

2020 Minerals Yearbook

ARSENIC [ADVANCE RELEASE]

U.S. Geological Survey, Reston, Virginia: 2025

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit <https://www.usgs.gov> or call 1–888–392–8545.

For an overview of USGS information products, including maps, imagery, and publications, visit <https://store.usgs.gov/> or contact the store at 1–888–275–8747.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

ARSENIC

By Micheal W. George

Domestic tables were prepared by Benjamin N. Bryden, statistical assistant.

In 2020, the United States produced no arsenic and relied mainly on China and Morocco for arsenic trioxide (As_2O_3) and China (including Hong Kong) for arsenic metal (table 2). No As_2O_3 or commercial-grade arsenic metal has been produced domestically since 1985, following the closure of the ASARCO Inc. copper smelter in Tacoma, WA, but shipments from the remaining stockpile continued until 1994. Arsenic-containing residues and smelter dusts recovered from nonferrous metals plants in several countries may not have been processed to recover commercial-grade As_2O_3 in 2020 and may have been stockpiled for future treatment or disposed. As_2O_3 was used primarily to produce the arsenic acid used in the formulation of chromated copper arsenate (CCA), a pesticide and preservative used to treat wood products for nonresidential applications such as guard rails, pilings, posts, railroad ties, roller coasters, shakes and shingles, and utility poles. Arsenic compounds also were used in fertilizers, fireworks, glassmaking, medicine, and pesticides. Arsenic metal was used in nonferrous alloys. High-purity arsenic metal was used for semiconductors in a wide variety of applications for the defense, electronics, energy, and telecommunications sectors. In 2020, estimated world production of As_2O_3 was 60,000 metric tons (t), 11% less than the revised production in 2019 (table 3). Production data for arsenic metal were not available.

Government Actions and Legislation

Executive Order (EO) 13817, “A Federal Strategy To Ensure Secure and Reliable Supplies of Critical Minerals,” was issued on December 20, 2017. Pursuant to the EO, the Secretary of the Interior, in coordination with the Secretary of Defense, and in consultation with the heads of other relevant executive departments and agencies, was tasked with developing and submitting to the Federal Register a list of minerals defined as critical minerals. On May 18, 2018, arsenic was 1 of the 35 minerals or mineral material groups identified as critical. On June 4, 2019, the Trump administration released “A Federal Strategy To Ensure a Reliable Supply of Critical Minerals.” The strategy directed the U.S. Department of the Interior to assist in locating domestic sources of critical minerals and provide information for the study and production of the minerals (Trump, 2017; U.S. Department of the Interior, 2018, 2019).

The U.S. Geological Survey (USGS) was tasked to periodically reevaluate and revise as necessary the process for compiling the list of critical minerals. In a report published in February 2020, the USGS described a methodology using three factors to determine the supply risk for nonfuel minerals, which were the likelihood of a foreign supply disruption, the dependency of U.S. manufacturers on foreign supplies, and the ability of U.S. manufacturers to withstand a supply disruption (Nassar and others, 2020).

Consumption

In 2020, domestic apparent consumption of arsenic, based on the estimated arsenic content of imports, equaled 8,300 t, an increase of 11% from the 7,480 t consumed in 2019 (table 1). The value of arsenic compounds and metal imported in 2020 was \$7.93 million, a 10% increase from that in 2019 (table 2). Much of the consumption of As_2O_3 was in the production of CCA. Known domestic consumers of CCA were Arch Wood Protection, Inc. (Atlanta, GA), a subsidiary of Lonza Group A.G. (Switzerland); A Meredith Schneider Co. (East Point, GA); Brown Wood Preserving Co., Inc. (Louisville, KY); Koppers Inc. (Pittsburgh, PA); Stella-Jones Corp. (Pittsburgh, PA); Thomasson Co. (Philadelphia, MS); and Viance, LLC (Charlotte, NC). As_2O_3 also was used in the treatment of acute promyelocytic leukemia (National Cancer Institute, 2019).

Arsenic metal was used to harden ammunition, in solders, and in other applications. The addition of arsenic metal strengthens grids and posts in lead-acid storage batteries. Arsenic was one of several metals used as an antifriction additive in babbitt metals (alloys used for bearings).

