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Introduction

As investigations of possible waste disposal sites in igne-
ous rocks become more focused, detailed geochemical and isotopic
studies will provide additional criteria for screening candidate
sites. For example, isotopic disequilibria in rocks and minerals
may indicate open-system behavior related to low-temperature
alteration or to thermo-tectonic events (Smedes, 1980; Zielinski
and others, 1981).

This study presents a new geochemical test for site selec-
tion in moderately to densely welded ash-flow tuffs. A selective
dissolution procedure is used to determine the amount of secon-
dary oxides of manganese that are present as incipient alteration
products and that may act as sorbants for dissolved uranium, and
possibly other actinides of the waste package (Means and others,
1978) . The association of uranium with secondary manganese
oxides is herein documented by the covariance of uranium and man-
ganese in leachates and by fission track radiography of polished
thin sections. The results allow relative ranking of welded tuff
intervals that appear comparable on the basis of other criteria
such as petrographic freshness, water content, degree of welding,
or ratio of radium equivalent uranium (RaeU) to actual uranium
(u).

Sample Location and Description

In this preliminary investigation, 41 core samples of Terti-
ary rhyolitic ash-flow tuff exhibiting varying degrees of
welding, fracturing and alteration were obtained from drill hole
USW-G1 at Yucca Mountain, a volcanic highland along the western
boundary of the Nevada Test Site (fig. 1). The hole is one of
several drilled by the Department of Energy for the purpose of
detailed geologic evaluation of a possible waste disposal site.
The stratigraphic section consists of thick intervals of ash-flow
tuff and volcanic breccia, with lesser amounts of interbedded
volcaniclastic rocks (Spengler and others, 1981). In order of
increasing depth the units sampled include: (1) Topopah Spring
Member of the Paintbrush Tuff (755-1435 ft), (2) tuffaceous beds
of Calico Hills (1425-1801 ft), (3) Bullfrog Member, and (4) Tram
unit of the Crater Flat Tuff (2173-3558 ft), (5) tuff of Lithic
Ridge (3946-4940 ft), and (6) older undivided tuffs (4940-6000
ft). With the exception of units (2) and (5), all sampled units
contain intervals of moderately to densely welded, devitrified,
relatively unaltered ash-flow tuff that, on the basis of physi-
cal-mechanical properties, is considered a potential host for
disposal of high-level radiocactive waste. The majority of
samples (21) are of material of this type (table 1) with the
remainder chosen to be spatially close to welded devitrified
samples but to exhibit increased zeolitization, or decreased
welding (table 1). Three samples of variably fractured vitro-
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phyre from the Topopah Spring Member were included to contrast
with devitrified equivalents. An additional sample of fractured,
faulted rhyodacite breccia (#31, 3640 ft) was also included for
comparison with similarly fractured rhyolites. Detailed litho-
logic descriptions of the sampled units are given in Spengler and
others, 1981.

Analytical Methods

Major-element analyses of whole-rock powders were performed
by X-ray fluorescence (Taggart and others, 1981) which is precise
to within +5 percent (1 sigma) for most reported oxides. Vola-
tile content was determined by weight loss after ignition at
900°C and is precise to approximately +10 percent (1 sigma). A
delayed neutron method (Millard and Keaten, 1982) was used to
measure uranium in whole-rocks, whereas thorium and radium-equiv-
alent uranium (RaeU) were determined by gamma spectrometry
(Bunker and Bush, 1966). The precision of U, Th, and RaeU
analyses is equal to or better than +5 percent (1 sigma). The
uranium distribution in polished thin sections was determined by
fission-track radiography, using muscovite mica detector material
(Zielinski and Rosholt, 1978).

