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SPECTRAL ANALYSIS OF AEROMAGNETIC PROFILES

FOR DEPTH ESTIMATION:

PRINCIPLES, SOFTWARE, AND PRECTICAL APPLICATION

by

Hamdy S. Sadek, S.M. Rashad, 
and H. Richard Blank

ABSTRACT

Fourier spectral analysis in recent years has become a 
widely utilized tool for the processing and interpretation of 
potential field data. It is particularly well suited to 
analysis of aeromagnetic maps and profiles, where coverage 
commonly is of broad scope and statistical treatment is 
appropriate.

The techniques developed by earlier workers for map data 
are readily adapted for depth estimates using aeromagnetic 
profiles. Three subroutines are presented: "FRQAN", which 
employs the complete Fourier transform to convert field 
intensity to the frequency domain and then computes the 
logarithmic energy spectrum; "CSIZE", which refines the 
spectrum to correct for the finite horizontal dimensions of 
magnetic sources, and "ENSMTH", which smooths the spectrum to 
clarify its decay characteristics. The average depths to 
sources of ensembles are obtained by manually fitting a 
straight line to each linear interval of the logarithmic 
energy-decay curve.

If proper account is taken of the constraints of the 
method, it is capable of providing depth estimates to within 
an accuracy of about 10 percent under suitable circumstances. 
The estimates are unaffected by source magnetization and are 
relatively insensitive to assumptions as to source shape or 
distribution. The validity of the method is demonstrated by 
analyses of synthetic profiles and profiles recorded over 
Harrat Rahat, Saudi Arabia, and Diyur, Egypt, where source 
depths have been proved by drilling.



INTRODUCTION

The computational efficiency and storage capacity of 
modern digital computers now permit geophysicists to utilize 
a wide variety of sophisticated mathematical techniques for 
data processing and analysis. In particular, the method of 
Fourier spectral analysis has attracted increasing attention 
in recent years as a tool for the interpretation of potential 
field data. Whether employed independently or coupled with 
conventional time domain analysis, the spectral or frequency 
domain approach commonly results in a significantly more 
intensive and complete evaluation of aeromagnetic and gravity 
data than is otherwise attainable. It has proved to be 
especially useful where data coverage is of broad scope and 
statistical treatment of field disturbances arising from 
multiple sources is appropriate. Under such circumstances, 
determination of the average depth to the causative bodies 
may be of paramount interest, and it is in statistical depth 
estimation that the surprisingly simple but elegant 
techniques of spectral analysis, properly applied, can often 
be uniquely effective. The purpose of this report is to 
present a software package for the computation and refinement 
of Fourier energy spectra of aeromagnetic profiles, and, at 
the same time, to review the underlying principles of the 
spectral method and point out some practical constraints on 
the estimation of depth from the spectra. The method is 
illustrated by a number of synthetic and real examples.

Background

The idea of using Fourier spectra for the analysis of 
geophysical potential field data is sometimes attributed to 
Dean (1958), although he was anticipated by Serson and Han- 
naford (1957), who used autocorrelation functions to carry 
out a statistical analysis of aeromagnetic profiles, and 
possibly by others. Early applications include the works of 
Alldredge and others (1963) and Horton and others (1964) on 
statistical analysis of aeromagnetic profiles and maps, 
respectively. The anomalies and autocorrelation functions 
associated with simple 2-D (two-dimensional and 3-D (three- 
dimensional) magnetic and gravity models were subsequently 
transformed mathematically to the frequency domain by Bhat- 
tacharyya (1966), Spector and Bhattacharyya (1966), Spector 
(1968), Rao and Avasthi (1973), Cassano and Rocca (1975), 
Bhismasankaram and others (1977), Regan and Hinze (1977, 
1978), Chowdary (1978), and Pedersen (1978b). Bhattacharyya 
(1967) and Pedersen (1978a) also developed expressions for 
the spectra of generalized source distributions.

In addition to these formulations, considerable progress 
has been made in the development of methods of inversion of 
areally extensive blocks of data by frequency analysis. The 
statistical approach of early workers has been greatly



extended by Specter (1968), Specter and Grant (1970), and 
Pedersen (1978b), particularly in regard to depth estimation. 
Successful use of radial Fourier energy spectra of aeromag- 
netic maps for depth estimation is illustrated in the works 
of the above authors and elsewhere (for example, Specter and 
Parker, 1979; Sadek, 1978; Meshref and others, 1980; Sadek 
and others, 1983). Building on the theoretical developments 
especially of Bhattacharyya (1967) and Specter (1968), 
several authors have also shown that operations such as 
wavelength filtering, trend filtering, differentiation, 
continuation, and magnetic reduction-to-the-pole can be 
efficiently carried out in the frequency domain. A general 
review of systematic computational schemes is given by 
Specter and Parker (1979).

The statistical methods of map interpretation are readily 
adapted to profiles. A comprehensive and succinct review of 
the profile problem has been published by Green (1972). 
While in some ways not as satisfactory as map analysis and 
perhaps subject to more pitfalls, the profile technique is 
nevertheless capable of providing reasonably accurate depth 
estimates. Recently reported examples include spectral 
analysis of aeromagnetic profiles over Tertiary volcanics in 
the Silet region of Algeria (Curtis and Jain, 1975), and over 
late Cenozoic lavas of Harrat Rahat, Saudi Arabia (Blank and 
Sadek, 1983). In both of these studies the analysis yielded 
the thickness of volcanic cover rock on a concealed basement.

Outline of the method

Sequential steps in the spectral method of depth estima­ 
tion, whether applied to single or multiple anomalies and 
whether the data are in map or profile form, are as follows: 
a linear or planar regional field is first removed from the 
digital image of the field in the space domain, the field is 
then transformed to the frequency domain, the energy spectrum 
is calculated from the complex Fourier amplitude spectrum, 
and the logarithm of the energy is plotted against radial 
frequency or wave number. If the raw data are in map form, 
the energy is a function of both radial frequency and radial 
azimuth direction, and the most appropriate linear plot of 
energy decay may be an average of the decay in several radial 
directions, but in the case of single profiles the azimuth is 
of course just the profile azimuth. An average horizontal 
source width is obtained, either directly from the data by 
measurement of distances between points of inflection on 
anomalies or from their second vertical derivatives, and the 
spectrum is "refined" accordingly. Finally the average 
source depth is obtained from the slope of the linear portion 
of the energy-decay curve. Appreciable changes in the 
dominant gradient indicate the presence of sources at more 
than one characteristic depth; each linear interval must be 
analyzed separately. If the decay curve is completely



nonlinear, an approximate source depth can sometimes be 
obtained directly from the position of the energy maximum, if 
well defined, or by linearizing the decay through further 
refinement.

The algorithm employed in computation of the energy 
spectrum in our work is similar to that employed by Spector 
(1968) for map analysis. It is significant that Spector 
computed the Fourier transform of field data by the method of 
Filon (i.n_ Tranter, 1962), rather than by use of the Fast 
Fourier Transform (FFT) algorithm of Cooley and Tukey (1965). 
Filon f s method is computationally slower than the FFT but, 
unlike the latter, does not produce unacceptable distortions 
at high frequencies (see Cordell and Grauch, 1982). Other 
advantages of this technique are pointed out in an analysis 
by Sadek ( in press).

As implied above, the shape of the computed spectrum is 
substantially affected by the finite average horizontal size 
or width of anomaly sources when the widths are large com­ 
pared with source depths, and in order to utilize the 
spectrum for depth estimates it may first be necessary to 
remove this influence. Algorithms employed in modifying the 
spectrum to compensate for horizontal size effect are adopted 
from Spector (1968) and Pedersen (1978b). The spectral 
computation and refinement algorithms are developed in the 
text which follows, and the associated computer subroutines 
are listed in appendices A and B. A subroutine for smoothing 
the energy spectrum is listed in appendix C.

We have chosen not to automate the depth estimation 
itself, although a least-squares fit to linear intervals of 
the energy-decay curve is easily programmed. Also, the 
initial removal of a first-order regional gradient from the 
data (to avoid masking of the contribution of deep-seated 
sources) can readily be carried out by a separate subroutine.

COMPUTATION OF THE ENERGY SPECTRUM

The Fourier integral transform of a function that varies 
continuously along a profile of observation, such as the 
gravity or magnetic field intensity, transforms the function 
from the space to the frequency domain, and is expressed by

-oo
where

AT(f ) = Fourier transform of A T(y),



f = spatial frequency in the direction of the y-axis 
(cycles/unit length),

AT(y) = potential-field intensity along y-axis, and 

Y = linear distance along the profile.

In order to apply the Fourier transform to a function that is 
bounded in y, as in the case of a profile of finite length, 
it must be assumed that the function is periodic outside the 
given range of y. This effectively collapses the integration 
range to the interval of the data, since no additional spec­ 
tral information is contained outside this interval. It is 
desirable for the data to have zero mean for numerical 
reasons (to prevent round-off errors due to a very large 
zero-frequency component). Therefore the data are routinely 
detrended and brought to zero mean before applying spectral 
analysis. Physically, this amounts to removing long-wave-^ 
length components not defined by the finite data interval.

