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ABSTRACT

A national assessment of undiscovered recoverable crude oil and natural
gas resources of the United States was recently conducted by the U,S,
Geological Survey. This report presents the petroleum geology, oil and gas
plays, and other information used in the appraisal of the East Texas basin
province as part of the national assessment,

The appraisal involves analysis of 294 oil and gas fields discovered
between 1895 and 1985, Each of these fields has known recoverable quantities
of crude oil and natural gas liquids of more than 1 million barrels or more
than 6 billion cubic feet of natural gas. The known recoverable quantities of
the 294 fields are 8.908 billion barrels of crude 0il, 28.582 trillion cubic
feet of gas, and 1,587 billion barrels of natural gas liquids,

The East Texas basin is divided into eight o0il and gas plays which share
similar geological characteristics of petroleum source beds, reservoir rocks,
and hydrocarbon trapping mechanisms. These eight plays are: (1) N. E, Texas
basement structure play; (2) Mexia/Talco fault system play; (3) N, E, Texas
salt anticline play; (4) Tyler basin structural play; (5) Tyler basin
Woodbine-Eagle Ford play; (6) West Tyler basin Cotton Valley play; (7) Sabine
Uplift gas play; and, (8) Sabine Uplift o0il play. The East Texas and Kurten
Fields are not included in any play because each of these two fields has
unusual characteristics which are unlikely to be duplicated elsewhere in the
basin,

The reservoir rocks range in age from Upper Jurassic (Smackover
Formation) to Eocene (Claiborne Group). The Gulfian Series, Late Cretaceous,
is the principal source of crude o0il; large quantities of natural gas are in
the Coahuilan, and Upper Jurassic strata., Limited quantities of crude oil and
natural gas are found in Eocene strata.

The trapping mechanisms are structural, stratigraphic and combination
traps. The largest percentage of crude oil is in stratigraphic traps.
Combination traps account for the largest concentrations of natural gas and
natural gas liquids.

Crude o0il is found predominantly in sandstone reservoir rocks, whereas
limestone reservoir rocks are natural gas prone. Other reservoir rocks are
dolomites and, to a lesser degree, chalks and anhydrite.

Petroleum source beds appear to be distributed widely over the basin and
throughout the stratigraphic column from Upper Jurassic to Late Cretaceous.
The oldest, most widely recognized petroleum source beds are in the lower
Smackover Formation. Hydrocarbons were also generated in younger strata of
Upper Jurassic and Early Cretaceous, Significant quantities of hydrocarbons
were generated in the chalks and marine shales of Woodbine and Eagle Ford
Groups, with lesser amounts probably generated from the younger, Late
Cretaceous strata., Prolific petroleum source beds are: laminated,
organic-rich carbonate mudstones; mudstone~rich and matrix supported
carbonates; dense, dark-brown micrinitic 11mestones, dark~colored organically
rich, marine shales; and, chalks.

The thermal hlstory of the East Texas basin appears favorable for
generation of hydrocarbons., The maturation trend appears to actually begin at
a depth of about 3,000 £t (914 m), which places the onset of oil gemeration at
a younger geologic age than expected. The vitrinite values from studies of
the older producing strata suggest that the peak oil generation has been
exceeded, the gas/oil ratio has increased, wet gas generation has begun, and
dry gas generation has begun in deeper parts of the basin., The massive Ferry
Lake Anhydrite appears to have formed a barrier which separated two



generation/maturation systems, one above and one below the massive anhydrite
strata.

Timing of migration in the East Texas basin seems to have had a
significant influence on hydrocarbon accumulation. Hydrocarbons began to
migrate into Upper Jurassic reservoirs after early cementation, but before the
later, deeper subsurface cements were precipitated. Migration of hydrocarbons
into Woodbine Formation traps appears to have taken place during Late
Cretaceous. Migration of crude oil into the uppermost Late Cretaceous and
Tertiary Period strata occurred as late as the development of reservoir seals
over Wilcox Group and Carrizo Formation reservoirs.

The East Texas basin is a maturely developed petroleum province. The
potential for undiscovered recoverable crude oil and natural gas resources
appears to be in currently productive areas, in extensions to currently
productive trends, particularly into the deeper parts of the basin, and in the
Norphlet Formation and Werner Formation, Middle and Lower Jurassic.
Hydrocarbons may be present also in Triassic (Eagle Mills Formation) and
Paleozoic sedimentary strata.