The amount of secondary manganese oxides and calcite in the
studied samples was estimated by a selective leach procedure.
The leach solution (1 M hydroxylamine hydrochloride + 25% (v/v)
acetic acid, pH ~2) has been used to dissolve manganese oxides
and associated metals from sediments and ferromanganese nodules
(Chester and Hughes, 1967), but it is also capable of dissolving
calcite and amorphous iron oxides, and of removing weakly
adsorbed metals from clays. Three grams of each sample were
ground to -250 mesh, combined with 30 mL of leach solution in a
polyethylene centrifuge tube, and mechanically shaken for 4 hours
at room temperature. Liquids were separated by centrifugation
(15,000 rpm for 30 minutes), followed by filtration through 0.2
micrometer opening filter paper. The leachates were analyzed for
dissolved Mn, Ca, Fe, and Al by plasma-optical-emission spectro-
metry (Lichte and others, 1980), which is precise to 3 percent
(1 sigma). The uranium concentration in leachates was determined
by a fission-track method (Zielinski, 1979), which has a preci-
sion of approximately %10 to 20 percent (1 sigma), based upon
counting statistics.

The assignment of leached elements to specific dissolved
minerals is subject to some gqualification. For example, dis-
solved manganese is here attributed to manganese oxides and
dissolved calcium to calcite, but other possible sources of
cations such as organic matter, clays, and zeolites may be par-
tially leached as well. Such complications are minimized if the
leached samples contain relatively small abundances of these
phases and such is the case for the moderately to densely welded



tuffs of this study (table 1). 1In addition, a particular leach
procedure many not produce 100 percent dissolution of the phase
under attack.

In view of the above limitations, selective leaching results
are most correctly interpreted as indicating the relative abun-
dance of operationally defined sites (i.e., acid-reducible) in a
group of similar samples. 1In accord with this interpretation,
the emphasis of this study is on relative differences between
units.

Results and Discussion

Major-element analyses of whole-rock samples (table 2) con-
firm their petrographic identification as rhyolite. Volatile-
corrected analyses (table 3) indicate that most of the rhyolites
are high-silica and alkali-rich. Non-zeolitized rhyolite of the
Topopah Spring Member (samples 1-11) is particularly homogeneous,
as noted in a previous study of surface samples (Lipman and
others, 1966). Chemical homogeneity suggests a common origin and
eruptive history, followed by minimal posteruptive alteration.

Trace-element data (table 2) provide additional indications
of the degree of chemical homogeneity in the studied units. The
narrow range of thorium values (24.2-24.9 ppm) within the rhyoli-
tic portion of the Topopah Spring Member (samples 1-11) indicates
exceptional homogeneity of that unit. Because of the relative
insolubility of thorium compounds in normal surface and ground
waters, homogeneity of thorium is interpreted to indicate a uni-
formity of magma composition and of physical processes acting
during eruption (crystal-melt separation, contamination with
lithic inclusions). Homogeneity of uranium while good (4.2-5.1
ppm), is not as great as that for thorium, suggesting minor post-
eruptive mobilization of uranium by oxidizing solutions. The
other studied units are generally more variable in thorium and/or
uranium, suggesting more complex magmatic and postmagmatic
histories (table 2; Bunker and others, 1983).

Preliminary megascopic and X-ray observations of moderately
to densely welded samples from the Topopah Spring Member and
other sampled units showed little indication of alteration other
than fracture coatings of silica, calcite, Fe-Mn oxides, and rare
clay (Spengler and others, 1981). Thin-section observations of
this study indicate the additional presence of secondary oxides
of iron and manganese as dendritic stains, micro-fracture
fillings, and coatings of ferromagnesian minerals that occur as
phenocrysts or as components of lithic fragments.

