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Chemical Characteristics of the Uranium-Vanadium Deposits
of the Henry Mountains Mineral Belt, Utah

~-r

by Charles S. Spirakis, Charles T. Pierson, and Fred Peterson

ABSTRACT

This report summarizes the analytical results for 237 samples of
sandstone and 244 samples of mudstone from the Henry Mountains mineral belt of
Utah. The data were statistically treated to determine which elements were
enriched or depleted in these primary tabular-type uranium-vanadium deposits
compared to unmineralized parts of the host rocks. Along with uranium and its
radioactive daughter products, the mineralized sandstones in the Henry
Mountains mineral belt are enriched in Al, Be, organic carbon, Co, Cr, Cu, Fe,
Ga, K, Mg, Mo, Na, Ni, Pb, S, Se, Sr, Ti, V, Y(?), and Zr. Silica is depleted
in the mineralized sandstones compared to unmineralized sandstones. A
comparison of mineralized mudstones to unmineralized mudstones suggests that,
in addition to uranium and its radioactive daughter elements, the mineralized
mudstones are enriched in Al, B, Be, organic carbon, Co, Cr, Cu, Ga, K, Mo,-
Sc, Se, Sr, and V. Manganese, calcium, and mineral carbon are depleted in the
mineralized mudstones.

INTRODUCTION

The goals of this study are to summarize some of the existing geochemical
data for the primary tabular-type uranium-vanadium deposits and related rocks
in the Henry Mountains mineral belt of southeastern Utah, and to determine
which elements are enriched or depleted in the ore deposits relative to
unmineralized rocks. Mineral deposits in the Henry Mountains region occur in
the Salt Wash Member of the Morrison Formation. Northrop (1982) points out
that the deposits are localized in synclines and are associated with organic
matter. Detailed descriptions of the deposits and the geology of the Henry
Mountains mineral belt are presented in Peterson (1980).

NATURE OF THE DATA AND STATISTICAL TREATMENT

The elements considered in this study, the limits of determination for
each element and the analytical techniques used are shown in figure 1. The
wet chemical techniques noted in figure 1 are combustion idiometric titration
and gravimetric methods for sulfur, combustion thermal conductivity for total
carbon, and volumetric methods for mineral carbon. Organic carbon was
determined by difference. Most of the other data are from 6-step
semiquantitative emission spectrographic analysis. These data are presented
as midpoints (.15, .2, .3, .5, .7, and 1.0) of geometric brackets whose
boundaries are 0.12, 0.18, 0.26, 0.38, 0.56, 0.83, and 1.2. Thus, there are
six brackets for every order of magnitude; the boundaries and midpoints for
higher or lower values are the same as these except for the position of the
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decimal. The precision of a reported value in 6-step data is approximately
plus-or-minus one bracket at the 68-percent confidence level and plus-or-minus
two brackets at the 95-percent confidence level (Motooka and Grimes, 1976).
Twelve samples were analyzed for 23 element$ by induced neutron activation
analysis.

Large sets of spectrographic analytical data such as these inevitably
include results from samples that contain too little of certain elements to
permit accurate determinations of their abundances. Data for such samples in
these results were presented in two categories. One category was for samples
with such a low concentration of some element that no evidence for the
presence of the element was found (N in the data for "not detected"); the
other category was for samples in which the element was present but at too low
a concentration to permit an accurate determination (L in the data for "less
than the 1imit of determination"). A technique known as Cohen's method (which
is described by Miesch, 1967, and is part of the USGS STATPAC program) was
used to estimate most probable values of the geometric means and geometric
deviations for these censored distributions. The calculation is based on the
following factors: (1) the logarithm of the limit of determination; (2) the
number of concentration values that are below (or in the case of data sets
containing G (greater than) values, above ) the limit of determination and (3)
the total number of samples. The geometric mean and geometric deviation of
the analytical values within the limits of determination are computed and then
the geometric mean and geometric deviation of the entire distribution,
assuming log-normality, are estimated using equations developed by Cohen
(1959, 1961). In censored distributions (N's, L's, or G's present), where a
high percentage of the analyses are outside the limits of determination, the
geometric means obtained by Cohen's method should be considered only as
indicating the probable order of magnitude of the means of the samples which
are within the 1imits of determination.

As a first step in determining the characteristics of the deposits and
related rocks, the 481 available samples were divided into seven groups.
These groups are: sandstones with greater than 1000 ppm uranium, sandstones
with greater than 100 ppm uranium (this set includes those samples with
greater than 1000 ppm uranium), sandstones with less than 100-ppm uranium,
sandstones with less than 20 ppm uranium (this is a subset of sandstones with
less than 100 ppm uranium), mudstones with more than 100 ppm uranium,
mudstones with less than 100 ppm uranium, and mudstones with less than 20 ppm
uranium (this is a subset of mudstones with less than 100 ppm uranium).

Summary statistics, shown in Appendix 1, were calculated by computer
using the USGS STATPAC programs. Similar presentations of the data for
primary tabular uranium deposits in the Ambrosia Lake district and in the
Smith Lake district are included in Spirakis and others (1981) and in Pierson
and others (1983). The detection ratios reveal how many values had to be
estimated in order to arrive at the geometric means for each element in each
data set. According to Fisher (1950), the logarithms of geochemical data
approach a normal distribution more closely than do the untransformed values
in ppm or percent; consequently, geometric means (which are based on the
logarithms of the data) are a better measure of the central tendency of the
data than are arithmetic means. The geometric means, therefore, were used to
identify differences in the concentrations of the elements among the groups of

mineralized and background samples.



