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THREE-DIMENSIONAL SIMULATION OF SPONTANEOUS RUPTURE:

THE EFFECT OF NON-UNIFORM PRESTRESS

by
Steven M. Day

Systems, Science and Software
P. 0. Box 1620
La Jolla, CA 92038-1620
(714)453-0060

Abstract

We use a finite difference method to study crack propagation
in a three-dimensional continuum, for conditions of both uniform and
non-uniform prestress. The rupture criterion employed satisfies two
fundamental physical requirements: it ensures finite stresses in
the continuum and finite energy dissipation in crack extension. The
finite-stress numerical simulations exhibit abrupt jumps in rupture
velocity when sharp changes in prestress are encountered on the
crack plane, behavior analogous to that predicted theoretically for
two-dimensional, singular cracks. For uniform prestress conditions,
the slip velocity function is approximately a Tlow-pass filtered
version of that of a singular, constant rupture velocity crack. For
non-uniform prestress, spatial variations of peak slip velocity are
strongly coupled to spatial variations of rupture velocity.

For uniform prestress and low cohesion, rupture velocity is
predicted to exceed the S-wave velocity in directions for which Mode
II (inplane) crack motion dominates. A sub-shear rupture velocity
is predicted for directions of predominantly Mode III (antiplane)
crack motion. Introduction of stress heterogeneities is sufficient,
in each of the three cases studied, to reduce average rupture
velocity to less than the S-velocity, but local super-shear rupture
velocities can still occur in regions of high prestress. Rupture
models with significant segments of super-shear propagation
velocities may be consistent with seismic data for some large
earthquakes, even where average rupture velocity can be reliably
determined to be sub-shear.
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INTRODUCT ION

It is generally assumed that earthquake ground motion results
from unstable slip accompanying a sudden drop in shear stress on a
geologic fault. An important theoretical tool for studying such
ground motion has been the so-called "dislocation" earthquake
model. In this approach the earthquake is represented in terms of
the displacement discontinuity, or "slip function," on the fault
plane. The form of the slip function is generally chosen on an
intuitive basis, without rigorous analysis of the time-dependent
stresses acting in the focal region.

In contrast to dislocation models, "dynamic" earthquake models
are those which take explicit account of the driving (tectonic) and
resisting (frictional) stresses in the source region, and derive the
resulting slip via the equations of motion. Such earthquake models
generally lead to nonlinear, mixed boundary value problems requiring
numerical methods for their solution. The three-dimensional case,
in particular, presents formidable computational requirements.

In this study, we present numerical solutions for the rupture
and slip histories predicted by a dynamic earthquake model. We
consider various conditions of both uniform and nonuniform
prestress. QOur objective is to obtain an improved theoretical
understanding of potential rupture propagation effects on earthquake
ground motion. The earthquake 1is modeled as a spontaneously
propagating shear crack in a three-dimensional continuum, with
rupture growth governed by a slip-weakening failure criterion. The
equations of motion are solved by a finite difference method.

A number of studies have treated the three-dimensional dynamic
problem of a propagating shear fault, with the simplification that
rupture velocity is specified a priori rather than being derived
from a failure criterion. These results are reviewed by Das (1981)
and Day (1982).

Numerical solutions for fixed rupture velocity dynamic faults
have satisfactorily quantified some important three-dimensional
geometrical effects such as the influence of fault width on the slip
function. In the latter reference, for example, closed-form
approximations are developed for the dependence of final slip, slip
rise time, and slip velocity intensity (i.e., the strength of the
crack-edge velocity singularity) on fault width and length. By
means of such relationships, the fixed rupture velocity dynamic
models help establish physical interpretations for the purely
kinematic parameters associated with the more vroutinely used
dislocation earthquake models (e.g., Swanger, et al., 1980).
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Madariaga's (1977) analysis suggests that changes in rupture
velocity of a propagating fault are the predominant source of
high-frequency radiation. To gain a physical understanding of
unsteady rupture propagation requires a ‘"spontaneous rupture"
dynamic model. That is, a failure criterion must be introduced into
the numerical simulation so that rupture growth is determined as
part of the "dynamic solution. Spontaneous-rupture dynamic models
have been studied in two dimensions, using both analytical solutions
and numerical solutions. Freund (1979) provides a good review of
this work.

Three-dimensional solutions for spontaneous shear cracks are
very limited in number. Numerical solutions have been obtained by
Day (1979), using the "slip-weakening" failure criterion (Ida, 1972;
Andrews, 1976a), and by Das (1981) and Virieux and Madariaga (1982),
using the "critical stress level" criterion (Das and Aki, 1977).

In this paper, we first describe the conceptual and
experimental basis for the slip-weakening rupture model and point
out some of the uncertainties involved in applying the model to the
scale of geologic faulting. In the subsequent section, we apply the
rupture model to obtain finite difference solutions for spontaneous
rupture in a uniformly prestressed whole space. Then we turn to the
effects of nonuniform prestress. We study finite difference
simulations for three particular problems. In two cases, the
prestress configuration consists of a single, isolated concentration
of high stress on the fault plane. The third case consists of five
separate stress concentrations, with intervening lower-stress areas.

Qur focus in the present paper is on the rupture process
itself, particularly the dependence of rupture velocity and slip
velocity, respectively, on prestress and fault strength. Our intent
is to identify specific phenomena associated with rupture
propagation which may be important for defining the seismic
radiation. We deliberately treat problems involving only simple
geometries, and make no effort to simulate the full range of
complexity which might be present in the earth.

An important further step will be to determine how the rupture
phenomena identified in this study would be manifested in the
radiated seismic signal. The slip histories obtained from the
numerical solutions presented here are sufficient to synthesize the
radiated wave field, and this issue will be considered in a
subsequent report.
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FAULT MODEL

The model of faulting employed here follows that described by
Day (1982), except that rupture is spontaneous, not prescribed a
priori as in that study. In particular, we retain the approximation
that faulting is confined to a single plane and that the continuum
is Tlinearly elastic everywhere outside that plane. In this model,
any inelastic response of the fault zone must be approximated
through a (nonlinear) boundary condition on the fault plane. We
will use the terms "failure" and "rupture" interchangeably to denote
loss of strength of the fault zone, without prejudice as to whether
the actual process of faulting in the earth more nearly resembles
frictional sliding on a discrete fault plane or fracture of intact
rock.

When an abrupt stress-drop is imposed on a crack in an
otherwise linearly elastic continuum, the stress at the crack edge
is singular. As pointed out by Andrews (1976a), this is true even
though, in special cases, the traction acting on the crack plane may
itself be non-singular. The basic assumption guiding our
construction of a failure criterion is that material strength is
finite so that shear stress concentrations near the crack edges must
be bounded by some prescribed yield stress. As noted by Andrews,
bounded stress must be accompanied by energy absorption at the
rupture front as rupture extends.

One way to avoid the stress singuarity is to posit a "cohesive
zone" just ahead of the crack edge in which slip is resisted by some
distribution of cohesive tractions. Ida (1972) introduced the
slip-weakening shear-crack model, in which the cohesive traction is
assumed to depend only on the amount of slip across the crack. Ida
analyzed the steady-state problem of a propagating, antiplane shear
crack, for various functional forms of slip weakening. It was
demonstrated that this model is equivalent to the Griffith criterion
in its prediction of rupture growth, provided the zone over which
the cohesive tractions act is small compared with the overall crack
dimension. The specific fracture energy of the Griffith criterion
was identified with the work done by the cohesive traction.

In this study, we employ the slip-weakening model in the form
given by Andrews (1976a), and illustrated in Figure 1, with some
obvious generalizations to three dimensions. The shear traction
vector T on the fault plane is limited in magnitude by a finite
yield stress, T, which is greater than, or equal to, the initial
equilibrium value of traction, Toe Slip commences at a point when
necessary to prevent the magnitude of T from exceeding T,. This
relative displacement is denoted s, and has a path length denoted by
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Figure 1. Sketch of the slip-weakening model. The curve
represents the shear stress level on the fault
required to sustain sliding, as a function of the
slip path-length.

459




s» where s is given in differential form by ds? = dseds. The slip
is assumed to weaken the fault plane at that point, reducing the
shear traction required to sustain sliding by an amount proportional
to ¢«. Finally, when ¢ reaches a critical value, dg, cohesion is
considered to be destroyed, and further sliding occurs at a
specified "dynamic friction" level, T¥.

We will define the dynamic stress drop, at, to be the
difference between the absolute values of shear prestress and
sliding frictional stress,

AT =T, - T¢ . (1)

A second important quantity is a dimensionless ratio which Das and
Aki (1977) call S, and which is a measure of how near the initial
stress field is to failure. This ratio is defined by

u 0
s ; (2)

and S + 1 represents the stress change which occurs across the
rupture front, normalized to the dynamic stress drop.

This failure model satisfies the requirement that stress be
everywhere finite. The energy dissipated in overcoming cohesion,
per unit area encompassed by extension of the rupture, is denoted by
2y. It is given by

Dy = % d (T, ~T¢) (3)

and y can be interpreted as a specific fracture energy.

Laboratory measurements of rock friction show slip-weakening
behavior of this type. Dieterich, et al. (1978) and Dieterich
(1980) have measured time histories of shear stress and slip during
unstable slip events induced on lapped sawcuts in large laboratory
samples (granite blocks, with Tlong dimension on the order of 1
meter). An example of these observations of unstable slip events,
taken from the latter reference, is shown in Figure 2. Dieterich
examined in detail the shear stress-displacement curves for several
such events. He finds that the stress drop at the onset of rupture
is not instantaneous. Instead, a finite slip of approximately 3 to
5 microns is required before the residual sliding friction level is
reached. The intervening stress-displacement behavior is very
similar to that assumed in Figure 1 (see, for example, Figure 6 of
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Figure 2. Laboratory measurements of fault shear stresses and relative displacements,
versus time, for an unstable slip event in granite (from Dieterich, 1980).




Dieterich, 1980). These Tlaboratory results lend support to the
simple slip-weakening criterion as a reasonable model for unstable
frictional sliding. We will proceed on the hypothesis that unstable
frictional sliding, in turn, 1is a wuseful analogue for natural
earthquakes with source dimensions on the order of hundreds to
thousands of meters.

From Dieterich's data, reproduced in Figure 2, we can infer a
representative value of S. This ratio lies in the range 0.0 to 0.5
for the five stress recordings shown, S1 through S5. In our
numerical experiments with wuniform prestress, we will examine
rupture propagation for two values of S in this range, S = 0.2 and
S =0.5. We cannot be sure, of course, that these values are
representative of actual earthquake faulting. In fact, the
numerical results in the next section suggest that, on the average,
cohesive stresses are probably somewhat larger than implied by these
values of S.

We will also need an estimate for the fractional stress-drop,
AT/Ty. Laboratory stick-slip experiments in rock give values of
AT/Tg of a few percent to a few tens of percent (e.g., Byerlee,
1967; Scholz, et al., 1972; Dieterich, et al. 1980). In our
numerical simulations with uniform prestress, AtT/t, will be set to
0.1. Actually, for a given value of at, the value of aT/Tg has
very little effect on the dynamic solution; it influences
principally the amount of slip which occurs in the direction
perpendicular to the prestress direction, and this slip component is
usually small 1in any case. The main 1importance of estimating
AT/Tqy, in the context of the slip-weakening model, is to guide our
estimation of dg.

Laboratory results give us few guidelines from which to
estimate dy, apart from the qualitative one that d, may be
substantially larger for geologic faults than for laboratory faults
since it appears to increase with surface roughness and gouge
particle size (Dieterich, 1981). The numerical solutions for
uniform stress will be nondimensionalized with respect to dg. In
the non-uniform stress simulations, however, we introduce a length
scale into the problem; so we will have to assign numerical values
to dg. For the reason discussed below, we will use values of dg
several orders of magnitude larger than the laboratory values, which
range from roughly 2 x 106 meters to 2 x 10-4 meters
(Dieterich, 1980).

If we are to retain the analogy to frictional sliding,
relatively large values of d, appear to be required to prevent
those stress components not relieved by slip on the fault from
exceeding the failure stress. To see this, we perform a calculation
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similar to one done by Andrews (1976a). For Mode III (antiplane

strain) crack propagation, in which the shear stress component T,

is relieved on the plane y = zero, Ida and Aki (1972) give t%

following expression for the unrelieved component of shear stress on
= U, TXZ:

T - L ’ (4)
2R

where yu is the shear modulus, vg is the rupture velocity, and s is
the slip rate. Ida (1972) obtained a numerical estimate of the peak
value of § for an antiplane crack in which Tyzis limited by the
slip-weakening criterion. His result can be written as

4v2

doYR el

Max(s) ~ .68

where V is the slip velocity intensity for the so-called
"macroscopic", or "large-scale" solution. That is, V characterizes
the crack-tip velocity for the corresponding singular crack problem,
and is defined by

§ ~ vg‘l/z .

where £ 1s distance behind the crack tip, and & is small compared to
the overall crack length, but still exceeds the length over which
the conesive stresses act.

Although Equations (4) and (5) were derived for the antiplane
problem, we will assume that they also provide a rough estimate of
maximum shear stress in the general case of a shear crack in three
dimensions. Day (1981) determined V numerically for propagat1ng
rectangular shear cracks in three dimensions, and found that V is
limited by the narrow dimension of the crack, W. Using his
approximation for V,

W oar

together with Equations (4) and (5), we find, very approximately,

T
Max. shear stress = ATW AT .

udo
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Therefore, to ensure that the maximum shear stress does not exceed
Tys 1t is adequate that d, obey approximately

ATW
'u‘a—o-< Tu/AT g (6)

For example, for a fault width of 4 km, a dynamic stress-drop of 10
MPa (100 bars), shear modulus of 3.2 x 1O4MPa, % of. 0.5, and
fractional stress-drop equal to 0.1, the inequality (6) is satisfied
for dy of about 0.12 m or greater. This set of:farameters would
imply a fracture energy y of about 4.5 x 10° Jm- , which happens
to be very close to Aki's (1979) estimate of 4 x 105 Jdn—2 for
the specific fracture energy associated with stopping of rupture
during the 1966 Parkfield earthquake.

The above considerations should roughly apply even if we
acknowledge that failure is probably not strictly confined to a
plane. Then the interpretation would be that Tlarge values of dg
are necessary in order for the specific fracture energy (which is
proportional to dy in our model) to adequately simulate energy
loss through inelastic work 1in the continuum. It is obvious,
however, that considerable uncertainty exists, both as to the
numerical value and physical interpretation of the model parameter
dO.
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UNIFORMLY PRESTRESSED FAULT

Problem Description. We use the slip-weakening model to
simulate spontaneous rupture in a uniform whole space. The fault
occupies the plane z = 0 and relieves the xz component of stress.
Rupture starts at the origin and grows outward, and the fault slip
is symmetric about both the x and y axes. The prestress, Tg,
strength, T,, frictional stress, Tg¢, and the critical slip,
dg, are all constant on the plane z = 0. The continuum is a
Poisson solid; that is, the ratio of the P-wave speed, a, to the
S-wave speed, B8, equals v/3 . The fractional stress drop, AT/Tg,
is 0.1, although variations of at/ty would have very little effect
on the numerical solutions. We will consider two values of S,
S =0.2 and S = 0.5.

The vrelevant boundary value problems are solved using a
three-dimensional finite difference method. The dynamic solution is
explicitly time-stepped, and artificial viscosity 1is wused to
suppress any high-frequency oscillations in the solution caused by
the numerical dispersion which is intrinsic to discrete numerical
methods such as finite difference. As a further precaution, the
slip velocity time-histories are post-processed with a low-pass
filter to vremove any significantly dispersed high-frequency
components of the solution.

Rupture Inception. Once started in a uniform stress field,
rupture proceeds spontaneously, without stopping, driven by the
dynamic stress concentration at the fault edges. However, some
additional mechanism 1is vrequired to initiate rupture from the
equilibrium prestress configuration. We might imagine, for example,
that a relatively small area on the prospective fault plane has been
weakened, and that the shear stress there falls from 745 to Tf.
This initial crack then slides stably under a slowly increasing
tectonic load. Eventually, a situation develops which is analogous
to the critical «crack 1in elastic fracture mechanics, and
accelerating crack growth ensues.

Our interest will be confined to the dynamics of faulting
after the onset of instability, and we will not concern ourselves
here with the quasi-static processes leading to instability.
Instead, we will simply 1induce an instability artificially, as
described later. However, in order to establish a fundamental
length scale for the dynamic solution, it is useful to estimate the
size of a critical static crack. For this purpose, we assume that
the crack is initially circular. We further assume (only for the
present purpose, however) that, at the onset of instability, the
circular crack initially expands uniformly, retaining circular
shape. To estimate the critical radius, rc, we seek a balance
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between strain energy release rate and the energy dissipation rate
at the crack edge, per unit increase in the crack radius. We start
with Neuber's (1937) solution for the static slip on a circular
shear crack in a Poisson solid:

2
24 AT r
SOO(Y‘) = ﬂ'—u— Y‘c 1 - —r—z' ’ (7)
&

where S« is the static slip, u is the shear modulus, B8 is the shear
wave speed, r. is the crack radius, and r is the distance from the
crack center. The total "available" energy, E, is defined as the
drop in strain energy due to crack formation minus the work done
against friction, and can be calculated from Equation (7):

2.3
E 8AT rc

7u

; (8)

The slip-weakening mechanism dissipates energy ¥ at the rupture
front at the rate

d _ (s + 1) d,r (9)

dr o
c

per unit increase in crack radius. The desired estimate of the
critical radius is rc such that E-Z is stationary, which gives

7 U(S + 1) do
AT

i =

! (10)

N
N

For our dynamic simulations, we have induced an instability
through the artifice of enforcing, within the focal region, a
minimum rupture velocity equal to half the shear speed g (Andrews,
1976b, used a similar method to start plane-strain shear cracks).
The choice of this value for minimum rupture velocity is a
compromise between approximating quasi-static crack inception
(favored by rupture velocity approaching zero) and reducing
computation time (favored by a high minimum rupture velocity).

Numerical Results for Rupture Velocity. Because of the
spatial uniformity of the problem, there 1is no intrinsic Tlength
scale apart from the critical crack radius (Equation (10)). We will
present the numerical results in nondimensional form using r. as
the fundamental Tlength unit. Since the derivation of rc is
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approximate, however, we will ignore the numerical factor 7n/24 in
Equation (10). Then, distance x and time t, respectively, are given
in terms of the nondimensional variables, x' and t', by

(S+1) ud
X =T—_ X
(S+1)wud,
t = —3 t (11)

Figure 3 shows contours of the rupture front at equal
intervals of dimensionless time, t', for the two values of S. The
rupture front is defined to enciose regions of the fault plane on
which the slip has exceeded dy. For both values of S, rupture
propagation 1is most rapid in the direction of prestress, the x
direction, and is Tleast rapid in the y direction; this leads to
roughly elliptical rupture fronts. The figure indicates that
rupture acceleration is less rapid for the higher-strength case,
S = 0.5, than for S = 0.2.

Figure 4 shows rupture velocities obtained from the numerical
solutions along the two principal directions. The velocities are
shown as functions of hypocentral distance, for both values of S.
The initial, flat parts of the curves represent the minimum rupture
velocity, 0.5 8. As the minimum is exceeded, rapid acceleration of
the rupture front occurs. This begins on the x axis (prestress
direction) at dimensionless distance of about 0.7, and begins at a
slightly greater distance along the y axis.

In the y direction, the rupture velocity smoothly approaches
the shear wave velocity; for S = 0.2, the rupture velocity reaches
0.95 8 by the time the fault has propagated a dimensionless distance
of about 5. Increasing the strength increases the distance at which
a given rupture velocity is achieved, as shown by the curve for
5 = 0.5,

In the x direction, acceleration is more rapid than in the y
direction; for S = 0.2, the rupture reaches the shear wave velocity
at x'~1.5. For S = 0.5, the shear wave velocity is reached at
x' ~ 3.0. The rupture velocity then levels off somewhat, before
accelerating rapidly again toward the P-wave velocity, a«. For
S =0.2, the rupture velocity reaches 0.9 a« at x'=x 3.5. The
Teveling off of the rupture velocity near the shear wave velocity is
more pronounced for S = 0.5, and the acceleration toward the P
velocity occurs at greater distance.
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Figure 3.

Rupture front contours, at unit intervals of the dimensionless time, for the case of
uniform prestress. The two cases represent numerical simulations performed for S = 0.2
and S = 0.5, respectively.
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Also indicated in Figure 4 are the distances along the x and y
axes, respectively, at which a singular crack (i.e., the case
S =), driven at vp =0.58, first begins to accelerate
spontaneously. These values are obtained analytically, using
standard results for the energy release rate, G, at the edge of a
circular crack growing at constant velocity (e.g., Richards, 1976).
The energy release rate is a known function of crack radius, rupture
velocity, and position on the rupture front; we simply equate G to
twice the specific fracture energy, set the rupture velocity to 0.5
B, and solve for crack radius. As was the case for the two
numerical solutions for finite S, the singular rupture front begins
accelerating first along the x axis (the prestress direction), and
last along the y axis.

Once the crack starts accelerating, the analytic results for
S =« no Tlonger apply. The dotted 1lines suggest the expected
behavior of the singular crack, based on the approximation of using
the self-similar circular crack solution for G after the onset of
accelerating rupture.

The most important aspect of Figures 3 and 4 is the prediction
of rupture velocities exceeding the shear wave velocity for
propagation in the direction of Mode II crack extension (x axis).
On the other hand, rupture remains sub-shear in the direction of
purely Mode III crack propagation (the y direction). Das (1981) has
obtained similar results using the critical stress Tlevel criterion
of failure.

The vresult that the Mode III rupture is sub-shear, but
approaches the S-wave velocity asymptotically, agrees with
two-dimensional analytical solutions for Mode III cracks (e.g.,
Kostrov, 1966). The prediction of super-shear rupture in the
direction of prestress, for both S =0.2 and S = 0.5, 1is in
agreement with Burridge's (1973) two-dimensional analysis of Mode II
rupture propagation for a finite-stress rupture criterion. The
two-dimensional numerical solutions of Das and Aki (1977) and
Andrews (1976b) also yield super-shear rupture velocities for values
of S similar to those used here. Those studies have established,
however, that for values of S exceeding approximately 1.63, Mode II
rupture propagation is sub-shear. This result is expected to govern
the three-dimensional solution, as well; so for substantially higher
fault strength relative to at, rupture velocity is expected to be
sub-shear in all directions.

Earlier we discussed some observations made by Dieterich of
unstable slip events in granite blocks with dimensions on the order

of a meter. Typical fault parameters observed in these experiments
are (see Figure 2) AT =~ 0.2 MPa, S ~ 0.5, and dyg= 3 x 10-6 m.
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Then, assuming w ~3 x 104 MPa for granite, we find that a
hypocentral distance of 1 meter corresponds to a dimensionless
distance x' of about 1.5. From Figure 4, we see that this is well
within the range of sub-shear rupture velocity for S = 0.5. Thus,
the numerical solutions indicate that rupture velocities will
usually be sub-shear for similar experiments on this scale. This
prediction is sensitive to the value of S, however; for S = 0.2, for
example, a 1 meter distance corresponds to x' = 1.8, which,
according to Figure 4, is close to the distance for transition to
super-shear rupture, for this value of S. It is conceivable, then,
that rupture velocity measurements on this length scale will
occasionally exceed g, for similarly prepared fault surfaces.

Numerical Results for Slip Velocity. Normalized slip
velocities along the x and y axes are shown in Figure 5. These have
been Tlow-pass filtered to attenuate Fourier components with
(nondimensional) periods shorter than about 0.6. The figure shows
that the peak (lTow-passed) slip velocity increases with focal
distance. The increase appears to be similar in form to the Vr
increase found analytically for circular, fixed rupture velocity
models (Kostrov, 1964). Peak slip velocity, at a given focal
distance, is higher on the y axis than on the x axis. This
azimuthal variation is qualitatively explained by the Burridge and
Willis (1969) solution for the slip s on a self-similar, expanding
elliptical crack:

1/2
2 2 2 2
s=CAE (12 5 Yoy yiP oA X (12)
UX V) v v
p 4 X Y

where C is a constant and v, and v, are the rupture velocities
in the x and y directions, respectivé%y. This expression predicts
that peak (low-passed) slip velocity, on the y axis will approach
(Uyluy) 2 times the peak slip velocity at the same focal
distance on the x axis. At x' = 5.7, this accounts for about half
the observed difference in peak velocity between the two azimuths.
The discrepancy is not surprising, considering that Equation (12)
strictly applies only to singular cracks and for constant rupture
velocities, with vy less than the Rayleigh wave velocity and vy
less than the shear velocity.

The overall shapes of the slip velocity curves are similar to
those for the self-similar solution (Equation (12)). That is, they
are roughly low-pass filtered square-root singularities. In fact,
the peak slip velocities in Figure 5 are very close to what one
would predict from low-pass filtering the self-similar solution
(which has singular stress) using the same short-period cutoff that
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been low-pass filtered, with a nondimensional cutoff period of 0.6.
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was applied to our numerical solutions. The finite stress condition
incorporated into the numerical solution apparently does not
substantially reduce peak velocity, relative to singular-stress
crack solutions, within the frequency band preserved by the present
numerical solutions. Scaled to At = 10 MPa,
u = 3.24 x 10 MPa, B = 3.46 km/sec, and (S * 1)dy = 0.12 m,
the upper frequency cutoff for these calculations would correspond
to about 15 Hz, and the maximum hypocentral distance represented in
Figure 5 would correspond to about 2.25 km.

These results show that the expression (ty - Tf)B/u does
not necessarily provide a good estimate of peak slip velocity, as
has been hypothesized previously (for example, Del Mar Technical
Associates, 1978). Figure 5 shows peak slip velocities as high as
five times this estimate, and these must be interpreted as lower
bounds since the computed velocities have been Tow-pass filtered.

473



FAULTS WITH NON-UNIFORM PRESTRESS

Introduction. There is growing evidence that spatially
inhomogeneous  stress changes are a prevalent feature of
shallow-focus earthquakes (for example, Hanks, 1974; Kanamori and
Stewart, 1978; Hartzell and Brune, 1979; Bache, Lambert and Barker,
1980). Such variations in stress-drop, plus the likely variability
of frictional strength along faults, may be expected to give rise to
irregularities in rupture velocity. Madariaga's (1977) analysis
suggests that such rupture velocity. variations may be the
predominant source of high-frequency radiation from propagating
faults. Clearly, it is important to improve our understanding of
rupture propagation and its relationship to non-uniformities in the
stress field.