Fission-track radiography of thin-sections indicates a
common spatial association of uranium with the secondary oxides
of iron and manganese (fig. 2). Secondary oxides of iron and









manganese, especially hydrous forms, are well-documented adsor-
bents of dissolved transition metals and uranium (Krauskopf,
1956; Jenne, 1968; Murray, 1975; Van der Weijden and others,
1976; Zielinski, 1978). Thus, the radiographic data indicate the
presence of redistributed, soluble uranium during incipient
alteration of welded tuffs. However, the agreement between chem-
ical uranium concentrations and radiometric uranium (RaeU) con-
centrations of whole-rock samples (table 2, fig. 3) indicates
that on a whole-rock scale, samples have not been open to analy-
tically detectable movement of uranium or of its long-lived
daughters within approximately the last 300,000 years. An impor-
tant exception to this observation is the RaeU/U ratio of 1.24
for fractured rhyodacite breccia (#31) collected from a fault
zone. This analytically significant ratio suggests recent
daughter gain or uranium loss; a probable consequence of
relatively high fracture permeability.

The manganese content of leachates (table 4, fig. 4)
indicates dramatic between-sample and between-unit differences in
the amount of manganese oxides. As expected, vitrophyre samples
contain the smallest amounts of leachable manganese (2.5 to 17.5
percent of the amount of Mn present). Surprisingly, the zeo-
litized samples do not contain large amounts of leachable mangan-
ese, perhaps because of prior manganese removal during zeolitic
alteration. Of greatest interest are the up to five-fold differ-
ences in the amount of leachable manganese between samples of
moderate to dense welding. Leachable manganese is more variable
and attains highest values in the moderately to densely welded
samples of the Bullfrog and Tram units, compared to similarly
welded samples of Topopah Spring and older tuffs.

Radiographic observations that indicate an association of
uranium with manganese oxides are corroborated by the leachate
data. The amount of leachable manganese in 21 welded tuffs (10
to 75 percent of the amount present) correlates positively (fig.
5) with the amount of leachable uranium (1.5 to 25 percent of the
amount present). A correlation coefficient of 0.96 is reduced to
0.56 if a highly fractured sample (#26) is omitted, but the cor-
relation remains significant at the 95 percent confidence
level. 1In contrast, leachable manganese does not correlate with
leachable calcium or with water content, the latter estimated by
loss on ignition (LOI) at 900°C (table 2). For example, samples
of similar IOI occur in similarly welded intervals of the Topopah
Spring and Bullfrog Members, but leachable manganese differs Dby
up to a factor of five (compare samples 1-5 with 21-23 of table
2, fig. 4). A possible cause of systematic differences in leach-
able manganese may be the location of the Topopah Spring Member
above the water saturation level (1900 ft), which is an obvious
control on the development of alteration. The amount of leach-
able manganese also appears to be highest in welded tuff units
that contain high proportions of manganese oxides in megascopic
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Figure 3.--Rael/U ratios in 39 whole-rock samples from Yucca Mount-
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filling materials in each of four welded ash flows is

plotted versus sample number.

Figure 4.--The Manganese content of leachates (as ppm in rock)
included for comparison.
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fractures (fig. 4). Likewise, the amount of leachable calcium
tends to be high in welded tuff units that contain high propor-
tions of calcite in megascopic fractures (fig. 6). Thus, the
observations suggest that the alteration mineralogy of competent,
welded tuffs is similar to that observed in megascopically frac-
tured intervals of the same unit.

The single sample of rhyodacite flow breccia is anomalous in

its leaching characteristics; combining low leachable uranium (fig.

(1.5 percent of the amount present) with relatively high
leachable manganese (75 percent of the amount present). This may
indicate a fundamental difference in the distribution of uranium
that is related to bulk composition, or it may indicate prior
removal of uranium, as suggested by a high RaeU/U ratio (fig.

3). Net removal of uranium from whole-rocks that contain uranium
adsorbents may occur if local pore-water compositions stabilize
dissolved uranium or if a low Mn-oxide/solution ratio prevails
(Balistrieri and Murray, 1982). The latter condition is likely
in host rocks of high transmissivity, such as the sample of frac-
tured and faulted flow breccia.

