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DEFINITION OF BOUNDARY AND INITIAL CONDITIONS IN THE ANALYSIS OF 

SATURATED GROUND-wATER FLOW SYSTEMS--AN INTRODUCTION 

by 0. Lehn Franke, Thomas E. Reilly, and Gordon D.·Bennett 

ABSTRACT 

Accurate definition of boundary and initial conditions is an 
essential part of conceptualizing and modeling ground-water flow 
systems. This report explains the properties of the seven most 
common boundary conditions encountered in ground-water systems and 
discusses major aspects of their application. It also discusses the 
significance and specification of initial conditions and evaluates 
some common errors in applying this concept to ground-water system 
models. An appendix is included that discusses what the solution of 
a differential equation represents and how the solution relates to 
the boundary conditions defining the specific problem. This report 
considers only boundary conditions that apply to saturated ground­
water systems. 

INTRODUCTION 

The specification of appropriate boundary and initial conditions is an 
essential part of conceptualizing and modeling! ground-water systems and is 
also the part most subject to serious error by ground-water hydrologists. 
Although some excellent discussions of these topics are provided in a few 
readily available texts (for example, Bear, 1979, p. 94-102, 116-123; and 
Rushton and Redshaw, 1979, p. 153-156, 182-184), most standard texts on 
ground-water hydrology do not thoroughly discuss these topics from the 
standpoint of ground-water flow modeling. 

1 The word "model" is used in several different ways in this report and in 
ground-water hydrology. A general definition of model is a representation 
of some or all of the properties of a system. Developing a "conceptual 
model" of the ground-water system is the first and critical step in any 
study, particularly studies involving mathematical-numerical modeling. In 
this context, a conceptual model is a clear, qualitative, physical 
representation of how the natural system operates. A "mathematical model" 
represents the system under study through mathematical equations and 
procedures. The differential equations that describe in approximate terms a 
physical process (for example, ground-water flow and solute transport) are a 
mathematical model of that process. The solution to these differential 
equations in a specific problem frequently requires numerical procedures 
(algorithms), although many simpler mathematical models can be solved 
analytically. Thus, the process of "modeling" usually implies developing 
either a conceptual model, a mathematical model, or a mathematical-numerical 
model of the system or problem under study. The context will suggest which 
meaning of "model" is intended. 
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The purpose of this report is to provide a concise introduction to these 
topics to give ground-water hydrologists the information necessary to 
successfully apply these concepts in conceptualizing ground-water systems for 
the purpose of modeling. 

The report consists of three parts. The first provides the definition 
and properties of the most common boundary conditions in ground-water systems 
and discusses their application in special situations. The second explains 
the concept of initial conditions and discusses some common pitfalls in 
specifying initial conditions in models of ground-water systems. The third 
part is an appendix that discusses what the solution of a differential 
equation represents and how the solution relates to the boundary conditions 
defining the specific problem. The report considers only boundary conditions 
that apply to saturated ground-water systems. 

BOUNDARY CONDITIONS 

Quantitative modeling of a ground-water system entails the solution of a 
boundary-value problem--a type of mathematical problem that has been exten­
sively studied and has applications in many areas of science and technology. 
The flow of ground water is described in the general case by partial 
differential equations. A ground-water problem is "defined" by establishing 
the appropriate boundary-value problem; solving the problem involves solving 
the governing partial differential equation in the flow domain while at the 
same time satisfying the specified boundary and initial conditions. In 
ground-water problems, the solution is usually expressed in terms of head 
(h); that is, head is usually the dependent variable in the governing partial 
differential equation. The solution to a simple boundary-value problem in 
ground-water flow is given in the appendix and serves as an example of a 
formal solution to this type of problem. 

Defining a specific ground-water problem in preparation for subsequent 
quantitative modeling requires a clear concept of how the ground-water flow 
system under study functions. Various representations of a ground-water flow 
system are possible, depending on one's objectives and point of view. In this 
discussion, the term "flow system" refers to the part of the ground-water 
regime that has been isolated for study and implies the following: 

1. A three-dimensional body of earth material is saturated with flowing 
ground water; 

2. The region containing the ground water is bounded by a closed surface 
called the "boundary surface" of the flow system; 

3. Under natural (unstressed) conditions, average flow in the system, as 
well as average ground-water levels, normally fluctuate around a mean 
value; 

4. Inflow (continuous or intermittent) of water to the system and outflow 
from it occur through at least part of the boundary surface. 

In ground-water investigations, the system or subsystem under study 
ideally should be enclo~ed by a boundary surface that corresponds to 
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identifiable hydrogeologic features at which some characteristic of ground­
water flow is easily described; examples are a body of surface water, an 
almost impermeable surface, a water table, and so on. In many studies, 
however, some part of the boundary surface must be chosen arbitrarily, often 
in ways that depend upon the proposed modeling strategy. The position of the 
three-dimensional boundary surface in nature (regardless of the extent to 
which it has been arbitrarily specified) defines the "external geometry" of 
the ground-water flow system. 

Specifying the boundary conditions of the ground-water flow system means 
assigning a boundary type (usually one or a combination of the types listed in 
the following paragraphs) to every point on the boundary surface. 

The selection of the boundary surface and boundary conditions is probably 
the most critical step in conceptualizing and developing a model of a ground­
water system. Improper selection of these components may result in a failure 
of the modeling effort, with the result that the model's response to an 
applied stress bears little relation to the corresponding response in the real 
system. 

Usually the selection of boundary conditions for a conceptual or 
numerical model involves considerable simplification of actual hydrogeologic 
conditions. To avoid serious error, the assumptions underlying such 
simplifications must be clearly understood and their effect on model response 
critically evaluated. 

Principal Types of Boundary Conditions 

This section describes the pertinent characteristics of seven type@ of 
boundaries--constant head, specified head, streamline (or stream surface), 
specified flux, head-dependent flux, free surface, and seepage surface. 