In this section, we describe numerical simulations of
spontaneous rupture propagation in the presence of localized stress
concentrations. Three particular problems are considered. In two
cases, the prestress configuration consists of a single, isolated
concentration of high shear stress on the fault plane. In both
cases, the high-stress patch is embedded in a lower regional stress
field. The third case consists of an array of five separate stress
concentrations with intervening Tower-stress zones.

The fault parameters used in the three simulations are given
in Table 1. The strength, T,, sliding friction 7, and critical
slip, dg, are all held constant; only variations of 1, are
considered. The elastic properties, for all three simulations, are
a = 6.0 km/sec, B = 3.46 km/sec, and u = 3.24 x 104 MPa. In each
case, rupture is induced in a high-stress region centered at the
origin. The fault then propagates in the z = 0 plane, and relieves
the x,z stress component. In Problems I and II, rupture growth was
permitted to stop spontaneously. In Problem III, rupture growth
decelerated considerably as it progressed into the Tlow-stressed
region, but still reached pre-specified strength barriers which
delimited a 6 km x 18 km rectangular region.

Problem I. Figure 6 shows the geometry for Problem I. The
high-stress patch (at = 10 MPa) is circular, with a radius of 1400
meters. Outside this radius, the fault plane is uniformly
prestressed at the sliding friction level (aT = 0).

Figure 7 shows rupture-front contours at 0.3 second intervals
of time. The rupture accelerates rapidly over the prestressed
patch, then abruptly decelerates as it breaks into the zero
stress-drop region. In the y direction, deceleration is very
abrupt, and the fault penetrates only about 150 meters beyond the
edge of the stress concentration. In the x direction, however, the
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Table 1.

FAULT PARAMETERS FOR NON-UNIFORM PRESTRESS SIMULATIONS

Problem dO Ty Te Max T Min L
Number (m) (MPa) (MPa) (MPa) (MPa)
I 0.10 102 90 100 90.0

II 0.10 102 90 100 92.5
II1 0.08 102 90 100 92.5
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Figure 6. Fault geometry for non-uniform prestress Problem I.
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Figure 7. Rupture front contours obtained from the numerical solution
to Problem I. The rupture front is shown at 0.3 second
intervals. The fault stops spontaneously after 1.5 seconds.
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fault penetrates about 500 meters into the low-stress region. After
1.5 seconds, rupture growth has ceased.

Figure 8 shows both peak slip velocity (low-passed, 5 Hz
cutoff) and rupture velocity along the x axis. Rupture velocity
accelerates rapidly throughout the stress concentration as we would
predict on the basis of the uniform prestress solution. The shear
wave velocity is reached at a hypocentral distance of about 800
meters, and rupture velocity is then super-shear until reaching the
edge of the stress concentration. When the fault breaks into the
lower-stress region, rupture velocity drops immediately to about
1 km/sec, and rupture growth finally stops spontaneously. The
gradual stopping of rupture in a region of zero dynamic stress-drop
is in qualitative agreement with the predictions of Husseini, et al.
(1975), which were based on an antiplane strain crack model.

It is known, from the analytical results of Eshelby (1969),
for example, that crack edges have no inertia, in the case of
singular cracks. That is, rupture velocity responds instantaneously
to changes in driving stress. The rupture velocity drops abruptly
in our numerical solution as well, after rupturing through the
stress concentration. Thus, the finite-stress numerical fault model
exhibits a lack of inertia similar to that predicted by classical
fracture mechanics.

The rupture velocity given in Figure 8 is the 1local, or
“tangent", rupture velocity. That is, it 1is obtained from the
gradient of rupture arrival time. While the tangent rupture
velocity exceeds the shear wave velocity over a significant area of
the fault, the average, or "secant", rupture velocity is always
sub-shear in this problem. That is, at any point along the x axis,
the hypocentral distance divided by rupture arrival time is Tless
than g for this simulation.

Peak slip velocity roughly parallels the shape of the rupture
velocity curve in Figure 8. The initial increase in peak slip
velocity with hypocentral distance is expected from our results for
the uniform prestress problem. When the rupture velocity
decelerates after breaking through the stress concentration, the
peak slip velocity also decreases.

Problem II. This case, sketched in Figure 9, differs from the
previous one only in having a non-zero dynamic stress-drop
(aT = 2.5 MPa) outside the area of stress  concentration
(aT = 10 MPa). Figure 10 shows rupture front contours for this
case. Fault growth again stops spontaneously in this case. This
spontaneous arrest of rupture occurs in spite of the fact that the
prestress everywhere exceeds dynamic friction. As in the previous
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Rupture velocity and peak slip velocity for Problem I, as functions of position
along the x axis. Peak slip velocity is obtained from low-pass filtered (5 Hz
cutoff) time histories of slip. The S-wave velocity is shown by a horizontal line,
indicating that the local rupture velocity is slightly super-shear near the edge
of the stress concentration.
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Figure 9. Fault geometry for non-uniform prestress, Problem II.
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Figure 10. Rupture front contours obtained from the numerical solution
to Problem II, shown at 0.3 second intervals. Fault growth
stops spontaneously at approximately 2.1 seconds.
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case, rupture growth decelerates outside the stress concentration,
but overshoots further into the lower-stress region than was the
case in Problem I. The overshoot distance is 600 meters in the y
direction and 1500 meters in the x direction, compared to the stress
concentraton radius of 1400 meters.

Rupture velocity and peak slip velocity along the x axis are
shown in Figure 11. Local rupture velocity is super-shear near the
edge of the stress concentration, peaking at about 4 km/sec, and
drops abruptly to about 1 km/sec after breaking through the stress
concentration. It then recovers to about 1.7 km/sec before smoothly
decelerating to zero. Secant rupture velocity 1is everywhere
sub-shear. The peak slip velocity mirrors this behavior of the
local rupture velocity, again demonstrating the strong 1linkage
between the two quantities.

Problem III. The problem geometry for this case is sketched
in Figure 12. Each of the five high-stress areas (aT = 10 MPa) is
square, with dimension 2250 meters, and they are symmetrically
disposed about the hypocenter. The remainder of the plane is
low-stressed (AT = 2.5 MPa), and each low-stress area between stress
concentrations is 1050 meters in width.

Figure 13 shows the rupture front contours at 0.1 second
intervals. A fairly complex pattern of rupture emerges. Along the
y axis, for example, rupture stops shortly after 1 second. As
rupture advances on the other parts of the fault plane, however, the
stress concentration along the y axis increases, causing rupture
propagation to recommence at about 1.8 seconds. Along the x axis,
rupture accelerates rapidly as it breaks each high-stress patch, and
decelerates between patches. At 1.1 seconds, and then again at 1.9
seconds, the rupture front "jumps", leaving unbroken areas behind,
which subsequently break.

Figure 14 shows the peak slip velocities and rupture
velocities along the x axis. The close relationship between maximum
slip velocity and rupture velocity is especially evident here. The
dashed portions of the rupture velocity curve represent regions that
ruptured out of sequence as the rupture front jumped ahead to a
high-stress patch.

We note that apparent local rupture velocities in excess of
the P-wave velocity occur at the edges of the stress
concentrations. Of course, the secant rupture velocity (hypocentral
distance divided by rupture travel time) is everywhere less than the
P-wave speed, as required by causality. On the other hand, the
secant rupture velocity does slightly exceed the S-wave velocity at
some intermediate points along the x axis. Over the entire fault
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Figure 11. Rupture velocity and peak slip velocity for Problem II,
as functions of position along the x axis. Peak slip
velocity is obtained from low-passed (5 Hz cutoff) time
histories.
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Figure 12.

Fault geometry for non-uniform prestress, Problem III.




Figure 13. Rupture front contours obtained from the numerical solution

to Problem III. Rupture front 1s shown at 0.1 second intervals.
Contours at 1.1 seconds and 1.9 seconds indicate that the

rupture has "jumped", with the slipping surface becoming
temporarily multiply connected. Fault growth beyond x = 9 km

and y = 3 kin has been artificielly inkibited by a strength Ltarrier.
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Rupture velocity and peak slip velocity for Problem III, as functions of position
along the x axis. Peak slip velocity is obtained from low-passed (5 Hz) time
histories. Dashed parts of the rupture velocity curve indicate regions which
ruptured out of sequence. For example, rupture occurred at x= 5.6 km while the
region between 5.0 and 5.6 km was still intact. The linkage between rupture velocity
and peak slip velocity is particularly evident in this figure. Note that it is
"lTocal" rupture velocity which is plotted -- that is, the derivative of the rupture
arrival time curve. Causality is not violated by those portions of the curve which
exceed the P-wave velocity.
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length, however, the secant rupture velocity is slightly sub-shear,
equaling approximately 0.95 g.

The mean value of the dynamic stress-drop over the entire
6 x 18 km fault in Problem III is about 4.2 MPa. We have defined S
for the uniform stress case as the ratio of the cohesive stress
(ty - To) to the dynamic stress-drop at; if we take the ratio of
spatial averages of these quantities for the non-uniform stresses of
Problem III, we get a value of about 1.8. This value is
considerably higher than the values for S of 0.2 and 0.5 used in the
uniform prestress simulations. As a result, the average rupture
velocity has been reduced from well above the shear wave speed for
the uniform stress case to about 5 percent below the shear wave
speed for the non-uniform prestress case. This result can be
compared with the theoretical results cited earlier which predict
sub-shear rupture velocity when S exceeds 1.63. It is interesting
that the theoretical predictions, which were based on
two-dimensional formulations and uniform stress conditions, are in
reasonable accord with the gross average behavior of the
three-dimensional, non-uniform stress model.
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DISCUSSION

We have used a finite difference method to study crack
propagation in a three-dimensional continuum, for conditions of both
uniform and non-uniform prestress. The model of rupture which was
employed satisfies two fundamental physical requirements: it
ensures finite stresses in the continuum, and it dissipates energy
in the course of crack extension. Furthermore, the rupture model
agrees reasonably well with available 1laboratory measurements of
unstable slip events although scaling of the model parameters to
natural earthquakes presents large uncertainties.

In some respects, the behavior of our three-dimensional
finite-stress numerical simulations resembles that predicted by
two-dimensional singular-stress crack models. We observe an abrupt
jump in rupture velocity after rupture of a stress concentration,
for example, which agrees with the prediction of the singular theory
that crack edges lack inertia (Eshelby, 1969). When the dynamic
stress-drop outside the stress concentration was increased from 0
(Problem I) to 2.5 MPa (Problem II), the magnitude of the rupture
velocity jump diminished slightly, but a finite jump still occurred
instantaneously (within the resolution of the numerical solution).

Also foreshadowed by classical fracture mechanics, at least
qualitatively, is the strong coupling which we find between rupture
velocity and peak slip velocity for the non-uniformly prestressed
fault simulations. Analytic solutions (for example, Freund, 1979)
for the elastic field in the vicinity of a propagating crack-tip
singularity give a slip velocity singularity whose intensity is
proportional to two factors. The first of these is a functional of
the whole rupture history of the crack, and can generally be found
only from numerical solutions similar to ours; the second factor,
however, increases monotonically with the instantaneous rupture
velocity.

In other respects, the behavior of our finite-stress numerical
simulations 1is quite different from the behavior of the singular
models. An important result to emerge from this and earlier
theoretical studies of finite-stress shear crack propagation (e.g.,
Burridge, 1973; Andrews, 1976b; Das and Aki, 1977; Burridge, Conn
and Freund, 1979) is the recognition that rupture velocities in
excess of the shear wave velocity may be possible when cohesive
stresses are sufficiently low. In this study, we have established
the applicability of the earlier two-dimensional results to the
three-dimensional problem of mixed-mode shear crack propagation.
Specifically, super-shear rupture velocity is predicted for
low-cohesion cracks in directions for which Mode II (inplane) crack
motion dominates, while sub-shear velocity 1is predicted for
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directions of predominantly Mode III (antiplane) crack motion. Das
(1981) has obtained a similar result using a different finite-stress
rupture criterion (the "critical stress level" criterion) and a
different numerical method (the boundary integral equation method).

The theoretical work cited above has demonstrated that rupture
velocity becomes sub-shear if the cohesive stress is sufficiently
high, i.e, if the dimensionless strength parameter S defined in the
text is less than about 1.6. The numerical results presented here
demonstrate that average rupture velocity can be reduced to the
sub-shear level by another mechanism as well -- the introduction of
stress heterogeneities. Furthermore, segments of a fault can
rupture at super-shear velocity while the average rupture velocity
remains sub-shear. The Tlatter phenomenon was observed in all three
of the non-uniform prestress simulations studied.

The numerical results indicate that the possibility of
super-shear rupture velocity in rock depends on how near the average
prestress is to some "failure" stress (which need not be identified
with the laboratory strength as measured on small, homogeneous
samples of intact rock). Thus, detailed study of rupture
propagation velocity and its spatial variability, for a given event,
could provide important information on the stress levels acting in
the fault zone immediately prior to failure. Several studies have
inferred super-shear rupture velocities for earthquakes (e.g.,
Kanamori, 1970; Douglas, Hudson and Marshall, 1981). These results
may be evidence for prestress levels relatively close to failure.
Super-shear rupture velocites have also been reported for laboratory
stick-slip experiments (e.g., Wu, Thomson and Kuenzler, 1972;
Johnson, Wu and Scholz, 1973). In the Tlaboratory studies cited,
stick-s1ip was preceded by stable sliding; it may be that the
occurrences of super-shear rupture velocity reflect a weakened state
associated with this stable sliding phase, rather than reflecting
the static strengtnh of the fault. On the other hand, Das and Scholz
(1981) have cited evidence from earthquake aftershock occurrences,
for several events, which suggests the presence of stress Tlevels
very close to failure even off the plane of main-shock faulting.

Most seismic studies of rupture velocity only estimate its
average value. Thus, it 1is possible that a rupture mechanism
analogous to our Problem III simulation occurs commonly in nature.
That is, some fault segments in Tlarge earthquakes may rupture at
super-shear velocities, even though most reported rupture velocity
determinations are less than the shear wave velocity (e.g., Geller,
1976). In fact, Wu and Kanamori (1973) prefer such a mechanism for
the 1965 Rat Island earthquake. They infer from seismic surface
wave observations that the event had an average rupture velocity of
4 km/sec. At the same time, their analysis of seismic body waves
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led to a multiple event interpretation; the inferred rupture
velocities for the individual sub-events were in the range 5.1 to
6.7 km/sec, values approaching the P-wave velocity. Actually, our
numerical simulations show that even supersonic (greater than the
P velocity) rupture velocities may be physically admissible for
individual sub-events of an earthquake, even though causality
demands that its average rupture velocity be subsonic.

Even the relatively simple prestress configurations studied
here result in fairly complex rupture histories. An important
further step will be to examine their effect on the radiated seismic
signal. The radiated wavefield can be synthesized using the slip
histories obtained from these numerical simulations, and this issue
will be considered in a subsequent study.

490




ACKNOWLEDGMENTS

I wish to thank J. B. Minster, J. L. Stevens, and H. J.
Swanger for their critical reviews of the manuscript, and K. Aki and
J. D. Luco for their helpful critiques of an earlier report on this
work. I also thank J. H. Dieterich for permission to reproduce
Figure 2. The finite difference computations were done on the
ILLIAC IV computer at NASA/Ames Research Center, and programming
support at NASA/Ames was directed by S. Biester. This work was
supported by the Nuclear Regulatory Commission and by the Defense
Advanced Research Projects Agency under contract F49620-81-C-0094
monitored by the Air Force Office of Scientific Research.

491



REFERENCES

Aki, K. (1979). Characterization of barriers on an earthquake
fault, J. Geophys. Res., 84, 6140-6148.

Andrews, D. J. (1976a). Rupture propagation with finite stress in
antiplane strain, J. Geophys. Res., 81, 3575-3582.

Andrews, D. J. (1976b), Rupture velocity of plane strain shear
cracks, J. Geophys. Res., 81, 5479-5687.

Bache, T. C., D. G. Lambert, and T. G. Barker (1980), A source model
for the March 28, 1975 Pocatello Valley -earthquake from

time-domain modeling of teleseismic P-waves, Bull. Seism. Soc.
Am., 70, 405-418.

Burridge, R. (1973). Admissible  speeds for  plane-strain
self-similar shear cracks with friction but lacking cohesion,
Geophys. J. R. Astr. Soc., 35, 439-455.

Burridge, R., G. Conn, and L. B. Freund (1979). The stability of a
rapid Mode II shear crack with finite cohesive traction, J.
Geophys. Res., 85, 2210-2222.

Burridge, R., and J. R. Willis (1969). The self-similar problem of
the expanding elliptical crack in an anisotropic solid, Proc.
Camb. Phil. Soc., 66, 443-468.

Byerlee, J. D. (1967). Frictional characteristics of granite under
high confining pressures, J. Geophys. Res., 72, 3639-3648.

Das, S. (1981). Three-dimensional spontaneous rupture propagation

and implications for the earthquake source mechanism, Geophys.
J., 67, 375-393.

Das, S. and K. Aki (1977). A numerical study of two-dimensional
spontaneous rupture propagation, Geophys. J. R., 50, 643-668.

Das, S. and C. H. Scholz (1981). Off-fault aftershock clusters
caused by shear stress increase , Bull. Seism. Soc. Am., 71,
1669-1675.

Day, S. M. (1979). Three-dimensional finite difference simulation
of fault dynamics, Final Report SSS-R-80-4295, Systems,
Science and Software, La Jolla, California.

492




Day, S. M. (1982). Three-dimensional finite difference simulation
of fault dynamics: Rectangular faults with fixed rupture
velocity, Bull. Seism. Soc. Am. (in press).

Del Mar Technical Associates (1978). Simulation of earthquake
ground motions for San Onofre Nuclear Generating Station Unit
1, Final report for Southern California Edison Company,
submitted for review to the Nuclear Regulatory Commission.

Dieterich, J. H. (1980). Experimental and model study of fault
constitutive properties, in Solid Earth Geophysics and
Geotechnology, AMD-Vol. 42, ed. S. Nemat Nasser, American
Soclety of Mechanical Engineers, New York.

Dieterich, J. H. (198l). Constitutive properties of faults with
simulated gouge, Geophysical Monograph Series (J. Handin
Festschrift), American Geophysical Union.

Dieterich, J. H., D. W. Barber, G. Conrad and Q. A. Gordon (1978).
Preseismic slip in a large scale friction experiment,
Proceedings of the 19th U.S. Rock mechanics Syposium, Mackay
School of Mines, University of Nevada, Reno.

Douglas, A., J. A. Hudson, and P. D. Marshall (1981). Earthquake
seismograms that show Doppler effects due to crack
propagation, Geophys. J. R. Astr. Soc.m 64, 163-185.

Eshelby, J. D. (1969). The elastic field of a crack extending
non-uniformly under general anti-plane loading, J. Mech. Phys.
Solids, 17, 177-199.

Freund, L. B. (1979). The mechanics of dynamic shear crack
propagation, J. Geophys. Res., 84, 2199-2209.

Geller, R. J. (1976). Scaling relations for earthquake source
parameters and magnitudes, Bull. Seism. Soc. Am., 66,
1501-1523.

Hanks, T. C. (1974). The faulting mechanism of the San Fernando
earthquake, J. Geophys. Res., 79, 1215-1229.

Hartzell, S. H., and J. N. Brune (1979). The Horse Canyon
earthquake of August 2, 1975 -- Two-stage stress-release
process in a strike-slip earthquake, Bull. Seism. Soc. Am.,
69, 1161-1173.

Husseini, M. I., D. B. Jovanovich, M. R. Randall, and L. B. Freund
(1975). The fracture energy of earthquakes, Geophys. J. R.
Astr. Soc., 43, 367-385.

493



. R e o= ——

Ida, Y. (1972), Cohesive force across the tip of longitudinal-shear

crack and Griffith's specific surface energy, J. Geophys.
Res., 77, 3796-3805.

Ida, Y., and K. Aki (1972). Seismic source time function of
propagating longitudinal-shear cracks, J. Geophys. Res., 77,
2034-2044.

Johnson, T., F. T. Wu, and C. H. Scholz (1973). Source parameters
for stick-slip and for earthquakes, Science, 179, 278-280.

Kanamori, H. (1970). Synthesis of long-period surface waves and its

application to earthquake source studies -- Kurile Islands
earthquake of October 13, 1963, J. Geophys. Res., 75,
5011-5027.

Kanamori, H., and G. S. Stewart (1978). Seismological aspects of
the Guatemala earthquake of February 4, 1976, J. Geophys.
Res., 83, 3427-3434.

Kostrov, B. V. (1964). Self-similar problems of propagation of
shear cracks, J. Appl. Math. Mech., 28, 1077-1087.

Kostrov, B. V. (1966). Unsteady propagation of longitudinal shear
cracks, J. Appl. Math. Mech., 30, 1241-1248.

Madariaga, R, (1977). High-frequency radiation from crackO
(stress-drop) models of earthquake faulting, Geophys. J., 51,
625-651.

Neuber, H., (1937). Kerbspannungslehre, Springer-Verlag, Berlin;
Theory of notch stresses: Principles for exact calculation of
strength with reference to structural form and material, the
Office of Tech. Info., AEC-tr-4547, 1958 (English translation).

Richards, P. G. (1976). Dynamic motions near an earthquake fault:
A three-dimensional solution, Bull. Seism. Soc. Am., 66, 1-32.

Scholz, C. H., P. Molnar, and T. Johnson (1972). Detailed studies
of frictional sliding of granite and implications for the
earthquake mechanism, J. Geophys. Res., 77, 6392-6406.

Swanger, H. J., S. M. Day, J. R. Murphy, and R. Guzman (1980).
State-of-the art study concerning near-field earthquake ground
motion, Nuclear Regulatory Commission report NUREG/CR-1978,
prepared by Systems, Science and Software.

Virieux, J., and R. Madariaga (1982). Dynamic faulting studied by a
finite difference method, Bull. Seism. Soc. Am., in press.

494



Wu, F. T., and H. Kanamori (1973). Source mechanism of February 4,
1965, Rat Island earthquake, J. Geophys. Res., 78, 6082-6092.

Wu, F. T., K. C. Thomson, and H. Kuenzler (1972). Stick-slip
propagation velocity and seismic source mechanism, Bull:
Seism. Soc. Am., 62, 1621-1628.

495




REMARKS ON SEISMIC ENERGY RADIATION FROM SIMPLE SOURCES

By

J. W. Rudnicki

Department of Civil Engineering

The Technological Institute
Northwestern University
Evanston, Illinois 60201

(312) 492-7629

496




ABSTRACT

General expressions for energy radiated from seismic sources in linear elastic
bodies are illustrated and clarified by examining the energy radiated from two
simple sources: a spherically symmetric source and a constant stress drop
(crack) fault model. Calculations with the spherical source demonstrate that
the point source approximation for the radiated energy is not asymptotic in the
sense that it does not approach the actual radiated energy for small source di-
mension. Comparison between the energies radiated from the spherical source

for a ramp time function and for a modulated ramp demonstrate that the modula-
tion is not effective in increasing the total radiated energy even though it
does cause a peak in the spectrum of the farfield particle velocity at the char-
acteristic frequency of the modulation. For a/cT>2, where a is the radius of
the spherical source, ¢ is the wave speed and T is the rise time, the strain
energy change overestimates the radiated energy by less than a factor of two.
The simple fault model is used to examine further the circumstances for which the
radiated energy can be predicted adequately from the knowledge of the difference
between the static end states. The conditions given by Rudnicki and Freund
(1981) are shown to generalize the assumption of Orowan (1960) that the final
stress on the fault equals the dynamic friction stress.
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INTRODUCTION

Rudnicki and Freund (1981) have recently examined representations for the energy
radiated by seismic sources in linear elastic, isotropic, homogeneous solids.
The purpose of this examination was to clarify the nature of seismic energy ra-
diation and to illuminate its origin in seismic faulting without making any un-
necessarily restrictive hypotheses about the source of radiation. Hence, far-
field representations of the radiated energy were obtained for any source de-
scribable by a moment density tensor. Fault surface representations were ob-
tained without making any assumptions about the behavior of the fault surface
tractions and particle velocities or the relation between them.

In this paper, the meaning of the general expressions for radiated energy is il-
lustrated and clarified by detailed examination of two very simple models of
seismic sources: a spherically symmetric homogeneous source and a constant
stress drop (crack) fault model with uniform fault surface tractions. A spheri-
cally symmetric source is obviously not an appropriate model for seismic fault-
ing. Nevertheless, it has been frequently used to discuss radiated seismic en-
ergy (e.g. Yoshiyama, 1963; Bath, 1966; Randall, 1964, 1973) because simple
evaluation of the radiated energy is possible. Although numerical analysis is
routinely used to study more realistic fault models, the quantities necessary to
evaluate the radiated energy, fault surface tractions and particle velocities or
farfield particle velocities, are often difficult or expensive to compute accu-
rately. More importantly, many of the general features of energy radiated from
the spherical source model also apply to radiation from a fault although the de-
tails are, of course, different. In addition, an important advantage that the
spherical source model has over many simple dislocation models, for example,
that of Haskell (1964), is that the strain energy change is bounded so that it
is possible to make a nontrivial assessment of the amount of energy radiated
relative to the total amount available.

Because, as already noted, the geometry of the spherical source model is not ap-
propriate for a realistic model of faulting, some features of energy radiation
from constant stress drop (crack) models are also examined. Specifically, the
results of Rudnicki and Freund (1981) concerning the circumstances in which the
radiated energy can be estimated from the difference between the static end
states are examined in terms of the simple fault model of Orowan (1960). It is
shown that the conditions given by Rudnicki and Freund (1981) are a generaliza-
tion of Orowan's (1960) assumption that the final stress on the fault equals

the dynamic friction stress.