High-purity (99.9999%) arsenic metal was used to produce gallium-arsenide (GaAs), indium-arsenide, and indium-gallium-arsenide semiconductors that were widely used in biomedical, communications, computer, electronics, infrared light-emitting diodes (LED), integrated circuit, microwave frequency integrated circuits, monolithic microwave integrated circuits, optical windows, other LEDs, and photovoltaic cells. GaAs devices generate less signal noise than other semiconductor materials; as a result, GaAs semiconductors are useful in weak-signal amplification applications such as wireless communications. Despite the global coronavirus disease 2019 (COVID-19) pandemic closures, shipping constraints, and the shortage of semiconductor production, total revenues from GaAs devices increased in 2020 because of increases in implementation of fifth generation (5G) technology standards for broadband cellular networks and consumer devices. A variety of GaAs wafer manufacturers, ranging from large multinational corporations to small privately owned companies, competed in this industry globally, but the top six producing companies—AXT Inc.; China Crystal Technologies Co. Ltd.; DOWA Electronics Materials Co., Ltd.; Freiberger Compound Materials GmbH; Sumitomo Electric Industries, Ltd.; and Wafer Technology Ltd.—accounted for more than 75% of the market. China and Japan each accounted for about 30% of the production of GaAs, followed by Europe (20%), North America (15%), and rest of the world (5%) (Maia Research Co., Ltd., 2019, p. 1, 17; Higham, 2021a, c). More information on GaAs use can be found in the Gallium chapter of the 2020 U.S. Geological Survey Minerals Yearbook, volume I, Metals and Minerals.

Prices

According to U.S. Census Bureau unrounded data, the unit value of As_2O_3 originating from Morocco averaged 83 cents per kilogram in 2020, a 6% increase from that in 2019, and As_2O_3 from China averaged 43 cents per kilogram, a 7% decrease. The unit value of arsenic metal imported from China averaged \$1.51 per kilogram, a decrease of 21% from that in 2019 (table 1).

Foreign Trade

In 2020, domestic imports of arsenic compounds were estimated to contain 7,780 t of arsenic, an increase of 10% compared with the 7,090 t imported in 2019 (table 1). As_2O_3 , which contains about 76% arsenic, accounted for 97% of the arsenic content of compound imports in 2020. In 2020, China was the source of 58% of the As_2O_3 imported into the United States; Morocco was the source of 35% (table 2).

In 2020, the United States imported 522 t of arsenic metal, a 34% decrease compared with the 391 t of arsenic metal imported in 2019. The leading source of arsenic metal in 2020 was China, including Hong Kong, and accounted for 97% of United States metal imports (table 2).

According to U.S. Census Bureau data, exports of arsenic metal (under the Schedule B number 2804.80.0000) from the United States in 2020 decreased by 48% to 29 t from 56 t in 2019. This was the sixth consecutive year of decreases. Export destinations included Peru (31%), Ecuador (22%), Japan (15%), France (13%), and Germany (11%). Because the United States did not produce arsenic metal and the other Schedule B number for arsenic was not used, it was thought that much of the material reported as exports of metal was arsenic-containing compounds and waste and nonferrous alloys containing relatively minor quantities of arsenic. Therefore, it is likely that actual exports of arsenic metal were significantly less than reported.

World Review

In 2020, commercial-grade As_2O_3 was thought to have been recovered from the processing of nonferrous ores or concentrates, such as copper, gold, and lead. Reduction of As_2O_3 to arsenic metal was thought to have accounted for all world output of commercial-grade (99%-pure) arsenic metal. Arsenic-containing residues and smelter dusts recovered from nonferrous metals plants in several countries may not have been processed to recover commercial-grade As_2O_3 in 2020 and may have been stockpiled for future treatment or disposal and could be large source of future supply. Production data for most countries were estimated.

In 2020, Peru produced an estimated 27,000 t of As_2O_3 and was the world's leading producer, followed by China with 24,000 t and Morocco with 7,690 t. Output from these countries accounted for an estimated 98% of total world production. In China, based on historical information, arsenic was believed to have been recovered as a byproduct of smelting gold ores containing orpiment (As_2O_3) and realgar (AsS), the more common ore minerals of arsenic, in addition to reclaiming arsenic as a byproduct of nonferrous smelting (Peters and others, 2002, p. 182).

In Morocco, production was from Managem S.A.'s Bou-Azzer cobalt mine. In 2020, the mine produced 7,690 t of arsenic, a 52% increase from production in 2019. In the first quarter of 2020, the company completed the installation of a new gravimetric concentration unit at the Bou-Azzer cobalt mine (Managem S.A., 2021, p. 30, 104).

Outlook

Specific industrial applications, such as marine timber, plywood roofing, and utility poles, are expected to continue to use CCA-treated wood. High-purity arsenic metal is expected to be used increasingly in military, space, and telecommunications applications and in solar cells. Despite the COVID-19 pandemic that constrained global economies, increased geopolitical tensions, and a global semiconductor shortage, the use of GaAs components increased in 2020 and is expected to increase in 2021. The increase will be mostly in the 5G devices and networks (Higham, 2021b).