1. Constant-head (surface or line) boundary.--Hydraulic head (h) in a ground­
water system is the sum of elevation head (z) and pressure head (p/y), 
where p is gage pressure and y is the unit weight of water. Elevation 
head represents the potential energy of a water particle due to its 
vertical position above some datum, and pressure head represents pressure 
measured in terms of the height of a column of water in a piezometer. 
Physically, hydraulic head represents the water level above datum in' a 
piezometer or observation well open only to the point in question. 

A surface of equal head is an imaginary surface having the same head 
value at all points. Thus, all piezometers open to different points on a 
surface of equal head will show exactly the same water level in reference 
to a common datum. In a two-dimensional problem!, the concept of a line 
(rather than a curving surface) of equal head is used--that is, a line 
along which all points have the same head value. 

1In a two-dimensional problem, the components of ground-water-velocity 
vectors can be designated by two coordinate axes. Two-dimensional flow is 
planar. The illustrations in this report depict two-dimensional problems; 
that is, ground-water flows only in the plane of the illustration. 
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A constant-head boundary1 occurs where a part of the boundary surface 
of an aquifer system coincides with a surface of essentially constant 
head. (The word "constant," as used here, implies a value that is uniform 
at all points along the surface as well as through time.) An example is 
an aquifer that crops out beneath a lake in which the surface-water stage 
is nearly uniform over all points of the outcrop and does not vary 
appreciably with time. Other examples of a constant-head boundary are 
shown in figure lA (lines ABC, EG), figure lB (lines BA, CD), and figure 
lC (lines AB, CD), all of which depict two-dimensional steady-state 
ground-water seepage beneath engineering structures that are bounded in 
part by surface-water bodies. 

I 

I 
.... H 

Figure 1-A.- Flow net through and beneath an earth 
dam underlain by sloping bedrock. 

=:=:=::::_ Reservoir =:=:=:=::.=:= -Impermeable wall 
H 

Impermeable layer (Bedrock) 

D 

Figure 1-B.- Flow net beneath a vertical imperme­
able wall. 

Figure 1-C.- Flow net beneath an impermeable dam 
and a vertical impermeable wall. 

1 Also referred to as constant-potential or equipotential boundary. 
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Let us consider the boundary ABC in figure lA. The question some­
times arises as to whether line BC on the submerged side of the dam in 
fact represents a uniform constant head (or constant potential) along its 
entire length. Obviously, the pressure varies with depth along this 
surface. We assume that the surface water behind the dam is essentially 
static; the rule is that within such a body of stationary fluid, the 
total head is a constant at every point, which includes points along the 
boundary surface between the fluid body and the ground-water system, 
regardless of the surface configuration. To demonstrate this concept, 
consider piezometers at various depths in the body of a stationary fluid 
(fig. 2). At the surface of the fluid body (piezometer A), where the 
fluid is in contact with the atmosphere, h = z because p/y = 0. As one 
moves the piezometer downward from the fluid surface (piezometers B and 
C), the increase in pressure head (p/y) is exactly balanced by a decrease 
in elevation head (z); thus, h remains constant. 

Piezometers 

A B c 

Surface of fluid 
subject to 
atmospheric pressure 

'\7 '\7 " \I 

T 
(PI'y)B 

ZA hA 1 hB 
IPhlc 

he 

I 
\. 

zi 
zc Z=O 

~ Body of stattonary flutd (Datum) 

Figure 2.- Piezometers at different depths demon­
strating that the total head at all depths 
in a continuous body of stationary fluid 
is constant. 

2. Specified-head boundary.--A more general type of boundary condition, of 
which the constant-head boundary is actually a special case, occurs 
wherever head can be specified as a function of position and time over a 
part of the boundary surface of a ground-water system. An example of the 
simplest type might be an aquifer that is exposed along the bottom of a 
large stream whose stage is independent of ground-water seepage. As one 
moves upstream or downstream, the head changes in relation to the slope of 
the stream channel. If changes in head with time are not significant, the 
head can be specified as a function of position alone (h = f(x,y) in a 
two-dimensional analysis) at all points along the streambed. In a more 
complex situation, in which stream stage varies with time, head at points 
along the streambed would be specified as a function of both position and 
time, h = f(x,y,t). In either example, heads along the streambed are 
specified according to circumstances external to the ground-water system 
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and maintain these specified values throughout the problem solution, 
regardless of the stresses to which the ground-water system is subjected. 

Both specified-head and constant-head boundaries (or nodes, in a 
discretized analysis) have an important "physical" characteristic in 
models of ground-water systems--in effect, they can provide an 
inexhaustible source of water. No matter how much water is "pumped" from 
a system model, the specified-head boundaries will continue to supply the 
required amount, even if that amount is not physically reasonable in the 
real system. This aspect of specified-head boundaries should be 
considered carefully whenever this boundary type is selected for 
simulation and also when any model result or prediction is evaluated. 

3. Streamline or stream-surface boundary (no-flow).--A streamline is a curve 
that is tangent to the flow-velocity vector at every point along its 
length; thus, no flow components exist normal to a streamline, and no flow 
crosses a streamline. Because a stream surface is a continuous 
three-dimensional surface made up entirely of streamlines, it follows that 
no flow crosses a stream surface. In a steady flow, that is, a flow that 
does not change with time, streamlines and stream surfaces remain 
constant, whereas in nonsteady or transient flow--one that changes with 
time--the streamlines and stream surfaces in the interior of the flow may 
differ from one instant to the next. Even in nonsteady flows, however, it 
is common for some parts of the boundary to consist of stream surfaces 
that remain fixed with time. An example is an impermeable boundary. 
Natural earth materials are never completely impermeable. However, they 
may sometimes be regarded as effectively impermeable for modeling purposes 
if the hydraulic conductivities of the adjacent materials differ by 
several orders of magnitude. 

For an isotropic medium, the flow per unit area from a boundary into 
an aquifer is given by Darcy's law1 as 

()h 
q = -K 

an 
where: q is specific discharge (1/T), 

K is hydraulic conductivity of the aquifer (1/T), 
h is hydraulic head (1), and 
n is the direction normal to the boundary (L). 