Also it is desirable for the data to have equal values at 
the two endpoints; otherwise a discontinuity will be present 
at the onset of each cyclic repetition. A Fourier series 
representation of the data at such a discontinuity will 
always yield the mean value of the bracketing function values 
even if the number of terms in the series is infinite. The 
spectrum is thereby distorted and cannot faithfully represent 
the data in the vicinity of the endpoints. Endpoint 
discontinuities can be eliminated by multiplying the field 
intensity by a weighting function that smoothes the intensity 
to zero at the extremities of the data segment. Since the 
Fourier transform of this product is the Fourier transform of 
the field intensity along the segment convolved with the 
Fourier transform of the weighting function, it is necessary 
to choose the weighting function so as to minimize distor­ 
tion introduced in the spectrum by the convolution process. 
A Banning "cosine bell" function G(y), centered at the mid­ 
point of the field-intensity segment, introduces negligible 
spectral distortion when transformed and convolved with the 
data transform, while suppressing the contribution of field 
anomalies near the data extremities. This center-weighting 
is highly advantageous as a means of focusing the analysis. 
Following Spector (1968) we employ the Banning window in the 
present work, and rewrite equation (1)

AT(fy ) = TLy/2 AT(y)-G(y).e- i27rVdy , < 2 >

~ L/2 
where

L y = length of profile in the interval - L y/2 
and

G(y) = l/2(1+cos(27Ty/L )). (3)



Defining the wave number v as 

v = 27Tfy

and using Euler's theorem

e -1 vy _
= cos(vy)-isin(vy) , (5)

we get from (2)
L /2 L /2
Ay /^Y C6AT(v) = / AT(y)*G(y)-cos(vy)dy-i / AT-G(y)   si n(vy) dy . ^

V -v2If we define in addition

ATjCy) = AT(y)-G(y) (7 

L../2

 cos(vy)dy ff>

s in(vy)dy
O / I 

~S I /O

then /

(10)

Thus the Fourier transform can be evaluated as the complex 
sum of two trigonometric integrals.

When y is not small, the numerical evaluation of the 
integrals is a matter of considerable difficulty. Because of 
the rapid oscillation of the functions cos (vy) and sin (vy), 
the use of ordinary quadrature formulae such as Simpson's 
Rule require division of the range of integration into such 
small steps that the computation is impractically lengthy. 
However, as recognized by Spector (1968, p. 3.26 ff), a much 
more efficient numerical solution for the integration of 
trigonometric functions has been provided by Filon (in 
Tranter, 1962). Filon's solution is a modification of 
Simpson's quadrature formula and involves fitting of T in 
successive intervals of Y :_-| , YJ+I with parabolic arcs. By 
this method, the numerical solution of a cosine integration 
in the form of equation (8) is given by

i c (v) = Ay

6



where

Ay   data sample increment

N - number of data sample points

L . L /2y 
e = yAy

-39 2 
<X = 9 (6 + 0sin9cos9-2sin 9) (12)

- 3 2 
fi = 29 (9(l+cos 9)-2sin9cos9) (13)

# - 49~ 3 (sin0-9cos9) (14) 

Similarly, the numerical solution of the sine integration is

l s (v) = Ay f-(AT l (Ny )-AT l (1))«cos(vty) + /3s l +tfs 2^ . (15) 

If we let

Nc = (Ny -3)/2 (16) 

N s = (Ny -1)/2 (17)

then the integration constants Cl, Si, C2, S2 are given by

N 

Cl -

N 
C2 = £C AT 1 (2j)cos(v(2j-l)Ay-L ) (19)

j = 1 y 
N

51 - ^ AT 1 (2j+l)sin(v(2jAy-L ) )+1/2( AT 1 (Ny ) - AT(1 ) ) s in(vLy ) (20)

J-1

52 = £ AT l (2j)sin(v(2j-1)Ay-Ly ) (2 °

Note that if y and therefore 9=0, 
then

oc = 0 , /3 = 2/3 , 8 = 4/3 

and N C N S

i c = Ay/3(2 ^AT 1 (2j + D +4 £_ AT 1 (2j)+AT 1 (Ny ) + AT 1 (D) ," (22)
j=1 J=1

which is Simpson's Rule. Substituting the expressions for 
the cosine and sine integrations (I , I g ) in equations 
(11) and (15) in equation (10), we get a numerical solution 
of the integral Fourier transform. This algorithm is



employed in subroutine "FRQAN*1 (appendix A), which computes 
the energy spectrum.

The Fourier transform AT(fy ) i s expressed in terms of 
negative as well as positive frequencies, but since the 
transform is a symmetric function about fy = 0, the energy 
corresponding to f y i s the same as that corresponding to 
-fy and only positive frequencies need be employed.

The energy density function E(fy) is obtained through 
multiplication of the Fourier transform by its complex
conjugate A?*(f ) : 

y
E(fy ) = AT(fy )-AT*(fy ) . (24)

Finally, the natural Napierian logarithmic values of E(f y ) 
are plotted against frequency to produce a logarithmic energy 
spectrum, or spectral energy-decay curve.

Figure 1 illustrates the input/output parameters involved 
in the Fourier transformation from the space to the frequency 
domain. The plotting interval, Af » is determined by the 
smoothing characteristics of the Hanging window, which impose 
a practical limit to the attainable frequency resolution. 
This limit in the space domain is just the fundamental 
har*monic of the profile (one cycle in the total length Ly ). 
All other frequencies plotted are then multiples of A f , or 
higher harmonics; no additional information is obtained by 
plotting at a finer interval. The upper limit on the 
frequency plot is generally set at the Nyquist (folding) 
frequency, which is determined by the initial data sample 
interval. Thus the logarithmic energy is plotted at

fj-jAf -J/Ly , j = 0/1,2,. ...,n 

f0 = 0, the D.C. level

f^ = 1/L , the frequency interval 

fn = n Af = 1/2 Ay» the Nyquist frequency, 

it follows that the number of points plotted is

Nf = n+1

= 0/2 Ay/ 1/L)+l

(24a) 

where the number of data sample points Ny is given by

Ny = L/Ay+1 , (25)

8



EXPLANATION

I, input data-point index 

DT, input field intensity 

Y, distance

DY, input data spacing 
(distance interval)

NY, total number of input 
data points

Y=(M)DY

1=1 NY

EXPLANATION

J, output data-point index 

Et, total energy 

F, frequency

DF, output data spacing 
(frequency plot interval)

NF, total number of output 
data points

F-<J-1)DF

NF

Figure 1. Inputs-output parameters, numerical Fourier transformation. A^ Space 
Domain (input), B^, frequency domain (output).



The spectrum will in fact contain energy at frequencies 
greater than the Nyquist frequency, but if the field data 
sample interval is sufficiently fine, that is, if there are 
no "spikes" in the sampled field intensity (which in practice 
requires that the sample interval be no greater than about 
one-quarter of the width of the sharpest anomalies present), 
then these frequencies represent only white noise due to 
round off errors, and the corresponding energy is reflected 
uniformly back through the spectrum. Aliasing, as the 
reflection phenomenon is known, can be minimized by prelimi­ 
nary application of a suitable high-cut filter to the data 
(before weighting), as for example when the data digitization 
interval is finer than the interval desired for frequency 
analysis, or when the continuous field contains significant 
variations within horizontal distances that are short 
relative to the digitization interval.

The distortion of the spectrum as a result of convolution 
with a spectral window (Manning function) also determines the 
maximum depth of investigation of anomaly sources. For the 
distortion to be tolerable, the maximum depth cannot exceed 
about a quarter of the wavelength of the fundamental 
harmonic, that is, about W/4. In practice, the maximum 
depth may be much less than Ly /4, particularly when the 
spectrum decays rapidly in relation to the energy level of 
noise introduced by round-off error in the recorded data. 
The corresponding limit in map analysis is about one quarter 
of the minimum map width (Spector, 1968).

When the data are in the form of long profiles, the anal­ 
ysis is sometimes best carried out using discrete segments of 
each profile, in order to improve the horizontal resolution 
of estimated depth variations and also to minimize the 
effects of source-depth dispersion. Selection of an optimum 
segment length is largely empirical, but must take into 
account the depth of investigation desired and the difficulty 
in characterizing a spectrum that decays very rapidly or has 
a low signal-to-noise ratio. An example of the effect of 
varying the segment length is given by Blank and Sadek 
(1983).

CHARACTERISTICS OF THE ENERGY SPECTRUM

General form of the energy equation for 
simple source configurations

We next examine the characteristics of the spectrum for 
ideal source configurations, and the way in which these 
characteristics are exploited in depth estimations. An 
important feature of the spectrum for many simple source 
shapes (points, lines, and flat-topped bodies) is that it can

10



be expressed as the product of discrete factors, viz.