INTRODUCTION

The U.S. Geological Survey (USGS) periodically conducts national
assessments of undiscovered recoverable crude oil and natural gas resources.
Resource assessments were published in USGS Circular 625 (hereafter referred
to as Circular 625) by Hendricks (1965), Circular 650 (Theobald and others,
1972), and U.S. Geological Survey News Release (1974). The results of
subsequent national resource assessments are contained in Circular 725 (Miller
and others, 1975) and Circular 860 (Dolton and others, 1981). A national
assessment has been completed recently and a Working Paper has been released
(USGS~-MMS, 1988) describing the methodologies, assumptions and data used in
the study, and indications of the petroleum potential of the United States.

In the 1988 national assessment, the United States is divided into nine
onshore regions comprising 80 geologic provinces and four offshore regions
comprising 35 geologic provinces. One of the nine onshore regions is Region
6, Gulf of Mexico, which is comprised of the Western Gulf basin, the
Louisiana-Mississippi salt basins, and the East Texas basin (fig. 1). The
purpose of this report is to discuss the geologic framework, petroleum
geology, resource assessment, oil and gas plays, and other information used in
the appraisal of the East Texas basin province as part of the 1988 assessment.
The geologic framework and petroleum geology provide background information on
the province and are based upon a synthesis of published literature.

BASIN TYPE, LOCATION AND SIZE

The Gulf of Mexico is a relativgly small ocean basin covering an area of
more than 579,000 mi“ (1.5 million km~) (Martin, 1984). The northern Gulf of
Mexico basin (hereafter called Gulf basin) is a passive margin basin formed on
the southern edge of the North American continent. During and following the
Triassic Period (fig. 2), the African and South American continents began to
drift southeasterly relative to North America (Walper and Miller, 1985). The
Gulf basin gained its present form from a combination of rifting and
intrabasin sedimentary-tectonic processes during and after the Mesozoic Era
(Murray and others, 1985). The northern rim of the Gulf basin is bound by the
Ouachita tectonic belt extending across central and northeast Texas, southern
Arkansas, and northern Mississippi.

The East Texas basin is one of three Mesozoic basins flanking the
northern rim of the Gulf Coastal Plain, Initial subsidence due to rifting and
crustal attenuation has combined with subsequent sediment loading to cause
maximum subsidence of more than 23,000 ft (7,010 m) in the center of the basin
(Jackson and Seni, 1984). 2The area of, the basin to be appraised for oil and
gas resources is 30,577 mi® (79,190 km") (fig. 3). The volume of sedimentary
rock prospective for3the accumulasion of hydrocarbons (down to Paleozoic
strata) is 68,043 mi~ (283,603 km~) (Dolton and others, 1981). Paleozoic
strata are generally considered to be "basement rocks" in the East Texas basin
and have not been shown to be sufficiently prospective to be considered for
resource appraisal in this study.

STRUCTURAL SETTING

The deep water region of the Gulf of Mexico is underlain by dense
basaltic~type oceanic basement rocks (Ewing and others, 1960, 1962; Menard,
1967; Martin and Case, 1975). Thinned, moderately dense basement rocks
underlie the continental slopes and large parts of the continental shelf areas
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Figure 2.--Chart showing stratigraphic section, Mesozoic and Cenozoic
strata, East Texas basin (modified from Nichols and others, 1968;
Kreitler and others, 1980) (from McGowen and Lopez, 1983).
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(fig. 4). These basement rocks represent a crustal transition to thick
granitic-type basement rocks under the emergent margins and the remaining
parts of the continental shelves (Hales and others, 1970; Worzel and Watkins,
1973; Martin and Case, 1975).

During the early stage of continental separation in the Triassic Period,
complex systems of rift basins or rhomb grabens were formed on thinned
continental crust in south Texas, east Texas, north Louisiana, central
Mississippi-southwest Alabama, and the Florida Panhandle. These rift basins
developed into the Rio Grande embayment, East Texas basin, north Louisiana
basin, Mississippi interior basin, and the Apalachicola embayment,
respectively (fig. 1). Structurally positive elements, which separate the
rift basins, are the San Marcos arch, the Sabine arch, the Monroe arch, and
the northeast extension of the Wiggins arch (Martin, 1984)., The Sabine arch
has formed the eastern boundary of the East Texas basin since at least the
Early Jurassic Period (Granata, 1962; Halbouty and Halbouty, 1982, Rodgers,
1984). Granata (1962) suggests that the Sabine arch has remained a relatively
stable platform surrounded by subsiding basins.