1 Hydraulic conductivity in the example above is specified as isotropic 
to simplify the form of Darcy's law that is used. In anisotropic 
systems, the direction normal to the boundary (designated n) must coincide 
with a major axis of the hydraulic-conductivity tensor (represented 
geometrically by the hydraulic conductivity ellipsoid) to enable use of the 
simple form of Darcy's law above in each coordinate direction. Otherwise, 
the off-diagonal terms of the hydraulic-conductivity tensor are not zero 
and must be used to calculate the flux in the specified coordinate 
direction (Lohman, 1972). 
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The condition that q be equal to zero, as required for no-flow boundaries, 
db 

can be satisfied only if , the head gradient normal to the boundary, 
an 

is also zero. Thus a simple formulation of the no-flow condition in terms 
of head is possible. 

An example of a boundary that is effectively impermeable is the 
contact between unweathered granite and permeable unconsolidated material; 
another is a submerged sheetpile walll. Some examples of boundaries that 
are assumed to be no-flow (stream-surface) boundaries are depicted in 
figure lA, line HI; figure lB, lines AEC, FG; and figure lC, lines BGHC, 
EF. 

4. Specified-flux boundary.--Another general type of boundary, of which the 
stream-surface (or "no-flow") boundary is a special case, is found 
wherever the flux across a given part of the boundary surface can be 
specified as a function of position and time. (The term "flux" as used in 
this discussion refers to the volume of fluid per unit time crossing a 
unit cross-sectional surface area.) In the simplest type of specified­
flux boundary, the flux across a given part of the boundary surface is 
considered uniform in space and constant with time; this assumption is 
often made, for example, with respect to areal recharge crossing the upper 
surface of an aquifer. A flow net depicting constant areal recharge to a 
water table is shown in figure 3. Boundaries of this type are termed 
"constant-flux" boundaries, and the stream-surface boundary can be 
considered a special case in which the constant flux is zero. In a more 
general case, the flux might be constant with time but specified as a 
function of position: q = f(x,y,z) over the part of the boundary surface 
in question. In the most general case, flux is specified as a function of 
time as well as position: q = f(x,y,z,t). 

Figure 3.- Flow pattern in uniformly permeable 
material with constant areal recharge and 
discharge to symmetrically placed streams 
(modified from Hubbert, 1940). 

1 A continuous wall of driven piles, generally made of thick planks or 
corrugated sheet steel. 
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In all three examples, flux across the boundary is specified--that 
is, it is established in advance and not affected by events within the 
ground-water system; moreover, it may not deviate from its specified 
values during problem solution. 

If the direction normal to the boundary coincides with a major axis 
of hydraulic conductivity, the expression obtained above for flux from the 

<lh 
boundary, q = -~ ~· can be used to provide a statement of 

condition in terms of head. For the constant-flux boundary 
<lh 

the boundary 
<lh 

we have - = 
<ln 

constant, and for the two more general cases we have = f(x,y,z) and 
<ln 

<lh 
-- = f(x,y,z,t), respectively. 
<ln 

5. Head-dependent flux boundary.--In some situations, flux across a part of 
the boundary surface changes in response to changes in head within the 
aquifer adjacent to the boundary. In these situations, the flux is a 
specified function of that head and varies during problem solution as the 
head varies. An example of this type of boundary is the upper surface of 
an aquifer overlain by a semiconfining bed that is in turn overlain by a 
body of surface water. This type of boundary is illustrated by line BC in 
figure 4. The head in the surface-water body remains constant, and the 
flux, q, across the semiconfining bed is given by Darcy's law as 

H - h 
q -K' 

b' 

where: K' is the hydraulic conductivity of the semiconfining bed; 
b' is its thickness; 
H is the head in the surface-water body, and 
h is the head in the aquifer. 

Surface water body 

Aquifer 

Impermeable layer 

Figure 4. - A leaky aquifer system . 
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Thus, flux is a linear function of head in the aquifer--as head falls, 
flux across the semiconfining bed increases, and as head rises, flux 
decreases. 

Inherent in most head-dependent boundary situations is a practical 
limit beyond which changes in head cease to cause changes in flux. In the 
example cited above, this limit will be reached where the head within the 
aquifer falls below the top of the aquifer, so that the aquifer is no 
longer confined at that point, but rather is locally under an unconfined 
or water-table condition, while the semiconfining unit above remains 
saturated from top to bottom. Under these conditions, the bottom of the 
semiconfining bed becomes locally a seepage face (discussed later) in the 
sense that it responds to atmospheric pressure in the unsaturated aquifer 
immediately beneath it. Thus, with atmospheric pressure considered to be 
zero, the head at the base of the semiconfining unit is simply the 
elevation, (zt) of that point above datum, and no matter how much 
additional drawdown now occurs in the underlying aquifer, the flux through 
the semiconfining bed remains constant, as given by 

H - Zt 
q = -K' 

b' 
Thus, in this hypothetical case, flux through the confining bed increases 
linearly as the head in the aquifer decreases until the head reaches the 
level zt, after which flux remains constant. 

This behavior, or some form of it, is characteristic of almost all 
head-dependent flux boundaries; for example, evapotranspiration from the 
water table is often represented as a flux that decreases linearly with 
the depth of the water table below land surface and becomes zero when the 
water table reaches some specified "cutoff" depth, such as 8 ft below land 
surface. In terms of water-table elevation or head above datum, this is 
equivalent to a flux that is zero whenever head is below the specified 
cutoff level and that increases linearly as head increases above that 
level. 

Common designations for the five boundary conditions described above 
are summarized in table 1. The last t~o boundary types--free surface and 
seepage surface--are unique to liquid-flow systems governed by the gravity 
force and have no counterpart in systems involving heat flow or flow of 
electrical current. 

6. Free-surface boundary (h = z or more generally, h = f(z)).--The most 
common free-surface boundary is the water table, which is the boundary 
surface between the saturated flow field and the atmosphere (capillary 
zone not considered). An important characteristic of this boundary is 
that its position is not fixed--that is, it may rise and fall with time. 
In some problems, for example, analysis of seepage through an earth dam 
(fig. lA), the position of the free surface is not known beforehand but 
must be found as part of the problem solution, which complicates the 
problem solution considerably. 