Tests for statistical significance of differences between the above
mentioned sample groups for a given element were made utilizing a "t" test
described by Natrella (1963, p. 26-28). Summary statistics used in the test
are the means and variances of the logarithmic values and the number of
samples in each group. A standard table giving percentiles of the "t"
distribution was used to determine whether the observed differences were
significant at the 95-percent confidence level. It is this significance that
is referred to in the observations. The samples were not collected in
anticipation of statistical treatment; consequently, they were not collected
in a truly random manner and are not ideally suited for statistical tests.

OBSERVATIONS AND DISCUSSION

Figure 2 shows which elements are enriched, depleted, or unchanged in
abundance in mineralized sandstone (more than 100 ppm uranium) compared to
unmineralized sandstone (less than 100 ppm uranium) in the Henry Mountains
mineral belt. Those elements enriched along with uranium and its radioactive
daughter products in the sandstone deposits include Al, Be, organic carbon,
Co, Cr, Cu, Fe, Ga, K, Mg, Mo, Na, Ni, Pb, S, Se, Sr, Ti, V, Y(?), and Zr. No
significant difference in the abundances of B, Ba, mineral carbon, Ca, Mn, and
P were detected between mineralized and unmineralized sandstones. Silica is
the only element found to be depleted in the sandstone ores.

Figure 3 presents conclusions as to the behavior of elements in
mineralized mudstones compared to nonmineralized mudstones. In the
mineralized mudstones, Al, B, Be, organic carbon, Co, Cr, Cu, Ga, K, Mo, Sc,
Se, Sr, and V are enriched along with uranium and its radioactive daughters;
manganese, calcium and mineral carbon are depleted. No significant
differences were found in the abundance of Ba, Fe, La, Li, Mg, Na, Ni, P, Pb,
S, Si, Ti, Y, and Zr between mineralized and unmineralized mudstones.

Of the elements Cu, Fe, Mo, Pb, Se, Sr, S, V, Y, Ba, Ca, and organic
carbon, which were found to be typically enriched in primary tabular uranium
deposits in the Grants Uranium region (Spirakis and Pierson, in press), only
barium and calcium are not enriched in the primary tabular deposits in
sandstones in the Henry Mountains mineral belt. The barium content of
mineralized and unmineralized rocks in the Henry Mountains deposits is much
lower than the barium content of mineralized and unmineralized sandstones in
the Grants region. In the Ambrosia Lake area, the enrichment of barium in
mineralized sandstones but not in mineralized mudstones was interpreted as an
indication that barium was added to the deposits after the mudstones were
compacted (Spirakis and others, 1981). Paragenetic relationships indicate
that barite formed after the primary ore-forming process (Hansley, in
press). Adams and Saucier (1981) note that the barium content is higher in
oxidized rocks than in nonoxidized rocks in the Grants region. From these
observations it seems likely that the barium enrichment in the primary
deposits in the Grants region formed from the postmineralization oxidation of
pyrite, associated with the ores, to sulfate; this newly formed sulfate then
combined with barium to precipitate as barite. The absence of a barium
enrichment in the Henry Mountain deposits is consistent with the conclusion
that, since the deposits formed, they have remained below the water table and
were protected from atmospheric oxidation.
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The growth of chlorite in the ore and the enrichment of the ore in
aluminum requires the transport of aluminum to the deposits. As an inorganic
complex, aluminum has a very low solubility in most natural waters; however,
in the presence of certain organic complexing agents, the solubility of
aluminum may increase by a factor of 100 (Lind and Hem, 1975). This suggests
that aluminum and possibly other elements were transported to the ore deposits
with mobile organic matter.

Although pyrite is known to be associated with the primary tabular
deposits in the Henry Mountains and elsewhere, and both iron and sulfur were
found to be enriched in the mineralized sandstones, neither iron nor sulfur
was enriched in the mineralized mudstones compared to nonmineralized
mudstones. The only other area in which data on mineralized mudstones are
available is the Ambrosia Lake area (Spirakis and others, 1981). As in the
mineralized mudstones in the Henry Mountains, iron was not enriched in the
mineralized mudstones in the Ambrosia Lake area. This suggests that ore-stage
pyrite did not precipitate in the mineralized mudstones.

The similar enrichments and depletions of many elements in the Henry
Mountains ore deposits and in the ores in the Grants region suggest that the
primary tabular deposits in both areas may have formed from similar
processes.
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Appendix 1--Element abundances in primary tabular uranium-vanadium
deposits of the Henry Mountains mineral belt.

Blanks mark geometric means and geometric deviations which
were not presented because of a high proportion of Nand L
values in the data set.

G denotes that values greater than the upper limit of
determination are present in the data.

G,L denotes that values both above and below the Timits of
determination are present in the data

Detection ratios of less than one and not followed by "G"
indicate data sets that contain values below the limit of
determination.

1) Due to problems with the Mn data, Mn0 data were used.
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