The paper begins by reviewing the results of Rudnicki and Freund (1981). Then,
results on energy radiation from the spherical source and simple crack models
are presented. Finally, the relation between a static estimate of radiated
energy and some simple dynamic estimates used to interpret seismic observations
is discussed.
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RESULTS FROM RUDNICKI AND FREUND

Farfield Representations

Rudnicki and Freund (1981) adopt the following definition of radiated energy:

@

Fov .
E. = J fn,o,.,u.1 dsdt (1)
R 5. % jij i

where us is the displacement measured from some initial static state, Gij is
the stress associated with uss the superposed dot denotes the time rate of

change, S is a spherical surface of radius r centered at the source, and n is

the unit normal to S directed toward the source. The integrand of (1) is the
rate at which work is done by material inside S on material outside S. In gener-
al, the integral in (1) will depend on the radius r at which it is evaluated.
However, for r >> £, where 4 is a characteristic source dimension, the stress
and particle velocity for elastodynamic sources typically satisfy

di = oty ayy ofr™ (2)

as r + » in any fixed direction. Because the element of area dS can be written

as dS = rde where d() is an element of solid angle, (1) can be expected to have
a finite nonzero value as r -+ « .

Although the representation (1) gives a clear conceptual meaning to radiated
energy as the total energy flow from the source, it is not amenable to direct
measurement. However, if in addition to (2), the stress and particle velocity
are related by

o..n, +p(n - é)nic + p(m - é)mics = O(r_z) (3)

ij ] d

as r + ® in any fixed direction, then the radiated energy can be expressed as
[ee]

r . .
E = " ele - )+ e (m - 0¥ )dsde %)

R !
-0 S
where p is the density, 4 and cq are the dilatational and shear wave speeds,
respectively, and m is the unit tangent vector to S in the direction of the shear
traction on S, that is,

mj(nkckﬁmi) = no - nj(n n ) on S.

ij k%KL 4
Of course, (4) applies only for isotropic solids. Rudnicki and Freund (1981)
demonstrate that (3) is satisfied for all sources that can be characterized by

a moment density tensor.

The radiated energy, as represented by (4), can, at least in principle, be deter-
mined by observations. Farfield particle velocities can be observed and used to
estimate the integral (4). Despite the practical difficulties that may be in-
volved in such a procedure, it is significant that the radiated energy can be
measured, since observations in the farfield are not sufficient, even in
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principle, to reconstruct the complete spatial variation of the moment density
tensor (Kostrov, 1968; Aki and Richards, 1980). The integral (4) can, of
course, be estimated in the nearfield, but, in this case, the representation
(4) is not equivalent to (1) and the interpretation of (4) as energy outflow
from the source is lost. Note, however, that because farfield particle velo-
cities and, hence, the radiated energy cannot, in general, be expressed in
terms of the seismic moment tensor, one can infer that the radiated energy
contains information that is not available even if the complete time variation
of the seismic moment tensor is known. Furthermore, the Parseval identity can
be used to express ER in terms of the Fourier transforms of the particle velo-

cities. These properties make the radiated energy an attractive quantity for
characterizing seismic sources.

Practical difficulties that arise in making empirical estimates of E_ are, how-

R
ever, substantial. A good estimate requires that the particle velocities be
observed over a sufficiently large angular range. Moreover, corrections for
path effects, finite boundaries, and differing distances of observation points
from the source must be made. Nevertheless, this procedure apparently was used
by Gutenberg and Richter (1942) to establish a relationship between radiated
energy and magnitude although several authors (e.g. Brune, 1970; Vassiliou and
Kanamori, 1982) have remarked that the precise significance of this relationship
is unclear. However, because of the difficulties mentioned, it may often be
convenient to approximate the source as a point. More precisely, in the point
source approximation attention is restricted to wavelengths that are very much
greater than source dimensions. In this case, the radiated energy can be ex-
pressed in terms of the moment tensor Mij(t) and, in particular, Rudnicki and
Freund (1981) have shown that the radiated energy is given by

o .o
5 - > r oy 1 2 F 2
60mp ¢ Ep = (e /cy) t <2Mij (Td)Mij(Td) 42 ngk(Td)] f dt
- (5)
|" .e s
+ ! . d
3 = Mij(TS) Mij (TS) t
= - = - ' = -
where T4 £ r/cd, gt t r/cs and Mij Mij &iijk/3. For a fault source
that is a planar surface SF of sliding discontinuity, the only nonzero components
of Mij are M12 = M21 = M(t) where
SF

p is the shear modulus and the coordinate axes have been chosen so that the slip

Au is in the Xy direction and X, is normal to the fault plane. In this case (5)

reduces to
o

E = = { [ M2 - r/c )dt +% (cs/cd)s ;_r W (e - r/ec )dt ” 7)

(=] -0
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Despite the simplicity of the point source approximation, calculations with the
spherically symmetric source described later indicate that although this may

be an adequate approximation for displacement values, it has deficiencies when
applied to the radiated energy.

Fault Surface Representations

The previous expressions for the radiated energy (with the exception of (7)),
apply for general types of sources and are useful for making estimates of the
radiated energy from observations. To assess the physical origin of the radiated
energy it is necessary to have representations that relate to the nonelastic
processes at the source. If the source has the structure of a propagating crack,
Rudnicki and Freund (1981), following Kostrov (1974), have shown that the radi-
ated energy can be expressed as

Tr i
B, = =A@~ ., oj5n 8y dsde - ! F(t) dt (8)
-0 S -0

where, for convenience, it has been assumed that the initial stress is zero
(Rudnicki and Freund (198l) show that the initial stress does not contribute
to the radiated energy). In (8) AU = Ufinal_Uinitial is the change in strain
energy of the body; the second term is the work of the fault surface tractions,
where S is a surface coinciding with the fault surfaces (excluding the extending
edges) and n, is the unit normal pointing into the adjacent material; and F(t)

is the energy flux to the extending fault edges. More precisely, F(t) is
defined as (Freund, 1972a; Kostrov, 1974)

.

.r .r ~ . '
F(t) = lim % o -+ % pu u, | v ds (9)
5,0 5, 1]

i1
‘_20'

Os ;0.0
ijji

where Sy is a tube enclosing the fault edges and v is the local velocity of the

fault edge. Although the strain energy change depends only on the static end

states, the other two terms depend on the details of the dynmamic rupture process.
Hence, as is to be expected, ER cannot, in general, be determined from the static
end states.

If the fault extension occurs quasistatically, no energy is radiated and (8)
reduces to an expression for the strain energy change

<o
n

i T : = 0
A P LcijnjuiJO dsdt . Fo(t) dt _ (10)

-00

where the subscript "O0" denotes the value during quasistatic propagation. Sub-
tracting (10) from (8) yields a revealing formula for the radiated energy:
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r . . T
E = r - {r njgijui]0 . [njgijui]} dsdt + _i [Fo(t) - F(r)] de  (11)

The source of radiated energy is the difference in the work rate of the fault
surface tractions during quasistatic and dynamic extension (first term) and the
difference in the energy flux to the fault edge during quasistatic and dynamic
extension (second term). An alternative expression for the radiated energy
that is essentially the form given by Kostrov (1974, eq. 2.26) can be obtained
by integration by parts of the first term in (l1) (permissible because the
fault surface tractions are bounded) and noting that the integrated portions
vanish because the static end states are fixed. The result is

T . , :
ER = > % {[njoijui] - [njcijuijo} dsdt + —; [Fo(t) -F(t)] dt . (12)
F

This form makes evident that there is no contribution from the first term in
(11) and (12) if the fault surface tractions are time independent. Also, if

an average fault surface traction (g, .n.) is defined by
ij j’ave
x
r . : i
| F [o..n,u, ], dsdt = (r f(n.o..) g, PE0ALY g (13)
LI ij j i-0 S jij'ave i

the first term in (l1) can be rewritten using the relation

(e o] (e o]

T - r "

! 3 I i = § I Y {

A ;gijnjuido dsdt f L(oijnj)ave us g a8di: . (14)
S -
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SPHERICALLY SYMMETRIC SOURCE

Consider a spherical source of radius a. If the source is homogeneous, the
stress and particle velocities in the surrounding linear elastic material are
identical to those that result from the application of a pressure p{(t) to the
boundary of a spherical cavity. The behavior of p(t) will, of course, depend
on the nature of the physical processes in the source region, but here it suf-
fices to assume that an appropriate pressure function can be inferred. Hence,
it is only necessary to consider the response of the linear elastic region

r > a subject to the boundary condition

o (s, £) = -p(t) (15)

where or(r, t) is the radial component of stress. The only nonzero displace-

ment is u(r,t) in the radial direction and the radial stress is related to the
displacement by the equation

o. = (A+24) K %E +'2§ v by, (16)

K

r

where |, is the shear modulus and A is the Lame constant. Thus, the definition
of radiated energy (1) reduces to

@

E, = 4R’ Iy ~o_(R,£)a(R,t) ] dt (17)

~oo
where R>> a.

For =zero initial velocity and displacement and a pressure p(t) applied
beginning at t = 0, the solution for the particle velocity has the following
form

t-(r-a)/c
r

1

u(r,t) = o

2 0 p(eg(t-t'- (r-a)/c) dt' (18)
0

where p is the density and ¢ = ¢, is the dilatational wave speed. The function
g is the particle velocity at r = a due to sudden application of a pressure pc

(Achenbach (1973, p. 131) gives the potential ¢ for this case where u = Bw/ar))
and is given by

g(r) = Bl OT/8 reieen) sin (Berfa) + B cos (Berfa)] (19)

where

503




o =20/ +2u) = (1-2v)/(1-v)
2 2 A
and B =2« -o. It can easily be verified that a(r,t) and or(r,t)

satisfy (2) and that (3), which in this case reduces to

o, + pci = O(r'z) (20)

as r - ®, is also satisfied. Consequently, the radiated energy can be expressed
in the form (4) as

o]

g
By = 4mpc | GP(R,t) dt (21)

-0
where the equivalence of (21) and (17) is exact in the limit as R -+ @ .

For a spherically symmetric source, the moment tensor is isotropic, that is,

M (0) = M(E) 8, (22)

and M(t) is related to p(t) by

M(E) = ol + 2u)adp(e) (23)

(Aki and Richards, 1980, Vol. I, Problem 3.5). Consequently, the point source
approximation for the radiated energy (5) reduces to

[ee)

1 r

“
ER = —Z;zilzgszg M~ (t-r/c) dt (24)

*
-0

where the relation (A+2u) pc2 has been used.

An alternate expression for the radiated energy, analogous to the fault surface
representation (11), can be obtained by demanding that the rate of work at r = a
and at r = R be equal to the rate of change of kinetic energy K and of strain
energy U in the region a < r < R. This requirement is expressed as

. . 2
4nR2 gr(R,t)ﬁ(R,t) - 4nazor(a,t)ﬁ(a,t) =K+7U (25

Integrating in time and recognizing that the kinetic energy vanishes in the

initial and final states yield

B = 4ma® | p(o)i(a,e)de - AU (26)

=00
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where (15) and (17) have been used and AU is the difference between the strain
energy in the initial and final states. For quasistatic application of p(t),

ER = 0 (as can be verified by direct calculation from the quasistatic solu-
tion) and (26)reduces to
[e0]
) r
AU = 4ma : p(t)ﬁo(a,t)dt (27)

=00

where, as before, the subscript '0" denotes the quasistatic value. The quasi-
static solution for the displacement is

u(r,t) = p()a /byr’ (28)

and, thus, the strain energy change is

W= plima/2y (24
where p = lim p(t). Substituting (27) into (26) yields
* [ -
2 r . .
ER = 4ma p(t) [i(a,t) - uo(a,t)] dt (30)

-

The interpretation of (30) is similar to that of (l1l): energy is radiated be-
cause the particle velocity at the source boundary is different during quasi-
static and dynamic response of the material. If (30) is integrated by parts the
result is

E, = 4ma’ | p(t) [u_(a,t) - u(a,£)] dt (1)
-
where the integrated portions vanish because uo(a,t) = u(a,t) in the initial

and final states.

In the following subsections the radiated energy is determined for three spe-
cific choices of p(t): an exponential increase, a ramp function, and a modu-
lated ramp function. The first example is used to assess the accuracy of the
point source approximation. The last two examples are compared to illustrate
the effect on the radiated energy of enriching the high frequency portion of

the particle velocity spectrum.

Example 1: Exponential Pressure Increase

Assume the pressure p(t) is given by

p(t) = p @ - /T (32)

where p_ is the final value of p(t). The particle velocity can be evaluated

from (18) and used to determine the radiated energy from either (21) or (26).
The result for the radiated energy is
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v (a/em)?

S 5
Ep 20 Po @ ra/eT) + 012 + B2 k35
and the radiation efficiency, defined as 71 = ER/ AU, is plotted in Figure 1
for v = 0.25 as a function of a/cT. Note that as T »+ 0, p(t) approaches a

step function and 7 = 1.

The exact expression for the radiated energy (33) can be compared with the result
of the point source approximation by substituting (32) into (23) and evaluating
the integral (24). The result is

e
E.) =

( R’point 8m (A + 2u) (cT)3

(34)

where M_ = ﬂu-l(A + 2u)33pm. Because the strain energy change for a point source

of fixed moment is infinite, the radiation efficiency of a point source is zero.
The ratio of the energy radiated by the point source to the actual radiated
energy is

(E)) .
RE201nt = (a/eT) F1 + (a/eT) + (ZQ)'I (a/cT)Zj (35)
R

Examination of (35) reveals that the point source approximation yields a value
for the radiated energy within 10% of the actual value only for a/cT in the
range 0.52< a/cT< 0.56. Moreover, in contrast to the point source approxima-
tion to the particle velocities, which becomes more accurate as a/cT becomes
small, the approximation for the radiated energy severely underestimates ER for
small values of a/cT.

Example 2: Ramp Function

For a ramp function increase in pressure, that is,

/T 0t eT
p(t) =p_
LR T & JCPRE % (36)

the radiated energy is

le-acT/a

E. =1 p_a {a_l(a/cT)zil-B- (o sin BcT/a + R cos BcT/a)) } B7)

The radiation efficiency is again plotted in Figure 1. The curve is quali-
tatively similar to that for the exponential time function although the initial
rise of the ramp function is much steeper.
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Example 3: Modulated Ramp Function

The pressure increase is assumed to have the form of the modulated ramp function
used by Haskell (1964) for the displacement in his fault model:

X [t - (T/2np) sin (2nmt/T)] , 0 <t < T

[T .
p(t) = p <
& y £ E (38)

For n = 0, p(t) = 0 for 0 « t <« T and for n = ® (38) reduces to the ramp function
(36). The modulation produces a peak in the Fourier spectrum proportional to

-2 . .
(w - wn) where @ is Fourier frequency and Wp = 2nT/T. The evaluation of the

radiated energy involves considerably more algebra than in the two previous

examples but the final result can, nevertheless, be expressed in the following
compact form

"R Qo) (a/en)d?
(ZM)_IP o (2o,-§22)2 + 4(12@2
) (39)
4 aéCT i Im ! Qa(a + 28) 1 - exp ((-a+2B) cT/a)] }
o

-+ 28)2 + (22]2

1

where () = 2nm(a/cT), ¢ = (-1)6, and Im {...} denotes the imaginary part of
{...}. This expression reduces to (37) for n -+ ®». Equation (39) is plotted in
Figure 1 as a function of a/cT for several values of n. For n = 3, the curves
cannot be distinguished from those for the ramp function pressure. Although
the modulation of the ramp function has a significant effect on the Fourier
spectrum of the particle velocity, amplifying the spectrum in the neighborhood
of w = wp , it is evident from Figure 1 that the overall effect on the radiated

energy is relatively small. The greatest effect occurs for n = 1 and even in
the steep portion of the curve, the difference in ER is at most by a factor of

two. Although it is not known whether this feature is shared by more realistic
models of seismic faulting, it is consistent with the conclusion of an empirical
study by Vassiliou and Kanamori (1982) of the spectral energy density of strong
ground motion velocity records from three earthquakes. They conclude that most

of the energy is radiated from the low frequency portion of the spectrum, that
is, below 1 to 2 Hz.
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ENERGY RADIATION FROM CRACK MODELS

If fault surface tractions are time-independent (so-called constant stress drop
models), the first term in (11) or (12) vanishes so that the radiated energy
is given by

{Fo(t) - F(t)} dt . (40)

This expression is a more general form of that derived by Husseini and Randall
(1976) in their discussion of energy radiation from constant stress drop
models. The energy flux to the fault edge F(t) can be related to the dynamic
energy release rate G by

F(t) = ¢ G v ds (1)

where the integral is taken around the fault edge and v is the local velocity
of propagation. For semi-infinite cracks (or finite cracks prior to the arri-
val of reflected waves at the crack-tip) the function G has been shown (Atkin-
son and Eshelby, 1968; Freund, 1972b; Fossum and Freund, 1975) to have the form

G =G, (&) g

where g(v) is a universal function of velocity (for a given mode of propagation)
and Go(z) is the quasistatic energy release rate for a crack that instantane-

ously coincides with the actual crack. The function g(v) satisfies g(0) =1
and g(c) = 0 where c = cq in antiplane strain and c = Cr> the Rayleigh wave

speed, in plane strain. For plane strain and antiplane strain, g(v) ~ 1 - v/c.

Because g(v) decreases with velocity, ER increases with velocity but, in

contrast to the results for dislocations (Clifton and Markenscoff, 1981),
approaches a finite limit as v approaches the limiting velocity. More specif-
ically, for propagation near the limiting velocity, F(t) «< FO(t) and the
radiated energy can be approximated by
[ee]
r
ER = ’ Fo(t) dt 43)

=00

Using (10) to replace the right-hand side of (43) yields

58

= - = ' F 1
ER AU i ¥ LcijnjuiJO ds dt 44)

Hence, the radiated energy is equal to the excess of the strain energy change
over the work of the fault surface tractions during quasistatic fault propaga-
tion.
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The meaning of this expression can be clarified by considering a simple model
of faulting in which the shear stress drops from a uniform initial value

Tl to a final value Ty over an area S where o is also uniform over S, Then
the strain energy change is (e.g. Savage and Wood, 1971)

A= - (g + Tl) A S (45)

where Au is the average relative displacement. Because the tractions on the
fault surface (excluding the extending edge) have been assumed to be time-
independent, the traction must equal its final value TO . Thus, the second

term in (44) is T, SAU and the radiated energy is

0

Ep = ATMg/2 (46)

where AT = LT To is the static stress drop and MO

value of the seismic moment (6). This estimate of the radiated energy is iden-
tical to that obtained by Orowan (1960) when the final stress on the fault is
equal to the friction stress. An alternate derivation of (46) that illus-
trates the approach of Orowan (1960) can be obtained by neglecting the last
term in (8) and assuming that the traction on the fault surface is equal to a
uniform time-independent friction stress Te With these assumptions (8)
becomes

is the final (static)

E.6 = L (TO + Tl) AUS - T

R AT S 47)

N

E

where o and T, are again the final and initial values of fault surface

traction. When To = Tg o (47) reduces to (46).

The remarkable feature of (46) is that it is an estimate of the radiated energy
that can be obtained entirely from knowledge of the static end states. In
other words, equation (46) is a zero frequency estimate of the radiated energy.
Some empirical evidence that (46) is a good approximation for large earth-
quakes has been given by Kanamori (1977). Specifically, Kanamori (1977)

showed that for earthquakes having a rupture length of about 100 km, the

energy calculated from the right hand side of (46) is a good approximation to
the energy obtained from the magnitude and the Gutenberg-Richter energy mag-
nitude relationship. To the extent that this relationship yields an accurate
value for the radiated energy, Kanamori's (1977) results suggest that (46) is

a good approximation,

Although the apparent propagation speed of faults is near the limiting velocity
so that it is accurate to assume F(t) << Fo(t), it seems unlikely that fault

surface tractions are time-independent as necessary for (40). Perhaps the
simplest example of a case in which the fault surface tractions are time-
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dependent is the partial stress drop model of Brune (1l970) and there seems to
be no reason to rule out more complex time dependence. However, it is possible
that the time dependence of fault surface tractions may cause high frequency
energy radiation that does not substantially contribute to the total radiated
energy. A study by Vassiliou and Kanamori (1982) of strong-motion velocity
records from three California earthquakes suggests that even as close as 1 to

5 km from the fault, most of the contribution to the radiated energy is from
velocity components below 1 to 2 Hz. in frequency.

Unfortunately, there have been no detailed numerical calculations to determine
the accuracy of the approximation (46). However, the calculations for the
spherical source model, summarized in Figure 1, suggest that for a/cT s 2, the
strain energy change overestimates the radiated energy by less than a factor

of two. Moreover, the enrichment of the high frequency portion of the spectrum
by modulation of the ramp function was shown to have little effect on the over-
all amount of radiated energy.

Some evidence that F(t) «< Fo(t) for many earthquakes can be inferred from
critical values of G necessary to cause rupture. A frequently used fracture
propagation criterion is that fracture occurs when G = Gcrit where, for simpli-

city, GC is usually assumed to be a constant or a function of position that

rit
reflects the resistance of material to fracture propagation. Values of GCrit
summarized by Rudnicki (1980) range from 10-106 J/m2 with the lower end of the
range appropriate for creep events and laboratory tensile tests and the higher
end associated with earthquakes that fracture fresh or largely rehealed frac-
tures. However, Rudnicki (1980) has pointed out that even the largest of these
values, when multiplied by fault area, yields an energy that is orders of mag-
nitude smaller than the energy calculated from the Gutenberg-Richter relation-
ship for a magnitude appropriate to the fault area. Specifically, the ratio

of the Gutenberg-Richter energy to fracture energy is estimated to be about

106 for a magnitude 8 earthquake and 102 for a magnitude 6. As pointed out by
Kostrov (1974), the decrease in the ratio suggests that the fracture energy
may be more significant for smaller earthquakes and laboratory size fractures.
Consequently, these events may have significantly different energy radiation
characteristics than larger earthquakes. Aki (1979) has noted, however, that

the local values of Gcrit may be much higher than the average over the fault.

Nevertheless, the size scale associated with these locally high values may be

such that the energy radiated from them is not a significant contribution to ER'
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CONCLUDING DISCUSSION

In the last section, it was pointed out that, under certain circumstances, an
estimate of the radiated energy from knowledge of the static end states is
possible. Although one can, in theory, state precisely the circumstances when
such an estimate will be accurate, identifying them in practice is difficult.
In this discussion, the form of such an estimate is compared with two simple
dynamic estimates that have been used to interpret seismological observations.
For a circular fault of radius a, the estimate (46) for the radiated energy
yields

7 Mg
BT 32 "3 8
]_La

where MO is the final (static) value of the moment.

A popular model for interpreting seismic observations is that of Brune (1970)
which is based on the shape of the Fourier transform of the displacement. For
the purposes of this discussion, it suffices to assume that the magnitude of
the Fourier transform of the seismic moment is given by

| M () | = Mo

w 1+ (w/wO)Z] (49)

where wg is the '"corner frequency'" and

E ) = e_Lth(t) dt

g§&—— 8

(This assumption is equivalent to using the form of the farfield spectrum sug-
gested by Brune (1970) and a double-couple radiation pattern.) The radiated

energy can then be evaluated from (7) by using the Parseval relation and (49).
The result, neglecting the small contribution from the dilatational waves, is

2 i
R 32 3 350 e .
ua S

Using values for the corner frequency suggested by Brune et al. (1979), that is,

Wy = 21 (cS/Sa) {1 # 0.5}

yields a numerical value for the term in brackets of 0.287 to 0.387.
Vassiliou and Kanamori (1982) have studied energy release for deep focus earth-

quakes by assuming that the farfield displacement time function is trapezoidal

with a duration of Td and a rise time Lo If it is assumed that the height of

511



the trapezoid is proportional to MO/Td and that the radiation pattern is that

for a double couple, the radiated energy is

M ) :
s W 372 p.:3 { ggﬁ (CS;d ) c(]_]_.g)z ] (51)

where (¢ = Tr/Td' Vassiliou and Kanamori note the effect of { is small for

0.1 < € =0.5. Using ¢ = 0.2, T, = a/v and a rupture velocity, v = 0.75 g

d
yields a value of 0.959 for the term in brackets.

Note that both of the dynamic estimates of energy radiation have the same form
as the static estimate (48), that is, they are proportional to the square of
the seismic moment divided by the cube of the overall rupture length (although
in the estimate of Vassiliou and Kanamori (1982) the rupture length enters in
terms of the duration of the farfield time function). Moreover, the numerical
factor in brackets in (51) is close to unity whereas that in (50) is equal to
about one-third, which is not too greatly different. Randall (1973) has noted
that a variety of estimates of seismic energy based on the form of the dis-
placement spectrum, give similar results. However, a feature common to both
Randall's estimates and those here is that rupture is characterized by a single
characteristic dimension, the overall rupture length, as a result of assuming
that rupture proceeds smoothly. There is, of course, ample evidence that rup-
ture proceeds in a discontinuous fashion, controlled by the strength and dis-
tribution of barriers and asperities. No thorough analysis of the effects of
discontinuous rupture on energy radiation has yet been given. An analysis by
Haskell (1964) suggests that such incoherent rupture could increase the total
radiated energy by a factor of three, but the interpretation of this result is
complicated by the fact that the strain energy change, and hence the static
estimate of the radiated energy, for this model is unbounded. If incoherent
ruptures result primarily in high frequency energy the empirical results of
Vassiliou and Kanamori (1982) suggest that such energy is not significant in
altering the total amount of radiated energy. On the other hand, discontinuous
ruptures have been shown to have a substantial effect on estimates of static
parameters (e.g. Madariaga, 1979; Rice, 1980; Rudnicki and Kanamori, 1981)
and, as a consequence, static estimates of the radiated energy would also be
affected.
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The radiated energy ER divided by the strain energy is plotted

against a/cT where a is the radius of the spherical source, c is
the dilatation wave speed, and T is the rise time. Tne results

are shown for three forms of the pressure function: an exponential
increase (32), a ramp function (36), and a modulated ramp (38),
where n is the number of periods of superimposed sinusoidal
oscillation. Results are shown for a value of Poisson's ratio

(2p)” p:7r03 v = 0.25.
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Abstract : Far—field radiations are investigated for dynamic circular
cracks. We study symmetrical models where the center of the initial
crack is also the center of the final one, and asymmetrical models
where the center of the initial crack is at a given distance of the
center of the final crack. We found two bursts of energy associated
with stopping phases that control the width of the far-field pulse and
the fall-off of the spectrum.