E(r,9)=M-RM (e)-RT (8)- H(h,r)-S(a.,r,0)-C(b.,r) (26)

where

M = scalar-magnetization factor, involving only the 
magnitude of the body magnetization

RT = geomagnetic field factor, involving only the 
direction cosines of the earth's field

RM = vector-magnetization factor, involving only 
the direction cosines of the source 
magnetization (assumed to be uniform)

H = depth factor

S = horizontal size (width) factor

C = vertical size (thickness or depth extent) 
factor;

and

r = radial wave number (r = 2?Tf , where frequency f 
can be measured in any direction in the 
x-y plane)

0- = azimuth of the radial wave number 

h = depth to the top of the model source

ai = parameters related to the horizontal 
dimensions of the source

b^ = parameters related to the the vertical depth 
extent of the source

These factors are combined in various ways by different 
authors.

From equation (26), we see that only the factors H, S, 
and C affect the radial spectrum; the factors M, R^j, and 
RT affect only the absolute value of the energy and its 
change with respect to azimuth, and in no way affect the 
shape of the energy-decay curve plotted as a function of wave 
number or frequency. Moreover, when the logarithm of energy 
is plotted the factors become additive.

The decay of spectral energy with increasing frequency is 
almost invariably dominated by the depth factor, which for

11



all simple source geometries is given by

H(h,r) = e (27)

Thus, for single models, a rough estimate of depth to the top 
can be obtained by measuring the slope of the logarithmic 
energy decay. The accuracy of this first estimate depends on 
the extent to which the factors S and C affect the spectrum.

The S- and C-factors for a number of simple 3-D and 2-D 
models are shown in table 1. Expressions given for prismatic 
sources assume sides parallel to the reference axes, and for 
2-D bodies the profile is assumed to be normal to the strike 
and in the x direction. For a point source (pole or dipole) 
and for a 2-D point source (line of poles or dipoles) or thin 
infinite dike (half sheet), the horizontal size factor is 
unity. It is also unity for the spectrum of the gradient of 
a semi-infinite horizontal slab normal to the strike of the 
interface, as pointed out by Cassano and Rocca (1975). The 
vertical size (depth extent) factor is unity only for point 
poles or horizontal lines of poles, and for models which are 
not "depth limited," that is, for infinite vertical circular 
cylinders, vertical prisms, or vertical dikes. The C-factor 
for infinite thin inclined dikes is a function only of the 
dike inclination. For all other source configurations shown 
on table'1 it is clear that the factors S and C can both have 
a significant effect on the radial spectrum.

Two relatively simple depth-limited models are the point 
dipole and the small horizontal lamina. In each case the 
size effect is nil or negligible, and the C-factor results in 
a spectral maximum at a wave number r = !/h . For bottomed 
vertical prisms, bottomed cylinders, or bottomed dikes of 
vertical depth extent t, the C-factor gives rise to a 
spectral maximum at

r = 1/t-1n((h+t)/h) , (28)

provided the effect of the horizontal size factor is negligi­ 
ble or has been compensated. The bottomed cases are very 
close to the laminar case at t/h<0.25 and to the bottomless 
case at t/h^l.O ; for intermediate values of t/h, the energy 
decays linearly only at high frequencies.

Expectation of the energy for source ensembles

The ideal case of an anomaly due only to a single, simple 
source body does not very often occur in nature, and we are 
therefore interested in the form of the spectrum in the more 
general case when field distrubances along a profile are due 
to multiple sources. Spector (1968) apparently first intro­ 
duced the concept of source ensembles. He evaluated the

12



Table 1. Size factors In general energy equation for simple models

Explanation: r - radial wave no. - 27T(fx2-ffy2 )l/2 ; f x| fy . frequencies In x,y directions; 
u   r slnO - 27Tfx ; v - rcos© « 2-rrfy; 6   tan~*(u /v )

a   half length of line, radius of cylinder, or horizontal half width of dike;
a,b   half widths of prism or lamina In x,y directions; Y   angle made by line with x-axis; 
9- dip of dike, t - vertical depth extent (extent In z-dlrectlon)

Ji * first-order Bessel Function

Model

3-D Models:

point pole

point dlpole

finite horizontal line 

of poles

finite horizontal line 

of dipoles

Infinite vertical 

rectangular prism

finite vertical 

rectangular prism

horizontal rectangular 

lamina

Infinite vertical

circular cylinder

finite vertical

circular cylinder

2-D Models:

horizontal line of poles

horizontal line of dipoles

Infinite thin Inclined dike; 
gradient of horizontal 
slab with Inclined face

Infinite vertical dike

finite vertical dike

finite Inclined dike

Factor S (a, b, Y» r> 9 ) 
Horizontal size

1

1

sln2 [a(u cosY+ v slnV)]

a2 (u cos *y+ v slny)2

sln2 [a(u cosY+ v slnV)]

a2 (u cosy + v sln*y) 2

sln2 (au) sln2 (bv) 

(au) 2 (bv) 2

sln2 (au) sln2 (bv) 

(au) 2 (bv) 2

sln2 (au) sln2 (bv)

(au)2 (bv) 2

Ji 2 (ar)

(ar) 2

Ji 2 (ar)

(ar) 2

1

1

1

sln2 (au)

(au) 2

sln2 (au)

(au)2

sln2 (au) 

(au) 2

Factor C (t, $ , r, & ) 
Vertical size

1

r2

1

r2

1

(l-e-tr)2

(tr) 2

1

(l-e~tr)2

1

u2

sin2

1

(l-e-tu)2

sin2 [l+«~2tu-2e"tu cos(cotf tu)]

Reference

Spector (1968)

Spector (1968)

Spector (1968)

Spector (1968)

Spector (1968)

Spector (1968)

.Pedersen (1978b)

Pedersen (1978b)

Pedersen (1978b)

Cassano/Rocca (1975)

Pedersen (1978b)

Pedersen (1978b)

Pedersen (1978b)

13



expectation (most probable value) of the energy spectrum of 
an ensemble on th-e assumption that the expectation is the 
ensemble average value. This may be expressed as

<E(r,9)> = / E(r,e).f(P.)dV, i = l ,2, . . . . , n, (29)

where

V = n-parameter space

f = joint probability distribution function for 
parameters Pj .

On the further assumption that the parameters vary indepen­ 
dently of one another, we may write

) t (30) 

and hence, analogous to equation (26),

<E(r,0)> = <M><RM (e)><RT (e)><H(h,r)><S(a.,r,9)><C(b.,r)> .(31)

For depth estimation our concern is chiefly with the last 
three factors , <H(r,9)> ,<S(a.,r,9)> , and <C(b.>r)> f as 
previously. The effect of these factors is illustrated 
schematically in figure 2. We shall now treat each factor in 
detail.

Depth factor and depth estimation

Following Pedersen (1978b), we consider a source ensemble 
with a uniform (random) depth distribution such that

h(l- *) <h <h(1+K) , (32)

where tf ^ 1 and h = average value of h . The sources can 
be any of the types listed in table 1. Then

J?(1 + »)

<H(h,r)> = ± J e" 2hrdh (33)
2^ h h ^_ ̂

Pedersen evaluated this integral and plotted ̂ ln<H>/^hrr, showing 
that the slope is asymptotic to 2(1- # ) for any X , for 
example, when

tf = 0, slope = 2: all depths are the same and are
obtained directly from the plot of 1 n < H > 
vs. r

14
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Figure 2.- Factors showing effect of source depth, width, and depth extent on 
logarithmic spectral energy-decay curve. A_, Shallow and deep sources, both with 
very great depth extent but limited width. A linear segment of the decay curve 
is associated with each source ensemble. B_, Shallow sources of limited depth 
extent but appreciable width; deep sources as in A_. A width ("size") correction 
flattens the slope of the decay curve and is especially significant at large 
wave numbers. Note the broad energy maximum resulting from limited depth 
extent.
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S = 0.5, slope = 2 only at r=0 and is asymptotic to 
1.0 for large r, so that a serious under­ 
estimation of depth occurs if high frequencies 
are used in the slope measurement.

The problem was initially addressed by Spector (1968), who 
concluded that the depth estimate is satisfactory provided 
the depth variation h is such that

Ah/h < 25% (34)

which corresponds to # = 0.25. But it is still necessary to 
avoid large values of hr in making the slope measurement, and 
above all to consider the effects of the horizontal-size and 
depth-extent factors.

When the spectrum has been refined to correct for the 
finite horizontal size and limited depth extent of sources, 
where such corrections are appropriate (see below), then the 
average depth measured is simply

slope 
h = -       (35)

47T

when the slope is measured on a plot of In E(f , 9) vs. f, or

_ slope
     (36)

on a plot of amplitude spectrum In A(f,0) vs f. If two or 
more source ensembles are present, each with a characteristic 
average source depth and Ah/h <^. 25 percent, then the plot 
will show a corresponding number of linear intervals and the 
depths can be determined by measuring the slope of each 
interval separately, as noted earlier.

Horizontal size (width) factor: 
refinement of the spectrum

This factor is model dependent and is generally important 
if the average horizontal dimensions of sources in an en­ 
semble are equal to or greater than the average depth. For 
any horizontal size (width) of source, the magnitude of the 
S-factor increases as the frequency increases, but the 
magnitude changes most rapidly at low frequencies. In all 
cases the effect is to cause a more rapid decay of the energy 
with frequency, which results in an overestimation of the
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depth unless compensated. Note that the sign of this effect 
is exactly opposite to that of the depth-dispersal effect. 
To some extent, therefore, the two effects counterbalance one 
another. However, the horizontal size effect is generally 
much larger, and without refinement of the spectrum for this 
effect the estimated depths must be regarded as maximum 
values.

