOBIUM STATISTICS<sup>1</sup>

|                                                                                          |                      | 2015   | 2016   | 2017   | 2018                | 2019                |
|------------------------------------------------------------------------------------------|----------------------|--------|--------|--------|---------------------|---------------------|
| United States:                                                                           |                      |        |        |        |                     |                     |
| Exports:                                                                                 |                      |        |        |        |                     |                     |
| Niobium (Nb) ores and concentrates, gross weight                                         | metric tons          | 73     | 14     | 7      | 5                   | 27                  |
| Synthetic concentrates, gross weight                                                     | do.                  | 138    | 379    | 113    | 198                 | 40                  |
| Tantalum ores and concentrates, gross weight                                             | do.                  | 98     | 162    | 109    | 48                  | 28                  |
| Niobium-containing ores and concentrates, <sup>2</sup> niobium (Nb) content <sup>e</sup> | do.                  | 42     | 64     | 26     | 28                  | 13                  |
| Ferroniobium, Nb content                                                                 | do.                  | 1,390  | 1,410  | 1,460  | 926                 | 655                 |
| Total exports, Nb content                                                                | do.                  | 1,430  | 1,480  | 1,490  | 955                 | 668                 |
| Imports for consumption:                                                                 |                      |        |        |        |                     |                     |
| Niobium ores and concentrates, gross weight                                              | do.                  |        | 1      | 1      | 31                  | 3                   |
| Synthetic concentrates, gross weight                                                     | do.                  |        | 9      | 15     | 12                  | 6                   |
| Tantalum ores and concentrates, gross weight                                             | do.                  | 730    | 675    | 1,010  | 1,050               | 840                 |
| Niobium-containing ores and concentrates, <sup>2</sup> Nb content <sup>e</sup>           | do.                  | 82     | 77     | 115    | 126                 | 95                  |
| Niobium metal, Nb content <sup>3</sup>                                                   | do.                  | 886    | 1,240  | 1,410  | 1,800               | 1,700               |
| Niobium oxide, Nb content <sup>e</sup>                                                   | do.                  | 983    | 855    | 895    | 964                 | 994                 |
| Ferroniobium, Nb content <sup>e</sup>                                                    | do.                  | 6,570  | 6,080  | 6,910  | 8,290               | 7,330               |
| Total exports, Nb content                                                                | do.                  | 8,520  | 8,250  | 9,330  | 11,200              | 10,100              |
| Reported consumption, Nb content:                                                        |                      |        |        |        |                     |                     |
| Raw materials                                                                            | do.                  | W      | W      | W      | W                   | W                   |
| Ferroniobium and nickel niobium                                                          | do.                  | 7,510  | 7,370  | 7,640  | 6,850 <sup>r</sup>  | 6,680               |
| Apparent consumption, Nb content <sup>4</sup>                                            | do.                  | 7,080  | 6,730  | 7,780  | 10,100              | 9,370               |
| Value, <sup>5</sup> gross weight:                                                        |                      |        |        |        |                     |                     |
| Niobium ores and concentrates                                                            | dollars per kilogram | 7.59   | 7.81   | 20.69  | 15.08               | 11.33               |
| Niobium oxide                                                                            | do.                  | 36.19  | 33.66  | 31.20  | 35.03               | 35.42               |
| Ferroniobium                                                                             | do.                  | 24.27  | 20.56  | 19.83  | 21.11               | 22.71               |
| World, production of niobium concentrates, Nb content                                    | metric tons          | 65,700 | 58,400 | 66,800 | 78,800 <sup>r</sup> | 97,000 <sup>e</sup> |

<sup>e</sup>Estimated. <sup>r</sup>Revised. do. Ditto. W Withheld to avoid disclosing company proprietary data. -- Zero.