Major fault systems bound the northern rim of the basin and the initial
movement of these faults probably represents gravity sliding of the Louann
Salt toward the basin (Bishop, 1973). These fault systems, shown in Figure 1,
are the Mexia-Talco, south Arkansas, and Pickens~Gilbertown-Pollard fault
systems (Murray, 1961). These fault systems are the updip limits of thick
Louann Salt deposits; a relatively thin section of Louann Salt-Late Jurassic
sedimentary rocks extends landward of the fault systems. The Mexia-Talco
fault system forms the northern and western boundaries of the East Texas
basin. Movement along the Mexia-Talco fault system started in Late Triassic
or Early Jurassic Period and continued sporadically through the Eocene Series
(Jackson, 1982),

The Angelina-Caldwell flexure (fig. 3) separates the East Texas basin
from the Tertiary depocenters of the Gulf basin. The Elkhart and Mount
Enterprise fault systems, situated to the north of the Angelina-~Caldwell
flexure, have had significant effects on the development of the East Texas
basin. The Mount Enterprise fault zone, a series of normal faults, overlies a
series of Louann Salt pillows, and may be genetically related to them.
Movement on the fault zone started in Late Jurassic Period and ended during
the Tertiary Period (Jackson, 1982). The Elkhart fault zone is composed of
normal faults with downthrown sides to the north. The Elkhart fault zone may
have resulted from basinal subsidence to the north and subsequent northward
movement of the sediments over the Louann Salt (Rodgers, 1984; Jackson, 1982).

On a regional basis, the continental margin of the northern Gulf basin
is a relatively stable area in which Mesozoic and Cenozoic strata have been
deformed by uplift, folding, and faulting associated with plastic flowage of
Jurassic salt deposits (Martin, 1984) and tilting gulfward (fig. 4). Since
late Mesozoic, the tectonic nature of the northern interior rim of the Gulf
basin has been influenced significantly by regional subsidence. Local
structural deformation of Mesozoic~Cenozoic strata has resulted mainly from
sediment loading on Louann Salt and gravity failure. As Mesozoic and Cenozoic
sediment loading intensified within the rift basins, flowage of Louann Salt
deposits resulted in widespread fields of salt domes and diapir fields
(Halbouty, 1979). These diapiric structures form an inner belt, consisting of
east Texas, southern Arkansas, northern Louisiana, central Mississippi, and
southwestern Alabama (fig. 1), across the northern rim of the Gulf basin.

The East Texas basin contains 18 salt domes, 12 large salt pillows (a
number of smaller salt pillows are also present, particularly in the southeast
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part of the basin), and at least 16 turtle structure anticlines (fig. 5).
Jackson and Seni (1984) have defined salt diapirs, or domes, as consisting of
a core of intrusive salt surrounded in most instances by an aureole of domed
sediments (fig. 6). Salt pillows are broad, plano—convex domes of salt that
represent a less mature, more primitive stage of salt dome growth. Turtle
structures have a generally planar base and an archlike crest (that is,
laccolith shaped) and are caused by the drape of clastic sedimentary rocks
over a salt core. Diapiric salt structures in the East Texas basin can be
divided into three groups, based upon the geologic time that salt pierced the
overlying strata (Jackson and Seni, 1984). The oldest group of diapirs
pierced Early Cretaceous horizons as a result of differential loading by
deltas of the Shuler Formation and Hosston Formation., The second group became
diapiric in mid-Cretaceous during maximum sedimentation in the center of the
basin; as sediment loading continued, salt movement gradually migrated
northward along the basin axis. The youngest group pierced the overburden in
Late Cretaceous,

Jackson and Seni (1984) have delineated four salt provinces on the
northwest and west sides of the East Texas basin which have had a significant
effect on the development of hydrocarbon~trapping structures. These salt
provinces are: (a) salt wedges; (b) low-amplitude salt pillows; (ec)
intermediate-amplitude salt pillows; and, (d) salt diapirs (fig. 7).