In order to evaluate the size effect, we refer first to 
Pedersen (1978b). Assume that the sources are vertical 
circular cylinders of radius a, with uniform distribution 
such that

0 4 a <2a , (37)

where a = average radius. Then from table 1, the 
expectation of the S-factor is

i 2J. J^ar) 2
<S> = - r J     da

21 J* ar <38 >

= ^Flr ' Ir>7T
, that is, in the (39)

asymptotic range for evaluation of the integral. Thus the 
rate of energy decay due to S is given by

d 1n<$> = _ 1_ , (40) 
b r r

compared with the rate due to H.

-^ ln<H> = -2F (41) 

For a more restrictive size distribution, viz.

the rate of decay due to the S factor for the cylindrical 
model turns out to be

i,n<S> - -\ , lr>7r

In other words, the effect is three times as large as for= i.
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It was shown by Pedersen (1978b) that for a dike model with 
average horizontal half width a , the result at yS = 1 is the 
same as for the cylinder, but that when/3=1 the rate of decay 
is

ln<S> = ar > (44)

or two rather than three times the rate of decay with y3= 1. 
Finally, Pedersen considers the vertical prism model, with 
half widths a and b uniformly distributed such that

(45)

(46)

The parameter is thus an elongation factor. The expecta­ 
tion of S is obtained by averaging over both of the size 
parameters and over . The result is that for/3= 1 
various , the asymptotic rate of decay is given by

-Hn<S> - - .

It is similar to that of the dike with the more restrictive 
distribution function (equation 44),/3<1 , and twice that of 
the cylinder (equation 40). For/3<1 , cx<1 , however, the 
asymptotic rate is

(47)

the same as for the cylinder.

The analysis of Spector (1968) for the case of an 
ensemble of vertical prisms assumes ex =/3 = 1 , but allows a 
simple numerical evaluation of the expectation in the lower 
end of the frequency or wave-number range. Again averaging 
over 0 and the parameters a=b , we have

S(r) = -

_ 
S. (2a~r sine)

2ar sine

Here S^ is the "sine integral" 
* sinP

S.(x) = dp

S.(2ar cos0)

2ar cos6 

defined as

(48)

(49)

18



which can be evaluated numerically from the infinite series
oo n. 2n+1

S. (x) = .            " ( 5 °)

For computation of the size effect in this work we have 
elected to employ equation (48) to compute the effect at wave 
numbers given by ar<7\ , and to employ Pedersen's asymptotic 
approximation

1

<S(r,9)> = -

for aV^TT. The average width 2a" is obtained by measuring the 
distance between points of inflection on the profile, or if a 
map of the data is available, by averaging this distance in 
orthogonal directions to minimize the possibility of direc­ 
tional bias. Alternatively, it can be obtained from the 
second vertical derivative of the profile (Green, 1972). 
Subroutine "CSIZE" (appendix B) has been designed to carry 
out this computation at frequencies used in subroutine 
"FRQAN". The subroutine allows the user to refine the spec­ 
trum if significant distortions are expected as a result of 
the finite horizontal size of anomaly sources. The correc­ 
tions increase with frequency and always result in an 
increase in energy values, and hence in a decrease in slope 
and in estimated depths.

When the computation applies to a profile, it is only 
necessary to carry out the numerical integration for the sine 
integral once in equation (48), and we delete the integration 
over level . This procedure stems from an assumption of 
bidimensionality of sources and choice of one reference axis 
as the profile direction, so that the wave number in the 
strike direction is zero (say, u = r sinSSO ), and by 
I'Hospital's Rule

sin2au -i 
Lim

2a~u (52)

Alternatively, if sources are 3-D rather than 2-D, it is
necessary to assume that the integral in equation (48) is
independent of e , so that evaluation at 0 = o suffices.

We note t^hat for large wave numbers and uniform distri­ 
bution 0^a<2a , the energy decay for the cylinder and dike 
(2-D prism) are identical, provided the strike of the dike is 
normal to the profile, while for the 3-D prism the size 
effect is similar to that of the cylinder for some size 
distributions and to that of the dike for others.
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The choice of models and size-distribution function for 
computation of the size correction may seem somewhat arbi­ 
trary; indeed, we have used different models for the low- 
frequency and high-frequency ends of the spectrum (Specter's 
prism analysis assumes OC= (3 = 1 ; that is, that there is no 
systematic elonga±ion, and leads to an asymptotic effect 
(<S>= 1/r, not 1/r ). Fortunately, the energy-decay rate is 
not highly sensitive to these choices, nor to the absolute 
value of the average horizontal size. Yet without any size 
corrections the depths may be overestimated by as much as 50 
to 60 percent or more, especially for deep ensembles that 
affect most strongly the low frequencies. The only ensemble 
for which the size effect can be safely ignored is one with 
source widths corresponding to the shallow limit of 
resolution of the survey.

One additional effect of the size factor merits comment: 
the introduction of oscillations in the radial spectrum due 
to the presence of sine and cosine terms in this factor (see 
table 1). Such oscillations may tend to be smoothed out in 
the spectra of dispersed sources or ensembles, but the effect 
can be readily discerned in spectra of single sources and 
well-behaved source distributions. In some cases the spacing 
between minima is quite regular and can be used to determine 
the source width or average width. Details of this procedure 
are provided by Spector (1968).

Vertical size (depth extent or thickness) factor

We have already considered the simplest of the depth- 
limited models (point dipole, line of dipoles, horizontal 
rectangular lamina) and seen that each produces a logarithmic 
spectral maximum at r=i/h; the linearity of the decay can be 
restored in this case by subtraction of the term ^n r 2 
from the spectrum. Similarly, bottomed cylinders, prisms, 
and dikes produce maxima at a wave number whose value is a 
function of both depth and depth extent (and in the case of 
an inclined dike, of the dip). Pedersen (1978b) has closely 
examined the expectation of the C-factor for the case of 
ensembles of vertical cylinders, prisms, and dikes (all of 
which have the same C-factor), with depth extent uniformly 
distributed such that

(53)
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By setting

JL f ln<H(r,K)>+ln<C(r,T, g )> j = 0 (55)

dr [ )

he foutid a relation between the value of r at the logarithmic 
energy maximum, which is obtained by inspection of the 
spectrum, and h, £ , T   When ~j[~ is very small this parameter 
is nearly independent of the distribution parameter but very 
strongly dependent on <$ . When larger, it is strongly 
dependent on h . This interdependence makes it very 
difficult to determine the average depth from the spectrum of 
depth-limited bodies that are not points or laminae, or to 
determine the depth extent itself. Spector and Grant (1970) 
reach the same conclusion by analyzing the situation with£=i , 
and essentially dismiss the general depth-limited case as 
intractable.

Other influences on the spectrum

In addition to the three factors H, S, and C that 
directly affect the rate of decay of spectral energy as a 
function of radial frequency, other factors can indirectly 
influence the shape of the decay curve, particularly when 
multiple sources are involved. For example, large variations 
in magnitude and orientation of the source magnetization 
vector, if systematically dependent on source depth (as may 
occur for a double ensemble), can affect the depth estimates 
in the following way. Although neither M nor R^ (0) is a 
function of r in the energy equation (equation 31), each 
contributes to the absolute level of the energy. Therefore, 
when ensembles at different depths are characterized by 
different M and RM (9), the region of the logarithmic decay 
curve dominated by each will have a different absolute level. 
This condition may result in a discontinuity or "step" be­ 
tween increments in reality dominated by linear decay. It is 
conceivable that in some cases the step will be interpreted 
as a broad maximum, or more likely, that it will obscure the 
linearity and render the depth estimates less accurate. 
Spector (1968) and Green (1972) have computed the expecta­ 
tions of M, RM ( e ), and RT ( e ) and shown that variations 
in the orientation of both the magnetization and the earth's 
field have a negligible effect on the energy spectrum, pro­ 
vided the variations are within about 20° of the average 
values.

Dispersion of sources in the horizontal plane may 
strongly affect the azimuthal symmetry of the spectrum and 
its overall shape in any radial direction. For map analysis, 
the effect of a nonrandom horizontal source distribution can 
be minimized by averaging the spectrum over 6 . In the case 
of a single profile it should be borne in mind that the shape
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of the energy decay curve is sensitive to the horizontal 
disposition of anomaly sources relative to the center of 
analysis, because of the focusing effect of the Banning 
weighting function. Anomalies nearest the midpoint of the 
profile segment yield the maximum spectral energy and hence 
lend themselves most readily to depth estimation.

Some spectra show a completely nonlinear decay, and no 
depth estimates can be made. This situation obtains when the 
source distribution is nearly uniform with depth. In our 
experience the surface of the uppermost magnetic basement, 
whatever its nature and however the sources are distributed 
within that basement, is almost always represented in the 
energy spectrum as a linear decay interval. However, we 
concur with the observation of Spector (1968) that the most 
commonly encountered case is the double ensemble.