<sup>1</sup>Table includes data available through August 27, 2020. Data are rounded to no more than three significant digits, except values; may not add to totals shown. <sup>2</sup>Includes natural and synthetic niobium-containing ores and concentrates. Nb content of ores and concentrates was estimated assuming the following niobium oxide (Nb<sub>2</sub>O<sub>5</sub>) contents: 30% in niobium ore, 16% in synthetic concentrates, and 16% in tantalum ore. The Nb content of Nb<sub>2</sub>O<sub>5</sub> is 69.904%.

<sup>3</sup>Includes niobium and articles made of niobium.

<sup>4</sup>Defined as imports minus exports plus adjustments for Government stock changes.

<sup>5</sup>Weighted average value of imported plus exported materials.

Sources: U.S. Census Bureau and U.S. Geological Survey.

#### TABLE 2

# REPORTED CONSUMPTION, BY END USE, INDUSTRY STOCKS OF FERRONIOBIUM AND NICKEL NIOBIUM, AND GOVERNMENT STOCKS BY MATERIAL IN THE UNITED STATES<sup>1</sup>

#### (Metric tons, niobium content)

|                                                                      | 2018               | 2019  |
|----------------------------------------------------------------------|--------------------|-------|
| End use:                                                             |                    |       |
| Steel:                                                               |                    |       |
| Carbon                                                               | 1,200              | 1,120 |
| Stainless and heat-resisting                                         | 623 <sup>r</sup>   | 617   |
| Full alloy                                                           | 289                | 285   |
| High-strength low-alloy                                              | (2)                | (2)   |
| Electric                                                             | (2)                | (2)   |
| Tool                                                                 | (2)                | (2)   |
| Unspecified                                                          | 3,190              | 3,080 |
| Total                                                                | 5,310              | 5,100 |
| Superalloys                                                          | 1,530 <sup>r</sup> | 1,560 |
| Alloys (excluding steels and superalloys)                            | 21                 | 21    |
| Grand total                                                          | 6,850 <sup>r</sup> | 6,680 |
| Stocks, December 31:                                                 |                    |       |
| Consumer                                                             | 528                | 537   |
| Producer <sup>3</sup>                                                | W                  | W     |
| Total                                                                | 528                | 537   |
| National Defense Stockpile, total uncommitted inventory by material: |                    |       |
| Ferroniobium                                                         | 181                | 265   |
| Niobium metal ingots                                                 | 10                 | 10    |
|                                                                      |                    |       |

<sup>r</sup>Revised. W Withheld to avoid disclosing company proprietary data.

<sup>1</sup>Table includes data available through August 27, 2020. Data are rounded to no more than three significant digits; may not add to totals shown.

<sup>2</sup>Included with "Steel, unspecified."

<sup>3</sup>Ferroniobium only.