STRATIGRAPHY

The nomenclature of stratigraphic units in the East Texas basin has been
standardized recently in the Gulf Coast COSUNA (Correlation of Stratigraphic
Units of North America) Chart (AAPG, 1988). In this report, the stratigraphic
units will be as reported in the literature and used in the NRG (NRG
Associates, 1985, The Field/Reservoir Clusters of the United States) data
files; the stratigraphic units will be correlated with corresponding units on
the Gulf Coast COSUNA Chart when possible., The use of local formation names
is advisable because the number of producing formations is so large and the
0il and gas fields are so widely distributed over the basin that complete
standardization or conversion to equivalent units on the COSUNA Chart is
beyond the scope of this report. The stratigraphic chart, shown in Figure 2,
was developed by McGowen and Lopez (1983) and it lists many of the formation
names used by the petroleum industry and in the NRG data files; references
will be made to it throughout this report.

The depositional environments of significant stratigraphic units are
discussed in some detail. These discussions are intended to show that
depositional environments control or strongly influence which clastic and
carbonate rocks serve as petroleum source beds and reservoir rocks. Knowledge
of depositional environments is, therefore, necessary to help predict where
additional oil and gas fields may be found.

Pre-Triassic geologic history

The region along and to the north of the northern rim of the Gulf basin
was a landmass, Llanoria-Appalachia, during Cambrian-Ordovician Periods (fig.
8). The landmass remained passive and carbonate deposition occurred
(Rainwater, 1967). He reports that clay and fine-grained sand were derived
from Llanoria-Appalachia during the Mississippian Period and more coarser
sediments were derived during early Pennsylvanian Period. Sparse records
exist of depositional environments during Middle or Late Pennsylvanian and
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Permian Periods., However, it appears that substantial erosion took place
along the northern rim of the Gulf basin between the Pennsylvanian and
Triassic Periods.

Triassic Period

Eagle Mills Formation.,--During the Triassic Period, the region that was
to become the Gulf of Mexico and its coastal plain was composed of rifted and
stretched pseudo-continental crust (Walper and Miller, 1985). The
sedimentological history of the East Texas basin since then has been one of
seaward progradation, beginning when sand, gravel, and red shale were derived
from adjacent uplifted blocks and were deposited as the Eagle Mills Formation
on a generally planar surface of Paleozoic and Precambrian sedimentary,
igneous, and metamorphic rocks. A continental environment probably prevailed
under tropical or subtropical conditions with ample, but unevenly distributed,
rainfall (Nichols, 1964). Igneous activity occurred during this period and
diabase sills and dikes are known to be present in some of the Triassic
grabens along the northern rim of the Gulf basin (Rainwater, 1968).

Jurassic Period

Louann (Louisiana) Group.--The first marine incursion during Late
Triassic and Early Jurassic Periods came from the Pacific and entered
west—central Mexico (Walper and Miller, 1985). By Middle Jurassic Period, the
initial transgression of highly saline waters had entered the East Texas basin
and evaporite sequences were deposited. The basal unit, the Werner Formation,
onlaps Eagle Mills, Paleozoic, or Precambrian rocks and consists of
sandstones, shales, conglomerates, and salt.

Marine waters continued to flow into the rift basin and over parts of
the low-lying interbasin areas in the partially opened ancestral Gulf of
Mexico. Rapid evaporation of highly saline waters under arid conditions
precipitated salt from the continuous supply of ocean waters fed through
various channels into the subsiding region (Rainwater, 1968). Great
thicknesses of Louann Salt were deposited, providing the source layer from
which all salt domes in the East Texas basin grew (fig. 5). The original
thickness of salt was as much as 5,000 £t (1,524 m) to 7,000 ft (2,134 m)
(Jackson and Seni, 1984). Some terrigenous clastic sediments from land areas
were deposited contemporaneously with salt precipitation in subsiding areas
which were not connected to the sea. These clastic sediments were swept,
probably by wind, into the margins of the salt basins. The Louann Salt,
consisting of silty, sandy massive halite with interbedded anhydrite, can
overlie the Werner Formation, Eagle Mills Formation, Paleozoic or Precambrian
rocks (Rainwater, 1968).