Smoothing function

The computed logarithmic energy generally reveals a 
slowly decreasing mean value within an envelope of erratic 
rapid variations. The fluctuations in part arise from 
high-frequency noise reflected back through the spectrum, but 
they may also express the finite horizontal size effect of 
sources. If the fluctuations are regularly spaced it may 
even be possible to deduce the average source width, as we 
have noted. On the other hand it is sometimes advantageous 
to smooth the spectrum (suppress the energy scatter) in order 
to enhance the linearity of the decay for depth estimation. 
Subroutine "ENSMTH" (appendix C) has been developed to 
perform this operation by means of a 7-point moving average 
("triangular" filter with weighting factors of 1/16, 2/16, 
3/16, 4/16, 3/16, 2/16, 1/16). At both ends of the energy 
decay profile, where the width of the filter window exceeds 
the number of data points available, the program filters 
weighted energy values only. As we are concerned only with 
depth estimation there is no need to compensate for the 
reduction of energy magnitude by the filtering process (see 
Green, 1972). The subroutine can be applied to the spectrum 
either before or after refinement for the size effect.

EXAMPLES OF DEPTH ESTIMATION 

Simple magnetic model

A simple magnetic model is the first of three cases 
chosen to illustrate the application of the spectral method 
to synthetic data. The anomaly source is represented by an 
inductively magnetized, bottomless 2-D prism of width 3 km 
located at a depth of 1.5 km; the length of the body is 
assumed to be infinite in the magnetic east-west (strike) 
direction, normal to the profile (fig. 3A). The magnetic
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Figure 3. Spectral analysis of anomaly produced by simple 2-D magnetic test model. 
A_, Space domain. B, Frequency domain. In this and two following figures, 
anomalous total field intensity was computed using intensity of magnetization 
4.2 X 10~3 emu/cm3 in direction of earth's total field, inclination 30° 
down.
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total field intensity anomaly T was generated using an 
intensity of magnetization 4.2 X 10"3 emu/cm3 and geomag­ 
netic field inclination 30° down. The profile was then 
subjected to spectral analysis using subroutine "FRQAN". The 
resulting logarithmic decay curve is shown in fig. 3B. 
Examination of the total logarithmic energy curve (E-t) 
shows that the energy contribution of the model is mainly in 
the frequency range 0.01 to 0.25 cycle/km. The slope of a 
line manually fitted to this part of the curve was used to 
determine the depth to the top of the causative body. A value 
of 2.07 km was obtained - about 37 percent greater than the 
actual depth. This overestimation is attributed to the 
finite horizontal size or width effect in the energy 
computation. Next, subroutine "CSIZE" was applied, assuming 
an anomaly half width of 1.5 km, and the net logarithmic 
energy curve, En , was produced. The slope of a line fitted 
to this new curve in the same frequency interval gives a 
computed depth of 1.54 km, which is very close to the actual 
value. Comparison of the two decay curves E t and En 
shows that the linearity of the decay curve is considerably 
improved by removal of the size effect.

In figure 4, depth estimates are made from the energy 
spectrum of a 3-D prismatic model of two orthogonal cross 
sections identical to that of the 2-D model used in figure 3. 
The 3-D model (4A_) measures 3 X 3 km in the horizontal plane 
and the total-intensity profile was computed along a median 
line 1.5 km above the top of the prism, as previously. The 
total-energy spectral decay curve (E t ) gives an estimated 
depth of 2.06 km, while the size-corrected curve (En ) 
yields a depth of 1.47 km. Thus the result (4B) is 
essentially the same whether the prismatic source is two 
dimensional or three dimensional. This observation supports 
our previous contention that there is no requirement to 
assume bidimensionality of sources in profile analysis.

Complex magnetic model

In this example (fig. 5A), the source model is an 
ensemble of three bottomless prisms of widths 3, 4, and 3 km 
located at depths of 3, 2.5, and 2.7 km, respectively. The 
total-intensity anomaly was computed using the same earth's 
field parameters as previously. Spectral analysis was again 
applied and the corrected and uncorrected logarithmic decay 
curves of the energy spectrum are shown in figure 5B. The 
energy contribution of the model ensemble appears in the 
frequency range 0.05 to 0.4 cycle/km. The slope of a line 
fitted to the E-^ curve in this range gives a calculated 
average ensemble depth of 3.31 km, which is an overestimation 
of about 21 percent, as the real average value is 2.73 km. 
The En curve (based on the average model half width of 1.67 
km) gives a calculated average depth of 2.69 km, or very 
close to the actual value.
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Simple gravity model

We have included a synthetic gravity case in the suite of 
examples to demonstrate the general applicability of the 
spectral method of depth estimation to other types of 
potential field profiles. In this example the assumed model 
is a bottomless vertical cylinder (fig. 6A_) with density 
contrast -0.1 g/cm3, diameter 8 km, and top at depth 1.25 
km. The same procedure of analysis has been carried out and 
the energy analyses are presented in figure 6B_. The energy 
contribution due to the model is distinguishable in the 
frequency range 0.03 to 0.52 cycle/km. In this frequency 
range the slope of the E-^ gives a calculated depth of 1.58 
km, or about 27 percent too large. On the other hand, the 
En curve for an anomaly half width of 4 km gives a calcula­ 
ted depth value of 1.21 km, which is within 4 percent of the 
actual value.

Aeromagnetic profile over Harrat Rabat, 
western Saudi Arabia

Harrat Rahat is one of the largest Cenozoic lava fields 
on the Precambrian shield of western Saudi Arabia, extending 
approximately 300 km south from the outskirts of the city of 
Al Madinah. In 1976 the major portion of the lava plateau 
was covered by an aeromagnetic survey along northwest- 
southeast-trending profiles at 2.5-km spacing and nominal 
ground clearance of 300 m. The total-intensity aeromagnetic 
data along each profile, digitally recorded at intervals of 
approximately 0.07 km, were subjected to systematic depth 
interpretation using the software described here (Blank and 
Sadek, 1983). For this purpose the profiles were subdivided 
into increments of nominal length 20 or 40 km, and the compu­ 
ted energy spectrum for each increment was used to estimate 
depths to the tops of ensembles of magnetized sources. The 
objective was to estimate the thickness of the lava series 
and to construct an isopach map of cover on the basement. We 
shall discuss three different examples of the spectral 
analysis and depth determinations.

Line 6, segment 2

This segment of Line 6 is about 25 km long and is located 
over the southwestern part of the harrat near lat 22°15' N;, 
long 40°10' E. The direction of the flight line is northwest 
to southeast. Here fresh basaltic lava flows overlie 
Precambrian metarhyolite, which crops out at the western 
margin of the harrat. Subroutine "FRQAN" has been applied to 
the aeromagnetic data and the results are shown in figure 7. 
It is clear from the total-intensity profile that the 
magnetic field is nearly flat except for short-wavelength 
(high-frequency) anomalies produced by the lava flows. The

27



10

7

4

1

Jf -2
«J^ 
uj .5
c

-8

-11

-14

-17

-20

EXPLANATION

T, gravity field intensity, in milligals (mGal) 

Y, distance 

a, source half width 

H, depth to top of source
1
t-

-4

-5

-6

H = 1.25 km'
>

-

i i i i i

<- 2a = 8 km

\

f

-

10 20 30 40 50
Y(km) oo

Bottomless cylinder

a = 4.0 km

H = 1.59 km

EXPLANATION

E(f), spectral energy 

Et , total 

En , net 

f, frequency

H, depth to top of source 

S(f), size correction 

E n = Et -S(f) 

H = -slope/4 pi

OD 0.2 0.4 0.6 0.8 IjO 1.2 
f (cycles/km) ->

1.4 1.6 1,8 2.0

Figure 6. Spectral analysis of gravity field produced by simple test model. A_, 
Space domain. B, Frequency domain.

28



to CO

20 15

O oc U
J t
 

0  5 -1
0

 1
5

-

-2
0

10
D

IS
T

A
N

C
E

 (
km

) 15
20

25

(H
ar

ra
t 

so
ur

ce
s)

 
H 

= 
30

7 
m

E
X

P
LA

N
A

T
IO

N

T
, 

m
ag

ne
tic

 t
o

ta
l-f

ie
ld

 i
nt

en
si

ty
, 

in
 n

an
ot

es
la

s 
(n

T
)

Y
, 

di
st

an
ce

E
(f

),
 t

o
ta

l 
sp

ec
tra

l 
en

er
gy

H
, 

es
tim

at
ed

 m
ea

n 
de

pt
h 

to
 s

ou
rc

e 
en

se
m

bl
e

D
Y

 =
 0

.0
7 

km
 (

in
pu

t 
da

ta
 s

pa
ci

ng
)

N
Y

 *
 3

01
 (

nu
m

be
r 

of
 i

np
ut

 d
at

a 
po

in
ts

)

0.
5

1.
0 

1.
5

F
R

E
Q

U
E

N
C

Y
 (

cy
cl

es
/k

m
)/

3.
28

2.
0

2.
5

40
00

38
00

36
00

34
00

32
00

30
00

 _
c^

28
00

 
*-

26
00

24
00

22
00

20
00

18
00

F
ig

u
re

 
7
. 
S

p
e
c
tr

a
l 

a
n

a
ly

si
s 

of
 

L
in

e 
6,

 
se

gm
en

t 
2,

 
ae

ro
m

ag
n
et

lc
 

su
rv

ey
 

of
 

H
ar

ra
t 

R
ab

at
, 

K
in

gd
om

 
of

 
S

au
di

 
A

ra
b

ia
.



average half width of these anomalies does not exceed the 
flight height, and therefore no size correction has been 
applied to the computed spectrum. Examination of the E t 
curve shows that it is markedly linear in the frequency range 
0.15 to 3.41 cycle/km. The slope of a line fitted to this 
interval gives a calculated average depth of 307 m to the 
magnetized sources, which is very close to the average flight 
height (302 m) registered by the radioaltimeter. Thus the 
only depth that can be calculated from the Et curve is 
interpreted as the depth to the top of the exposed lavas. 
Since the basement metarhyolites have no magnetic expression, 
the depth to the Precambrian surface and hence the thickness 
of the lava series could not be determined from this profile.