References Cited

Higham, Eric, 2021a, RF GaAs device revenue shows surprising results after a turbulent 2020—Report summary: Strategy Analytics, March 25. (Accessed September 9, 2021, at <https://www.strategyanalytics.com/access-services/components/advanced-semiconductors/reports/report-detail/rf-gaas-device-revenue-shows-surprising-results-after-a-turbulent-2020?slid=1502076&spg=3>.)

Higham, Eric, 2021b, RF GaAs device technology and market forecast—2020–2025—Report summary: Strategy Analytics, July 19. (Accessed September 9, 2021, at <https://www.strategyanalytics.com/access-services/components/defense/reports/report-detail/rf-gaas-device-technology-and-market-forecast-2020---2025?slid=1501979&spg=1>.)

Higham, Eric, 2021c, What a long, strange trip it's been...: Strategy Analytics, February 1. (Accessed September 9, 2021, at <https://www.strategyanalytics.com/strategy-analytics/blogs/components/advanced-semiconductors/advanced-semiconductors/2021/02/01/what-a-long-strange-trip-it's-been?slid=1502058&spg=1>.)

Managem S.A., 2021, Rapport financier annuel 2020 [2020 annual financial report]: Casablanca, Morocco, Managem S.A., April 29, 104 p. (Accessed August 25, 2022, at https://www.managemgroup.com/files/2021-04/SMI_RFA_2020_OK.pdf). [In French.]

Maia Research Co., Ltd., 2019, 2021–2027 global and regional gallium arsenide wafer industry status and prospects professional market research report standard version: Kowloon, Hong Kong, Maia Research Co., Ltd., 140 p.

Nassar, N.T., Brainard, Jamie, Gulley, Andrew, Manley, Ross, Matos, Grecia, Lederer, Graham, Bird, L.R., Pineault, David, Alonso, Elisa, Gambogi, Joseph, and Fortier, S.M., 2020, Evaluating the mineral commodity supply risk of the U.S. manufacturing sector: *Science Advances*, v. 6, no. 8, February 21, 11 p. (Accessed June 21, 2021, at <https://doi.org/10.1126/sciadv.aay8647>.)

National Cancer Institute, 2019, Arsenic trioxide: National Cancer Institute, April 24. (Accessed June 10, 2021, at <https://www.cancer.gov/about-cancer/treatment/drugs/arsenictrioxide>.)

Peters, S.G., Jiazhan, Huang, and Chenggui, Jing, 2002, Geology and geochemistry of sedimentary-rock-hosted Au deposits of the Qinling fold belt (Chuan-Shan-Gan) area, Shaanxi, Sichuan, and Gansu Provinces, P.R. China, chap. 4 of Peters, S.G., ed., *Geology, geochemistry, and geophysics of sedimentary rock-hosted Au deposits in P.R. China: U.S. Geological Survey Open-File Report 02-131*, p. 168–254.

Trump, D.J., 2017, A Federal strategy to ensure secure and reliable supplies of critical minerals—Executive Order 13817 of December 20, 2017: Federal Register, v. 82, no. 246, December 26, p. 60835–60837. (Accessed August 20, 2019, at <https://www.federalregister.gov/documents/2017/12/26/2017-27899/a-federal-strategy-to-ensure-secure-and-reliable-supplies-of-critical-minerals>.)

U.S. Department of the Interior, 2018, Final list of critical minerals 2018: Federal Register, v. 83, no. 97, May 18, p. 23295–23296. (Accessed August 20, 2019, at <https://www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-critical-minerals-2018>.)

U.S. Department of the Interior, 2019, Trump administration announces strategy to strengthen America's economy, defense: U.S. Department of the Interior press release, June 4. (Accessed May 28, 2020, at <https://www.doi.gov/pressreleases/trump-administration-announces-strategy-strengthen-americas-economy-defense>.)

GENERAL SOURCES OF INFORMATION

U.S. Geological Survey Publications

Arsenic. Ch. in Mineral Commodity Summaries, annual.

Arsenic. Ch. in United States Mineral Resources, Professional Paper 820, 1973.

Arsenic (As). Ch. in Metal Prices in the United States Through 2010, Scientific Investigations Report 2012–5188, 2013.

Arsenic in Minnesota Groundwater. GeoHealth Newsletter, v. 11, no. 1, 2014.

Gallium. Ch. in Minerals Yearbook, annual.

Historical Statistics for Mineral and Material Commodities in the United States. Data Series 140.

Public Perception Impedes Prevention of Arsenic Exposure. GeoHealth Newsletter, v. 12, no. 2, 2015.

The Effectiveness of Water-Treatment Systems for Arsenic Used in 11 Homes in Southwestern and Central Ohio, 2013. Scientific Investigations Report 2015–5156, 2016.