Three types of nucleation are considered for symmetrical models.
The average corner frequency of S waves vg is related to the final
source radiusSL by vg = 0.32 B/L. The corner frequency of P waves is
larger than v, by a factor of 1.25. The fall-off of the spectrum is of
the order of v=2.3, When the initial crack has a finite size, sharp
initial phases are induced, filling the intermediate region of the
spectrum and shifting slightly the corner frequencies to higher values.

Asymmetrical models are strongly radial dependent. An important
d%rectivity effect is shown, giving corner frequencies as high as_, g
Vo = 0.60 B/L and vg = 0.90 B/L with a fall-off of the order of v " .

A-Introduction.

Crack models provide considerable insight into the process of
shallow earthquakes. During the five past years, improvement in numeri-
cal methods allows complicated crack models to be studied. Madariaga
(1976) has solved the dynamic circular faulting. The obtained dynamic
features have been introduced in kinematic models by Boatwright (1980).
Spontaneous rupture has been intensively studied (Das & Aki, 1977 ;
Day, 1979 ; Miyatake, 1980 ; Das, 1981). Free surface effects have been
included (Archuleta & Frazier, 1978 ; Miyatake, 1980). Heterogeneous
behaviour has been simulated (Das & Aki, 1977 ; Miyatake, 1980).

In order to constrain source models by observations, an interesting
problem is to study far-field radiation for circular symmetrical and
asymmetrical crack models. After presenting the problem formulation,
we study the Madariaga circular crack. Three different kinds of nuclea-
tion are investigated. By shifting the center of the nucleation, we
destroy the symmetry and study the impact on the far—field pulse and
spectrum.

B-Plane Crack Model.

To understand the influence of different geometries of the fault
on the far-field radiation, we restrain our study to a particular set
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of models that we present in this section and for which the mathemati-
cal formulation is simple. A more complete formulation can be found

in Archuleta & Frazier (1978), for example. Let us introduce the medium
with equations governing the wave propagation, boundary conditions
applied at the edges of the medium (source included) and initial condi-
tions at the beginning of the rupture. These are now discussed in the
following sections.

1-Medium : We assume a linear, homogeneous, isotropic and infinite
medium where elastodynamic equations which relate stress and displace-
ment at a point M are given by the relations :

pﬁi = 0..,. equation of motion

= 1
Gij Auk'kéij + u(ui,j + uj'i) Hooke's law

2-Boundary conditions : Let us consider a plane crack and choose our
coordinate frame so that the crack plane will be on the plane (xoy).

On this plane, shear stress drops suddenly to a constant dynamic
friction stress o_. at a point M, after the passage of the rupture front.
This failing in the linearity induces a discontinuous displacement, or
slip, between the two surfaces of the crack St and ST. We complete our
coordinate frame by taking St on the positive side of the axis z. This
is the only boundary condition to be applied in the infinite medium.

3-Initial conditions : The medium before the rupture is in equilibrium
under a static shear stress oy, = 0_(x,y,2z), with a zero velocity every-
where. We consider three different " types of rupture nucleation.

A commonly used way to start rupture is the self-similar nucleation.
At time t = O, the crack starts from one point and propagates. The
initial prestress 0, is uniform, making computation easier.

Another widely used nucleation is the instantaneous nucleation.
At time t = 0, a crack of finite size appears and starts to propagate.
Again the initial stress is uniform oy, = o, but the model is non-
causal.

The third type of nucleation, physically the most acceptable, is
the static nucleation. A preexisting crack of finite size becomes
unstable at time t = 0, and starts to propagate. The initial stress is
the non-uniform static stress of the preexisting crack.

4-Propagation of the rupture : From its initial shape, the rupture
expands at a constant rupture velocity v, until its final shape. This
is a kinematic description of the geometry where the acceleration is
instantaneous. Theoretical work by Eshelby (1969) and previous work

on spontaneous rupture by Das & Aki (1977), for example, indicate a
quick acceleration to a terminal velocity and suggest that an instanta-
neous acceleration approximation is reasonnable. Less may be said about
the deceleration because not much is known about the parameters that
control it, and thus the stopping phases of the models discussed here
may be too large.
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5-Healing of the rupture : We suppose that the slip is mainly along

the x-direction of the shear prestress. This hypothesis is well suppor-
ted during the propagation of the rupture by the work of Miyatake (1980)
and Virieux & Madariaga (1982). During the stopping process, a small
amount of slip must occur along the y-direction because of the different
velocities of stopping phases. We neglect it and consider only the
component Au_ of the slip and we note it Au. When the slip velocity Au
at a point M reverses its sign, we set it to zero healing the crack at
this point.

6-Physical parameters - scaling : Because we assume one direction for
the slip, the only stress that enters in the problem is the stress

drop Ac= Oy ™ Gfs where 0o 1is the uniform prestress away from the
crack. If we call L the longest distance of the final crack edge from
its center and take the P-wave velocity to be a and the S-wave velocity B
with o = V3 B, we can define the following dimensionless quantities

Length : (x,y,z) =L (X,Y,Z)
L/B T
AcS

Time : t

Il

Stress : o©
Displacement : u = L Ao/ uU
Velocity : G = BAc/ nU
Moment : m = L3 Ac M
© 2
Moment velocity : m = L AUBMO
Any dimensional results, that have the same ratio between the

initial crack and the final crack length, the same ratio v_/B
and the same Poisson's ratio (a = ¥3 B), can be found from our results.

C-Slip Velocity Calculation.

The boundary problem in an infinite medium is transformed into a
mixed boundary problem in a half-space, by using the symmetry of the
plane crack. Then noting that S, is the complementary part of S1 the
surface area of the crack plane, the boundary conditions become :

(ux =
lu

Because the equations are linear, we can substract the uniform
prestress existing away from the crack, o and also normalize to obtain
dimensionless boundary conditions

U =U =0 3; S =0 on 'S
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We solve the mixed boundary problem using a finite difference
method (Virieux & Madariaga, 1982) computing the slip velocity on the
crack surface as a function of time.

We distinguish four types of behaviour in the slip velocity at
one point (figure 1). Before the point M is reached by the crack, the
slip velocity is zero. When the crack reaches this point, the slip
velocity presents a singularity of the form 1/ ¥r, where r 1is the
distance from the point M inside the crack to the crack edge. This
singularity is related to the singularity of the stress outside the
crack. The third type of behaviour occurs as the edge of the crack is
moving away. The point M receives energy from every point around it
and its slip velocity tends to a constant. When the point M becomes
affected by the arrest of the rupture propagation, we have the fourth
behaviour, characterized by a slowing of the slip velocity until the
final stopping of sliding, called the healing phase. The relative
importance of the four types of behaviour are highly dependent of the
initial geometry of the crack, its time-evolution, its final geometry
and the position of the point M.

Dynamic faulting simulated by our finite difference method exhibits
all these features. Let us anticipate our results to illustrate the
importance of geometry on time evolution, by showing healing phases for
an asymmetric crack propagating at rupture velocity ¥, = 0.87B until it
reaches its final shape. The healing phase does not start from where
the rupture front first reaches the final rupture boundary. Although
its slip velocity is slowed at first, it is nonetheless one of the last
points to lock(figure 2).

D-Far-Field Body-Wave Radiation.

Since the Burridge & Knopoff paper of 1964, calculations of far-
field P and S waves have been widely published (e.g. Aki & Richards,
1980 ; Madariaga, 1981). Information about the source slip velocity
is contained in what it is defined as the far-field pulse

. -
w(R,t) = Al (t,t + = . Ry 4s
where U is the slip velocity in the x-direction, R is the unit vector
pointing towards the observer (figure 3) and C is either P or S wave
velocity. The frequency spectrum can be expressed as
i 2mv J >

W(R,V) =ufBa(E, v)e € Bl g

Knowing Au(r,t) on our discrete fault surface as a function of
time, we compute the Fourier transform Au(r,v) for every point, and
obtain the frequency spectrum in the direction of the observer as a
shifted sum of Au(r,v) over the fault surface. We filter our spectrum
with a cosine filter to remove the effects of the spatial sampling
interval. For P waves, a suitable cut-off frequency is vP = a/4Ax,
where Ax 1is one spatial grid step and in effect we do not model
frequencies higher than this. However applying a filter with the same
egfect on frequency content of S waves (with a cut-off frequency
v = B/6.93A x) gives small oscillations. We prefer to retain the

maximum frequency content rather than applying heavier but still
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comparable filters to both P and S waves.

On this basis we can discuss the properties of the far-field P
and S wave forms and spectra. The spectrum w(R,v) has a maximum at
zero frequency because AU does not change sign on the fault plane ;
hence w(R,0) = M , the seismic moment. Because of the assumptions in
section C, M_ is® actually the M__ component alone. At high frequencies,
an asymptote of the form v™Y can”” be drawn with a corner frequency v
that is the intersection of this asymptote with the low frequency e
level. This high fre%uency fall-off is controlled by stopping phases.
For a fall-off of v™4, stopping phases correspond to a slop discontinui-
ty in the velocity pulse (Madariaga, 1981). The velocity time function
and spectra are more sensitive to stopping phases. We therefore turn
our attention to the far-field velocity behaviour and note that the
velocity spectrum presents a maximum at a frequency that we identify
with the corner frequency v, . Drawing a high frequency asymptote with
confidence on the pulse spectrum is possible in our first model (similar
to that of Madariaga, 1976). We find a fairly good agreement between
this corner frequency and the one picked out from the velocity spectrum.
Because finding corner frequency as a maximum of the velocity spectrum
is easier, we retain this definition of the corner frequency for the
other models.

E-Symmetrical Models.

In this section, the initial and final shapes of the crack are con-
centric disks. Because the rupture velocity (v,= 0.878 ) is the same
in any direction, the final circular edge is reached everywhere at the
same time. That is why we call these models symmetrical. We present
results for 6 = 60° and ¢ = 0°.

1-Self-similar nucleation - SMI model : The initial crack has a zero
radius at time t = 0. This model was studied by Madariaga (1976). Our
results (figure 4) depart from Madariaga's ones for two reasons, in part
as a consequence of the lower grid density used here. The first is the
numerical difficulty in modelling self-similar behaviour when the crack
radius is of the order of the spatial grid step. At the beginning, the
form of the pulse is smoother than 2 or, as an equivalent statement,
the velocity pulse shows the linear time tendency only after a while.
The second difficulty is our modelling of stopping phases, noted by
small sticks in our figures. Because of our numerical high frequency
limit and our discrete computation of far-field waves, the jump in
velocity pulse and the slope discontinuity in pulse are smoothed out.
So the time duration of the pulse is longer than that shown by Madaria-
ga (1976).

The high frequency asymptote is selected as Brune & al (1979) did.
However, for S waves, the corner frequency v§, picked out either from
the pulse spectrum or from the velocity spectrum, is lower than the
Brune one (1970). The P wave corner frequency vP is always higher than
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s . . .
the S wave corner frequency V,» since the width of the P wave pulse 1is
narrower than the S wave pulse. We fing :

P = 0.40 B/L = 0.23 o/L

Y

v 0.32 B/L

o
s
o
The ratio of the two corner frequencies 1.25 is lower than the average
value 1.5 found by Madariaga (1976) but still inside the interval
[1.2, 1.7] of Hanks (1981). The high frequency asymptote has a slope
of the order of -2.3, explained by the smoothness of stopping phases.

2-Instantaneous nucleation — SM2 model : This model presents the same
over—all results as the SMI model, except sharper initial phases coming
from the finite size of the initial crack. We note extreme initial

phases by small black triangles in our figures. Stopping phases are
arriving at the observer, while initial phases from different points

of the crack are still arriving (figure 5). This imbrication is related
to the ratio of the starting and final radius. We choose a ratio of 0.5,
in order to stress this point. Initial phases fill the intermediate

range of the spectrum, but do not affect significantly corner frequencies
and fall-off.

3-Static nucleation - SM3 model : We choose the same geometry as the

SM2 model for comparison. The initial state of stress is the static
stress of the preexisting crack. This model differs only by the greater
importance of initial phases. We observe a distinguishable arrival for
the last initial phase (figure 6). A slight shift of corner frequencies
could be observed, but the fall-off is still the same - v “*~ behaviour.

F-ASYMMETRICAL MODELS.

The initial and final shapes of the crack are excentric disks, des-—
troying the symmetry. We move the center of the nucleation to the posi-
tive side of the x-axis, with the proportions of the figure 2. Because
of the asymmetry, we present results for (6,¢) = (60°,0°) and for
(6, ¢) = (60°,180°), corresponding to (8, ¢) = (60°,0°) for symmetrical
models. The rupture velocity is still 0.87 B, and the arrest of the
rupture takes some time to extend over the whole final crack edge.

1- Self-similar nucleation - AMI model : This model has to be compared
with the SMI model. An important directivity effect is shown, arising
from the time lag between stopping phases in different radial directions
(figure 7 and figure 8). The pulse shape changes from a box shape (¢=0°)
to a narrow triangle shape (¢ = 180°). For S waves, we observe a shift
of corner frequency from 0.30 B/L to 0.55 B/L. And, for P waves, the
shift is from 0.40 B/L to 0.75 B/L.

2—- Static nucleation - AM2 model : As for the SM2 and SM3 models, the
finite size of the initial crack implies sharper initial phases that
increase the directivity effect (figure 9 and figure 10). The S wave
corner frequency shifts from a value 0.32 B/L to a value 0.60 B/L.
And the P wave corner frequency from a value 0.45 B/L to a value

0.90 B/L. The fall-off has a slope close to -3.
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G-CONCLUSION

Through this study, we present five different source models and the
corresponding far-field radiations. We show that pulses and spectra are
controlled by stopping phases. The impact of initial phases is small,
even for the academic case where the size of the final crack is only
twice the size of the initial one.

Azimuthal dependence allows average relations between the geometry
of the source and physical parameters defined on the far-field radiation.
Relation between the final length of the crack and the corner frequency
is in agreement with the Brune's one, for symmetrical models.

However, for asymmetrical models, a strong radial effect destroys
this relation. A consequent directivity effect changes the shape of
the pulse from a 'box' shape towards a 'marrow triangle' shape, doubling
the corner frequency. It implies that the corner frequency has to be
interpreted with great care. The relation with the length of the final
crack is still adequate, but the determination of stress drop which
depends critically on the corner frequency cannot be trusted.
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AM1 healing phases
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Figure 2: Healing phases for the AM1 model. Dotted lines
are rupture front at different times.Continuous
lines with small arrows are healing phases.
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PARAMETRIC STUDY OF NEAR-FIELD MOTIONS FOR

OBLIQUE-SLIP AND DIP-SLIP FAULT MODELS

by

John G. Anderson and J. Enrique Luco

ABSTRACT

The near-field motion on the surface of a uniform half-space for oblique-slip and dip-slip faults
has been studied by the use of a dislocation model. The fault is modeled by an infinitely long buried
dislocation of finite width: rupture propagates horizontally along the fault and past the observation
points with a constant rupture velocity lower than the Rayleigh wave velocity. In addition to those
parameters which control peak amplitudes near a vertical, strike-slip fault (depth of the top of the fault.
horizontal rupture velocity), the dip of the fault plays an important role. The slip direction and the
angle between the rupture front and the down-dip direction of the fault also become increasingly impor-
tant in determining amplitudes of peak ground motions as the dip of the fault decreases from vertical to

shallow angles.

Because this model leads to increased amplitudes of ground motions as the fault dip decreases.
and based on the extent to which this model underestimates peak amplitudes in California for vertical
strike-slip events, one may anticipate considerable regions with large peak accelerations (> 1g) and peak

velocities (>100 cm/sec) above thrust faults.

Institute of Geophysics and Planetary Physics, Scripps Institute of Oceanography. University of California. San Diego. La Jolla.
California 92093 (J.G.A)).

Department of Applied Mechanics and Engineering Sciences, University of California. San Diego, La Jolla. California 92093
(JEL and J.G.A).
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INTRODUCTION

This article is a continuation of the parametric study on strong ground motion which was initiated
by Anderson and Luco (1982). The previous paper studied the effect of several parameters on the
strong ground motion in the near field of a vertical strike-slip fault in a uniform half-space. The fault is
modeled by an infinitely long buried dislocation of finite width; rupture propagates horizontally along
the fault and past the observation points with a constant rupture velocity lower than the Rayleigh velo-
city. We now extend the previous results to dipping faults and to faults which include a dip-slip com-
ponent of ground motion. Since Anderson and Luco (1982) thoroughly studied the strike-slip fault,
our approach will be to begin with that case, and see what happens as we deviate from the pure strike
slip. We will study the evolution of ground motion for cases which are intermediate between pure

strike-slip and pure thrust, and then study the pure thrust case in more detail.

Previous parametric studies of three dimensional oblique-faulting or thrust-faulting in a half-space
on a model of comparable complexity have apparently not been carried out. A number of two-
dimensional models have been presented (Mal, 1972; Schafer, 1973; Brock, 1975, Niazi, 1975.
Litehiser, 1976; Bouchon and Aki, 1977, Bouchon, 1978, Madariaga, 1980). These models assume that
the rupture velocity along the horizontal dimension of the fault is infinite, in contrast to the model con-

sidered here which assumes a finite horizontal rupture velocity.

DESCRIPTION OF THE MODEL

The model derived by Luco and Anderson (1982) gives the ground motion near a fault of finite
width and infinite length, which is embedded in a uniform half-space. Figure 1 illustrates the geometry
of the fault model and the coordinate systems employed. The fault has a strike parallel to the x axis
(Fig. 1A) and may have an arbitrary dip, y , which is measured from the horizontal y axis. Faulting
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occurs as a uniform shear dislocation between the depths z, < z < z,. For the general case of a fault

with dip different from 90°, the vertical projection of the fault to the free surface extends over the

range y, <y < y;. The width of the fault is W = /(z;—2,)? + (v, —»,)? = (z5—2,)/siny.

Figure 1B is a map of the fault plane in the vicinity of the rupture front. The rupture front trav-
els from x = —oo to x = oo at a constant longitudinal rupture velocity c,, where ¢; must be less than
the Rayleigh wave speed. For an observer at x = 0, the time ¢ = 0 corresponds to the time of passage
of the rupture in front of the observation point. As shown in Figure 1B, the rupture front need not be
parallel to the dip direction of the fault. Luco and Anderson introduced a "transverse rupture velocity,"
¢,, which describes the rate at which the rupture front crosses the width of the fault at fixed x. The
slip direction on this fault may be arbitrary and it is described by the rake angle ¢, measured in the
fault plane from the horizontal axis. The shape of the time function for slip is the same throughout the

fault, and, in this paper, we use a step offset.

The numerical results presented below have been obtained using the analytical solution derived by
the authors (Luco and Anderson, 1982) in which the velocity on the surface of the half space is given
in terms of a single, finite integral. Accelerations are obtained by numerical differentiation of the syn-
thetic velocity; displacements by numerical integration. Velocities were calculated at a time increment

of 0.02 sec and for a total duration of 20 seconds.

EVOLUTION FROM STRIKE-SLIP TO DIP-SLIP DISPLACEMENTS

ON THE FAULT

Anderson and Luco (1982) thoroughly examined the case of a vertical (y =909 strike-slip
(¢ = 09 fault. Some review of the results of Anderson and Luco (1982) would seem to be appropri-
ate. For the vertical strike slip fault, they examined characteristics of the acceleration, velocity, and

displacement pulses resulting from this model as a function of distance to the fault, as a function of
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horizontal and transverse rupture velocities, and as a function of rise time. The components u, and u.
are nodal at the fault plane, and achieved peak values at distances y comparable to the depth of the top
of the fault. A geometrical factor which controls these peak values is the depth of the top of the fault:
the width of the fault is not important (unless it approaches zero). The horizontal rupture velocity <
has an important role in controlling peak values, with u, and u. being more sensitive than u, 10 ¢
when ¢, is near the Rayleigh velocity. The vertical rupture velocity ¢, did not play an important role in
modifying peak amplitudes. unless it became much smaller than c¢;, but it did significantly modify the
pulse shapes. An intriguing aspect of the solution is that for infinite ¢,, &, is symmetric about ¢ = 0,
while u, and u. are anti-symmetric. Finally, the effect of increasing rise time is to reduce the ampli-
tudes of acceleration and velocity to values which are less, and sometimes considerably less, than those

seen for the step offset.

This study introduces the effect of changes in two more parameters: the fault dip (y) and the rake
(¢). To examine the evolution from vertical strike slip (¢ =0°%y =909 to dip slip
(¢ = £90° y <90°), we will first look at the effect of the rake for a vertical fault, second look at the
effect of dip on waves generated by a strike slip fault. and third look at the effect of the rake on waves
generated by a dipping fault. We begin by examining how a change in the rake affects synthetic
motions near a vertical fault. Thus Fig. 2 illustrates the change in synthetic displacement, velocity, and
acceleration for a site at y = 5.0 km as the rake changes from 0°to —90° on a vertical fault. Other
parameters for the synthetics in Fig. 2 are a = /38 = 6.0 km/sec, ¢, = 3.0 km/sec. ¢, = oo, the slip on
the fault, A, = 100 cm, z, = 2.0 km, and z; = 10.0 km. The parameters a, B, ¢, A,. z,. and z, are
held at those values for all calculations in this paper. i:igure 2 illustrates that the symmetry of #, and
the anti-symmetry of &, and #. of strike-slip faulting is absent for arbitrary rake, but a complementary
symmetry exists for pure dip-slip faulting. In particular, a component which was symmetric for strike-
slip becomes anti-symmetric for dip-slip, and a component with anti-symmetric motions for strike-slip
faulting becomes symmetric for dip slip faulting. A second characteristic of the results shown in Fig. 2
is that the peak amplitudes are relatively insensitive to the rake. The components most affected by

variation of the rake are #. and w., which are increased by a factor of the order of 2 to 3, and ii, which
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suffers a reduction also by a factor of the order of 2 to 3 as the rake varies from 0°to —90° These
observations are further illustrated in Fig. 3, which shows the peak values from Fig. 2 and from addi-

tional calculations as a function of the rake.

Next we consider the effect of the dip angle on a fault with pure strike slip motion. The observer
is at a point 5 km from the vertical projection of the top of the fault to the free surface (y —y, = 5 km)

as shown in Fig. 4. The calculations use a constant offset on the fault, and consequently the moment
per unit length increases in these calculations as the dip decreases. In particular, M,/L aWa sn—rll— In
Y

shifting the dip from 90°to 15°, this causes an increase of M,/L by a factor of 3.86. We have not nor-
malized to constant M,/L because Anderson and Luco (1982) found that close to the fault, the actual

slip was a more important factor in determination of peak amplitudes than the width of the fault.

Figure § illustrates the synthetic motions generated for three different dip angles. These s_vmh_et-
ics give the motions at the site y —y, = 5 km for strike slip on faults with dips of 90°, 60° and 30°
As in Fig. 2, these synthetics are generated for ¢, infinite. In Figure 5, one sees that while the general
features of the pulse shapes are not changed as the dip decreases, the amplitudes increase considerably.
Peak amplitudes from Fig. S are transferred to Fig. 6, where they are shown as a function of the dip.
Peak accelerations #, and #. increase by factors of 26 and 37, respectively, as the dip decreases from
90°1to 15° These increases are much larger than the increase in the moment, which as mentioned is
only a factor of 3.86. Thus for strike-slip motion on the fault, the dip of the fault plays an important
role in the determination of peak amplitudes of ground motion. We note that as the dip decreases, the

closest distance from the observer to the fault also decreases.

Next, we investigate the effect of a variable rake on the synthetic pulses generated by a dipping
fault. Figure 7 shows the evolution of synthetic acceleration, velocity, and displacement for a site at
Y=Y, =5 km, and for infinite c,, caused by a fault with a dip of 30°as the rake changes from 0° (pure
strike-slip faulting) to —90° (pure thrust faulting). Qualitatively the results shown in Figure 7 resemble
those on Figure 2 for a vertical fault: arbitrary rake disrupts the symmetry, and the amplitudes of some
components are modified by a factor of the order of 2 to 3. The peak acceleration in the y - com-

ponent experiences a reduction by a factor of the order of 6 as the rake varies from 0°to —90° Peak
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amplitudes corresponding to this case are shown on Figure 8. It is interesting that strike slip on the

dipping fault causes stronger shaking than pure dip-slip motions.

To summarize this section, we have studied the evolution from strike-slip to dip slip faulting.
These calculations indicate that the peak amplitudes are quite sensitive to the dip, and less sensitive to

the rake.

FURTHER PARAMETRIC STUDIES ON DIP-SLIP FAULTING

The effects of dip angle on the synthetic motions and peak amplitudes for a site near a thrust fault
are illustrated in Figures 9-11. We have used the same geometry as in Figure 4 for these calculations.
Figure 9 shows synthetic motions generated when ¢, = oo, as it has been in the previous figures. Fig-
ure 10 departs from this, and shows the effect of a finite value for the transverse rupture velocity,
c; = —2.5 km/sec. For this case, at any location x along the fault, the rupture occurs first at the bot-
tom of the fault, and propagates across the width of the fault at 2.5 km/sec. The symmetry properties
which appear on Figure 9 are absent from Figure 10. The differing delays in the time of occurrence of
peak accelerations and velocities is caused because these peaks occur when rupture at the top of the
fault passes in front of the observation point; with the successively greater width of faults of smaller
dip, it takes longer for rupture to pass from the bottom edge to the top edge of the fault. With the
exception of the u, - component, the peak amplitudes shown in Figures 9 and 10 and summarized in
Fig. 11 do not appear to be strongly affected by the dip of the fault. The largest effects occur for peak
accelerations which show an increase by a factor of the order of 3 as the dip decreases from 90° to 15°.
The peak amplitudes for the transverse component u, show a strong dependence on the dip angle and

exhibit a minimum at a dip = 45° Figures 9 and 10 indicate that the sense of motion of the u, - com-

ponent is reversed between dips of 30° and 60°.
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The amplitudes of the acceleration and velocity pulses which are shown in Fig. 10 for finite c, are

much smaller than those shown in Figure 9 for infinite ¢,. Peak amplitudes for the two values of the
transverse rupture velocity ¢, are shown on Figure 11. Differences of a factor of 2 to 3 seem to prevail
for velocity, and factors of 3 to 10 for acceleration. The exception to this pattern is the u, - component
which for dip angles near 45° and for ¢, = — 2.5 km/sec exhibits larger peak values for i, and &, and

equal peak values for u, than the results for ¢, = oo.