The pressure at the water table is atmospheric. If we imagine a 
hypothetical piezometer with its bottom at the water table, we see that 
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pressure head equals zero (p/y = 0, no fluid in the piezometer). Thus, 
the total ground-water head at points along the water table is just equal 
to the elevation head, or h = z. This situation is analogous to the head 
at the surface of a static fluid body, as discussed previously. (See fig. 
2 and related discussion.) 

Table 1.--Common designations foP sevePal impoPtant boundaPy conditions. 

Boundary condition 
name and reference 

number in this 
report 

Constant head (1) 
and 

specified head (2) 

Streamline or 
stream surface (3) 

and 
specified flux (4) 

Head-dependent 
flux (5) 

Boundary type 
and 

general name! 

Type 1 
(specified head) 

Type 2 
(specified flux) 

Type 3 
(mixed boundary 

condition) 

1 See Bear, 1979, p. 96-98 

Formal 
name 1 

Dirichlet 

Neumann 

Cauchy 

Mathematical 
designation 

h = constant. 

dh 
constant. 

dn 

dh 
+ ch constant 

dn 
(where c is also a 
constant). 

Examples of "top boundary" free surfaces that may be treated as water 
tables are line CD in figure IA, the top boundary in figure 3, line CD in 
figure 5, and line AB in figure 6. In all these examples the position of 
the water table partly determines the geometry of the saturated flow 
system. Furthermore, the position of the water table in these systems 
could change significantly from the positions illustrated through a change 
in the absolute head value at constant-head boundaries (figs. IA, 5, and 
6) or in the quantity of areal recharge to the water table (fig. 3). 
Because these changes in heads and fluxes at boundaries alter the geometry 
of the flow system, the relationship between changes at boundaries and 
changes in heads and flows must be nonlinear. This nonlinear relationship 
is an important characteristic of ground-water systems with free-surface 
boundaries. 

Another example of a free-surface boundary is the transition between 
fresh water and underlying sea water in a coastal aquifer. If we neglect 
diffusion and assume the salty ground water seaward of the interface to be 
static, the freshwater-saltwater transition zone can be treated as a sharp 
interface and can be taken as the bounding stream surface (no-flow 
boundary) of the fresh ground-water flow system. It is not difficult to 
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show that, under these conditions, the freshwater head at points on the 
interface (or within the saltwater body) varies only with the elevation, z 
(Bennett and Giusti, 1971), and that the freshwater head at any point on 
this idealized stream-surface boundary is thus a linear function of the 
elevation of that point, or h = f(z). Line CD in figure 7 is an example 
of this "idealized" boundary condition, which is both a free-surface and a 
no-flow boundary. 

0.8-

.,, ..... ?·''"": ... h ... (•~•';;· ... •• r ..... _ .. , ;, .. •H' ,.n,•,,\.·.~ .. ·~-,':i .:'~':':.·.:~~-~~·£}','i•~~::•~~ri(~':/~~ .. !:;"l,n~/" ~.•'.: 

Impermeable layer 

Figure 5.- Flow pattern in a permeable dam 
with vertical faces (from Wyckoff 
and Reed, 1935). 

Figure 6.- Flow pattern near a discharging well in an 
unconfined aquifer (from Nahrgang, 1954). 
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Figure 7.- Flow pattern near a seawater-freshwater interface (from Glover, 1964). 

Because of the inherent difficulty in modeling ground-water systems 
with free-surface boundaries, the representation of such systems is 
sometimes facilitated through a set of simplifying assumptions proposed by 
Dupuit (the "Dupuit assumptions") in the 19th century.· A list and 
discussion of these assumptions may be found in most textbooks on 
ground-water hydrology. (See, for example, Freeze and Cherry, 1979, p. 
188-189.) 

7. Seepage surface or seepage-face boundary (h = z).--A surface of seepage is 
a boundary between the saturated flow field and the atmosphere along which 
ground water discharges, either by evaporation or movement "downhill" 
along the land surface as a thin film in response to the force of gravity. 
The location of this type of boundary is generally fixed, but its length 
is dependent on other system boundaries. A seepage surface is always 
associated with a free surface (boundary condition 6). The junction point 
(or line in three dimensions) of the seepage face and the free surface 
(position of junction point determines the length of the seepage face) is 
generally not known during formulation of a problem but must be determined 
as a part of the solution. The situation is in that sense analogous to 
the free-surface boundary, and the equation expressing the seepage-surface 
boundary condition is also analogous to that for a free surface: h = z 
along a seepage face. 

Examples of seepage faces are represented by line DE in figure lA, 
line BC in figure 5, and line BC in figure 6. Study of the flow nets in 
these figures shows that the seepage face is neither an equipotential line 
nor a streamline but a surface of discharge, as mentioned previously. As 
the illustrations indicate, seepage faces may be associated with 
individual wells or with earth dams or embankments. Seepage faces are 
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often neglected in models of large aquifer systems because their effect is 
often insignificant at a regional scale of problem definition. However, 
in problems defined over a smaller area, which require more accurate 
system definition (for example, those depicted in the illustrations cited 
above), they must often be considered. 

Some Important Aspects of Specifying Boundary 
Conditions in Ground-Water Models 

The preceding sections give a basic introduction to the boundary 
conditions most commonly used in modeling ground-water systems. The following 
discussion provides additional information on boundaries and the specification 
of boundary conditions in ground-water models. 

Model Boundaries Versus Physical Boundaries 

It is useful to distinguish conceptually between three classes of 
boundary conditions--those associated with analytical solutions of boundary­
value problems, those associated with ground-water system models (digital for 
the most part, but also analog and other types), and those associated with 
natural (real-world) ground-water systems. The first two classes of boundary 
conditions are virtually the same except that analytical solutions may involve 
an unbounded region. For example, in the Theis well solution, the confined 
aquifer extends laterally to infinity. Assuming an infinite boundary 
sometimes simplifies the analytical solution or is necessary in obtaining an 
analytical solution. Obviously, infinite aquifer dimensions do not occur in 
natural systems nor in numerical, analog, or physical models of them. 