Louark Group.—-A brief regression signified the end of evaporite
precipitation., The unconformity at the top of the Louann Salt is considered
by Nichols (1964) to represent only marginal uplift and erosion. The
beginning of the Upper Jurassic Period is represented by gravel, red beds,
sandstones, siltstones, and shales of the Norphlet Formation, with grading
from coarse to finer grained sediments in a southward direction toward the
ancestral Gulf (The Gulf Coast COSUNA Chart places the Norphlet Formation as
the basal unit in Upper Jurassic, whereas many authors list it as the upper
unit in Middle Jurassic (fig. 2)). The depositional environments of the
Norphlet Formation range from uplands to fluvial-floodplain origins, generally
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supplied by northern source area (Newkirk, 1971). The gravels onlap former
land areas. The sandstones are generally of reservoir quality; however, these
strata appear to be too thin and to lack the organic constituents to be
petroleum source beds around the periphery of the basin. It is inferred that
the area of the Angelina-Caldwell flexure was occupied by a carbonate bank
during this regression (Nichols, 1964). The main structural elements
affecting Norphlet Formation deposition were the Ouachita foldbelt,
Triassic/Jurassic grabens developed on the basinward flank of the foldbelt,
and local paleohighs (Ryan and others, 1987).

An influx of marine waters into a widespread, shallow but subsiding,
Gulf basin initiated the deposition of marine sedimentary rocks of the
Smackover Formation. The Smackover Formation marks the first widespread
marine transgression of the northern Gulf Coast overlying the evaporite
deposits (Walper and Miller, 1985). However, sands and shales continued to be
deposited in some areas and anhydrites accumulated under conditions of
restricted sea circulation (Rainwater, 1967). The Smackover Formation was
deposited during two separate sedimentological sea-level regimes. The lower
Smackover basin was filled with mudstone-rich and matrix-supported carbonates
during a rapid transgressive phase. These basinal facies are potential
petroleum source rocks of organically rich and clay-rich beds (Presley and
Reed, 1984). This transgressive phase grades upward into a sea-level
standstill during deposition of the upper Smackover Formation in which a
regional shoaling occurred around the western and northern parts of the basin.
Non-deposition occurred upslope on the basin margin areas affected by the
rapid movement of a high-energy shoreline during transgression (Moore, 1984).
Sea~-level was maintained, or dropped slightly, for a relatively long period as
equilibrium persisted between subsidence and sedimentation., The upper
Smackover Formation (fig. 9) along the shoal areas consists of packstones and
grainstones (reservoir rocks); dolomite beds are laterally persistent and
contain porosity for hydrocarbon reservoirs (Presley and Reed, 1984). Thick
deposits of high energy carbonate sands were deposited in some areas. These
high energy deposits form a wedge of sediments that thicken basinward and
reach the maximum thicknesses along the margin of the salt basin. Incipient
basin-margin faulting was initiated by salt movement on the flanks of the
basin (Moore, 1984). Beyond the shelf margin, limestones were deposited in
basinal environments. These deposits are part of massive limestones facies
which are designated as Gilmer—Smackover Undifferentiated (fig. 10) (McGillis,
1984) and the Jurassic Limestones (AAPG, 1988)., Toward the end of this
transgressive stage, paralic lagoons were formed adjacent to the land area,
probably by oolite bars developed along the seaward perimeter of calcarenite
facies as water depth and current action were in balance. The present
development of porosity in the upper 50 £t-75 ft (15m-23 m) of the Smackover
Formation is probably the result of migration of the oolite bars and their
redistribution by wave action (Nichols, 1964). The Reynolds Formation and
Reynolds Limestone are two exploration targets within the Smackover Formatiom
in northeast Texas (Collins, 1980).

The Buckner Formation (fig. 11) is considered by Presley and Reed (1984)
and AAPG (1988) to be the age equivalent of uppermost Smackover Formation on
the west side of the basin. The lower part of the Buckner Formation is an
evaporitic sequence of nodular and bedded anhydrite, anhydritic mudstone, with
mixtures of dolomite, limestone, salt, and terrigenous clastics. The upper
Buckner Formation is nodular anhydritic red mudstone, dolomite, limestone,
gray mudstone, and lesser amounts of anhydrite (Stewart, 1984). Where the
Buckner Anhydrite is present, hydrocarbon production is from the Smackover
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Formation. Where the anhydrite is missing, hydrocarbon production is from the
massive Gilmer-Smackover carbonates (Moore, 1984). The Buckner Formation
overlies the lower Smackover Formation and underlies the Haynesville Formation
or the Gilmer Limestone (Presley and Reed, 1984; AAPG, 1988). Stewart (1984),
McGillis (1984), and Hancharik (1984) place the lower and upper Buckner units
in the basal part of the Haynesville Formation.