|              |                                             | 2018         | ~           | 2019         | 6           |                                                                                   |
|--------------|---------------------------------------------|--------------|-------------|--------------|-------------|-----------------------------------------------------------------------------------|
|              |                                             | Gross weight | Value       | Gross weight | Value       | Principal destinations and sources in 2019                                        |
| $HTS^2$ code | Class                                       | (kilograms)  | (thousands) | (kilograms)  | (thousands) | (gross weight in kilograms and values in thousand dollars)                        |
|              | Exports:                                    |              |             |              |             |                                                                                   |
| 2615.90.3000 | Synthetic concentrates                      | 198,000      | \$3,020     | 40,100       | \$975       | China 24,000, \$869; United Kingdom 16,000, \$107.                                |
| 2615.90.6030 | Niobium ores and concentrates               | 4,510        | 133         | 26,900       | 163         | India 24,800, \$104; Russia 759, \$22; United Kingdom 630, \$18; France 322, \$9. |
| 2615.90.6060 | Tantalum ores and concentrates <sup>3</sup> | 48,000       | 316         | 27,800       | 168         | United Kingdom 27,800, \$168.                                                     |
| 7202.93.0000 | Ferroniobium                                | 1,420,000    | 16,200      | 1,010,000    | 11,200      | Mexico 759,000, \$8,360; Netherlands 122,000, \$1,340; Taiwan 84,100, \$924.      |
|              | Total exports                               | XX           | 19,700      | XX           | 12,500      |                                                                                   |
|              | Imports for consumption: <sup>4</sup>       |              |             |              |             |                                                                                   |
| 2615.90.3000 | Synthetic concentrates                      | 11,800       | 186         | 5,810        | 31          | Brazil 5,670, \$27; Canada 141, \$5.                                              |
| 2615.90.6030 | Niobium ores and concentrates               | 30,700       | 398         | 3,370        | 179         | Canada 2,770, \$126; Hong Kong 284, \$28; China 162, \$9.                         |
| 2615.90.6060 | Tantalum ores and concentrates <sup>3</sup> | 1,050,000    | 62,600      | 840,000      | 43,100      | Australia 454,000, \$21,500; Rwanda 238,000, \$14,200; United Arab Emirates       |
|              |                                             |              |             |              |             | 73,100, \$2,080.                                                                  |
| 2825.90.1500 | Niobium oxide                               | 1,380,000    | 48,300      | 1,420,000    | 50,400      | Brazil 1,000,000, \$35,000; Thailand 210,000, \$6,920; Russia 76,300, \$2,530.    |
|              | Total ores, concentrates, and oxides        | XX           | 111,000     | XX           | 93,700      |                                                                                   |
|              | Ferroniobium:                               |              |             |              |             |                                                                                   |
| 7202.93.4000 | Silicon <0.4%                               | 537,000      | 21,500      | 217,000      | 8,790       | Germany 127,000, \$5,210; Brazil 82,220, \$3,440.                                 |
| 7202.93.8000 | Other                                       | 12,200,000   | 262,000     | 11,100,000   | 259,000     | Brazil 7,100,000, \$156,000; Canada 3,950,000, \$103,000.                         |
|              | Total ferroniobium                          | 12,800,000   | 283,000     | 11,300,000   | 268,000     |                                                                                   |
| 8112.92.4000 | Unwrought, powders                          | 1,800,000    | 82,100      | 1,700,000    | 79,400      | Brazil 1,350,000, \$61,700; Russia 243,000, \$10,600; Germany 47,300, \$3,960.    |
|              | Total imports                               | XX           | 477,000     | XX           | 441,000     |                                                                                   |

5 b b <sup>2</sup>Harmonized Tariff Schedule of the United States.

<sup>3</sup>Tantalum ores and concentrates may contain niobium.

<sup>4</sup>Includes niobium waste and scrap, as well as other materials, which are included in HTS code 8112.92.0600, and niobium other than powders, unwrought, and waste and scrap, as well as other materials, which are included in HTS code 8112.99.9000.

Sources: U.S. Census Bureau and U.S. Geological Survey.