Line 33, segment 4

This segment of Line 33 is about 43 km long and located 
over the western part of Harrat Rabat near lat 23°00' N. , 
long 40°10' E. The flight direction is southeast to 
northwest. No basement rocks are exposed on the line of 
traverse. The total magnetic field (T) and the computed 
energy spectrum (E-^) are illustrated in figure 8. In 
several parts of the field-intensity profile, it is clear 
that short-wavelength anomalies are superimposed on anomalies 
of relatively longer wavelength. The short-wavelength 
anomalies are due to shallow sources in the Cenozoic lava 
series, while the longer wavelength anomalies reflect mainly 
the contribution of basement rocks. The corresponding energy 
contributions are easily distinguishable on the E-j. curve as 
linear decay intervals in the frequency ranges from 0.9 to 
4.0 and 0.06 to 0.9 cycle/km, respectively. From the slopes 
of these intervals, the calculated average depths to tops of 
sources in the two ensembles are 297 m and 569 m. The depth 
297 m is very close to the average flight height (311 m) 
registered by the radioaltimeter and thus is the depth to the 
harrat surface. On the other hand, the depth 569 m, which 
represents the average depth to the top of sources in a 
second ensemble, is probably the surface of the underlying 
basement. Assuming that the volcanic flows directly overlie 
basement rocks, the difference between the two depths (272 m) 
is the thickness of the lava series.

Line 37, segment over drill hole SAH-20

This example provides a direct comparison between a base­ 
ment depth estimate from spectral analysis with the actual 
depth determined in a drill hole. Line 37 passes almost over 
the position of ground-water exploration drill hole SAH-25 
(Torrent, 1976). A segment of profile centered over the hole 
was selected for analysis; the segment contains 501 data 
points spaced at 70 m (total length 35 km). The logarithmic 
spectral energy-decay curve (fig. 9) yields an estimated 
average depth to a shallow source ensemble (the harrat

30



25 20 15

10
D

IS
T

A
N

C
E

 (
km

) 
15

20
25  r
~

40
00

38
00

36
00

34
00

32
00

30
00

 p _c
_

28
00

 
H

26
00

24
00

22
00

20
00

18
00

10

o 5 X E
 

o
-5

-1
0

-1
5

-2
0

H
 =

 5
69

 m
 

(b
as

em
en

t 
so

ur
ce

s)

H
 =

 2
97

 m
 

(h
ar

ra
t s

ou
rc

es
)

E
X

P
L

A
N

A
T

IO
N

T
, 

m
ag

ne
tic

 t
o

ta
l-
fie

ld
 

in
te

n
si

ty
Y

, 
di

st
an

ce

E
(f

),
 t

o
ta

l 
sp

ec
tr

al
 e

ne
rg

y

H
, 

es
tim

at
ed

 m
ea

n 
de

pt
h 

~ 
to

 s
ou

rc
e 

en
se

m
bl

e
D

Y
 «

 0
.0

7 
km

 
(i
n

p
u

t 
da

ta
 s

pa
ci

ng
)

N
Y

 =
 5

21
 (

nu
m

be
r 

o
f 

in
p

u
t 

da
ta

 p
oi

nt
s)

0.
5

1.
0 

1.
5

F
R

E
Q

U
E

N
C

Y
 

(c
yc

le
s/

km
)/

3.
28

2.
0

2.
5

F
ig

u
re

 
8

. 
S

p
e
c
tr

a
l 

a
n
a
ly

si
s 

of
 

L
in

e 
33

, 
se

gm
en

t 
4

, 
ae

ro
m

ag
n

et
ic

 
su

rv
ey

 
of

 
H

ar
ra

t 
R

af
ta

t,
 

K
in

gd
om

 
of

 
S

au
d

i 
A

ra
b
ia

.



N>

25 20

CD
 1

5
oc 111 51

0
5
 

I t
 

5
QC

 
< CD

 
rt

 
O

 
0 -5 -1
0

A
 

U
ns

m
oo

th
ed

0.
2 

0.
4 

0.
6 

0.
8 

1.
0 

1.
2 

1.
4 

1.
6 

1.
8 

2.
0

25 20 15 10 5 0 -5 -1
0

0.
2 

0.
4 

0.
6 

0.
8 

1.
0 

1.
2 

1.
4 

F
R

E
Q

U
E

N
C

Y
 

(c
yc

le
s/

km
)/

3.
28

1.
6 

1.
8 

2.
0

8 
S

m
oo

th
ed

 u
si

ng
 

"E
ns

m
th

"

0.
2 

0.
4 

0.
6 

0.
8 

1.
0 

1.
2

1.
4 

1.
6 

1.
8 

2.
0

67
3i

r

0.
2 

0.
4 

0.
6 

0.
8 

1.
0 

1.
2 

1.
4 

1.
6 

F
R

E
Q

U
E

N
C

Y
 (

cy
cl

es
/k

m
)/

3.
28

20 15
 

CD OC
 

11
1

Z
10

H
I 

O

5 
t QC

 
< CD

 
0
 

O

-5 -1
0

1.
8 

2.
0

F
ig

u
re

 
9
. 
A

_
, 

U
ns

m
oo

th
ed

 
an

d 
B^

 
sm

oo
th

ed
 

en
er

g
y
 

sp
ec

tr
u
m

 
fo

r 
se

gm
en

t 
o
f 

to
ta

l-
in

te
n

s
it

y
 

ae
ro

m
ag

n
et

ic
 
p
ro

fi
le

 
(L

in
e 

3
7
) 

ce
n
te

re
d
 

o
v
er

 
di

am
on

d 
d
ri

ll
 
h
o
le

 
S

A
H

-2
5,

 
H

ar
ra

t 
R

ah
at

. 
L

en
g
th

 
o
f 

se
gm

en
t 

is
 

35
 

km
; 

N
Y

=5
01

 
p
o
in

ts
, 

N
F=

25
1 

p
o

in
ts

. 
H

I 
an

d
 

H
2 

a
re

 
e
st

im
a
te

d
 

d
ep

th
s 

to
 

su
rf

a
c
e
 

o
f 

h
a
rr

a
t 

an
d 

b
as

em
en

t,
 

re
sp

e
c
ti

v
e
ly

. 
^
-H

I 
= 

38
0 

m 
fr

om
 

sp
e
c
tr

a
; 

d
ep

th
 

to
 

ba
se

m
en

t 
is

 
36

2 
m 

in
 

d
ri

ll
 

h
o
le

. 
"E

N
SM

TH
" 

is
 

7
-p

o
in

t 
tr

ia
n
g
u
la

r 
fi

lt
e
r 

su
b

ro
u

ti
n

e
 

(s
ee

 
te

x
t)

.



surface) of 293 m, or about the nominal terrain clearance, 
while the estimated depth to a deeper source ensemble 
(Precambrian basement) is 673 m, so that the estimated 
thickness of cover is 380 m. The depth to basement proved by 
the drill hole is 362 m. The excellent agreement of the 
spectral depth estimates with the drilling result (only 5 
percent error) is better than could be expected, as there is 
known to be considerable relief on the concealed basement 
surface, and even though the spectral estimates are center 
weighted, they are influenced by depths of all sources 
distributed beneath the entire 35-km-long segment of profile 
analyzed. Furthermore, size corrections for the deeper 
sources might be expected to reduce the estimate by more than 
the magnitude of the discrepancy. Figure 9 also illustrates 
application of the smoothing subroutine "ENSMTH".