In this report, the Haynesville Formation and the Gilmer Limestone will
be considered to be age-equivalent units (AAPG, 1988). The Haynesville
Formation was deposited on the Buckner Formation and the Gilmer Limestone was
deposited on either the Buckner or Smackover Formation, or Jurassic Limestone,
as sea level maintained a slow but steady rise. Faulting and incised
subsidence associated with the beginning of salt movement caused a shelf
margin and platform to develop around the subsiding basin. On the shelf on
the west side of the basin, a carbonate shelf trend (Haynesville Limestone,
also called the Cotton Valley Limestone) developed (fig. 12). Collins (1980)
depicts the lower Cotton Valley Limestone trend as extending along the western
edge of the basin and around the western flank of the Sabine uplift (fig. 13).
Landward, to the west, shallow lagoonal facies (reservoir rocks) were
deposited that grade into evaporites and terrestrial red beds. In the eastern
part of the basin, Haynesville Formation reservoir rocks were deposited in
shoaling conditions on the westward, seaward edge of the stable platform and
just basinward on incipient salt supported structures (Presley and Reed, 1984)
(fig. 12). Basin margin relief resulted in localized carbonate deposition and
a Gilmer carbonate barrier was formed (Moore, 1984). The Gilmer Limestone
(reservoir rock) becomes quite massive, is oolitic, and comprises a thick
carbonate unit along the basin margin. The Gilmer carbonate barriers were
maintained and the influx of terrigenous clastic sediments ultimately filled
the lagoons with clastic sediments of the upper Haynesville Formation. The
upper Haynesville Formation consists of red shales to massive conglomerates
and sandstones which were deposited in an elongate depocenter parallel to the
Gilmer carbonate shelf-edge barriers as sea level dropped. Basinal Gilmer
shales were deposited across the area currently occupied by the Sabine uplift
and extend eastward into Louisiana (McGillis, 1984). Clastic sediment influx
waned, subsidence increased, and the Gilmer Limestone extended landward as far
as the Mexia-Talco fault zone (Moore, 1984).

During the subsequent rise in sea level, dark-colored shales (petroleum
source beds) of the Bossier Formation, were deposited in deep marine
environments, onlapped the Jurassic Limestone and the Gilmer Limestone
surfaces and extended northward and westward almost to the Mexia-Talco fault
zone (Moore, 1984). These shales are the lower unit of the Bossier Formation
and are recognized as the boundary between Jurassic and Lower Cretaceous
sedimentary units by AAPG (1988).

Cotton Valley Group.——A major shift occurred from carbonates of the
Haynesville Formation to clastic sedimentation of the Bossier Formation as
sand, shale, and gravel were derived from uplifted lands bordering the basin
to the north. The climate became more humid and streams became the major
agent of transport, rather than wind (Rainwater, 1967). Salt movement became
more intensive and was triggered by the uneven loading of fluvial-deltaic
sediments, beginning with the Cotton Valley Group and continuing into
deposition of the Hosston Formation. The locations of the active salt masses
were controlled by the Smackover-Gilmer carbonate platform. This platform
caused fan-delta sediments of the Cotton Valley Group to spread laterally
across the shelf rather than stacking vertically. Sediment depocenters were
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fields producing from Cotton Valley Group reservoirs, East Texas basin (from Collins, 1980)

Figure 13.--Map showing general distribution of facies and locations of selected o0il and gas