In formulating a ground-water modeling problem, it is essential to 
distinguish carefully between the "physical" boundaries of the natural system 
and the boundaries of the model. Unfortunately, they are often not the same. 
To ensure that the proposed model boundaries will have the same effect as the 
natural system boundaries, the following procedure is recommended: 

1. Identify as precisely as possible the natural "physical" boundaries of the 
system, even if they are distant from the area of concern; 

2. Wherever the proposed model boundaries differ from the natural system 
boundaries, prepare a careful justification (both conceptually and in the 
written report of the investigation) to show that the proposed·model 
boundary is appropriate and will not cause the model solution to differ 
substantially from the response that would occur in the real system. 

Simple examples of model boundaries that do not correspond to physical 
boundaries are lines AI a.nd GH in figure lA, BF and DG in figure lB, and DE 
and AF in figure lC. In all three examples, the natural flow system extends 
beyond these boundaries, perhaps for a considerable distance. Thus, to model 
the flow system in the region of i~terest--that is, close to the engineering 
structures--it is necessary to establish lateral model boundaries somewhere 
near the structures. The question of where these boundaries should be located 
and what conditions should be assigned to them is critical to the success of 
the model. Experience with many solutions to this general ty~e of problem 
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(two-dimensional seepage flow beneath engineering structures in vertical cross 
section) indicates that if the distance to the lateral boundaries is at least 
three times the depth of the flow system, further increases in the distance 
have only a slight influence on the potential distribution near the structure. 
In these problems, water flows from and toward the nearly horizontal constant­
head boundaries, and the lateral boundaries are usually designated as bounding 
streamlines. The many available solutions to this type of problem provide a 
kind of "sensitivity analysis" on the position of the lateral boundaries. In 
modeling ground-water systems whose boundaries are more complicated and whose 
geometries are less regular than in these examples, a sensitivity analys·is may 
be needed to select an appropriate boundary position and type for a mode1 
boundary where no corresponding physical boundary exists. These tests should, 
of course, be made in the early stages of the investigation. 

In some modeling studies, ground-water divides have been chosen as 
lateral model boundaries in the belief that they represent a physical boundary 
in the natural system. Ground-water divides are not boundaries in the sense 
used in this report; rather, they are features of the potential distribution 
that can be expected to change or disappear when stresses are introduced. 
Their use as boundaries can sometimes be justified without a sensitivity 
analysis if the only objective of simulation is to gain an understanding of 
the natural flow system in its unstressed condition, but when the objective 
goes beyond this, positioning a model boundary at a ground-water divide 
requires the same process of justification, which should include sensitivity 
tests, as the positioning of any other model boundary that does not coincide 
with a physical boundary. 

Selection of Boundary Conditions in Relation to System Stress 

An important consideration in selecting model boundary conditions is that 
the choice often depends on the location and magnitude of the stresses applied 
to the system. As a first example, consider an aquifer bounded by a small to 
medium-sized stream in a humid environment. If the stress is small and is 
some distance from the stream, the streambed may be treated as a spatially 
varying specified-head boundary in a model. If, on the other hand, the stress 
is close to the stream and so large that it causes part of the stream to dry 
up, treating the stream as a specified-head boundary is no longer physically 
reasonable because a specified-head boundary is capable of supplying an 
unlimited quantity of water in a model analysis. 

As a second example, .consider an aquifer bounded by leaky confining beds 
above and below and by a freshwater-saltwater interface on one side. If the 
stress is small and far enough from the interface, the interface may be 
simulated as a fixed stream-surface boundary (no-flow boundary). If, on the 
other hand, the stress is. great enough to cause appreciable movement of the 
interface, use of the fixed stream-surface boundary would not be appropriate. 

If the boundary conditions in a ground-water model are stress dependent, 
the model cannot be considered a general, all-purpose tool for investigating 
any stress on the system because it will give valid results only for the 
specific stresses it was designed to investigate. The study of a new stress 
on the same system may require the development. of a completely new model. 
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Boundary Conditions in Steady-State Models 

Steady-state simulation has many applications in hydrologic 
investigations. It is used to analyze the natural (predevelopment) flow 
system as well as any new equilibrium conditions that have been attained 
during the course of development. Calibration of steady-state models provides 
information on hydraulic conductivity and transmissivity. Because storage 
effects are not involved in steady-state modeling, the results are often less 
subject to ambiguity than those of transient-state calibrations. Steady-state 
analysis can also provide a rapid method of evaluating possible new 
equilibrium conditions that may develop in response to future stresses. 

Often, investigators use a different set of boundary conditions for 
unstressed steady-state models than for stressed steady-state or transient­
state models of the same system. These "substitute" boundary conditions may 
offer such advantages as (1) easier interpretation or manipulation of model 
results, (2) ability to model only a part of the flow system, as opposed to 
the entire system, or (3) easier input to a digital model. 

As an example, consider a shallow ground-water system discharging to a 
small stream. In an unstressed steady-state model of this system, the stream 
might be treated as a specified-head boundary. Flow to the stream in the 
model can be calculated from computed heads and compared with field 
measurements of stream gains. If the model is stressed, however, a more 
complex simulation of the stream may be required, particularly if the stream 
stage changes in response to the stress. As a second example, the water table 
is sometimes treated in three-dimensional steady-state models as a specified­
head boundary. Inflow to the model through this boundary may be calculated 
from the model results and compared with field information. Also, treating 
the water table in this way may permit simulation of only a part of the flow 
system instead of the entire flow system. In this example the model of the 
unconfined aquifer behaves as a confined linear system. 

In conclusion, these "substitute" boundary conditions usually can be 
employed only in unstressed steady-state models, and furthermore, they must be 
compatible with the investigator's concept of the natural flow system. 

The Water Table as a Boundary 

Because of the water table's importance in ground-water systems and, 
therefore, in system models, the various ways of treating the water table as a 
boundary that have been discussed are summarized below for reference. 