As mentioned, the amount of leachable calcium in moderately
to densely welded tuffs is typically high in units that contain
observable calcite in large fractures (fig. 6). The relatively
large amounts of leachable calcium in nonwelded and zeolitized
tuffs may indicate additional leaching of calcium from zeolite.
The Topopah Spring Member is the only sampled unit in which
welded tuffs have consistently low amounts of leachable calcium
and manganese, even in relatively fractured intervals. This,
combined with low to moderate LOI (table 2) suggest relatively
small amounts of alteration products in welded tuffs of this
unit.

Leachable aluminum was monitored as an index of the compli-
cating effect of aluminosilicate dissolution, and ranged from
0.25 to 1.5 percent of the amount present, averaging 0.83
percent. Although a negative correlation of leachable aluminum
with degree of welding is suggested by the data, the generally
small percentages of dissolved aluminum compared to other ele-
ments supports the assumption of minimal aluminosilicate dissolu-
tion. For comparison, averadge leached percentages of Mn, Ca, Fe
and U are 38.7, 22.9, 13.1, and 4.3, respectively (table 5).
Leachable iron is more difficult to interpret because of
relatively poor precision of dissolved iron obtained from
similarly leached splits of the same powdered sample (table 4).
An explanation for this is not readily apparent but a more
restricted particle size range for leached powders and a more
careful sample splitting procedure may help to reduce this
variability. The reported values of dissolved iron do not corre-
late with dissolved manganese or dissolved uranium. This is
counter to the apparent association of secondary iron oxides with

i1
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manganese oxides and uranium as is observed in thin sections and
radiographs. More precise data for dissolved iron are required
in order to explain this discrepancy.

Conclusions

Selective leaching is presented as a sensitive method for
evaluating moderately to densely welded ash-flow tuffs as host
rocks for radioactive waste. The amount of manganese leached by
a mildly reducing, acetic-acid-based solvent provides a quantita-
tive estimate of the amount of manganese oxides that are present
as incipient alteration products and that act as adsorbents for
dissolved uranium. Leachable uranium correlates with leachable
manganese, and the association of uranium with manganese oxides
is confirmed by fission-track radiography. In addition, the
amount of calcium leached from ash-flow tuffs provides an esti-
mate of the relative abundance of calcite + zeolite.

The results are used to rank welded tuff units that appear
similar on the basis of other criteria such as petrographic
freshness, bulk chemistry, RaeU/U, water content, or degree of
welding. If a minimum degree of time-integrated rock/water
interaction is desirable, favored units should contain relatively
small amounts of incipient alteration products such as manganese
oxides. Conversely, if the presence of adsorbents for radio-
nuclides is deemed a more important criteria, abundant manganese
oxides are preferred. Of the studied units, the Topopah Spring
Member of the Paintbrush Tuff shows the least evidence for incip-
ient alteration; a finding that is consistent with its location
above the present static water level. More deeply buried units
such as the Bullfrog Member and Tram Unit contain the greatest
abundance of manganese oxides. In general, the relative
abundance of manganese oxides and calcite in competent, densely
welded tuffs mimics their observed relative abundance in macro-
scopically fractured intervals of the same tuff unit.

In spite of differences in the amount of incipient altera-
tion and of adsorbed uranium, agreement of actual uranium concen-
trations with radiometric uranium concentrations (RaeU) of
individual whole-rock samples indicates dominant closed-system
behavior of uranium and its long-lived daughters and suggests
that the amount of recent (<300,000 yr) uranium mobility is minor
or dominantly intergranular. Thus, the present physical-chemical
environment of the studied rocks appears to limit uranium
mobility; a desirable attribute of rocks in the vicinity of
uranium-bearing radioactive waste.

These studies should be extended to include more samples
from preferred units and samples from additional holes that allow
comparison of the same unit above and below the static water
level. Extension of the technique to other rocks (basalt,
granite) also merits investigation.
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Table 2. Oore sample compositions l/, hole USW-Gl, Yucca Mtn., Nevada.

(Except where noted all units in weight percent, uncorrected for volatile content.
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