U.S. FOREIGN TRADE IN NIOBIUM, BY CLASS<sup>1</sup>

TABLE 3

#### TABLE 4

#### NIOBIUM: WORLD PRODUCTION OF MINERAL CONCENTRATES, BY COUNTRY OR LOCALITY<sup>1, 2</sup>

#### (Kilograms, niobium content)

| Country or locality <sup>3</sup>                        | 2015       | 2016       | 2017                | 2018                    | 2019                   |
|---------------------------------------------------------|------------|------------|---------------------|-------------------------|------------------------|
| Brazil, mineral concentrates <sup>4</sup>               | 58,852,000 | 50,752,000 | 58,137,000          | 69,593,000 <sup>r</sup> | 88,932,000             |
| Burundi, ore and concentrates <sup>e</sup>              | 10,000     | 6,200      | 28,000 r            | 43,000 <sup>r</sup>     | 38,000                 |
| Canada, pyrochlore concentrates                         | 5,600,000  | 6,300,000  | 7,200,000           | 7,700,000 °             | 6,800,000 <sup>e</sup> |
| China, mineral concentrates                             | 30,100 °   | 37,000 r   | 45,000 <sup>r</sup> | 45,000 <sup>r</sup>     | 45,000 °               |
| Congo (Kinshasa): <sup>e</sup>                          |            |            |                     |                         |                        |
| Cassiterite concentrates                                | 84,000     | 120,000    | 190,000             | 160,000                 | 200,000                |
| Columbite-tantalite concentrates                        | 370,000    | 420,000    | 380,000             | 400,000                 | 220,000                |
| Total                                                   | 454,000    | 540,000    | 570,000             | 560,000                 | 420,000                |
| Ethiopia, columbite-tantalite concentrates <sup>e</sup> | 15,000     | 16,000     | 22,000              | 26,000                  | 7,000                  |
| Mozambique, columbite-tantalite concentrates            | 2,735      | 4,005      | 3,700 °             | 5,000 <sup>г, е</sup>   | 6,000 °                |
| Nigeria, columbite-tantalite concentrates <sup>e</sup>  | 53,000     | 73,000     | 63,000 <sup>r</sup> | 63,000 <sup>r</sup>     | 63,000                 |
| Russia, loparite concentrates                           | 439,140    | 439,209    | 452,771             | 467,451 <sup>r</sup>    | 461,880                |
| Rwanda: <sup>e</sup>                                    |            |            |                     |                         |                        |
| Cassiterite concentrates                                | 34,000     | 32,000     | 42,000              | 42,000                  | 34,000                 |
| Columbite-tantalite concentrates                        | 210,000    | 160,000    | 220,000             | 210,000                 | 170,000                |
| Total                                                   | 244,000    | 192,000    | 262,000             | 252,000                 | 204,000                |
| Uganda, ore and concentrates <sup>e</sup>               | 190        | 530        | 470                 | 300 <sup>r</sup>        | 300                    |
| Grand total                                             | 65,700,000 | 58,400,000 | 66,800,000          | 78,800,000 <sup>r</sup> | 97,000,000 °           |

<sup>e</sup>Estimated. <sup>r</sup>Revised.

<sup>1</sup>Table includes data available through October 6, 2020. All data are reported unless otherwise noted. Totals and estimated data are rounded to no more than three significant digits; may not add to totals shown.

<sup>2</sup>Figures for all countries and (or) localities represent marketable output.

<sup>3</sup>In addition to the countries and (or) localities listed, Australia, French Guiana, Malaysia, and Venezuela may have produced niobium mineral concentrates, but available information was inadequate to make reliable estimates of output.

<sup>4</sup>Includes columbite-tantalite and pyrochlore.

#### TABLE 5

#### FERRONIOBIUM (FERROCOLUMBIUM): WORLD PRODUCTION, BY COUNTRY OR LOCALITY<sup>1</sup>

#### (Metric tons, niobium content)

| Country or locality <sup>2</sup> | 2015   | 2016   | 2017   | 2018 <sup>e</sup>   | 2019 <sup>e</sup> |
|----------------------------------|--------|--------|--------|---------------------|-------------------|
| Brazil                           | 51,874 | 44,390 | 58,690 | 59,000              | 60,000            |
| Canada                           | 5,385  | 6,099  | 6,981  | 7,400 <sup>r</sup>  | 6,000             |
| Russia <sup>e</sup>              | 160    | 80     | 240    | 250                 | 250               |
| Total                            | 57,400 | 50,600 | 65,900 | 66,700 <sup>r</sup> | 66,300            |

<sup>e</sup>Estimated. <sup>r</sup>Revised.

<sup>1</sup>Table includes data available through February 5, 2021. All data are reported unless otherwise noted. Totals and estimated data are rounded to no more than three significant digits; may not add to totals shown.

<sup>2</sup>In addition to the countries and (or) localities listed, Austria, China, and Germany may have produced ferroniobium (ferrocolumbium), but available information was inadequate to make reliable estimates of output.