1. The water table is usually conceptualized as a free-surface recharge 
boundary--either where recharge equals zero and the water table is a 
stream surface (as in line CD in fig. 1A, line CD in fig. 5, and line AB 
in fig. 6) or where recharge equals a specified value (as in fig. 3) and 
the water table is neither a potential surface nor a stream surface. 

2. Sometimes the water table acts as a discharge boundary, particularly 
where it is near land surface and thus subject to losses by evaporation 
and transpiration. The discharge from the water table in this case is 
usually conceptualized as a function of the depth of the water table 
below land surface--that is, as a function of the water-table altitude. 
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Thus, in a model simulation, the water table is treated as a head­
dependent flux boundary. (See the discussion of this boundary condition 
under "Principal Types of Boundary Conditions~") 

3. As discussed in the preceding section, the water table may also be 
treated as a specified-head boundary in unstressed steady-state models; 
that is, the position of the water table is fixed as part of the problem 
definition. 

One way in which the water table differs from other boundaries is that it 
acts as a source or sink of water in transient-state problems because its 
position is not fixed. Because the storage coefficient associated with 
unconfined, or water-table, storage is large, significant quantities of water 
are released from storage during a decline in the water table, and, likewise, 
significant quantities must be supplied for a rise in the water table to 
occur. 

Because the water table is so important in natural systems, and because 
it has characteristics not common to other system boundaries and may be 
simulated by boundary conditions that differ significantly from one another in 
their characteristics, the role of the water table in a specific problem 
requires special consideration, and its simulation requires care. 

Reference Elevation in Ground~ater Models 

In all ground-water models (steady state or transient, absolute-head or 
superposition) a reference elevation to which all heads in the model relate is 
required so that the model algorithm can calculate one particular solution to 
the governing differential equation and associated boundary conditions 
defining the problem from the existing family of solutions. (See discussion 
on solution of differential equations in the appendix.) In other words, a 
reference elevation is needed to define a unique solution to the differential 
equation governing the problem. 

A fixed reference elevation! is required in steady-state ground-water 
models. In all types of steady-state models (as well as transient-state 
models), constant-head or specified-head boundaries (constant-head or 
specified-head nodes in discretized systems), usually associated with bodies 
of surface water, automatically provide a fixed reference elevation. Because 
most ground-water models have a constant-head boundary somewhere, the question 
of a reference elevation usually need not be considered explicitly. Some 
systems, however, for example a desert valley with internal drainage and a 
playa on the valley floor, do not have surface-water bodies associated with 

1 As an example of a steady-state problem for which a fixed reference 
elevation is not specified, consider a system that is completely bounded 
laterally by constant-flux boundaries and has a pumping well within the flow 
domain whose discharge equals the boundary flux. Because no reference 
elevation is specified, this problem has a family of solutions--all with 
equal gradients but with differing absolute heads--but no unique solution. 
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them. In this example the water· table beneath the playa, which is discharging 
water by evapotranspiration, may be treated as a head-dependent flux boundary, 
with the rate of discharge from the water table by evapotranspiration defined 
as a function of the depth of the water table below land surface. In this 
example, the reference elevation for the ground-water model becomes the 
land-surface elevation. 

In transient-state models of ground-water systems without constant-head 
boundaries, the initial heads in the model (the initial conditions) at the 
beginning of the simulation provide sufficient reference to establish a unique 
solution to the problem. In a sense, as new sets of head values are 
calculated for each time step, the reference heads continually change and 
equal the calculated heads at the end of the preceding time step. In another 
sense, the heads at the end of any time step are indirectly related to the 
initial heads in the model. 

In summary, a reference elevation is necessary in all types of models to 
obtain a unique solution to the differential equation governing the problem 
being simulated. The only case in which the reference elevation in a 
ground-water system model requires explicit consideration is a steady-state 
model without a constant-head boundary. 

Concluding Remarks 

The discussions presented herein emphasize the importance of selecting 
appropriate boundary conditions for models of ground-water systems. If the 
boundary conditions used during model calibration are not realistic, the 
calibration exercise will generally result in erroneous values of 
transmissivity and storage to represent the system, and predictions made by 
the model may bear little relation to reality. Even if the transmissivity and 
storage distributions have been correctly determined, incorrect boundary 
representation in itself can render the model predictions meaningless. 

The selection of boundary conditions is often the most important 
technical decision made in a modeling project. Alternatives should be 
considered carefully, sensitivity analysis should always be used, and 
investigators should always be ready to revise their initial assumptions 
regarding boundaries. 

Exercises 

1. Choose from a set of colored pencils a color for each type of boundary 
condition and trace the extent of each boundary type in figures 1-7. 
Upon completion, the colored lines in each figure should form a 
continuous, closed curve that outlines each ground-water flow system. 
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2. Make a sketch and designate the boundary conditions of the hypothetical 
ground-water systems represented by the following well-known formulas: 

a) Theis nonequilibrium formula: The assumptions of this formula are 
listed in many books; careful consideration should reveal that several 
of these "assumptions" in fact describe the boundary conditions of the 
hypothetical ground-water system. How would you set up a numerical 
model of this problem? 

b) Dupuit formula for radial flow under water-table conditions: 

2 2 
TIK (h h ) 

2 1 

Q = 

c) Thiem equation for flow to a well in a confined aquifer written in 
terms of head (h): 

Q 

Consider the various possible relationships between these "model" boundary 
conditions and the boundary conditions in field situations. 

3. Make a sketch in plan view and in cross section of the following types of 
ground-water systems and designate appropriate boundary conditions. Each 
system may be represented in several different ways, but most ground-water 
hydrologists will probably treat some boundary conditions in these systems 
in the same way. 

a) An oceanic island in a humid climate; permeable materials are 
underlain by relatively impermeable bedrock; 

b) An alluvial aquifer associated with a medium-sized river in a humid 
climate; the aquifer is underlain and bounded laterally by bedrock of 
low hydraulic conductivity; 

c) An alluvial aquifer associated with an intermittent stream in an arid 
climate; the aquifer is underlain and bounded laterally by bedrock of 
low to intermediate hydraulic conductivity; 

d) A western valley with internal drainage in an arid region; intermittent 
streams flow from surrounding mountains toward a valley floor; part of 
valley floor is playa; 

e) A confined aquifer bounded above and below by leaky confining beds. 
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INITIAL CONDITIONS 

The results that one obtains from a quantitative model of a ground-water 
flow system (head values for various points and times) represent a particular 
solution to some form of the ground-water flow equation. Ground-water flow 
equations represent general rules on how ground water flows through saturated 
earth material. These equations have an infinite number of solutions. An 
individual ground-water problem must be defined carefully so that the 
particular solution corresponding to that problem can be obtained. (See 
appendix.) Definition of a specific problem always involves specification 
of boundary conditions, and in transient-state (time-dependent) problems, the 
initial conditions must be specified as well. 