Other

American Wood Protection Association.

Arsenic. Ch. in Mineral Facts and Problems, U.S. Bureau of Mines Bulletin 675, 1985.

Arsenic (8th ed.). Roskill Information Services Ltd., 1992.

Arsenic and Old Waste, A Report of the U.S. Interagency Working Group on Industrial Ecology, Material and Energy Flows. U.S. Environmental Protection Agency, 1998.

Gallium and Gallium Arsenide—Supply, Technology, and Uses. U.S. Bureau of Mines Information Circular 9208, 1988.

Materials Flow of Arsenic in the United States. U.S. Bureau of Mines Information Circular 9382, 1994.

TABLE 1
SALIENT ARSENIC STATISTICS¹

(Metric tons, arsenic content)

	2016	2017	2018	2019	2020
Imports:					
Metal ²	793	942	929	391	522
Compounds ³	5,320	5,980	5,540	7,090	7,780
Total	6,120	6,920	6,470	7,480	8,300
Exports, metal ²	1,760	698	107	56	29
Apparent consumption ⁴	6,120	6,920	6,470	7,480	8,300
Price, average: ⁵					
Metal, China dollars per kilogram	1.89	1.56	1.43	1.93 ^r	1.51
Trioxide, China do.	0.46	0.45	0.44	0.46	0.43
Trioxide, Morocco do.	0.68	0.68	0.75	0.78	0.83

^rRevised. do. Ditto.

¹Table includes data available through March 5, 2021. Data are rounded to no more than three significant digits; may not add to totals shown.

²Listed as metal only, but may include alloys, compounds, and waste.

³Includes arsenic acid, arsenic sulfides, and arsenic trioxide. Arsenic content calculated from the reported gross weight of imports; arsenic trioxide contains nearly 76% arsenic by weight and accounts for nearly all imports.

⁴Estimated to be the same as imports.

⁵Landed duty-paid unit value based on U.S. imports for consumption. Source: U.S. Census Bureau.

TABLE 2
U.S. IMPORTS FOR CONSUMPTION OF ARSENIC PRODUCTS¹

Class and country or locality	2019		2020	
	Gross weight (metric tons)	Value (thousands)	Gross weight (metric tons)	Value (thousands)
Arsenic trioxide:				
Belgium	336	\$139	544	\$121
China	5,600	2,570	5,820	2,490
Germany	19	68	47	179
Morocco	3,180	2,490	3,460	2,860
Russia	--	--	144	100
Total	9,130	5,270	10,000	5,750
Arsenic sulfide, Germany	--	--	2	15
Arsenic acid:				
China	41	46	--	--
Malaysia	186	247	252	269
Total	228	293	252	269
Arsenic metal:				
China	338	653 ^r	466	706
Germany	3	611	4	814
Hong Kong	--	--	40	44
Japan	41	367	11	326
Taiwan	8	24	--	--
United Kingdom	(2)	2	--	--
Total	391	1,660^r	522	1,890

^rRevised. -- Zero.

¹Table includes data available through March 5, 2021. Data are rounded to no more than three significant digits; may not add to totals shown.

²Less than ½ unit.

Source: U.S. Census Bureau.

TABLE 3
ARSENIC TRIOXIDE: WORLD PRODUCTION, BY COUNTRY OR LOCALITY^{1,2}

(Metric tons, gross weight)

Country or locality ³	2016	2017	2018	2019	2020
Belgium ^e	1,000	1,000	1,000	1,000	1,000
Bolivia	38	20	238	120	100 ^e
China ^e	25,000	24,000	24,000	24,000	24,000
Iran	-- ^r	400 ^r	-- ^r	-- ^r	-- ^e
Japan ^e	45	45	45	40 ^r	40
Morocco	7,600	6,879	5,578	5,055 ^r	7,690
Namibia	1,900 ^e	700 ^e	--	--	--
Peru	33,000	32,000	29,000	35,000	27,000
Russia	1,500 ^e	1,500 ^e	-- ^r	2,226 ^r	120 ^e
Total	70,100^r	66,500^r	59,900^r	67,400^r	60,000

^eEstimated. ^rRevised. -- Zero.

¹Table includes data available through April 20, 2021. All data are reported unless otherwise noted; totals may include estimated data. Totals and estimated data are rounded to no more than three significant digits; may not add to totals shown.

²Includes calculated arsenic trioxide equivalent of output of elemental arsenic compounds other than arsenic trioxide; inclusion of such materials would not duplicate reported arsenic trioxide production.

³In addition to the countries and (or) localities listed, other countries or localities may have produced arsenic, but available information was inadequate to make reliable estimates of output.