Aeromagnetic profile at 
Diyur, Western Desert of Egypt

The Diyur aeromagnetic anomaly is a basement feature de­ 
lineated during petroleum exploration surveys of the Western 
Desert of Egypt (fig. 10). In the vicinity of the anomaly, 
which is centered at about lat 29°17' N., long 28°34' E., 
basement rocks are concealed beneath a nonmagnetic Tertiary 
cover known from drilling data to be about 1.5 km thick. The 
aeromagnetic data were digitized at 0.5-km intervals along a 
south-north profile bisecting the anomaly. The total- 
intensity profile of figure 10A. shows a large central high 
with a half width of about 15 km. Spectral analysis of this 
profile included the application of subroutine "FRQAN" (E-^ 
curve) and size correction using "CSIZE" (E n curve). The 
energy contribution of the magnetic anomaly is easily dis­ 
tinguished in the frequency range 0.05 to 0.4 cycle/km. The 
corresponding slope of the E-^ curve gives a depth of 2.24 
km, which is about 46 percent greater than the depth given by 
drilling. In the same frequency range, using the anomaly 
half width of 4.0 km (measured between points of inflection) 
to compute the size correction, a depth value of 1.63 km is 
obtained from the slope of the En curve. This value is 
still an overestimation but now is only about 7 percent 
greater than the actual value at the drill site.

It can be seen that the energy curve has a "hump" in the 
frequency range 0.2 to 0.3 cycle/km. This hump is 
attributable to a sheetlike source body within the cover rock 
sequence. The actual depth of this additional source cannot 
be estimated from the energy curve because of the relatively 
large digitization interval of the total magnetic field 
intensity profile used to produce the energy curve. However, 
small irregularities observed in the total-intensity curve 
(fig. 10) probably also reflect the same shallower source. 
The source is believed to be a layer of volcanic rocks that 
extends from Cairo in the east to Bahariyya Oasis in the west 
(Meshref and others, 1980).
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Figure 10. Spectral analysis of aeromagnetic profile across Diyur area, Western 
Desert of Egypt. A, Space domain. IJ, Frequency domain. Estimated depth to 
anomaly source is T. 63 km after size correction; proved depth to basement in 
vicinity of anomaly is 1.53 km from drilling.
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CONCLUSIONS

The foregoing examples attest to the effectiveness of the 
spectral method of depth estimation for a variety of syn­ 
thetic and real profiles. The method must be applied with 
caution, however, in consideration of important constraints 
that affect the validity of the analyses. We summarize the 
main points as follows:

1. Analysis of the spectrum is restricted to a finite 
frequency interval. The practical lower limit is determined 
by the finite length of profile, which in practice means that 
the maximum depth that can be determined is at most about 
one-quarter or even one-fifth of the profile length. The 
upper limit is set by noise due to round-off error in the 
recorded data and can never exceed the Nyquist frequency. 
The data should represent field-intensity samples at a 
sufficiently fine interval for spectral aliasing to be 
minimized (that is, no "spikes" should be present; only 
low-energy noise is reflected). In practice this requires 
that the sample interval be no larger than about one-quarter 
of the width of the smallest anomalies present (Spector, 
1968). Best results are obtained when the data have been 
detrended (a linear regional gradient has been removed).

2. The assumption of bidimensionality of sources, implicit 
in the one-dimensional computation of the spectrum for a 
profile, does not adversely affect the profile depth esti­ 
mates provided the distribution of sources in the horizontal 
plane is such that the radial spectrum is independent of the 
azimuthal angle & . This situation strictly applies only 
when sources are small, numerous, equidimensional in the 
horizontal plane, and randomly distributed. However, in many 
situations encountered in practice, the depth factor is 
probably very close to the same whether the sources are 
considered two dimensional or three dimensional. But if the 
field-intensity data indicate that the sources are indeed 
predominantly two dimensional, then the profile must be 
normal to the strike direction (we note, as an extreme 
example, that the energy is limited to zero frequency for 
profiles parallel to the strike).

3. The energy spectrum of a wide variety of simple source 
configurations can be expressed as the product of six 
factors, only three of which are functions of frequency (or 
wave number): the depth factor, the horizontal size (width) 
factor, and the vertical size (depth extent or vertical 
thickness) factor. Estimation of the depth h is essentially 
independent of source magnetization and orientation of the 
earth's field; knowledge of the absolute level of the 
spectral energy is not required.
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4. The logarithmic spectral decay rate is dominated by the 
depth term, which is simply -H-trPJi or -ZrA . When the other 
two factors are negligible or have been compensated, the 
depth to the top of a source or the average depth to the tops 
of sources in an ensemble is obtained simply by measuring the 
slope of the decay curve. If two or more ensembles are 
present, each with a characteristic mean depth, each will 
produce a linear decay interval in a different part of the 
spectrum.

5. The finite horizontal cross section of sources 
increasingly steepens the logarithmic energy-decay rate as 
horizontal dimensions increase relative to depth. The 
steepening is most drastic at low frequencies. In general, 
this effect must be compensated in order to avoid serious 
overestimation of depths. An adequate correction, or 
spectral "refinement", requires only a rough knowledge of the 
source dimensions and is relatively insensitive to source 
shape.

6. By the presence or absence of a logarithmic energy 
maximum at a nonzero frequency, the spectrum will immediately 
reveal whether sources are depth limited. For sources with 
depth extent (vertical thickness) much less than the depth to 
the top, the depth can be estimated through further 
refinement of the spectrum by subtracting a term ̂ Ctu r2- from 
the logarithmic energy and then fitting a straight line to 
the remainder, or, if the maximum is well defined, by use of 
the relationship r=l/h. If the depth extent of a source body 
exceeds the depth to its top, the spectrum is nearly that of 
a bottomless source. The depth estimate is generally much 
more satisfactory than the estimate of depth extent.

7. The effect of vertical dispersion of sources is negligi­ 
ble if the depth variations are within about 25 percent of 
the mean depth. In practice it appears that sources in 
crystalline terranes have relatively large depth extent and 
therefore the ensemble depth for a crystalline basement is 
close to the mean depth to the basement surface.

8. Horizontal dispersion of sources affects only the phase 
of the complex amplitude spectrum, and not the energy 
spectrum. If the depth to a single dominant source is 
desired, the estimate can sometimes be improved by centering 
the profile over the associated amplitude anomaly.

As we remarked at the onset, frequency analysis of 
profile data has many applications in addition to depth 
estimation. Several of these, such as computation of 
derivatives and frequency stripping (band-pass filtering), 
can be used to improve the quality of the depth estimates 
themselves. For a discussion of these techniques the reader
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should consult especially the works of Green (1972) and 
Spector and Parker (1979).

In view of the enormous amount of potential-field data 
now available for Saudi Arabia, particularly aeromagnetic 
data over the Arabian Shield and adjacent Cover Rock, it is 
to be hoped that this review of the spectral method and 
presentation of software can contribute to the task of 
analysis, and that not only spectral depth estimation, but 
other operations in the frequency domain will in the future 
be more widely applied. The profile technique may be 
especially useful where profiles are relatively widely spaced 
and the data are not directly amenable to contouring.
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APPENDIX A: SUBROUTINE "FRQAN"

Subroutine "FRQAN" is written in FORTRAN IV. Input can 
be any potential-field intensity data as a function of dis­ 
tance along a profile, and output is logarithmic (base e) 
energy (dimensionless) as a function of frequency measured in 
reciprocal distance units (for example, cycles per km). A 
flow chart is provided. The program follows.
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APPLY 
MANNING WINDAW

CALCULATE TRANSFORM 
AT ZERO FREQUENCY

CALCULATE ENERGY 
AT ZERO FREQUENCY

COMPUTE FREQUENCY 
FY(I) = (I-1)*DFRQ

COMPUTE TRANSFORM 
AT FREQUENCY FY(I)

COMPUTE ENERGY AT 
FREQUENCY FY(I)
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TRQAN,FTN 14-DEC-83 10J22J36

cmmmwmmmmmMMmMMmmmmmmmmm
t THIS SUBROUTINE COMPUTES FREQUENCY AND CORRESPONDING
C ENERGY SPECTRUM OF EQUALLY SPACED POTENTIAL FIELD DATA
C DIGITIZED ALONG A GIVEN PROFILE , THE (I/O). QUANTITIES ARE!
C A- NUMERIC CONSTANTS
C 1- NY NUMBER OF INPUT DATA POINTS
C 2- DY INPUT DATA INTERVAL
C 3- NH =1 APPLY HANNING WINDOW
C = 0 NO HANNING WINDOW IS APPLIED
C 4-NSIZE = 1 APPLY SIZE CORRECTION
C = 0 NO SIZE CORRECTION
C 5-HUD AVERAGE HALF WIDTH OF SOURCE OR ENSEMBLE
C ( HWD=0,0 IF NO SIZE CORRECTION IS NEFDED)
C A-NSM = i SMOOTH THE OUTPUT ENERGY CURVE
C = 0 NO SMOOTHING OF THE OUTPUT ENERGY CURVE
C 7- FRQN OUTPUT NYQUIST FREQUENCY
C 8- DFRQ OUTPUT FREQUENCY INTERVAL
C 9- NF NUMBER OF OUTPUT ENERGY POINTS
C B- ARRAYS
C 1- DT ARRAY OF INPUT POTENTIAL FIELD DATA
C 2- ES ARRAY OF OUTPUT LN(ENERGY) SPECTRUM DATA
C 3- FY ARRAY OF OUTPUT FREQUENCY VALUES
C 4- A ARRAY OF OUTPUT REAL VALUES OF THE TRANSFORM
C 5- B ARRAY OF OUTPUT IMAGINARY VALUES OF THE TRANSFORM