In Figure 12, we plot profiles of peak values of acceleration, velocity, and displacement along the
free surface for a thrust fault with a dip of 30°and ¢, infinite. The upper edge of the fault lies beneath
» = 3.46 km. Peak values in the x and z components of motion occur in the vicinity of this point
() = 3.46 km), while the peaks of the y-components are shifted slightly toward smaller values of y.
Figure 12 shows considerable asvmmetry in y, with a less rapid decrease in peak values at y >0, above
the fault plane, and illustrates the extreme dependence of peak amplitude on position. We attempted.
unsuccessfully. to correlate details of the shapes of the curves in Fig. 12 (such as the minimum of u, at
» =0) with the radiation patierns for a point dislocation (Aki and Richards, 1980, p. 80-81) at the top
edge of the fault. As pointed out by Archuletta and Hartzell (1981). motion at any one time results
from contributions from different parts of the fault, and different wave types. Our failure to isolate a
simple radiation pattern effect which correlates with details in Fig. 12 emphasizes that even though the
position of the top edge of the fault is among the dominant parameters in determining the peak values.

the entire extent of the fault contributes to the motion.

ON MEASURE OF DISTANCE TO FAULTS

The available data with respect to peak accelerations, velocities and displacements are typically
organized on the basis of different measures of distance to the fault. In recent correlations, for
instance, Campbell (1981) uses as measure of distance the closest distance to the fault while Joyner et

al (1981) and Joyner and Boore (1981) use horizontal distance to the closest point on the vertical
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projection of the fault area on the free surface. For vertical faults which intersect the free surface these
two measures of distance coincide. For dipping faults the differences may be significant. This is shown
in Fig. 13, where the peak amplitude results presented in Fig. 12 for a dipping thrust fault (dip = 30°
are plotted versus three different measures of distance. These measures correspond to : distance from
the site to the closest point on the surface area (R-Closest), distance to the top edge of the fault (R-
Top), and horizontal distance to closest point on the vertical projection of the rupture area on the free
surface (R-Projection). The distance R-Top was motivated by our observation that the depth of the top

of the fault is more important than the width of the fault in determining near-field peak amplitudes.

Inspection of Fig. 13 reveals that the definition R-Closest tends to reduce the differences between
components and between points at the same value of R-Closest but on different blocks. Even with this
definition of distance differences of about one order of magnitude can be observed in the distribution of
peak accelerations. The distance R-Projection causes a large scatter at R =0 (for the purpose of plot-
ting, the peak amplitudes at R-Projection = 0 are shown to the left of a broken scale since all points
on the upper block above the fault are assigned the same distance R = 0. We note that our steady-
state dislocation model over an infinitely long fault introduces a lower number of characteristic dis-
tances than a finite fault for which the use of a single measure of distance may introduce additional

scatter.

Joyner and Boore (1981) used the larger of the two horizontal components of acceleration in their
regression; Campbell (1981) selected the average of the two horizontal components. For the long
period ground motions given by our calculations, Fig. 13 shows that one of the two components is sys-
tematically smaller than the other. This would seem to violate Campbell’s implicit assumption, in tak-
ing average values, that both horizontal components obey the same distribution. As pointed out by
Hadjian (1978), in actual accelerograph data, the instrumental axes may be oriented randomly with
respect to the fault and, often, with respect to other accelerographs. However, if one vector component
in fault based coordinates is systematically larger, such an effect will persist, with scatter, on randomly
oriented axes. Incidentally, axes in our synthetic calculation are not necessarily oriented such that the
largest peak acceleration will appear on one of the two components. The high frequencies which are
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present in observations but absent from our calculations might be distributed identically in all vector

orientations, but that is not known a-priori.

SUMMARY

Important Parameters in the Model. Within the context of the steady-state, infinite length disloca-

tion model described by Luco and Anderson (1982) we have investigated the importance of several
parameters on the pulse shapes and amplitudes of ground motion near a fault. In a separate paper
(Anderson and Luco, 1982) we have studied in detail the case of vertical, strike-slip faults. In the
present paper we have analyvzed the cases of oblique-slip and dip-slip fault models. In this section, we

attempt to summarize the results obtained in both studies.

First, we have found that the location of the observation point relative to the fault, and especially
the top of the fault, plays an important, and expected role, in determining peak amplitudes of ground
motion. Distance from the fault is the most easily recognized effect of location. A radiation pattern
effect is also present, but is not always simply related to the radiation pattern from a point source. Near

a dipping fault, peak amplitudes are different at equal distances but in opposite blocks.

Static faulting parameters which we studied included the depths of the top and bottom of the
fault, the offset and the moment per unit length. Near the fault, the depth of the top of the fault and
the offset (for short rise time) have a profound effect on the peak amplitudes; the depth of the bottom
of the fault, and thus the moment per unit length, do not appear to play a dominant role at distances

less than about twice the depth of the bottom.

For a strike-slip type earthquake, the dip of the fault had an order-of-magnitude effect on the
peak amplitudes. On a dip-slip fault, the dip is less important, but still plays a prominent role in deter-
mining peak amplitudes. The shallow dipping fault causes larger peak amplitudes than the near-vertical

fault. The rake, or slip direction on the fault plane is relatively unimportant (within a factor of 2) in
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determining peak amplitudes for a vertical fault, and slightly more important as the fault becomes more
shallow-dipping.

The dynamic parameters considered included the rupture velocities ¢; and c,, and the rise time.
The horizontal rupture velocity ¢, was found in Anderson and Luco (1982) to play a crucial role in
determining peak accelerations. and a successively lesser role in peak velocities and peak displacements.
When the rupture velocity c¢; is close to the Rayleigh wave velocity of the medium, the effect is most
impressive. For the strike-slip fault, on which this effect was studied, peak accelerations change by a
factor of about 4 for a less than one percent change in ¢; as ¢; approaches the Rayleigh wave velocity.
The transverse rupture velocity, ¢,, was not very important on the vertical, strike-slip fault, but on the
dipping fault it may reduce peak accelerations and velocities considerably. In all cases, it plays an
important role in modifying pulse shapes.

The role of the rise time is also important, especially as one extrapolates this model to larger mag-
nitude earthquakes in which the rise time is still unknown. Scholz €1981) has pointed out that if the
larger slip in a large magnitude earthquake is accomplished within the same rise time as for a smaller
earthquake, the peaks of ground motion would be considerably greater than they would be if the rise

time is proportional to the slip.

Extension to Real Earth. Anderson and Luco (1982) were encouraged by the finding that the

pulse shapes generated by this model resembled the long-period components of observed ground
motion at sites adjacent to the fault associated with the October 15, 1979 Imperial Valley, California
earthquake. However, there is a considerable amplitude discrepancy, with the model giving much lower
peak values than those in the data. This discrepancy in amplitude was sufficiently great that one possi-
bility for explaining the similarity of shape is that it is a coincidence, with the data pulses caused by
some phenomena other than the approach and probable passage of the rupture front by the stations.
(e.g. the rupture of a large fraction of the fault as an isolated event). However, the results of Bouchon
(1979) suggest that shallow layering might also cause an increase in amplitude sufficient to resolve the
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discrepancy. This leads to the conclusion that this model, after extension to a layered medium, will be
a useful tool with which one can attempt to examine the strong ground motion in the near-field of a

major earthquake.

We may attempt to anticipate the results of this extension by use of the calibration provided by
the strike-slip case. With ¢; = 3 km/sec, z, = 2 km at y —y, = 5 km, the strike slip case yielded peak
accelerations which were too small by a factor of about 15 and peak velocities which were too small by
a factor of about 5 compared to correlations of Joyner et al (1981). Compared to low-pass filtered (0.5
Hz) Imperial Valley data, synthetics which had been filtered in the same way underestimated the trend
of peak accelerations on the transverse array by a factor of about 6 at a distance of 5 km. These filtered
accelerograms are dominated by frequencies comparable to those which dominate the unfiltered velocity

records from Imperial Valley.

If we used these "calibration factors"” for the strike slip case to anticipate peak values which might
be obtained near a thrust fault, we obtain large peak accelerations and velocities. For example, from
Fig. 12, which is based on 1 meter offset on a fault which dips at 30° and for which ¢, = oo, one
obtains after application of a factor of 15 a maximum peak acceleration between 3.5g to 4g, and peak
accelerations exceeding lg over a band about 10 km wide parallel to the fault. Applying a factor of 5
increase to peak velocities, the largest peak velocities would exceed 500 cm/sec, and the peak velocities
would exceed 100 cm/sec over a band about 15 km wide. As mentioned previously, if one were to
extrapolate to larger slips, which are not unusual in significant thrust earthquakes, these values might
be scaled upwards depending on how the rise time is handled. Finite values of ¢, may be likely for
major thrust mechanism earthquakes, and would tend to cause the peak values to be scaled downwards.
In general, our lack of knowledge about what parameters to apply to faulting in major earthquakes tends

to limit the confidence of immediate applications of such extrapolations.
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(a)

(b)

Figure 1. Coordinate system and fault mode] used in these calculations.
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UPPER BOUNDS ON NEAR-SOURCE PEAK GROUND MOTION
BASED ON A MODEL OF INHOMOGENEOUS FAULTING
By
A. McGarr

ABSTRACT

Two independent arguments indicate an upper bound of about 10 for the
ratio rolri in the expressions for peak velocity v and peak acceleration a
at close hypocentral distances R: X;(BATPO/uR)(O.lOrO/r1+0.15) and
g=(AT/oR)[0-30(PO/F$+0-45], where r. is the radius of the most
heavily loaded asperity that fails within an earthquake source region of
radius ro» AT is the stress drop, g is the shear wave velocity, u is the
modulus of rigidity, and p is the density; these relationships are for ground
motion recorded in a whole-space. First, a recently-reported data set was
augmented by observations for six earthquakes in the magnitude range
4iMLi6°6’ for which ground motion was recorded at a minimum of five sites at
hypocentral distances of the order of 10 km; the new events include the 1979
Coyote Lake and 1979 Imperial Valley shocks. The entire data set of 22
events, spanning a range in seismic moment from 5x1016 to over 1026
dyne-cm, is consistent both with the bound ro/r1<10 and with the previous
conclusion that this ratio does not depend systematically on earthquake size.
Second, a theoretical argument, using the result of Savage and Wood that the
apparent stress acting on the earthquake fault plane is less than half of the
stress drop, is made to the effect that ro/r1<10. In addition, absolute
limits, independent of earthquake size, for peak acceleration are related to
the state of stress in the crust; for an extensional state of stress a<0.40g
and for the other two stress states a<1.99g, where a now represents the
maximum horizontal acceleration as recorded at the surface directly above the
seismic source.

INTRODUCTION
McGarr (1981) described a model of inhomogeneous faulting and used it as
a basis for the analysis of peak ground motion for a suite of mine tremors and
earthquakes with seismic moments ranging from 5x1016 to over 1020
dyne-cm. Briefly, the model involves an annular faulted region of outer
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radius r surrounding an unfaulted "ligament" or "asperity" of radius r

The faulting of the annulus is presumably the result either of preceding

.i-

earthquakes or aseismic creep. An earthquake occurs when the central ligament
fails under the influence of loading that depends both on the level of ambient
shear stress above the frictional stress resisting fault slip and the ratio of
the outer and inner radii of the pre-faulted annulus, i and Ty

respectively. The peak velocity v and acceleration a resulting from such a
model are given by

SATY‘O
v = —g—(0.10r0/r;+0.15) (1)
and
a =%[0.30(r0/r1)2+0.45] (2)

where g is the shear wave velocity, AT is the overall stress drop, u is the
modulus of rigidity, R is the hypocentral distance, and o is the density.
Here u=3x10" dynes/cmz, ,o=2.7gm/cm3 and g=3.5km/sec unless indicated
otherwise and a radiation factor of 0.57 is assumed. Furthermore, it should
be noted that (1) and (2) are appropriate for ground motion as recorded in a
whole-space rather than on a free surface. In this analysis, the effect of
the free surface is assumed to be a doubling of the horizontal components of
S-wave motion. The terms in the parentheses of (1) and (2) involving ratios
of ro/r; correspond to the high-frequency ground motion associated with
the failure of the central asperity, and the other terms indicate relatively
low-frequency motion due to the broad scale readjustment to a new state of
equilibrium over the entire faulted region of radius P

In practice, AT and ro are estimated using standard techniques (e.g.,
Brune, 1970, 1971; Hanks and Wyss, 1972) and then observations of the peak

ground motion can be used to determine the ratio ro/ry and, therefore,

. can be estimated from (McGarr, 1981)

r.. In addition, Py

i

ri=38v;/a; (3)

where_li and.gi represent the high-frequency contributions to the peak
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ground motion due to the failure of the asperity. Thus, we have three

independent means of determining the radius of the asperity. Once ro/ri

is determined, additional variables associated with the inhomogeneous failure
can be calculated. Specifically, the stress drop of the small scale asperity
failure is given by

AT, = AT(rO/ri)Zf(ri/ro) (4)

The small-scale displacement is

0; = 1228 (/i) £y ) (5)

and the seismic moment of the asperity failure is
M= 1.52atror flr. fr. ) (6)
0 : 0 i i"o

where f(rilro) is a power series that has a value very close to 1 for
Qiri/rogz; accordingly f is taken as 1 here.

After analyzing 16 seismic events having moments ranging over nearly 10
orders of magnitude, McGarr (1981) concluded from the observations that the
ratio Fo/r; is normally within the range of 1 to 10 and shows no
systematic variation with seismic moment Mo. It is important to know whether
ro/r; is always within this range because, if so, equations (1) and (2)
imply that peak velocity and acceleration can be predicted to be within
reasonably narrow limits, depending on the seismic source parameters at and
P e This is especially true for peak velocity because from (1) we see that
the dimensionless quantity RXy/(ATBYO) is expected to have a value between
0.15 and 1.

In this study, the question of upper bounds on ro/ri has been
investigated in two ways. First, the existing set of observations (Table 1 of
McGarr, 1981) was augmented by analyzing peak ground motion from six
earthquakes in the magnitude range 45ML36.6. The six new events are of
particular importance because their ground motion was recorded at a minimum of
five sites at epicentral distances of roughly 10 km or less. Thus, the ground
motion parameters can be determined with considerably more confidence than for
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single-site observations, which formed most of the data set of McGarr (1981).
Second, a theoretical argument based on the result of Savage and Wood (1971)
that the apparent stress acting on the earthquake fault plane is less than
half of the stress drop indicates that rO/r1<lO.

In addition two other analyses are presented that bear on the question of
upper limits to peak ground motion. First, an attempt is made to relate the
results of the inhomogeneous faulting model to those of models involving A
homogeneous stress drops, but for which the rupture front propagates
coherently over the fault plane at a given velocity. The results of this
investigation, which involved the analysis of ground motion synthesized for a
theoretical earthquake by Archuleta and Hartzell (1981), suggests an
equivalence between the ratio ro/r; and rupture velocity with high rupture
velocities corresponding to high values of ro/ri' Second, absolute limits
on the level of peak acceleration at close hypocentral distances are related
to the strength of the crust (e.g. Hanks and Johnson, 1976) which, in turn, is
a function of the state of stress.

ANALYSIS OF PEAK GROUND MOTION

The six earthquakes for which peak ground motion was analyzed are listed
in Table 1 along with parameters relating to the seismic source, ground
motion, and inhomogeneous faulting. These events were chosen for study
primarily on the basis of their ground motion having been recorded at many
sites at hypocentral distances typically of the order of 10 km. The analysis
of these events is now discussed in the order of listing in Table 1.
Imperial Valley earthquake. Occasionally, the greatest difficulty in applying

equations (1) and (2) to the interpretation of peak ground motion involves
uncertainty in the location of the most heavily loaded asperity; that is, the
distance R to the asperity is poorly established. Although in most cases the
source dimension of the earthquake is sufficiently small, relative to the
source-to-site distance, that the asperity can be assumed to coincide with the
lTocated hypocenter with 1ittle risk, such an approach was not feasible for the
Imperial Valley earthquake of October 15, 1979. For this event the source
region was of the order of 30 km in extent, and the most significant records
of ground motion were from sites within the zone of aftershocks. Because it

was necessary to know the location of the most significant asperity that
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TABLE 1. Source Parameters and Peak Ground Motion Variables

EXE % _-qg__;‘_”,_“ig___WQQA,,_fiin_‘__47_5§__v____,___,,V?g_,‘__Eigffilx__iquii)g_____fiw_,ﬁ {rofMidvsa Taf i Dy
dyne-cm km cm  bars cm‘ /sec bars km bars bars cm

Imperial Valley, 1979 6.6 7x1025 9.8 77 33 (4.62%0.95)x107 7624213 12.2 8.8 1.81£0.47 5.4 119 R42 287

Coyote Lake, 1979 5.9 6x1024 4.5 3 29 (1.60%0.57)x107 3584208 10.5 8.5 0.770.25 5.8 112 A50 123

Oroville event B 4.1 3.6x1022 0.675 8.4 51  (1.52£0.74)x106 13665 3.8 3.0 0.3310.055 2.0 3 136 11.1
Aug. 3, 0247

Oroville event T, 4.0 2.2x1022  0.525 8.6 67 (1.30£0.29)x10h 171449 3.2 2.9 0.230%0.074 2.3 103 236 13.0
Sept. 26, 0231

Oroville event U, 4.6 8.8x1022  0.545 31.4 238  (3.07+1.48)x106 3064103 2.0 2. 0.263%0.065 2.4 333 700 43.9
Sept. 27, 2234

Oroville event K, 4.9 1.8x1023  0.811 29.0 148  (1.80%0.69)x]06 187278 1.3 2.0 0.306%0.117 2.k 261 693 §1.3
Aug. 8, 0700

Archuleta-Hartzell, 6.4 4.5x1025 5.0 190 100 (1.77#0.37)x107  487¢131 3.6 4.0 1.10£0.08 4.55 303 1380 3A7
v = 0.758

Archuleta-Hartzell, 6.4 4.5x1025 5.0 190 100 (2.77%1.36)x107 R34 636 (W3 5.4 1.030.14 4,85 323 1868 391

v = 0.908




failed during the earthquake, the analysis described here relies heavily on
the results of Hartzell and Helmberger (1981) who concluded, on the basis of
strong motion modeling, that the region of most concentrated slip was located
about 18 km northwest of the hypocenter, at a depth of 6.5 km. S-wave
radiation attributed to this localized concentration of slip was analyzed at
the eight accelerograph sites within ~ 10 km of the "asperity," and R in
equations (1) and (2) was estimated accordingly. Peak velocity v and
acceleration a for the phases having the appropriate timing and polarity to be
associated with the asperity were measured from the processed accelerograms of
Brady et al. (1980a). The results are listed in Table 1 and illustrated in
Figures 1 and 2. The seismic moment Mo was determined by Kanamori and Regan
(1981) from very long period Rayleigh waves, and the source radius was chosen
to yield a total area of 300 km2 based approximately on the distribution of
significant fault slip deduced by Hartzell and Helmberger (1981). The stress
drop of 33 bars was calculated from (Brune, 1970)
7

AT = IGMO/rg
We see in Table 1 that both Rv and pRa have reasonably low uncertainties as
measured at the eight sites. In fact, the estimates of dimensionless peak
velocity (RXy)/ATBrO) and peak acceleration pRa/at are limited more by the
uncertainty in ¥ than by the precision of the estimate of the peak ground
motion. The ratios ro/r; estimated from equations (1) and (2) are each
quite high, especially that inferred from the peak velocities. Undoubtedly,
the best determination of the asperity dimension is that based on equation
(3), which is independent of such effects as radiation pattern and
directivity, inasmuch as these sources of uncertainty cancel when taking the
ratio v/a. The inferred asperity radius of 1.8 km yields a ratio ro/ri of
5.4, which is then used to calculate the remaining entries in Table 1 relating
to the inhomogeneous aspect of the failure.

The ambient faulting stress, Ty¢» 1s the difference between the
regional shear stress applied to the fault plane and the frictional stress
that resists sliding across the fault zone surrounding the asperity. A value
of 119 bars Table 1 for the Imperial shock is well within the range of
estimates listed in Table 1 of McGarr (1981). AT, the localized stress

> ]
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Figure 1. Dimensionless peak velocity parameter as a function of Mo. The

numbered data on the left correspond to mine tremors (McGarr et

alsy 1981). The points denoted P, A, F, K. V, B, and T indicate
Oroville aftershocks (Fletcher et al., 1982; Fletcher et al., 1980;

Boatwright, 1981). The codes S1, S2, BV, CL, and SF are for the

Shumagin Islands 0153, Shumagin Islands 0356 (House and Boatwright,

1980), Stone Canyon (Johnson and McEvilly, 1974; Brady and Perez,
1978), Coyote Lake (Brady et al., 1980b), and San Fernando (Heaton
and Helmberger, 1979; Hanks, 1974) earthquakes, respectively. A-H
refers to the synthetic event analyzed by Archuleta and Hartzell
(1981).
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of McGarr, 1981) and Horse Canyon (Hartzell and Brune, 1979),

respectively.
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drop associated with the asperity failure, is fairly high at 642 bars but
certainly nowhere near the upper 1imit of the other determinations of this
variable (Table 1, McGarr, 1981). The amount of fault slip across the
asperity Di is perhaps the most interesting variable in that the estimate of
282 cm inferred here agrees well with the peak value of about 250 cm at the
asperity calculated by Hartzell and Helmberger. In this regard, note that the
estimate of r; of 1.8 km also coincides well with the dimension of the
region of concentrated slip seen in Figure 12 (Model 9WM) of Hartzell and
Helmberger (1981).

Finally, the seismic moment of the asperity failure, which is given by
(McGarr, 1981)

- 2
M0—1.52A1r0r1 (8)

is about 8.7x1024

earthquake.

dyne-cm, or roughly 12 per cent of the total moment of the

Coyote Lake earthquake. The least certain aspect of the Coyote Lake

earthquake involves the estimate of the source radios P A source radius

of 4.5 km was chosen so as to yield a circular fault plane of approximately
the same average dimension as the presumed fault plane of the main shock. As
defined by the aftershock distribution,, this fault plane is assumed to extend
southeastward of the epicenter to where the Calaveras fault shows a
substantial offset to the right (Lee et al., 1979; Reasenberg and Ellsworth,
1982). The value of MO=6x1024
drop of 29 bars (Table 1).

Although the estimate of Yo is little more than a guess, the resulting

dyne-cm (Urhammer, 1980) yielded a stress

source parameters are in good agreement with those determined by Liu and
Helmberger (1981), using a completely independent approach; for example, they
concluded that at = 30 bars. As will be seen, several inhomogeneous aspects
of the Coyote Lake event determined here are also in good agreement with those
deduced by Liu and Helmberger.

The peak ground motion parameters Rv and Ra were determined from the
processed accelerograms from five sites (Brady et al., 1980b) , Coyote Creek,
nearly above the hypocenter, and four stations of the Gilroy array
approximately 10 km to the southeast. The process of estimating Rv and Ra was
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complicated by the recording of S wave radiation from more than one
significant asperity. The most energetic of these sources, however, appears
to coincide with the hypocenter (e.g. Liu and Helmberger, 1981) and so this
hypocentral asperity is analyzed here. The measurement of a and v from the
records of ground motion at the Coyote Creek site was straightforward because
of the simplicity of the acceleration and velocity pulses here (Figure 3);
presumably, S waves from the hypocentral asperity account for nearly all of
the high amplitude ground motion within the first 2 seconds of the S wave
arrival. As recorded at Gilroy 6, however, the strong ground motion is more
complex and care must be taken to isolate the effect of radiation from the
hypocentral asperity. Although the velocity pulse on the S50°W component
appears simple, the initial downward motion (Figure 3) seems, in fact, to be
the result of two separate pulses. This can be seen most easily on the N4O W
component, which shows two upward pulses in velocity coinciding in time with
the broader simple-appearing downward pulse on the S50°W component (Figure
3). The other stations of the Gilroy array show similar complexity. In all
cases, the first-arriving pulses are associated with the hypocentral asperity
as indicated by the arrows in Figure 3 showing where the measurements were
made.

As indicated in Figure 3, a was, in all cases, measured from the peak in
the accelerogram immediately preceding the peak in velocity even though this
is not the true peak acceleration for any of the illustrated records. This
measurement procedure was followed because of the need to isolate the effect
of the hypocentral asperity. The theoretical justification for this procedure
is that the source model employed here (McGarr, 1981) yields peak
accelerations and velocities associated only with the leading edge of the
displacement pulse. Other models (e.g. Madariaga, 1977) often result in peak
ground motion corresponding to stopping phases.

As analyzed here (Table 1), the various measures of stress associated
with the Coyote Lake event are remarkably similar to those of the Imperial
Valley shock, whereas the dimensions and displacements are scaled down by a
factor of about 2. The moment Mg associated with the hypocentral asperity
is, from (8), about 6.9x1023
this result is similar to that of the Imperial Valley shock.

, which is 11 percent of the total moment; again

Interestingly, the displacement of 123 cm associated with the failure of
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the asperity (Table 1) agrees excellently with the corresponding value of 120
cm estimated by Liu and Helmberger (1981). Their peak stress drop for the
hypocentral asperity of 137 bars, however, is substantially lower than that
inferred using the present analysis.

determination of the source parameters of the four Oroville aftershocks listed
in Table 1 are discussed by Fletcher et al. (1982) and Perez (1979). The peak
ground motion parameters were measured at a minimum of seven sites and so the
lTisted standard deviations are well-determined. We see in Table 1 that the
three estimates of ro/ri for each of the aftershocks are generally in good
agreement and that nearly all of these ratios fall in the interval between 2
to 3. These ratios are consistent with those for three other Oroville
aftershocks studied by McGarr (1981, Table 1) although for the latter set the
ratios tend to be slightly lower. It can easily be demonstrated that for
Vo/rigﬁ none of the ratios for any of the seven aftershocks is suppressed
artificially due to the limited recording bandwidth, which extends to 25 Hz.
Thus, for the Oroville aftershock zone ro/ri in general is significantly

lower than for either the Imperial Valley or the Coyote Lake shocks.