Concept of Initial Conditions 

Definition of initial conditions means specifying the head distribution 
throughout the system at some particular time. These specified heads can be 
considered reference heads; calculated changes in head through time will be 
relative to these given heads, and the time represented by these reference 
heads becomes the reference time. As a convenience, this reference time is 
usually specified as zero, and our time frame (expressed in seconds, days, 
years) is reckoned from this initial time. 

In more formal terms, an initial condition gives head as a function of 
position at t = 0; that is 

h = f(x, y, z; t = 0) (1) 

This notation suggests that, conceptually, initial conditions may be regarded 
as a boundary condition in time. 

In formal presentations dealing with the solution of differential 
equations, boundary conditions and initial conditions are usually discussed 
together. Problems requiring their specification are known as boundary-value 
problems and initial-value problems. Analytical solutions are available for a 
relatively small number of boundary-value and initial-value problems dealing 
only with simple system geometries (for example, spheres, cylinders, 
rectangles) and aquifer characteristics that are constant or that vary in a 
simple way. For the vast majority of these problems, approximate solution 
techniques based on numerical methods (simulation) must be used. 

Analytical solutions are often expressed in terms of drawdowns, not 
absolute heads, and use the principle of superposition. (See Reilly, Franke, 
and Bennett, 1984.) Absolute heads (h = p/y + z) relate to a specific datum 
of elevation such as in a water-table map, whereas drawdowns are not related 
to a datum but represent the difference in head between two specific 
water-level surfaces. If we can use drawdowns rather than absolute heads and 
use the principle of supe~position in solving a specific p~oblem, we simplify. 
the task of defining initial conditions in either analytical or modeling 
problems. 
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Specifying Initial Conditions in Models 

This section discusses two problems in specifying initial conditions in 
absolute-head models. 

The first problem relates to the use of field-measured head values, 
obtained at a time when the natural ground-water system is at equilibrium, to 
specify initial conditions in a model. To use these field values of head, the 
various natural hydrologic inputs {recharge and discharge) and field system 
parameters {hydraulic conductivity and storage coefficients) that caused the 
observed distribution of heads must be represented exactly in the model--which 
is virtually impossible to achieve in practice. Therefore, in a transient­
state problem, the initial conditions should be determined through a steady­
state simulation of the flow system at equilibrium. After appropriate 
adjustments of model hydrologic inputs and parameters {process of model 
calibration), an acceptably close, although not exact, correspondence between 
model heads and field heads is obtained, and the model-generated heads should 
then be used as initial conditions for subsequent transient-state model 
investigations. Use of the model-generated heads insures that the initial 
head data and the model hydrologic inputs and parameters are consistent. If 
the field-measured head values were used ·as initial conditions, the model 
response in the early time steps would reflect not only the model stress under 
study but also the adjustment of model head values to offset the lack of 
correspondence between model hydrologic inputs and parameters and the initial 
head values. 

The second problem in defining initial conditions is in the simulation of 
systems that are not in equilibrium, where the objective is to predict the 
effects of an additional stress on the system at some future time and where 
absolute heads, rather than superposition, are to be used. In this case the 
simulation strategy would involve the following steps: (a) identify a period 
in the past during which the system was in equilibrium!; (b) carry out a 
steady-state simulation for that period to obtain computed water levels that 
are acceptably close to measured water levels; (c) use these simulated heads 
as initial conditions; and (d) model all intervening stresses, including the 
new stress for which the effects are required, to the specified time in the 
future. 

Of course, if we are interested in only the effect of the additional 
specified stress on a linear system and are not concerned with predicting 
absolute heads, we can employ superposition as the simulation strategy (see 
Reilly, Franke, and Bennett, 1984). The problem of defining initial 
conditions then disappears because the initial conditions are defined as zero 
drawdown {or change in head) everywhere in the system. 

1 If a certain stress pattern on the ground-water system remains unchanged for 
a sufficiently long period, the system may achieve equilibrium with this 
stress. Thus, system equilibrium can, but does nQt necessarily, imply 
predevelopment conditions. 
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Example of Specifying Initial Conditions in a Field Situation 

Some of the issues concerning the specification of initial conditions can 
be discussed in reference to the well hydrograph in figure 8, in which the 
water level in the well indicates the water-table altitude.· The well is in 
southwestern Nassau County on Long Island, N.Y., where a sewer system began 
operation in the early 1950's and, by eliminating recharge to the water table 
through septic systems, constituted a stress on the hydrologic system. The 
sewer system achieved close to maximum discharge by the mid-1960's. The upper 
horizontal line (h equals about 69 ft) represents an "average" water-table 
altitude at the well (a point) before sewering. The fluctuations in water 
level around the average value represent a response to the annual cycle of 
recharge and evapotranspiration and quantitative differences in this cycle 
from year to year. The lower horizontal line (h equals about 52 ft) 
represents the average ground-water level after the hydrologic system had 
completely adjusted to the effects of sewering. By about 1966, the hydrograph 
seems to "level off" at this elevation, indicating that the regional system 
had attained a new equilibrium with the stress of sewering. The water-level 
fluctuations around the lower horizontal line again reflect only natural 
recharge and evapotranspiration cycles. 