SUBROUTINE FRQAN(NY»DY»HWD»NH»NSIZE J NSM»DTjA J BjNF,FRONjDFRQ»FYjES)
DIMENSION DT(NY)..A(NY)jB(NY)>ES(NY)»FY(NY)jFC(7)
PI»4,*ATAN<1») 

C
C CALCULATE SPACE DOMAIN PARAMETERS 
C

YL=(NY-1)*DY
LY=YL
Nl=(NY-3)/2
N2=(NY-l)/2
IF (NH ,EQ, 0) GO TO 100 

C
C APPLY HANNING WINDOW 
C

DO 100 1=1 » NY
Y=(I-l)*DY-YL/2»
Q=0,5*(i ,+COS(2,*PW/YL) )
BT(I)=DT(WQ 

100 CONTINUE 
C
C CALCULATE PARAMETERS OF FREQUENCY DOMAIN 
C

DFRQ=1,/YL
FRGN*1,/<2,*DY)
NF=FRQN/DFRQ 

C
C CALCULATE ENERGY AT ZERO FREQUENCY 
C

SUM1=0,0
DO 110 K=1..N1
Ii=2*KM 

110 SUM1=SUMHDT(I1)
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SUM2=0>0
DO 120 K=i.«N2 

120 SUK2=SUM2+DT(2*K)
A(l)=(DY/3>)*(2,*SUHit4,*SUM2+DT(l)iDT<NY))
B(l)=0,0
FY<1)=0,0
ES1=A(1)*A(1)
ES(1)=ALOG(ES1> 

C
C CALCULATE ENERGY AT DIFFERENT FREQUENCIES 
C

DO 200 J=2»NF
FY(J)=(J-mBFRG
CE=0,0
SE=0.0
CT=0,0
ST=0»0

Z=V*DY
CV«COS(V»YL/2»)
SV=SIN(V*YL/2.)
CZ=COS(Z)
SZ=SIN(Z)
ALP=1./ZHCZ*SZ/(Z*Z»-(2.*SZ*SZ/Z**3»)

GAM=4**(SZ-Z*CZ)/Z**3» 
DO 210 K=1»N1

AA=2,*K*DY-YL/2, 
CE=CEfDT(Il)*COS(Vl!AA)

210 CONTINUE
CE=CE+Q>5*(DT(NYHDTU))*CV 
SE=SEW»5*(DT(NY)-DT<1»*SV 
DO 220 K=1..N2 
DD=(2>*K-l.)*DY-YL/2, 
CT=CTfDT(2*K)l:COS(V*DB)

220 CONTINUE
A(J)=DY*(ALP*(DT(NY)W(1WSV+BET*CE+GAM*CT)
B(J)=DY*(-ALP*(DT(NY)-DT(l))*CW>ET*SEfGAH*ST)
ES1=A(J)*A(J.HB(J)|:B(J)
ES(J)=ALOG(ES1) 

200 CONTINUE
IFfNSIZE »EQ, 0) GO TO 230 

C
C APPLY SIZE CORRECTION 
C

CALL CSIZE(NF..HWD»FYjESjDT) 
230 IF(NSM ,EG. 0) GO TO 240 
C
C SMOOTH THE OUTPUT ENERGY CURVE 
C

CALL ENSMTH(NF»ES) 
240 RETURN
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APPENDIX B: SUBROUTINE "CSIZE"

Subroutine "CSIZE", also written in FORTRAN IV, is 
entered from subroutine "FRQAN" if the calling option has 
been exercised. A value of average half width of sources 
must be provided in the "FRQAN" input. A flow chart is 
provided. The program follows.
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C~START

COMPUTE ANGLE 
THETA = 2piFY(l)

COMPUTE EXPANSION OF
SIN(HWD*THETA)/THETA*
HWD

COMPUTE LOG (Sz) AND 
GET REDUCED ENERGY 
ES(l)-ES(i)-DT(l)

NO

APPLY SMOOTH ING 
AT HIGHER 
FREQUENCIES

B-2



CSIZE,FTN 14-DEC-83 10J23M4

tmmMmmmmmmmmmmMmmmmmmm
C SUBROUTINE 'CSIZE 1 INTOBUCES FINITE SIZE CORRECTIONS
C TO THE ENERGY SPECRUM OF POTENTIAL FIELD DATA
C COMPUTED USING SUBROUTINE 'FRQAN 1
C
C THE (I/O) QUANTITIES ARE?
C A- NUMERIC CONSTANTS "
C 1- NF NUMBER OF INPUT FREQUENCY POINTS
C 2- HWD AVERAGE HALF WIDTH OF SOURCE OR ENSEMBLE
C B- ARRAYS
C 1- FY ARRAY OF INPUT FREQUENCY VALUES
C 2- ES ARRAY OF INPUT LN(ENERGY) VALUES AND
C OUTPUT CORRECTED LN(ENERGY) VALUES
C 3- DT ARRAY OF OUTPUT SIZE CORRECTION FACTOR
tmmnmmmmummmmmmmMMmmmmm

SUBROUTINE CSIZE(NF5HHB?FY5ES>DT)
DIMENSION FY(NF)>ES(NF)jDT(NF)
PI=4,*ATAN<1,)
DO 100 1*1 >NF 

C
C COMPUTE ANGLE 
C

U=2,*PI*FY(I)
THETA=U*HWD
IF(THETA .ES. 0,0) 140
IF(THETA ,GT> 1.) GO TO 170 

C
C COMPUTE EXPANSION OF SIN(THETA)/THETA 
C

SUM=0>0
L=l 

110 J=L-1

J2=2*JH
Y=THETA**J2
SUM1=1
DO 120 K=1»J2 

120 SUM1=SUMUK
VAL=J1*Y/(SUM1*J2)
SUM=SUMIVAL
IF(ABS(VAL) »LE» 0,001) GO TO 130
L=L*1
GO TO 110 

130 VALUE=<SUM/THETA>**2>
GO TO 150 

140 VALUE=1> 
C
C STORE SIZE CORRECTION VALUES AND REDUCE ENERGY 
C
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150 BT<I)=ALOG(VALUE) 
160 ES(I)=ES(I)-PT(I) 
100 CONTINUE

RETURN 
C
C APPLY PEBERSEN FORMULA FOR SIZE CORRECTION 
C TO AVOID HIGH FREQUENCY NOISE 
C

170 DO 200 K*I»NF
U=2,*PI*FY(K)
BT<K)=-2,*ALOG<U)
ES(K)=ES(K)-DT(K) 

200 CONTINUE
RETURN
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APPENDIX C: SUBROUTINE "ENSMTH"

Subroutine "ENSMTH" is also written in FORTRAN IV and 
requires as input only an array of energy points. At present 
it is contained as the final option in subroutine "FRQAN". A 
flow chart is provided. The program listing follows.
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START~)

COMPUTE FILTER 
COEFFICIENTS

NF-3

APPLY FILTER 
TO END 
OF PROFILE

APPLY FILTER 
TO START 
OF PROFILE

APPLY FILTER 
TO PROFILE 

(WINDOW COVERS 
& POINTS)

CKETURN

C-2



ENSMTH.FTN 14-BEC-83 10J24J30

c
C THIS SUBROUTINE IS USED TO SMOOTH THE CONFUTED LN(ENERGY) SPECTRUM
C CURVE COMPUTED FROM SUBROUTINE FRQAN THIS OPERATION IS CARRIED
C OUT USING A TRIANGLE FILTER SET (1/16.. 2/16.. 3/16, A/16, 3/16,
C 2/16, 1/16) <A,G, GREEN? 1972) ,
C THE I/O QUANTITIES ARE1
c A- NUMERIC CONSTANTS;
C 1- NF NUMBER OF ENERGY POINTS
c B- ARRAYS;
C 1- ES ARRAY OF INPUT LN( ENERGY) VALUES AND
C OUTPUT SMOOTHED LW< ENERGY) VALUES
C 2- FC ARRAY OF THE FILTER COEFFICIENT

SUBROUTINE ENSMTH(NF,ES)
DIMENSION FC(7)»ES(NF) 

C
C COMPUTE FILTER COEFFICIENTS 
C

DO 10 1=1,7
IF(I ,GT» 4) GO TO 15
FC(I)=FLOAT(I)
GO TO 10 

15 FC(I)=8,-I 
10 CONTINUE 
C
C APPLY SMOOTHING FILTER 
C

DO 20 1=1 ,NF
11=1-3
I2=IH6
N=l
SUME=0
SUMF=0 

C
C CONDITION FOR MISSING VALUES OF THE 
C FILTER AT THE START OF THE PROFILE 
C

IFdl ,GT, 0) GO TO 25
N=2-I1
11=1

25 DO 30 J=I1.«I2 
C
C CONDITION FOR MISSING VALUES OF THE 
C FILTER AT THE END OF THE PROFILE 
C

IF(J ,GT» NF) GO TO 30
SUME=SUME*FC(N)*ES(J)
SUMF=SUMF*FC(N)
N=Ntl 

30 CONTINUE
ES(I)=SUME/SUMF 

20 CONTINUE
RETURN
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