RUPTURE PROPAGATION
Needless to say, there is more than one way to explain the large observed
range of peak ground motion parameters for earthquakes with a given set of

source parameters Mo, AT, and r In addition to models involving

inhomogeneous stress drops, sucﬁ as that employed here, faults with
homogeneous stress drops but whose failure involves coherent rupture
propagation result in ground motion parameters, a, and v, which depend on the
rupture velocity, as well as the seismic source parameters.

To acquire some indication of the correspondence between rupture velocity
and the ratio ro/ri’ which plays the key role in the asperity model, the
peak ground motion synthesized by Archuleta and Hartzell for a model involving
rupture propagation over a circular fault is analyzed using equations (1) and
(2). The Archuleta-Hartzell model involves coherent rupture propagation at
velocities of either 0.758 or 0.98 over a fault of radius 5 km under the
influence of an effective stress of 100 bars; that is, the static stress drop

At = 100 bars. Ground motion was computed for sites in four different
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directions from the fault at a constant hypocentral distance R of 9.22 km, and
the numerical computations were over a frequency band extending from 0 to 5
Hz.

The results of applying equations (1) through (6) to the ground motion
resulting from the Archuleta-Hartzell model are listed in Table 1 and
illustrated in Figures 1 and 2. (Note that for this model g=3.0 km/sec and
p=3.3 gm/cm3.) We see that for a rupture velocity vr=0.753 the
corresponding ratio r /r; is about 4, whereas for v,.=0.98,
rolri=5.

Archuleta and Hartzell (1981) noted that all of their ground motion
results scale with the effective stress or at. The representation of their
results here indicates, in addition, how to scale their results for different
MO or ry.

Finally, it is perhaps worth mentioning that the analysis of the
Archuleta-Hartzell ground motion in terms of the inhomogeneous faulting model
provides a convenient means of establishing whether their bandwidth of O to 5
Hz was adequate for calculating the accelerations. Consider the corner
frequency associated with the asperity failure of the event with a rupture
velocity of 0.98. According to Brune (1970)

and for ri=1.03 km (Table 1) fi=1.3 Hz. Thus, the band extending to 5 Hz
was entirely adequate and the peak accelerations were not suppressed
artificially.

The analysis of the Archuleta-Hartzell (1981) model in terms of equations
(1) and (2) also serves to emphasize the nonuniqueness of interpreting ground
motion data using a specific type of source. It appears, as indicated before
by McGarr (1981), that other types of evidence are necessary for determining
whether it is more appropriate to interpret the data on the basis of rupture
velocity or scale of inhomogeneity. To the examples cited by McGarr (1981) of
events involving inhomogeneous stress drops, as well as the Imperial Valley
shock (Hartzell and Helmberger, 1981), the case of the 1975 Pocatello Valley
earthquake, Idaho, can be added. Bache et al. (1980) interpreted the long
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period and short period seismograms at teleseismic distances from this shock
and determined, in the present terminology, that r0=12 km from the long
period data, and r1:2.6 km on the basis of the short period records. This
result can be used to estimate the seismic moment of the asperity failure, and
these estimates can then be compared to the corresponding results directly
determined by Bache et al. The long period moment for the Pocatello Valley
event was estimated to be 2.2x1025 dyne-cm. For ro/ri = 4.6, equation
(6) yields Mo=3.2x1024 dyne-cm. Thus, the ratio Mo/M; is about 6.9, which
is in the middle of the range of 5 to 10 determined by Bache et al. (1980).
In any case, the Pocatello Valley event clearly required an inhomogeneous
stress-drop interpretation in spite of the fact that Bache et al. assumed, in
their calculation of synthetic seismograms, coherent rupture propagation over
each of the fault planes.

UPPER LIMIT TO rolrs

Figures 1 and 2 have been adapted from Figures 3 and 4, respectively, of
McGarr (1981) and the data set presented has been augmented by the peak ground
motion parameters listed in Table 1. The points plotted in these two figures
are nearly all consistent with an upper bound for ro/ri of about 10.

The only substantial exceptions are the dimensionless peak velocity and
peak acceleration for the San Fernando earthquake. These values were measured
at only a single site, Pacoima Dam, which was essentially coplanar with the
initial faulting (e.g., Hanks, 1974). As discussed by McGarr (1981) a
radiation factor of 1 rather than the factor of 0.57 assumed in equations (1)
and (2) is more appropriate for this situation. Accordingly, the effect of
this correction is indicated in Figures 1 and 2, and we see that both v and a
for this event are then consistent with ro/rizlo'

It turns out that the upper bound for ro/ri of about 10 suggested by
the peak ground motion data is consistent with the theoretical upper bound
that follows from the relationship developed by Savage and Wood (1971)

o4/ aT<Y (9)

where o4 is the apparent mean shear stress causing the fault slip during the
event.

According to Wyss and Brune (1968)
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where E is the radiated seismic energy. Perret (1972) has shown that for

equidirectional radiation the seismic energy radiated by the S waves is

ES = awaR%/VZdt

where v is the ground velocity and the integration is performed over a
suitable time window to include the entire phase. In the following analysis
we assume that the P-wave energy is negligible compared to that of the S
waves, an assumption in good accord with observations including those of
Boatwright and Fletcher (1982) who found that the energy radiated in the S
waves is more than a factor of 20 greater than that in the P waves.
Specifically, (11) is used to calculate the total radiated energy E.
Equations (13) and (17) of McGarr (1981) imply

4.2
Rv(t) = ‘9;§%MO——E—(3—wt)e

4moB

-wt

where w is the corner frequency of the S-wave displacement spectrum on the

scale of either ro OF Ty- Thus, it is straightforward to integrate

sz2 to calculate ES and therefore o4 from (10) to obtain

5, (r)=4.14x10"%Mo/r (13)

where r can be either r or ri. It then follows that the apparent stresses

that are proportional to the S wave energies radiated from the asperity and

overall source radiation are, respectively
o1=4.2x10%atr_ /.
a. o''1
and (14)

09=9.46x1072a1
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For comparison, incidently, a simiTar analysis of the Brune (1970) source
model yields oy = 0.186at (Hartzell and Brune, 1977), which means that for a
given stress drop AT, the Brune model radiates about twice as much energy as
that due to the large-scale stress relaxation in the present model.

From (9) and (14)

i o0
0a+0

o, /8t =A—<F—i = 4.14x10-2(ry /ri+16/7)<%

and solving for ro/ri yields

ro/r;<9.8 (15)

Inclusion of the P-wave energy in the calculation of o, would result in only
a slight reduction of the upper bound (e.g. Boatwright and Fletcher, 1982).

ABSOLUTE ACCELERATION BOUNDS
To determine an upper limit for a assume first that the radiation term is
1 in equation (2) rather than 0.57, as has been assumed up to now. Then if
equation (4) is used to express equation (2) in terms of AT, the peak
acceleration recorded in a whole-space is

a<0.7947, /oR (16)

assuming that the term in (2) not involving ro/ri can be neglected. As

noted before (McGarr, 1981), equation (16) is essentially equivalent to
equation (3) of Hanks and Johnson (1976) relating the "dynamic shear-stress
difference" § to the peak acceleration, assuming that AT, the stress drop

of the asperity has the same significance as %. Hanks and Johnson suggested
that 5, or aT., might be limited by the strength of the crust in the
hypocentral region with corresponding limits on the peak acceleration,
according to equation (16), for example. A recent analysis of limits on the
state of deviatoric stress imposed by the strength of the Tithosphere by Brace
and Kohlstedt (1980) provides the means of exploring the implications of the
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conjecture put forth by Hanks and Johnson (1976) with regard to upper limits
on peak ground acceleration. .
Before investigating bounds on the depth dependence of AT;, equation
(16) is converted into a form suited to the situation of acceleration recorded
at a station on the surface of a half space directly above the most
significant asperity that fails during an earthquake. In this case the ground
motion due to the S wave radiated from the asperity at depth z is purely
horizontal and the effect of the free surface is to double the amplitude of
motion, so that

a (upper bound) <1.5841./pz (17)

Now consider limits on AT; as a function of depth. According to Brace
and Kohlstedt (1980), if the crust contains fractures of all orientations then
Byerlee's (1978) law of friction yields

01—P=5(03—P) (18)
for 03-P<110 MPa
where o, is the maximum principal stress that can be sustained for a given
minimum principal stress o3 and pore pressure P is taken as hydrostatic
here. If either o1 Or o3 is oriented vertically then its value can be
taken as pgz (e.g. McGarr and Gay, 1978) where g is gravity, and (18) can then

be used to determine the other principal stress. The upper bound on the
stress drop of the asperity is then given by

8T 3<(01-03) /2 (19)

In an extensional state of stress oy is oriented vertically so that
from (18) and (19)

87,<0.4(p-1)gz=6.7(MPa/km) z (20)

For a compressional state of stress o3 is oriented vertically yielding
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AT 5<2(p-1)gz=33.4(MPa/km) z (21)

Equations (20) and (21) substituted into (17) yield for upper bounds on peak
acceleration

Extensional stress state: a(upper bound)<0.40g (22)
Compressional stress state: a(upper bound)<1.99g (23)

If the state of stress is appropriate for the occurrence of strike-slip
faulting it seems most realistic to presume that a has the same upper bound as
for a compressional stress state (23) because the vertically oriented
intermediate principal stress o, can be arbitrarily close in magnitude to

the minimum principal stress in such a regime; that is, the stress state for
which o;>>p9z>03 would be associated with strike slip faulting.

The upper bounds given by (22) and (23) are clearly based on idealized
assumptions and so some qualifications are necessary. First, a number of
possible propagation and recording site effects have not been taken into
account; this analysis is strictly appropriate only for recording on the
surface of a homogeneous half space. Second, the pore pressure is assumed to
be hydrostatic even though in some regions P=0 is more appropriate (e.g.
McGarr et al., 1975); if P=0 then the upper bounds given by (22) and (23)
increase by 59 per cent, for an assumed density of 2.7 gm/cm3. Third, the
strength of the crust as a function of depth undoubtedly shows some localized
variation not accounted for in equations (20) and (21) due to variations
either in the state of stress or in material properties. Of all the
qualifications associated with (22) and (23), site effects seem most likely to
lead to observed contradictions, especially for earthquakes occurring in
extensional states of stress for which the upper bound on a of 0.4 g is very
Tow.

Inequalities (22) and (23), even though based on somewhat idealized
assumptions, appear to be reasonably realistic for several reasons. First,
there are no counterexamples, to my knowledge, for (23), and only a small
number for (22), most, or all, of which appear to be due to pronounced site
effects (e.g. Seekins and Hanks, 1978; Fletcher et al., 1980). Second,
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qualitative support for (22) and (23) is provided by the empirical study of
Campbell (1981) who found that peak accelerations from reverse faulting events
average about 28 percent higher than those from earthquakes on other types of
faults; presumably an even greater difference would have been found had his
study contrasted reverse and normal faulting shocks.

The most important implications of (22) and (23) are that absolute upper
bounds on peak acceleration exist, at least in principle, independent of
earthquake size and, all other factors being equal, earthquakes due to normal
faulting are associated with much lower bounds on peak acceleration than
events resulting from the other two distinct types of faulting.

DISCUSSION
It is of interest to compare the results of the recent studies of ground
motion parameters by Joyner and Boore (1981) and Hanks and McGuire (1981) to
the conclusions summarized in Figures 1 and 2. Joyner and Boore empirically

derived the following expressions. For peak velocity

log v = -5.90%+0.326 log Mo-logr-0.00256r+0.175+0.22P

where r=(d2+4.02) ,24.0<10g Mo<?27.2 and d is the minimum distance between
the surface projection of the fault and the recording site. For peak
acceleration

log a = -3.68+0.166 log Mo-log r-0.00255r+0.26P
where r=(d%+7.3%) ,23.5<log Mo<27.6

For purposes of plotting the above two relations in Figures 1 and 2 I
have taken P=0, which implies a 50 percent probability that the resulting
ground motion values would be exceeded, S=0, corresponding to hard rock sites,
and r is taken to be R, the distance from the asperity to the recording site.
Because the present analysis involves only small hypocentral distances the
small Tinear terms in r above are neglected. For convenience, the coefficient
of Tog M, in the expression for v has been changed very slightly to 0.333.
Lastly, it should be noted that an average stress drop of 30 bars was assumed
and the effect of the free surface has been taken into account.

The relationship of Joyner and Boore (1981) for peak velocity (Figure 1)
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is equivalent to setting r /r. (equation (1)) equal to 7.7. Their
equation is in reasonable overall agreement with the data although it tends to
predict somewhat higher velocities than are observed for M0<1020 dyne-cm.

The Joyner and Boore relationship for peak acceleration, for which a

0'166, is also consistent with the data (Figure 2). The

scales as Mo
discrepancy between their formula and the peak motion for many of the
earthquakes, including those with symbols T, B, U, A, K, F, BR, P, S1, and S2,
is actually less than indicated in Figure 2 because an assumed stress drop of
30 bars is not appropriate for these high stress-drop events (Table 1 and
Table 1 of McGarr, 1981). For the events with Mo<1020 dyne-cm, an assumed
30-bar stress drop is realistic, and the Joyner and Boore curve tends to be
somewhat Tow although still within the bounds of the data.

According to Hanks and McGuire (1981)

oRa = 0.85( 2“ max 2 1n(? max
AT 106
where fmax is the maximum recordable frequency and fo is the corner

frequency of the seismic source spectrum (e.g. Brune 1970, 1971). This

relationship is appropriate for the recording of a single horizontal component
on the surface of a half space. For purposes of plotting the Hanks and
McGuire formula in Figure 2 the factor of 0.85 is changed to 0.74 to simulate
the recording of the total vector ground motion in a whole space.

Furthermore, following Hanks and McGuire (1981) at is taken as 100 bars for
purposes of computing f . Since the present analysis is concerned only with

ground motion recorded at minimal hypocentral distances, f is simply the

high-frequency 1imit of the accelerograph. For the earthqggies with Mo>lO22
dyne-cm, fmax=25Hz and for the mine tremors with M05}020 dyne-cm,

fmax=400Hz (McGarr et al., 1981). The Hanks and McGuire (1981) curve shows
similar scaling to that of Joyner and Boore (1981) and is also in
correspondingly good overall agreement with the data (Figure 2).

The most important distinction between the present results and those of
Joyner and Boore (1981) and Hanks and McGuire (1981) involves the scaling of
peak acceleration with seismic moment. The observations and analysis
summarized in Figure 2 indicate that a does not vary systematically with Mo

whereas the results of the other two investigations indicate a scaling
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0.166 0.20

The results of this study (equations

according to Mo or Mo
(2), (22), and (23)) are in accord, however, with those of Hanks and Johnson
(1976) and Campbell (1981) who concluded that peak acceleration in the near
field is independent of magnitude [or moment].

Both Joyner and Boore (1981) and Hanks and McGuire (1981) discussed
problems associated with trying to extrapolate their curves to seismic moments
in excess of those considered in their studies; in each study the authors
concluded that such an extrapolation would be inadvisable. The analysis of
this report leading to a theoretical bound on rO/ri yields an additional
argument against the upward extrapolation of the Joyner-Boore and
Hanks-McGuire curves. The Joyner-Boore and Hanks-McGuire relations violate
the condition ro/ri<10 for Mo in excess of 1027 and 1028 dyne-cm,

respectively (Figure 2).

CONCLUSIONS
In view of the data illustrated in Figure 1 as well as the theoretical
upper bound on ro/r; of about 10, it is clear that peak velocity at close
hypocentral distances is quite predictable. From equation (1) the
dimensionless peak velocity (Rgp)/(Arsro) ranges from 0.15 to 1, and so if

R, AT, and r_ can be specified, then the peak velocity falls within narrow

Timits. Becguse the implied scaling of v according to Mol/3 holds over
nearly 10 orders of magnitude in seismic moment (Figure 1), it seems likely
that equation (1) would remain valid beyond the range of the data, in
particular, for events with moments in excess of 2x1026 dyne-cm.

Peak acceleration a is in one sense less predictable and in another sense
more predictable than peak velocity. Because a is proportional to
(rolri)2 (equation (2)) the dimensionless peak acceleration pRa/at shows
a much broader variation than the dimensionless peak velocity. With an upper
limit of 10 for r /r., cRa/a can vary from 0.45 to 30.

Peak acceleration is, however, more predictable than peak velocity with
regard to absolute upper bounds, independent of earthquake size. Rather than
varying systematically with earthquake size the upper bound on peak
acceleration is proportional to the strength of the crust, which, in turn,
depends on the state of stress. For extensional states of stress the upper
bound is quite low at 0.4 g whereas for other stress states peak acceleration
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is limited to 1.99 g. Clearly, this factor of five difference in peak
acceleration 1imits means that the state of stress must be taken into account
in the prediction of strong ground motion at a given locale.

The analysis of the coherent rupture propagation models of Archuleta and
Hartzell (1981) tends to suggest that the primary conclusion of this report,
that peak ground motion is limited according to equations (1) and (2) in
conjunction with (15), is to some extent independent of the specific model of
inhomogeneous faulting considered here and by McGarr (1981). Because rupture
velocities exceeding g are implausible and as a rupture velocity as high as
0.98 is equivalent to r /r.=5 (Figures 1 and 2, Table 1) it seems Tikely
that upper bounds to ground motion parameters based on models of coherent
rupture propagation will correspond to rO/rile, or less.
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Introduction

The Coyote Lake earthquake of August 6, 1979 was a
moderate size event (Mp=5.7) which occurred on the Calaveras
fault in Central California. The mechanism of the earthquake
obtained from first-motion P waves indicates strike-slip motion
along the Calaveras fault (Lee et al., 1979). Aftershocks are
spread over an 18 km long segment of the fault and cluster
between depths of 4 and 10 km (Figure 1). The ground motion
produced by the earthguake was recorded by more than 50
accelerographs, two of them being located within the fault zone
itself. Another remarkable set of data are the broadband
displacement records obtained at Berkeley, a little more than
100 km away from the source.

The purpose of the present study is to recover from these
near-field data information concerning the rupture process. We
shall try to infer the velocity of propagation of the rupture,
the extent of the fractured area, the rupture front geometry

and other characteristics of the fracture mechanism.

Data and Model Parameters

Six of the accelerographs which were triggered during the
earthquake were located less than 25 km from the epicenter.
Among them, two stations, Coyote Creek and station 6 of the
Gilroy array, lie within the fault zone itself (Figure 1la).
These two stations are located on hard rock. The four other
stations are situated to the west of the fault. Three of them

lie in an alluvial valley reaching at its deepest point a
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sediment thickness of 1.5 km (Mooney and Luetgert, 1981). The

fourth station sits at the edge of the valley opposite the
fault. This complex crustal structure to the west of the fault
is difficult to include in the modeling. Furthermore, the
presence of the alluvial basin is likely to distort

cons iderably the wave field emitted by the source. For these
reasons, we chose to model only the strong motion displacements
obtained at Gilroy 6 and Coyote Creek. The displacement traces
that we shall use have been obtained by Brady et al. (1980)
after integration and correction of the accelerograph records.
The baseline correction on these data was performed using a
high pass Ormsby filter with a ramp rising from 0.05 to 0.25
Hz. A low pass Ormsby filter with a ramp falling linearly from
23 to 25 Hz was also applied to the data. We shall supplement
these close-in data with the broadband records obtained at
Berkeley, 107 km away from the epicenter. The azimuth from the
epicenter to the Berkeley station being about N37°W, the three
recording sites lie almost along the strike of the fault. At
such locations, we expect the ground motion to be mostly
transverse to the fault strike (e.g. Bouchon, 1980). This is
well verified by the data. At Berkeley, the SW-NE component of
motion 1is about three times the SE-NW component and four times
the vertical motion (Uhrhammer, 1980). At Coyote Creek and
Gilroy 6, the 250° and 230° displacement components are about
three times the displacements in the other directions. We
therefore further simplify the data set by only retaining, at
the three recording sites, the component of motion transverse

(or almost transverse) to the fault.
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We model the earthquake as a pure strike-slip propagating

fault embedded in a layered medium. The rupture starts at a
point - the hypocenter - and spreads radially, as schematically
shown in Figure 2. The final fractured area is assumed to be
rectangular. The source time dependence is a step-function and
the final slip is uniform all over the fault. The calculation
is carried out by representing the source as a superposition of
numerous shear dislocation points distributed over the fault
plane. The ground motion produced by each individual source is
computed using the discrete Green's function representation
(Bouchon, 1981). The superposition is done in the frequency
horizontal-wavenumber domain which insures the stability of the
solution.

The coordinates of the hypocenter and the origin time of
the earthquake are fairly well known since the shock occurred
within the dense seismic network of central California (Lee
et al., 1979). We shall take for the hypocentral depth the
value of 9.5 km inferred by Lee et al. and we shall assume that
the fault plane is purely vertical. Furthermore, as the
near-field data are not very sensitive to the lower depth of
faulting, we shall assume that the dislocation extends to the
depth of 10 km defined by the aftershock distribution.

The crustal structure in the vicinity of the source has
been determined by carrying out refraction experiments (Mooney
and Luetgert, 1981). The velocity structure in the fault zone,
shown in Figure 2, consists of an upper layer, about 1.75 km
thick, having a compressional velocity of 4.2 km/s and an

underlying crust with a P-wave velocity of 6 km/s.
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Rupture Velocity

Records obtained at station 6 of the Gilroy array display
the absolute time. At this station, the transverse component
exhibits a large displacement pulse (top of Figure 3). By
matching the arrival time of this pulse with the synthetics, we
can infer the velocity of propagation of the rupture. This is
shown in Figure 3. Two fault lengths are considered: 1in one
case the rupture stops before reaching the station, in the
other one, rupture propagates beyond the station. The top of
the fault is at a depth of 2 km and rupture propagates toward
the southeast. The shorter fault length considered (8 km)
makes the fault stop at the jump in aftershocks location. The
rupture process is simulated by distributing point sources at
intervals of 250 m in depth and 500 m along the fault strike.
A high pass Ormsby filter similar to the one used to process the data
has been applied to the synthetics. Frequencies up to 2.2 Hz are included
in the solution. The station is located 10 km away from the epicenter
and is assumed, in this calculation, to lie on the fault strike.

Synthetic displacements computed for rupture velocities of
2.2, 2.4, 2.6, and 2.8 km/s are compared to the data in Figure
3. The gradual displacement build up associated with P-wave
arrivals, the rapid change of direction of motion produced by
the shear wave coming from the hypocentral region, and the
large NE displacement pulse are well reproduced by the
synthetics. The timing of the S wave arrival is good, which

supports the velocity model used for the calculation. Whether
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rupture stops at the jump in aftershocks location or propagates
beyond it, does not affect the arrival time of the pulse. This
pulse can be interpreted either as the stopping phase (L=8km)
or as the passage of the rupture front below the station
(L=16km). It is interesting to note that the record at Gilroy 6
cannot differentiate between these two eventualities. 1In both
cases, the rupture velocity required to bring the timing of the
computed and recorded SH pulses into agreement is about 2.6
km/s. This value corresponds to a ratio of rupture velocity to
shear wave velocity equal to 0.75. Changes in the position of
the fault top have little effect on the arrival time of the
pulse and will not affect these values. As discussed earlier,
we have assumed that rupture takes place instantaneously at the
rupture front. A rise time longer than the sampling interval
considered here (0.15s) would broaden the displacement pulse

and deteriorates the fit with the data.

Fault length

The strong motion data are mostly sensitive to the
fracture history on the part of the fault closest to the
station sites. For this reason, the data obtained at Gilroy 6
and Coyote Creek cannot resolve the total length of rupture.
On the other hand, the Berkeley records obtained several fault
lengths away from the source should be representative of the

whole rupture process. The NE-SW component of motion recorded
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by the broadband Berkeley seismograph (Uhrhammer, 1980) is

displayed at the top of Figure 4. Also shown on this figure
are the synthetic displacements obtained for various source
geometries after convolution with the instrument response. The
rupture propagation is toward the southeast. Two fault lengths
are considered. The shorter one (8 km) makes the fault stop at
the jump in aftershocks location while the longer one (16 km)
extends to the southeastern end of the aftershock zone. 1In
each case, four different depths to the top of the fault are
considered: 100 m, 1 km, 2 km, and 4 km. The crustal model
used for the calculation is given in Table 1. The shallow
stucture is the same as the one used for the strong motion
calculations. The rest of the model is based on Mooney's
interpretation (personnal communication) of refraction data
obtained northeast of the Calaveras fault. A rupture velocity
of 1.8 km/s is assumed in the upper layer. This value is
chosen since it keeps the ratio of rupture velocity to shear
velocity unchanged (Figure 2). About 400 point sources
distributed all over the fault are used to simulate the rupture
process. Frequencies above 0.5 Hz are not included in the
calculation so the comparison with the data must be restricted
to periods longer than 2 s. The ringing which is present in
the synthetics is the effect of the sharp frequency cutoff.

The northeast deflection of the recorded displacement
associated with the P-wave is well reproduced by the
synthetics. The width of the large SH-displacement pulse which

characterizes the data and the synthetics is related to the
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fault length. As shown on the figure, we measure the pulse
width as the time span between the S arrival and the peak of
displacement toward the NE. We do so because this peak
represents the stopping phase of the rupture. The comparison
between the computed and recorded waveforms shows that the SH
pulse produced by an 8 km long fault is too narrow while the
one resulting from a fault 16 km long is too broad. The extent
of the fractured area lies therefore between these two
extremes. The best fit is obtained for a fault length of 12 km
and is depicted in Figure 5a. This fit can be further improved
by letting the rupture propagate a few kilometers toward the
northwest. We show this case in Figure 5b. The fault extends
2 km northwest of the epicenter. The total fault length is
therefore now 14 km. While the pulse width is unchanged from
Figure 5a, the more rapid amplitude build up which follows the
arrival of the S-wave from the hypocentral region is in better
agreement with the data.

The displacement waveform and amplitude are insensitive to
variations of the depth of the fault between 0 and 2 km. The
fault slip required to reproduce the peak-to-peak amplitude of
the data are respectively 14, 15, and 16 cm for 100 m, 1 km,
and 2 km depths. When the fault depth reaches 4 km, the fit
with the data deteriorates and the required dislocation
increases to 23 cm.