If we were studying a stress in addition to the sewering, and if that 
stress began in 1975, the lower horizontal line on figure 8 could be taken as 
the reference level, or initial condition. If we were studying a stress that 
began in 1963, however, we would have to take the upper horizontal line as the 
initial condition and represent the entire sewering operation, as well as the 
new stress, in the simulation because adjustment of the water levels to 
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Figure 8.- Hydrograph of well Nl614 tapping the upper glacial aquifer in central Nassau County, New York. 
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sewering would still be in progress in 1963. The decline in head still to 
occur after 1963 as a result of sewering would be unknown and could be 
predicted with confidence only by including the sewering stress in the model 
study. 

Concluding Remarks 

The most important concepts in the application of initial conditions 
are: 

1. Proper specification of initial conditions in a model of a natural ground­
water system at equilibrium requires initial hydrologic inputs consistent 
with the initial water levels. To achieve this, it is often necessary to 
carry out a steady-state simulation of the prepumping condition and to 
use the results as the initial condition for the transient-state 
simulation. 

, 2. If the natural system is not in equilibrium, a previous period of 
equilibrium must be identified to specify initial conditions, and all 
subseq.~ent stresses must be included in the model simulation to predict 
the absolute head values that will occur at a given future time. 

3. Using superposition as part of the modeling strategy simplifies or 
avoids the need to specify initial conditions. However, superposition 
modeling predicts only water-level changes related to the specific stress 
under study and does not predict absolute heads. Furthermore, 
superposition may be applied only to systems that exhibit a linear (or 
almost linear) response to stress. 
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APPENDIX 

DISCUSSION ON THE SOLUTION OF DIFFERENTIAL 
EQUATIONS AND THE ROLE OF BOUNDARY CONDITIONS 

The solution of a differential equation describing ground-water flow 
provides a distribution of hydraulic head over the entire domain of the 
problem. For simple problems, this distribution of hydraulic head can be 
expressed formally by a statement giving head as a function of th~ independent 
variables. For one independent space variable, we may express this statement 
in general mathematical notation as 

h = f(x). (1) 

This function, f(x), when substituted into the differential equation, must 
satisfy the equation--that is, the equation must be a true statement. The 
function f(x) usually contains arbitrary constants and is called the general 
solution of the differential equation. 

The solution must also satisfy the boundary conditions (and initial 
conditions for time-dependent problems) that have been specified for the flow 
region. To satisfy the boundary conditions, the arbitrary constants in the 
general solution must be defined, resulting in a more specific function, 
fp(x), which is called the particular solution to the differential equation. 
Thus, a particular solution of a differential equation is the solution that 
solves the particular problem under consideration, and the general solution of 
a differential equation is the set of all solutions. The following example 
from Bennett (1976, p. 34-44) helps develop these concepts by using the 
differential form of Darcy's law as the governing differential equation in a 
specific problem. 

An idealized aquifer system (fig. 9) consists of a confined aquifer of 
thickness b, which is cut completely through by a stream. Water seeps from 
the stream into the aquifer. The stream level is at elevation h0 above the 
head datum, which is an arbitrarily chosen level surface. The direction at 
right angles to the stream axis is denoted as the x direction, and x equals 0 
at the edge of the stream. We assume that the system is in steady state, so 
that no changes occur with time. Along a reach of the stream having length w, 
the total rate of seepage from the stream (in ft3/s, for example) is denoted 
as 2Q. Because only half of this seepage occurs through the.right bank of the 
stream, the amount entering the part of the aquifer shown in our sketch is Q. 
This seepage moves away from the stream as a steady flow in the x direction. 
The resulting distribution of hydraulic head within the aquifer is indicated 
by the dashed line marked "potentiometric surface." This surface, sometimes 
also referred to as the "piezometric surface," actually traces the static 
water levels in wells or pipes tapping the aquifer at various points. The 
differential equation applicable to this problem is obtained by applying 
Darcy's law to the flow, Q, across the cross-sectional area, bw, and may be 
written 

dh Q 
= , (2) 

dx KA 
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• x=o 

X=Q 

A.- An idealized aquifer system. 

Slope = - __Q_ 
KA 

8 .- Two of the family of curves solving the 
general differential equation for the 
idealized aquifer system . 

Figure 9.- Example of solutions to a differential equation . 
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where K is the hydraulic conductivity of the aquifer, and A is the cross­
sectional area perpendicular to the direction of flow; in this problem, A is 
equal to bw. 

Integration of the previous equation gives the general solution f(x) as 
simply: 

Q 
h = c X (3) 

KA 

where C is an arbitrary constant. Two particular solutions from the family 'of 
general solutions are shown in figure 9B, one where the arbitrary constant 
equals zero (eq. a), and one where the arbitrary constant equals h0 (eq. b). 
The differential equation (Darcy's law) states that if head is plotted with 
respect to distance, the slope of the plot will be constant--that is, the 
graph will be a straight line. Both of the lines in figure 9B are solutions 
to the differential equation. Each is a straight line having a slope equal to 

Q 
(4) 

KA 

The intercept of equation (a) on the h axis is h = 0, whereas the intercept of 
equation (b) on the h axis is h = h0 • These intercepts give the values of h 
at x = 0 and thus provide the reference points from which changes in h are 
measured. 

The particular solution for the ground-water system depicted in figure 9 
is obtained when the boundary conditions are considered. In this problem, the 
head in the stream, which is represented at x = 0, is designated as the 
constant h0 • Thus, the line in figure 9 that has an h axis intercept of h0 
is the particular solution to the problem as posed. Therefore, the particular 
solution, fp(x), of the governing differential equation in this problem is 

Q 
X (5) 

KA 

This solution satisfies the boundary condition at x = 0. 

An accurate description of boundary conditions in obtaining a particular 
solution to any ground-water problem is of critical importance. In 
multidimensional problems, boundaries are just as important as in the example 
above, although their effect on the solution may not always be as obvious. 
Assuming incorrect or inappropriate boundary conditions for a modeling study 
must inevitably generate an incorrect particular solution to the problem. 

In summary, a particular solution to a differential equation is a 
function that satisfies the differential equation and its boundary conditions. 
In numerical models that simulate the differential equation by a set of 
simultaneous algebraic equations, the concepts are analogous, although the 
solution is not a continuous function. 

26 