We have now determined independently the rupture velocity
and the fault length. We still have to constrain the depth of

faulting.
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Depth of faulting

As mentioned earlier, the strong motion data obtained at
Gilroy 6 and Coyote Creek should be very sensitive to details
of the rupture on the part of the fault closest to the station
sites. These data therefore should be a good marker of the
depth of faulting. We present in Figure 6 the displacement
computed at Gilroy 6 for four different fault depths: 100 m,

1 km, 2 km, and 4 km. As the position of the station relative to
the earthquake fault is not accurately known (because the fault
did not break the surface) two slightly different station sites
are considered. The epicentral distance along the fault strike
is the same in both cases (10 km), but in case A the station
lies on the fault strike while in case B it is located

900 m to the east of the fault. The true site location should
be between these two values. The point sources which simulate
the rupture process are distributed at 250 m interval in depth
and 500 m interval in the horizontal direction, which, in the
case of the shallowest fault considered here, amounts to a
superposition of about 1200 sources. Frequencies

up to 3.2 Hz are included in the solution. Values of the
fault slip required to match the amplitude of the observed
motion are indicated in each case. The computed displacement
is very weakly dependent on the particular site considered.
Consequently, the slight uncertainty in station location will
not affect the results.

The displacement waveforms and amplitudes obtained for
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fault depths between 100 m and 2 km are very similar. The

ground motion produced by a fault as shallow as 100 m is only
10% larger than the one resulting from the same source buried 2
km below the surface. For depths equal to or shallower than 2
km, the relative amplitude of P waves and S waves is well
modeled by the synthetics. The major difference between the
recorded and computed displacement lies in the width of the
SH-pulse. The uniform dislocation model with circular rupture
front cannot account for the short duration of the recorded
displacement pulse. For a fault Adepth of 4 km, the fit with
the data deteriorates and the required fault slip becomes
unrealistically large.

The transverse displacement obtained at Coyote Creek is
displayed at the top of Figure 7. The same model parameters
are used as in Figure 6. Here again, two slightly different
station sites are considered because of the uncertainty in the
exact location of the earthquake fault. 1In both cases the
epicentral distance along the fault strike is 1.5 km. 1In case
A, the station directly sits above the fault, while in case B
it is located 750 m west of the fault strike. PFour different
depths of faulting are considered.

The displacement waveform is very weakly dependent on the
site considered. The gross features of the first two seconds
of observed displacement are reasonably well reproduced by the
computed solution corresponding to depths of faulting of 1 or 2

km.
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The amount of slip required to

match the maximum amplitude of ground motion in the case where
the top of the fault is at a depth of 1 km is consistent with
the value inferred from the Gilroy 6 record. For a depth of
faulting of 2 km the required slip becomes large compared to
the value determined from the Berkeley records. The
possibility that the fault might be buried by as much as 4 km

1

below the surface is clearly rejected since this would require
a fault s5lip of the order of 1 m, a value about Six times the
one inferred from the Berkeley records.

From this analysis, it results that the depth of faulting

should be close to 1 km and that the amount of slip on the

shallow part of the fault should be about 20-25 cm.

Discussion

The geometry of the fractured area that we have inferred
from the near-field data sensibly differs from the area defined
by the aftershocks location. While only two out of a total of
150 aftershocks located by Lee et al. (1979) are shallower than
3.5 km (Figure 1lb), the fault Adepth that We have obtained is
about 1 km. A depth of faulting of 4 km, which corresponds to
the extent of the aftershock zone, would require slip of 40 to
100 cm to explain the displacement amplitudes recorded at
Gilroy 6 and Coyote Creek. Such large values are incompatible

with the Berkeley records and with the geodetic data (King
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et al., 1981). The amount of slip inferrred from the close-in

stations - 20 to 25 cm - is about 50% larger than the average
fault slip obtained from the Berkeley record and suggests the
possibility that slip was larger at shallower depths. This

could be due to the lack of barriers of nigh-strength material

at these depths, which in turn would provide an explanation for
the absence of aftershocks.

The fault length inferred makes the rupture stop about 4
km before the southeastern end of the aftershock zone. Rupture
therefore went beyond the offset in aftershocks and its
propagation was apparently not affected by the offset. A
similar situation occurred in the 1966 Parkfield earthquake
where rupture appears to have propagated beyond a well-marked
offset in the aftershock zone (Bouchon, 1979; Aki, 1979). 1In
the present case, rupture stopped at the beginning of a large
patch of aftershocks which starts about 12 km from the
epicenter and extends for about 5 km up to the end of the
aftershock zone.

Recent modelizations of teleseismic body waves (Nabelek,
1982) suggest that the fault dips slightly (10°) toward the
northeast. Such a dip would have little effect on the
transverse motions recorded close to the fault strike.

From the fault geometry inferred and the average slip
obtained, one can estimate the seismic moment of the

earthquake. We have:

Mo = p x averadge slip x fault area = 6 x 102“ dyne-cm
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This value is the same as the one obtained by Uhrhammer (1980)
from integration of the Berkeley record and under simplifying
assumptions.

We still have to satisfactorily explain the short duration
of the displacement pulse associated with the passage of the
rupture front below the Gilroy 6 station. Archuleta and
Frazier (1978) have shown that the transverse ground motion
above a strike-slip fault is very sensitive to the rupture
front geometry. We investigate this effect in Figure 8. The
fault depth considered is 100 m and the station is assumed to
be above the fault. As before, the source time dependence is a
step-function. Three cases are considered. The upper trace
displayed is obtained for a fault propagating horizontally at
2.2 km/s. The middle trace is the result previously obtained
for a circular rupture front. Finally, the lower displacement
trace corresponds to the case where rupture nucleates along the
complete bottom of the fault and propagates upward at 2.2 km/s.
The striking feature of this figure is the very small
displacement produced by an upward propagating rupture (about
1/20 the displacement amplitude obtained for a horizontal
propagation). The largest displacement amplitude and shortest
pulse duration are produced by the horizontally propagating
fault. The pulse obtained in this case bears a strong
resemblance to the observed one. This suggests that the
rupture front below Station 6 was close to the vertical and may

represent a local irregularity of the rupture front. We may
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also note

rupture front more vertical.
In the fault models that we have considered, slip occurs

instantaneously along the rupture front. Dynamic crack models,

that a shallower hypocentral depth would make the

however, predict that slip anywhere on the source takes place

in a time

span which is roughly equal to the distance to the

final location of the crack tip divided by the rupture

velocity.
length or
large and
impulsive
either by

realistic

For a crack having dimensions of the order of the
width of the fault, this rise time would be very
would produce a very broad pulse at Station 6. The
S-wave arrival at Berkeley could not be accounted for
such a model., If present dynamic models are a

representation of crustal earthquakes, the crack size

must be very small and a fault like the one of the Coyote Lake

earthguake must be made up of a large number of such cracks.

At wavelengths larger than the crack dimensions, the radiation

from such

a composite source will not be distinguishable from

the one resulting from a uniform dislocation source.
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Conclusion

By combining strong motion records obtained very close to
the fault with broadband seismogram recorded several fault
lengths away from the source, we have been able to infer
independently the rupture velocity, the fault length and the
depth of faulting of the 1979 Coyote Lake earthquake. The
velocity of propagation of the rupture is well constrained by
the arrival time of the large transverse displacement pulse
associated with the passage of the rupture front below the
Gilroy 6 station. The value inferred - 2.6 km/s - corresponds to
a rupture velocity to shear wave velocity ration of 0.75. The
fault geometry obtained sensibly differs from the area defined
by the aftershocks location. The model which gives the best
fit to the data is a 14 km long fault extending between depths
of 1 and 10 km with a fault slip of 15-20 cm and a seismic
moment of 6x102L+ dyne-cm.

One important result of this study is the finding that
slip at any point on the fault takes place in a very short time
span and that simple dislocation models give a good description

of the rupture process.

601




Acknowledgements:

This work was supported by the National Science Foundation
under grant No. 8005720 PFR. The author is indebted to
Dr. Keiiti Aki for his continuous support and for countless
discussions during the course of this work. The study was
initiated during the Coyote Lake earthquake workshop organized
at the U. S. Geological Survey by Dr. Willie Lee. I am
thankful to Drs. Willie Lee and Ralph Archuleta for their help
and for many enlightening discussions. I also thank Paul Okubo
for providing the Berkeley broadband seismograph response and

Drs. David Boore and John Cipar for their critical comments.

602




REFERENCES

Aki, XK., Characterization of barriers on an earthquake fault,
J. Geophys. Res., 84, 6140-6148, 1979.

Archuleta, R.J., and G.A. Frazier, Three-dimensional numerical
simulations of dynamic faulting in a half-space, Bull.
Seismol. Soc. Amer., 68, 541-572, 1978.

Bouchon, M., Predictability of ground displacement and velocity
near an earthquake fault. An example: the Parkfield
earthquake of 1966, J. Geophys. Res., 84, 6149-6156,

1979.

Bouchon, M., The motion of the ground during an earthquake. 1.
The case of a strike slip fault, J. Geophys. Res., 85,
356-366, 1980.

Bouchon, M., A simple method to calculate Green's functions
for elastic layered media, Bull. Seismol. Soc. Amer., 71,
959-972, 1981,

Brady, A.G., P.N. Mork, V. Perez, and L.D. Porter, Processed
data from the Gilroy array and Coyote Creek records,
Coyote Lake, California earthquake of 6 August 1979,

U.S. Geological Survey Open-file report 81-42, 1980.

King, N.E., J.C. Savage, M. Lisowski, and W.H. Prescott,
Preseismic and seismic deformation associated with the
Coyote Lake, California, earthquake, J. Geophys. Res., 86,
892-898, 198l1.

Lee, W.H.K., D.G. Herd, V. Cagnetti, W.H. Bakun, and A.
Rapport, A preliminary study of the Coyote Lake earthquake
of August 6, 1979 and its major aftershocks, U.S. Geol.

Surv. Open File Rep., 79-1621, 1979.
603




L TR

Mooney, W.D., and J.H. Luetgert, Seismic-refraction study of
the Santa Clara Valley, west-central California, Trans.
Am. Geophys. Union, 61, 1025 (abstract), 1980.
Nabelek, J., Teleseismic constraints on the faulting mechanism
of the Coyote Lake earthquake of 1979, in preparation, 1982.
Uhrhrammer, R.A., Observations of the Coyote Lake, California
earthquake sequence of August 6, 1979, Bull. Seismol. Soc.

Amer.,, 70, 559-570, 1980.

604



Figure Legends

Figure la. Epicenters of the mainshock and of the aftershocks
of the Coyote Lake earthquake sequence (August 6 to 21,
1979). The location of the two accelerograph stations
Coyote Creek and Gilroy 6 is indicated.

(modified
from Lee et al., 1979).
Figure 1b. Projection of hypocenter locations in a vertical plane
transverse to the fault strike (from Lee et al., 1979).

Figure 2. Source-medium-station configuration used in the
study. The circles indicate the position of the rupture
front at successive times.

Figure 3. Effect of rupture velocity on the displacement
computed at Gilroy 6. Two different fault lengths and
four different rupture velocities are considered. P and S
indicate the computed arrival times of the P and S waves.

Figure 4. Comparison of the Berkeley record with the
displacement waveforms computed for various fault
geometries. P and S indicate the computed arrival times
of the P and S waves. FEach trace is normalized to its
maximum value.

Figure 5. Same as Figure 4 for different fault geometries.
Figure 6. Comparison of the Gilroy 6 transverse displacement
record with the displacements computed for different
depths of faulting. A and B represent two slightly

different station locations. Values of the fault slip
required in each case to match the observed amplitude are

indicated. 605




Figure 7. Comparison of the transverse displacement recorded
at Coyote Creek with the displacements computed for
different depths of faulting. A and B represent two
slightly different station locations. Values of the
fault slip required in each case to match the observed
amplitude are indicated.

Figure 8. Effect of rupture front geometry on the transverse
displacement computed at the site of the Gilroy 6 station.
Traces A, B, and C illustrate respectively the cases of
vertical, circular, and horizontal rupture fronts. The
station is assumed to lie above the fault. U denotes the

amplitude of the fault slip.
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Table 1 - Crustal model used in this study

Depth km compressional shear velocity density
velocity (km/s) km/s g/cm3
0
4.2 2.4 2.6
1:75
6.0 3.5 2.8
18
6.6 3.8 2:9
28:5
749 4.6 3.1
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Two earthquakes of comparable local magnitude from different regions of Northern Baja California (the July
17, 1975 Pino Solo earthquake, M; = 5.1, from the Peninsular Ranges region, and the Dec 7, 1976 Mesa de
Andrade earthquake, M; = 5.3, from the Colorado River Delta region) are studied in detail to determine possi-
ble causes for the observed stronger excitation of surface waves by earthquakes from the Delta region relative to
earthquakes of comparable local magnitude in the Peninsular Ranges region. Data from distant stations are com-
plemented with data from aftershock studies using local arrays and, for the Mesa de Andrade earthquake, with
data from two strong motion stations.

The strong motion records for the Mesa de Andrade earthquake show that it consisted of two events, 45 sec
apart, which produced maximum recorded horizontal accelerations of .21g and .24g, respectively, at a distance of
18km from the epicenter. Synthetic seismograms are used to help determine the depth of these events and their
source time functions. Both events are relatively simple. The second event is sharp and impulsive and could be
thought of as an aftershock, since it has a considerably smaller moment than the first event, even though its
recorded acceleration was higher.

Comparison of measured parameters shows that while the local magnitude of the Mesa de Andrade earth-
quake is only .2 units larger than the Pino Solo earthquake and its source dimension is ~2.2 times larger (source
areas ~4.8 times larger), its moment is larger by a factor of 6.2 to 8.5. This is approximately explained by the
@2 scaling law. However, the near source spectra and accelerations recorded on the strong motion accelerograph
at Riito, a distance of about 18km, are considerably larger than predicted by the w2 scaling law. This may be a
result of near field focusing (directivity), or high stress drop asperities.

INTRODUCTION

The study reported in this paper has an important bearing on the general problem of understand-
ing earthquake mechanism, and more specifically, the problems of seismic discrimination between
earthquakes and explosions and understanding earthquake strong motion. One of the main discrimina-
tion criteria used at present is the M, versus m, criterion [Liebermann and Pomeroy, 1969; Marshall and
Basham, 1972], which compares the relative excitation of long period surface waves used to determine
M, and the short period body waves used to determine m,. Points representing earthquakes and explo-
sions lie on different regions of a plot of M; versus m;, because of the greater relative excitation of sur-
face waves by earthquakes. The earthquake population on M,/m, diagrams shows a large scatter, and
several authors have noticed a regional dependence in the scatter. They have suggested that the M;/m,
discriminant be applied regionally. With respect to strong ground motion, it is critically important to
know how ground acceleration and velocity scale with both local magnitudes, M;, and surface wave
magnitude M,, so that better predictions can be made for earthquake resistant design. This study
addresses that problem.

1This study is based in part on the Ph.D. thesis of Alejandro Nava. The thesis contains additional details
supporting the results given in this paper.
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Brune et al. [1963] noticed a region of anomalously low surface wave excitation in Northern Baja
California while studying events from the California-Nevada area. In contrast, the Gulf of California
area was identified as a region of large surface wave excitation by Wyss and Brune [1971). Thatcher and
Brune [1971] found that earthquakes from a swarm in Wagner Basin in the northern end of the Gulf of
California also excited surface waves more than earthquakes in Northern Baja California with similar
body wave excitation.

Thatcher [1972] studied the regional variations of spectral parameters in Northern Baja California
from observations at Cal Tech stations in Southern California, especially BAR, PLM and PAS. The
spectra were interpreted in terms of source parameters such as moment, source dimension and stress
drop. Thatcher inferred that Northern Baja sources have dimensions that are typically a factor of four
smaller than the dimension of Gulf events of comparable local magnitude. Conversely, moments for
the Gulf events were about an order of magnitude larger (for the same M;) than those for Northern
Baja. The average stress drop for the Gulf earthquakes was found to be lower than the average for
Northern Baja California.

The above studies of sources in Northern Mexico were based solely on relatively distant (from the
epicenter) data, with inherent uncertainties in epicentral distance, source depth, rupture area, attenua-
tion, and high frequency behavior. The present work uses improved data from a sample earthquake
from smaller regions; the Pino Solo earthquake of July 17, 1975 from Northern Baja California and the
Mesa de Andrade earthquake of Dec 7, 1976 from the Colorado Delta. Both earthquakes have approxi-
mately the same local magnitude (determined from the maximum amplitude measured on standard
Wood-Anderson seismograms of the type shown in Figure 1). However, the long period excitation is
much larger for the Mesa de Andrade earthquake, as is clear from Figure 1, and further illustrated in
Figure 2, which shows records of both earthquakes at TUC (long period) and PAS (ultra long period).
In this study, the far field data is complemented with local array aftershock studies (to infer fault
dimensions) and, for the Mesa de Andrade earthquake, with data from near field strong motion
records.

Figure 1 shows that the Pasadena Wood-Anderson seismogram for the Pino Solo earthquake is
relatively simple, most of the energy arriving in a burst of only a few seconds duration, while the
seismogram from the Mesa de Andrade earthquake is much more complex, with both the high fre-
quency energy (f > 1Hz) and lower frequency energy arriving over a much longer period of time. The
bottom trace in Figure 1 shows a tracing of the strong motion displacement record of the Mesa de
Andrade earthquake from the station Riito at a distance of about 18km (discussed later), and indicates
that the actual energy release occurred in two relatively simple events, the first containing considerably
more low frequency energy than the second. Figure 1 indicates that propagation path effects have been
important in causing the complexity observed in the Mesa de Andrade seismogram at Pasadena, and
less important in the case of the Pino Solo seismogram.

THE PINO SOLO EARTHQUAKE

The Pino Solo earthquake occurred on July 17, 1975, in the Sierra Juarez in Northern Baja Cali-
fornia, approximately halfway between Ensenada and the northern end of the Gulf. The epicenter is
located just east of the main mapped San Miguel fault that runs along the northeastern edge of the
Llano Colorado Valley (see Figure 3).

For aftershock locations, an array of five portable Kinemetrics smoked paper seismographs was
installed in the epicentral area in a cooperative project involving the University of California at San
Diego (UCSD) and the Centro de Investigacion Cientifica y Ensenada Superior de Ensenada (CICESE)
in Ensenada. The array started operating about eight hours after the main shock, and operated for a
day and a half before the batteries discharged. Figure 3 shows the location of the portable stations, and
the approximate area of the aftershocks. All stations were deployed on granite outcroppings, and all
registered sharp P-wave first arrivals and clear but less sharp S-wave arrivals.

Aftershocks were located using velocity model PRCP, a four layer velocity model for the area
developed in a separate study [Nava and Brune, 1981] and the MICRO location program developed by
Ray Buland [1976] for small, local arrays (originally for a half-space, and modified by Luis Munguia for
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a layered model). Poisson’s ratio was estimated for 34 combinations of P- and S-wave observations,
and a value of .2492 was obtained, not significantly different from .25, so a value of .25 was used in the
location process.

The aftershock area has dimensions roughly 8km (west-northwest) x 2km (north-northeast). Fig-
ure 4 shows a plan view of the aftershock epicenters, along with an east-west cross section view of the
hypocenters. The hypocentral depths range from 4.4 to 17.9km, the average depth being <z> =
8.2km.

A linear regression for the epicenters defines a strike N 7° W. Consideration of the probable
errors allows strikes from N 55° W to S 94° W. As described later, the polarities of the first arrivals
from the aftershocks, as recorded on the portable stations, are consistent with a fault plane correspond-
ing to a vertical, strike slip fault with a strike of N 57° W. This is not inconsistent with the aftershock
location data.

The aftershock region, and hence the earthquake itself, is not associated with any known fault.
However, the region is between the intensely fractured Sierra Juarez and San Miguel fault zones (see
Figure 3) and hence it is quite reasonable to assume that an active fault exists there. Because of the
relatively uniform granitic terrain, the identification of smaller faults is difficult in this region.

Careful relocation of the main event, using data from U.S. stations and Mexican stations at Ense-
nada and Rio Hardy give a location that within the experimental error lies within the zone of aft-
ershocks (the USGS Earthquake Data Report of July 8, 1976, gives a location some 8.25km northeast
of the aftershock zone).

The fault plane solution for the Pino Solo earthquake is shown in Figure 5, a Wulff’s net projec-
tion through the bottom half of the focal sphere for polarity (i.e., compression or rarefaction) of first
motions. Circles represent readings for the main event at permanent stations. Also shown are first
motion polarity readings from aftershocks at the portable station network, represented as bands. Under
the assumption that aftershocks will tend to have the same mechanism as the main shock, their fault
plane solutions should be compatible with that of the main shock.

The observed polarities are compatible with two conjugate vertical nodal planes with orientations
of N 33° E and E 33° S. These orientations are relatively well constrained. Based on the aftershock
distribution, regional tectonics and observed faulting for surface manifestations of other earthquakes in
the region, the plane with the azimuth of 123° was assumed to be the fault plane.

Pino Solo Long Period Seismograms from PAS

For the Pino Solo earthquake, the closest station with calibrated long period instruments was PAS
at the California Institute of Technology (distance 337.3km). The path from epicenter to station is
almost completely along the Peninsular Ranges, except at the very end where it crosses some sediments
before reaching Pasadena at the foot of the San Gabriel Mountains.

The PAS seismograms were digitized, and the two horizontal components combined to provide
radial and transverse components. The fundamental Rayleigh and Love modes were extracted from the
complete seismograms by means of group-velocity filter, according to the apparent group-velocity
obtained from a moving window analysis. For comparison with theory, synthetic seismograms were
computed for the Peninsular Ranges PRCP model for various depths using the program of Harkrider
[1964, 1970]. Although none of the synthetic seismograms fit the observed ones as well as would be
desired, the seismograms for a depth of 15km appeared to be fairly close. This depth was also checked
by comparing the spectra of the observed and theoretical seismograms, and by comparing the smoothed
ratio of the Rayleigh wave spectrum to the Love wave spectrum [Tsai and Aki, 1970] with the
corresponding theoretical ratio computed for the PRCP model. These comparisons suggest a source
depth of about 15 + 3km, consistent with the source depth estimated from the time domain surface
wave shapes and with the arrival time data. The details of the above comparisons may be found in
Nava [1980]. Study of the source (using the method outlined below) also indicated that its duration
was less than about 5.5 sec.

The Pino Solo Earthquake Source Parameters
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Directly measurable parameters (e.g., magnitudes and moments) and inferred parameters (e.g.,
source dimension, stress drop, fault displacement, energy, etc.) were computed for the Pino Solo earth-
quake (for comparison with the corresponding parameters for the Mesa de Andrade earthquake). Local
magnitude M; was determined from readings of Wood-Anderson standard seismographs at seven sta-
tions in Southern California. The average gives M; = 5.1 with a standard deviation o = .2 units.
This result agrees quite well with the M; = 5.0 given by the USGS Earthquake Data Report.

The body wave magnitude, m,, was measured for eleven short period stations ranging in distance
from 8.7° to 45°, giving an average m, = 4.9 with a standard deviation of o = .3. This value agrees
perfectly with the value in the USGS Earthquake Data Report, obtained from ten observations at dis-
tances ranging from 7.6° to 84.4°.

Surface wave magnitude M, was determined using Marshall and Basham’s [1972] formula for
eleven stations at distances ranging from 8° to 44.5°. This gave an average M, = 4.0 with standard
deviation o = .1.

Moment, M,, was measured by comparing the long period amplitudes on the observed surface
wave records at six stations with those on the synthetic seismograms computed for these stations using
Harkrider’s (1964, 1970] program with a known moment of 102° dyne-cm. The average moment from
all measured values is M, = 3.37 x 10% dyne-cm, with a standard deviation of 1.4 x 102 dyne-cm.

The moment was also estimated at high frequencies (~.9Hz) by comparison of the observed BAR
Wood-Anderson record with a synthetic seismogram computed using the Apsel-Luco wavenumber
integration program [Apsel and Luco, 1978]. Comparison with the P-phase amplitude yields
My = 1.55 x 10 dyne-cm. The S-phase amplitude is harder to read due to the distortion in the base-
line, but the moment is consistent with that determined from the P-wave. This estimation of moment
from high frequencies is not very reliable, but will be useful in a later discussion of the spectra.

The main evidence for the dimensions of the source area of the Pino Solo earthquake is the distri-
bution of early aftershocks. As mentioned above, the horizontal length of the aftershock area is
~7.5km. Since depth is not very well constrained, a vertical dimension equal to the horizontal is
assumed, and a circular rupture area will be used as a first approximation. It is possible that some of
the aftershocks may be outside the region of main energy release. Thus the length of the aftershock
area might be considered an upper bound to the fault length. If this is the case, exclusion of the events
located at the extremes would give a fault length of 5.3km (see Figure 4).

The stress drop for the Pino Solo earthquake was estimated using the Keilis-Borok [1960] circular
dislocation model which relates the moment and the source dimensions to the stress drop, giving Ac =
7.9 bars. This value falls within the range found by Thatcher (1972) for Northern Baja earthquakes.
The stress drop and fault dimensions correspond to an average displacement of a few cm.

THE MESA de ANDRADE EARTHQUAKE

The Mesa de Andrade earthquake occurred just before 1300 hrs GMT of December 7, 1976,
about 50km southeast of Cerro Prieto in the Colorado River Delta area. Although no surface rupture
was documented, sand boils were observed in the Mesa de Andrade area (presumably in the region of
rupture at depth).

Less than 24 hours after the mainshock, a net of eight portable smoked paper seismographs was
operating in the aftershock area, installed by UCSD in cooperation with CICESE in Ensenada. All the
locations were done by Javier Gonzalez at CICESE (see Figure 6). Positive identification of the S-
phase was uncertain, and no S readings were used for these locations, hence depth determinations are
not very reliable.

As part of a joint project between Scripps Institution of Oceanography (SIO, UCSD), and Instituto
de Ingenieria (UNAM), several strong motion instruments (triaxial, analog, film recording, SMA-1s)
had been previously installed in Northern Baja California [Prince et al., 1976]. The Mesa de Andrade
earthquake triggered three of these instruments, at Riito, Delta and Cerro Prieto. Figure 6 shows the
location of these instruments and the locations of the aftershocks.
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The strong motion records show that the Mesa de Andrade earthquake consists of two large
events with origin times about 45 sec apart, close enough so that the instruments were still recording
(triggered by the first event) when the second event occurred, and separated enough so that the energy
from the first event was negligible at the time of the arrival of waves from the second event. The max-
imum horizontal accelerations recorded for the first event were .21g, .17g and .04g at Riito, Delta and
Cerro Prieto respectively. For the second event, the corresponding accelerations were .24g, .13g and
.04g.

Consideration of the relative arrival times of the various phases on the strong motion records
indicates that within the uncertainties the two events had the same epicenter, among the aftershocks
(whose epicenters are well determined), approximately 18km from Riito.

Accelerogram Analysis

Henceforth, records will be identified by the name of the station, followed by a digit that identifies
the event (i.e. 1 or 2).

The original accelerograph 70mm films were amplified 3X and digitized on a "Calma" digitizer.
The equispaced series were corrected for instrument response and integrated to give ground displace-
ment, using the process described by Trifunac and Lee [1970]. The processing required judicious choice
of a high pass filter to remove the long period part of the spectrum introduced by the process of double
integration. We found that a high pass filter with a corner frequency of .6Hz was a good compromise
between leaving in too much unreasonable long period energy on the one hand and filtering out reliable
signal and distorting the pulse shape on the other hand.

Figure 7 shows the resulting Riito horizontal displacement seismograms for the first event. The
wave forms have been resolved into longitudinal and transverse components in the bottom part of the
figure. Figure 8 shows corresponding seismograms for the second event at Riito, and Figures 9 and 10
corresponding seismograms for both events at Delta. In each figure, the amplitude and time scales are
the same.

Figures 7 and 8 show that the pulse of energy at Riito is primarily SH motion, and is a much
sharper pulse for the second event than for the first. The Delta seismograms (Figures 9 and 10) show
a second pulse arriving about 6 seconds after the S-wave. This pulse is believed to be a reflection mul-
tiple and will be discussed later.

Green’s Function Synthetics and Source Depth

Depth is difficult to establish for this earthquake, since depths are uncertain even for the aft-
ershocks. Thus, we estimated the depth by matching the observed strong motion records with synthetic
seismograms obtained using the PROSE program developed by Apsel and Luco [1978]. This program
calculates Green’s functions for a flat layered model. The model used was the KHC2-IV model for the
Imperial Valley [Hartzell and Brune, 1977] with a crustal thickness of 32.4km. Synthetics for source
depths between 5 and 15km were obtained for Riito and Delta. The alignment of the aftershock epi-
centers suggests that the Mesa de Andrade earthquake was associated with transcurrent motion along
the Cerro Prieto Fault. Hence, right lateral strike slip motion along the Cerro Prieto Fault was assumed
for calculating initial synthetic seismograms for comparison with the observed displacement time series.
A step source time function was assumed.

Figure 11 shows the synthetic seismograms for radial and transverse components, for different
depths, at Riito. Figure 12 shows the corresponding synthetics computed for Delta. The synthetics
computed for a depth of 5km are dominated by short period energy trapped in the sediments. This
energy is not seen in the observed records (Figures 7 and 8). The synthetics for 7km source depth also
show too much surface wave energy, especially for the Delta records (compare Figure 12 with Figures 9
and 10). The synthetics for 10km source depth (center) agree well with the Riito 2 records, and the
first large pulse of the Delta 2 records. Synthetics for Riito for a source deeper than 10km, exhibit a
larger radial pulse than observed.
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The main differences between synthetic and observed seismograms for Delta relate to the pulse
(B) arriving some five seconds after S on the transverse synthetic (Figure 12) and the intermediate
period pulse arriving some seven seconds after S on the observed radial record (Figures 9 and 10). For
13 and 15km source depth, the second pulse on the Delta synthetic diminishes, but a prominent S
arrival, not seen as obviously on the observed records, appears on the Riito synthetics for the radial
component. The second pulse (B) on the 10km source depth synthetic for the Delta record was
identified as a multiple reflection traveling from the source to the surface, thence to the bottom of the
sediments and up to the surface again. The conspicuous feature marked (C) on the synthetic seismo-
gram is another multiple, this time from the surface and twice reflected at the interface between layers
four and five.

Attempts to obtain a synthetic pulse resembling the observed multiple by assuming different fault
orientations and slip direction proved fruitless. It is possible that this problem results from the limita-
tions of a flat layered model. The basement structure in the epicentral region is probably highly dis-
torted. It is known that the basement of the Colorado Delta is heavily fractured, with blocks ascending
toward the edges of the valley [Kovach et al., 1962; Alonso, 1966]. The Cerro Prieto Fault, a major
transform fault, strikes from the epicenter toward Delta. Thus, it is possible that the predominantly
tangential energy was coupled into radial energy by reflection at some inclined feature. This suggests
that we attempt to match only the direct wave at Delta. In this case, a source depth of 10km produces
the synthetic seismogram that best fits the observations.

The depth determination for the first event ‘is less certain, mainly because its shape does not
resemble the synthetic shapes as closely as was the case for the second event. However, the time
between the S pulse and the multiple reflection phases appear to be the same for both events (see Fig-
ures 9 and 10). Hence, it is not unreasonable to assign a source depth for the first event similar to that
for the second event.

A search for different fault orientations and/or slip directions indicated that any large deviation
from the initial choice decreased the overall fit. Hence, the simple case of pure strike slip on a vertical
plane along the Cerro Prieto Fault is our favored model for the mechanism of the Mesa de Andrade
earthquake.

Green’s Function Synthetics and Source Finiteness

An interpretation of the differences between the observed and synthetic records in terms of the
behavior of a finite source was made using only the records at Riito, since it is obvious from com-
parison of Riito and Delta records for both events that a large part of the high frequency information
present in the Riito records has been lost by the time the signals reached Delta. A related reason is
that since Q values are uncertain, it is better to work with the Riito records for which, due to the prox-
imity to the source, errors in the estimation of Q will have a smaller effect. Since the transverse com-
ponent is the one having more energy and hence the highest signal/noise ratio, it will be emphasized in
the following analyses.

As an approximation, the effect of a point source traveling horizontally, with step function time
behavior, was computed by convolution with a boxcar function with width determined from the known
fault plane-station angle, and a phase velocity corresponding to that for the first S-wave arrival from a
source at 10km depth. Figure 13(a) shows the observed seismograms and Green’s function (center) at
Riito. As a rough approximation we may say that the first event is a pulse of duration about 1 second
and the second event is a pulse of duration about 1/5 second. Unidirectional and bidirectional ruptur-
ing with several combinations of fault lengths and rupture velocities were tried as models. Figure 13(b)
shows a sample result which approximately resembles the second event. Figure 13(c) shows two sam-
ple results which resemble the first event.

There is a wide range of source dimensions and rupture velocities which can explain a given pulse
width. The pulse width T for a simple unidirectional propagating rupture is: T= b(c/v — cos 8)/c
where b is the rupture length, ¢ is the wave velocity, v is the rupture velocity and 6 is the angle
between the direction of rupture and the station, ~29°. If we take ¢ to be the wave velocity at the
source 3.8km/sec, and v to be 3km/sec, then a pulse width of 1 sec for the first event can be explained
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by a rupture toward the northwest of length about 10km, approximately in agreement with the observed
length of the aftershock zone. If the rupture were to the southeast, the corresponding fault length
would only be about 1.8km, much smaller than the length of the aftershock zone. For the second
event, with pulse length about 0.2 sec, if we assume the rupture is to the southeast, the length is .4km,
and if we assume that rupture is to the northwest, the rupture length is about 2km.

Because of the large uncertainty in rupture velocity, rupture length, and direction of rupture, we
can conclude little beyond suggesting that the pulse widths are consistent with both events being rup-
tures to the northwest, the first with length about equal to the length of the aftershock zone, and the
second with a smaller length.

Equivalent Source Time Function

In order to see if we could obtain an alternate indication of the dimensions and time duration of
the source, we have used a technique of deconvolution of the observed seismogram by the theoretical
point source response. The step function convolution factor C(¢) is defined as the factor that, when
convolved with a step function (i.e., integrated), yields the "source time function" S(z) which
represents the combined effects of the spatial and temporal behavior of the source. It may be obtained
as the inverse Fourier transform of

A (w)
Ao(w)

where A4 (w) is the spectrum of the observed seismogram, and Ay(w) is the spectrum of the synthetic
seismogram (obtained using a step source time function), both suitably filtered [Nava, 1980]. Interpre-
tations here will be based mainly on C(¢). The second event will be considered first since it is simpler.
For the second event (Figure 14), C(¢) appears to have a shape not incompatible with a band limited
(Dt = .08 sec) version of the boxcar function that would be expected from the results of the simple
directivity calculations earlier. The only complication appears to be at the point marked as "B.," which
could be interpreted as a second minor energy pulse.

Clw) =

The result for the first event at Riito (transverse component) is shown in Figure 15. The same
filtering was applied. In this case, C(¢) is more complicated although roughly consistent with a source
duration of about 1 sec. The event may be composed of perhaps six smaller pulses indicated as A, B,
C, D, E, F, although this is speculative.

Moment Estimated from Strong-Motion Records

The long period portion of the displacement spectra for the strong motion records is not very reli-
able due to the presence of noise and the effects of low frequency filtering in the base line correction.
Thus, the method for the determination of the seismic moment from the flat long period portion of the
far field displacement spectrum has to be applied very cautiously.

The long period level associated with the second event at Riito, after being corrected for the
effects of the sedimentary amplification, free surface amplification and radiation pattern yields the
moment ME? = 6.39 x 102 dyne-cm. The corresponding values for the first event at Riito is
ME' =1.74 x 10** dyne-cm. The sum of these two values yields a total moment
M+ R2 =238 x 10%* dyne-cm. The seismic moment can also be estimated from the area under the
step-function convolution factor C(t), obtained above, times the known synthetic moment, and nearly
the same results are obtained (M§? = 5.98 x 10%* dyne-cm, and M§{! = 1.54 x 10** dyne-cm, and the
sum ME'+ R2 = 214 x 10** dyne-cm). The fact that both sums are somewhat smaller than the total
moment determined from surface waves at distant stations (see below) indicates some contribution to
the total moments from periods longer than those reliably recorded on the strong motion records.

Overall Moment Estimated from Distant Stations

The seismic moment for the Mesa de Andrade earthquake was also estimated by comparison of
observed surface waves at seven stations with synthetic surface wave seismograms computed using
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Harkrider's [1964, 1970] method. The synthetic seismograms were computed for the Great Basin velo-
city structure [Priestly and Brune, 1978] and a source depth of 10km. A composite synthetic seismo-
gram for directivity and summing the modified seismograms for the two strong motion events,
appropriately scaled and shifted in time [Nava, 1980]. This composite seismogram showed that the
second event was sufficiently delayed so that it does not appreciably influence the value of M, as meas-
ured from the long periods at the beginning of the record. The average moment obtained was
2.14 x 10?* dyne-cm + .57 x 10** dyne-cm. The true overall moment is probably slightly larger
because of the long period waves from the second event arriving too late to be taken into account.
Since the moments estimated from the strong motion instruments indicate that the moment for the
second event is .35 times that of the first event, an estimate for the Mesa de Andrade moment as
would have been determined using waves with periods long compared with the 45 seconds between the
two events is about M, = 2.89 x 10** dyne-cm.

Overall Source Dimensions and Stress Drop

For distant stations, the two events appear as one complex event, and the contribution of the
second event to the magnitude (especially M,) is relatively small. Also, as seen above, its contribution
to the value of the moment which would have been obtained by fitting the early long-period part of the
distant records (without realizing that there were two events involved) will be very small. The aft-
ershock area probably gives the most reliable estimation of the overall source dimension; it would be
the only estimation possible for an observer not having the strong motion information. Hence, the
results obtained from this assumption will be representative of the usual determination when only aft-
ershock data is available. The aftershock distribution with a length of ~11.5km and a depth range of
~4.5km, suggests the use of a rectangular fault model, although as mentioned before, the aftershock
depth determination is somewhat uncertain so the estimation of the depth range may not be accurate.
Thus, the possibility of a circular source with radius r = L/2 = 5.75km may be considered as an upper
bound for the source area. Use of these two fault geometries, plus the overall moment
M, = 2.89 x 10** dyne-cm, yields Ao = 15.53 bars for the rectangular fault, and Ao = 5.81 bars for
the circular one. The average displacement across the fault, 7, was approximately 5 to 10cm.

COMPARISON AND INTERPRETATION OF THE PARAMETERS FOR BOTH EARTHQUAKES

The parameter values determined above will now be discussed, together with other published
values for other earthquakes in the region. Table I is a compilation of the estimated seismic parameters
for both earthquakes, including ratios of values. Values determined from short periods, T < § sec, are
denoted by an asterisk. For the two Mesa de Andrade events separately the equivalent local magnitude,
M;, was determined from the deconvolution-convolution technique suggested by Kanamori and Jen-
nings [1979] to produce equivalent Wood-Anderson records from strong motion records. For loga-
rithmic quantities like the magnitudes, the logarithm of the ratio (logratio) shown is the difference
between the values being compared. The energies (E;) were computed from the local magnitudes
using the revised Gutenberg-Richter [1956] relation (log E = 9.9 + 1.9 M; - 0.024 Mp?), and the
apparent stresses no [4ki, 1966] were calculated using these energy values.

A comparison of M, and M; for the Pino Solo and Mesa de Andrade earthquakes shows that
M,/ M; is much larger for Mesa Andrade than for Pino Solo, as discussed earlier. This raises the ques-
tion: is M unusually large (for the given M;) for Mesa de Andrade, or unusually small for Pino Solo,
or partly both? If we choose as references the M, versus M; relationships found by Wyss and Brune
[1968] for the Western United States and for the Parkfield region we obtain estimated M, values of 4.6
and 4.9 for the Pino Solo earthquake and 4.9 and 5.2 for the Mesa de Andrade earthquake. Thus, it is
the Pino Solo earthquake which has an anomalously low M, (4.0). This next raises the question as to
whether the Pino Solo earthquake, having such a low M;, could be discriminated from explosions on an
M,/ M, diagram. Figure 16 is an M,/m, plot modified from Hartzell [1978], after Marshall and Basham
[1972], showing the Pino Solo and Mesa de Andrade earthquakes. Both events discriminate from
explosions, but Pino Solo is a borderline case while Mesa de Andrade lies well within the earthquake
population. 3

624




A comparison of M, and M; values for the Pino Solo and Mesa de Andrade earthquakes with a
plot of M, versus M; from Thatcher [1972] shows that the M, data for the Pino Solo earthquake plots
near the border between the "Northern Baja" population and the "Gulf" population. The Mesa de
Andrade values lie within the Gulf population.

Comparison of the M; and source dimension data in Table I with the plot of M; versus source
dimension shown in Thatcher [1972] also indicates that the Pino Solo earthquake and the Mesa de
Andrade earthquake have characteristics similar to earthquakes from Thatcher’s "Northern Baja" and
"Gulf" group, respectively, however the Pino Solo earthquake lies near the border between the two
populations.

Figure 17, modified from Thatcher and Hanks [1973], is a graph showing source dimension,
moment and stress drop for earthquakes from various California locations. The Mesa de Andrade
earthquake is close to the "Gulf" population and the Pino Solo earthquake lies between the "Gulf" popu-
lation and the "Northern Baja" population.

The following is a summary of the comparisons just made:

(a) The Pino Solo and Mesa de Andrade earthquakes, as measured at distant stations, appear to be
approximately representative of their respective regions.

(b) Using the parameter values for Pino Solo as a reference, some characteristics common to the
corresponding values for the Mesa de Andrade earthquake measured at distant stations are: (i) relative
to M,, my, is smaller; (i) relative to M, M, is smaller; (iii) relative to the source dimension, M, is
smaller.

(c) The second Mesa de Andrade event probably had a smaller source dimension (and higher stress
drop) than either the Pino Solo earthquake and the first Mesa de Andrade event.

(d) The overall average stress drop is approximately the same for the Pino Solo and Mesa de Andrade
events.

Interpretation

In order to interpret the similarities and differences between the parameters of the Pino Solo and
Mesa de Andrade earthquakes presented above, it is important to consider the frequency associated
with each measurement. A good example of this is indicated in the Wood-Anderson records shown in
Figure 1, where it can be seen that the maximum amplitude (and hence the M, value) is associated
with a frequency = 1.81 Hz (period ~.55 sec) for the Pino Solo record, and with a frequency of ~.33
Hz (period ~3 sec) for the Mesa de Andrade record. Values of parameters and the frequencies at
which they were measured have been converted into spectral values and plotted in Figure 18, together
with values from actual measured spectra, to illustrate the relation of the measured parameters to the
spectra.

All observed values were converted into spectral values corresponding to a distance R = 10km
and an "average" azimuth (such that the radiation pattern Ry, = .6) in a homogeneous full-space
characterized by a density p = 2.7g/cc, and a shear wave velocity 8 = 3.7km/sec (values appropriate
for the crust under the Imperial Valley). Thus, the spectral density associated with a particular value of
the moment is obtained from the relation [Keilis-Borok, 1960]

3
M0= 4_;7223— RQO
0d

which for our case gives
Qo =3.4912 x 1072 M,

(Qg in cm-sec, M, in dyne-cm).

The observed spectral values were transformed into equivalent full-space values by correcting for
distance by a factor of 10km divided by epicentral distance; for amplification at the free surface by a
factor of .5, for radiation by a factor of .6 divided by the observed Ry, value and for the amplification
of the Imperial Valley sediments, by multiplying by a factor of .4 [Hartzell and Brune, 1971]. Since the
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BAR record for the Pino Solo earthquake was not suitable for digitization, the short period spectral
value was estimated from the synthetic spectrum scaled so that the synthetic seismogram would have
the same maximum amplitude as the observed one.

Relative magnitude values were used to estimate relative spectral values in the following way: the
value of the magnitude measured for Pino Solo was associated with the Pino Solo spectrum at the fre-
quency at which the magnitude measurement was made, and used as the reference from which the rela-
tive position of the corresponding spectral value for the Mesa de Andrade earthquake was placed (after
correcting for the effects of different frequencies and/or instrument response). The reference points on
the curve for Pino Solo are: M; = 5.1 at a frequency of 1.81 Hz, m, = 4.9 at —~.82 Hz, and M, =
4.0 at ~.073 Hz (see Figure 18). The relative spectral values thus determined for the Mesa de
Andrade events are represented on Figure 18 as triangles, identified by their magnitude value and the
type of magnitude they represent (connected to the corresponding value for the Pino Solo earthquake
by a dotted line).

Error bars associated with magnitude are .1 magnitude unit in each direction, representing the
standard error found for the distant station determination of local magnitude for both earthquakes (the
Pino Solo M, value at BAR, shown as a circle with a B in it, is not very reliable, since it was measured
from a single component). The other symbols used in Figure 18 are the same as for previous figures.

The solid lines in Figure 18 represent approximate fits to the equivalent spectral values (dashed
where only approximately established). As a rough check on these results we also calculated the spec-
tra from the Pasadena Wood-Anderson records of each earthquake. The results approximately
confirmed the relative positions of the overall spectra shown in Figure 18 at frequencies below .5Hz.
They also approximately confirmed the absolute positions of the curves, under the assumption that the
waves recorded on the Wood-Anderson records were body waves, with corrections made approximately
as done by Thatcher and Hanks [1973]. The curve with large dash marks labeled () ,,(y=2) is the
estimated overall spectrum for the Mesa de Andrade earthquake with a high frequency falloff beyond
the corner frequency assumed to be proportional to f~2.

We are now in a position to attempt to answer some of the questions that prompted the present
work.

As noted earlier, the Pasadena Wood-Anderson seismogram for the Pino Solo earthquake (Figure
1) is relatively simple, most of the energy arriving in a burst of only a few seconds duration, while the
seismograms for the Mesa de Andrade earthquake is more complex, with both the high frequency
energy (F > 1 Hz) and lower frequency energy arriving over a much longer period of time (~ 1
minute). However the Riito integrated strong motion displacement seismogram for the Mesa de
Andrade earthquake at a distance of —18km (bottom, Figure 1), indicates that the actual energy release
occurred in two relatively simple events, the first containing considerably more low frequency energy
than the first (see spectra in Figure 18), while the second was a sharper event with somewhat higher
accelerations (see also Figure 8). Figure 1 indicates that most of the complexity observed on the Mesa
de Andrade seismogram must have come from scattering and multipathing as a result of the complex
geologic path between the Mesa de Andrade earthquake and Pasadena. For the Pino Solo record, the
geologic path to Pasadena is much simpler, and this results in a relatively simple pulse of energy. Thus
the comparison in Figure 1 shows that the high frequency energy from the Mesa de Andrade earth-
quake has been spread out in time and this may have reduced the M; magnitude for Mesa de Andrade
relative to the Pino Solo. The spreading out of energy by scattering will have a much less pronounced
effect on spectra than on M;. It is also possible that differential attenuation due to lower Q values for
the part of the propagation path in the Salton trough has selectively reduced the high frequencies for
the Mesa de Andrade earthquake.

The moments and corner frequencies shown in Figure 18 are in approximate agreement with w2
for the spectra of earthquakes [4ki, 1967; Brune, 1970,1971; Hanks, 1979]. The corner frequency of
the Mesa de Andrade earthquake (ignoring () ) is about a factor of two lower than for the Pino Solo
earthquake, whereas the corresponding low frequency amplitudes are approximately eight times higher.
Thus the corner frequencies and moments for the Mesa de Andrade and Pino Solo earthquakes are in
agreement with the y = 2 model for two earthquakes of approximately the same stress drop, but with
source dimensions a factor of two different [Hanks, 1979].
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However, the Riito strong motion spectra are not consistent with the y = 2 model (Figure 18).
For the first event the spectra are about three times higher between .8Hz and 2Hz, and for the second
event the spectra are about four times higher at 1Hz and seven times higher at 2Hz to 5Hz, estimated
relative to the heavy dashed line labeled Q ,,(y=2) in Figure 18. This is probably a result of both rup-
ture propagation toward Riito and a higher stress drop for the second event. This causes M, (Table I)
determined from the nearby Riito strong motion record (using the technique of Kanamori and Jennings
[1979]), to be higher for the second event (5.5) than for the first event (5.2). At other azimuths and
larger distances (where the high frequencies have been attenuated and scattered) and focusing is not
effective, M; calculated for the second event, if it could be seen, would probably be smaller for the
second event than for the first event (because the moment and low frequency spectrum are lower).
Actually, the energy from the second event cannot be clearly identified at distant stations because of
the presence of energy from the first event (see Figure 1).

The M, values computed for station Delta are even higher, about 6.1 for both the first and
second events. This could be in large part due to directively focusing since Delta is directly in the
direction of rupture. However there may be other factors contributing, e.g. local amplification, or
perhaps the Richter attenuation curve assumed in the calculation of M, is not appropriate for the
region. The station Delta also recorded anomalously high ground motion from the 1979 Imperial Val-
ley earthquake [Brune et al., 1981].

The relatively high ground motion at Riito and Delta clearly demonstrate the difficulty in predict-
ing peak motion in the near field from parameters measured at distant stations. The acceleration value
of .21 and .24g at Riito exceed the 84 percentile correlation curves of Joyner et al., [1982]. The Delta
peak acceleration values exceed these curves by more than a factor of 2.

CONCLUSION

The overall stress drops for the Mesa de Andrade and Pino Solo earthquakes were found to be
nearly the same, but the source dimension of the Mesa de Andrade earthquake is approximately two
times that of the Pino Solo earthquake. In terms of the y = 2 seismic source model, this explains most
of the greater moment and greater excitation of surface waves for the Mesa de Andrade earthquake.
The difference in local magnitude (0.2) is also, within the uncertainty in measurement, consistent with
the v = 2 model. However greater complexity in the Wood-Anderson records from the Mesa de
Andrade earthquakes, when compared with the simple displacement strong motion records, indicates
that scattering due to complexities in geologic path effects the magnitude determinations from earth-
quakes in the Salton trough and could be in part responsible for the apparent higher excitation of sur-
face waves from earthquakes in that area. However, final determination of the reason for the
differences in surface wave excitation must await more studies of the type presented here, especially for
larger earthquakes.

The high accelerations and spectra recorded at the strong motion stations Riito and Delta are not
expected from the y = 2 model, and may have resulted from near field focusing (directivity). Another
possibility is that they represent two relatively high stress drop events (possibly asperities breaking) on
an otherwise relatively low stress-drop rupture surface.
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TABLE I

PINO SOLO/
PARAMETER  PINO SOLO MESA DE ANDRADE MESA DE ANDRADE
| VALUE VALUE Ratio Logratio
M, (dyne-cm) 3.4x10%3 2.9x10% 12 - .93
M (dyne-cm)  16x10% (1) 1.7x10% 09 -1.03
) 6.4x10% 25 - .60
M, 5.1 5.3 63 - .20
M; 1) 5.2 40 - 40
) 5.5 20 .70
my 4.9 5.3 40 — .40
M, 4.0 5.1 08 ~1.10
D (km) 5.3 11.5 46 - 34
D* (km) 5.3 ~11.5 46 — .34
Ao (bars) - 79 5.8 1.36 13
Ac* (bars) 3.8 3.5 1.09 04
i (cm) 3.9 7.4 53 - .28
7* (cm) 1.8 (1) 3.9 46 o34
E, (ergs) 9.2x10'8 2.0x10" 46 5234
E; (ergs) 2.9x10'3 (1) 1.4x10" 21 - .68
n (bars) 10.9 3.5 3.11 49
na* (bars) 7.3 ) 3.1 2.35 37
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Figure 1. Pasadena North-South component Wood-Anderson torsion seismometer records (T, = .8
sec) for the July 17, 1975 Pino Solo and Dec 7, 1976 Mesa de Andrade earthquakes. The bottom trace
is the displacement strong motion seismogram for the Mesa de Andrade earthquake at Riito.
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(right).
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Figure 8. Riito strong-motion resolved radial and transverse displacement seismograms for second

Mesa de Andrade event.
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Figure 9. Delta strong-motion resolved radial and transverse displacement seismograms for first Mesa
de Andrade event.
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Figure 10. Delta strong-motion resolved radial and transverse displacement seismograms for second
Mesa de Andrade event.
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Figure 11. Riito synthetic seismograms for selected hypocentral depths.
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