formed basinward of the platform (where the basin subsided the fastest),
resulting in the migration of the underlying salt into ridges that fronted the
prograded sediment wedge. As salt was depleted from these depocenters,
subsidence slowed until sedimentation exceeded subsidence, the fan deltas
overrode the salt ridges and sedimentation gradually prograded southward
(McGowen and Harris, 1984). The upper unit of the Bossier Formation consists
of interfingering sandstones (reservoir rocks), siltstones, and shales, with
minor amounts of limestone in a basinward direction (Stewart, 1984; Presley
and Reed, 1984). 1In the central and southern part of the basin, marine shales
and limestones of the upper Bossier Formation grade northward into the Cotton
Valley Sandstone. The Cotton Valley Sandstone (reservoir rocks) was deposited
in deltaic and shoreline systems as broadly regressive sequences (Presley and
Reed, 1984). Over the Sabine uplift, the Cotton Valley Sandstone is a thick
unit with generally low porosity and permeability (fig. 14). The sandstones
are interbedded with black shales which may serve by themselves or with
Bossier shales, as petroleum source beds. The Taylor Sandstone is a frequent
exploration target in the lower part of the Cotton Valley Sandstone sequences
in the eastern part of the basin (Presley and Reed, 1984).

The Shuler Formation and its time equivalent deposits are composed of
sandstones, siltstones, and shales deposited in terrigenous, deltaic, and
nearshore marine environments (Dickinson, 1969). Deposits of the Schuler
Formation unconformably overlie the Haynesville and underlie the Hosston
Formation. The Schuler Formation grades laterally into the Bossier Formation
or Cotton Valley Sandstone.

The seas advanced over large parts of the basin and the Knowles
Limestone was deposited. The Knowles Limestone is present from southern
Arkansas-northern Louisiana area, around the Sabine uplift, and to the
southwestern edge of the East Texas basin. The Knowles Limestone is the upper
part of Cotton Valley Group. It conformably overlies the Bossier Formation
and Cotton Valley or age-equivalent deposits and it unconformably underlies
the Hosston Formation (AAPG, 1988). The Knowles Limestone consists of
arenaceous shales, dolomitic limestones, grainy limestones, and algal
boundstones with stromatoporoids and corals (Cregg and Ahr, 1983). The
boundstones represent elongate, wave resistant, encrusted skeletal patch reefs
which may have developed on subtle salt-generated topographic features. The
sedimentary sequences and depositional environments appear to range from a
marine lagoonal limestone and shale formed behind the western extent of a sand
barrier island in north Louisiana to a more open marine limestone on the
western extent of a sand barrier island in north Louisiana to a more open
marine limestone on the western flank of the East Texas basin. Cregg and Ahr
(1983) report that reef core boundstones and reef talus were consistently
present downdip, and lagoonal to tidal flat facies were common updip
throughout Knowles deposition. The reef organisms eventually became
overwhelmed with terrigenous sediments transported downdip as the tidal flat
environment prograded over the lagoonal, reef talus and reef core facies at
the end of Knowles deposition., The tidal flat and lagoonal facies have local
porous zones which were created by early dolomitization and which serve as
reservoir rocks. The reefs are cemented by sparry calcite and are not
generally considered to be potential reservoir facies.

Cretaceous Period
Coahuilan Series.~~As the East Texas basin was downwarped, silicate

clastic sediments from the uplifted Ouachita tectonic belt to the north were
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deposited in alluvial plain, delta plain, transitional (beach-nearshore) and
marine (shallow, open-shelf and deep open-shelf) environments (Bushaw, 1968)
as the Hosston Formation/Travis Peak Formation (figs. 15, 16, 17, 18).
Basinward, progradation of the deltaic systems produced younger depocenters
toward the interior of the basin., Salt migration and the differentation of
salt ridges continued, producing the present complex array of salt domes and
anticlines (McGowen and Harris, 1984). Subsidence of the coastal plain and
the marine areas to the south was rapid, but sedimentation kept pace. On the
landward side of the basin, the Hosston (Travis Peak) Formation consists, from
north to south, of cherty conglomerates (reservoir rocks)-red beds on the
alluvial plain, red beds and sandstones (reservoir rocks) on the delta plain,
sandstones (reservoir rocks) and shale in the beach-nearshore environments
(Bushaw, 1968), The Pittsburg Formation is a hydrocarbon-bearing wedge of
sandstone that is transitional to the upper Hosston Formation and the lower
Pettet Formation in the central part of the basin (Galloway and others, 1983).
Basinward, the Hosston (Travis Peak) Formation grades into interbedded shales
and carbonates (some of which are reservoir rocks). Basin subsidence
continued, the supply of land-derived sediments diminished, the shoreline
advanced, resulting in facies of the Pettet Formation (Sligo Formation)
grading into the Hosston Formation. Calcarenites, lime muds, limestone reefs,
and shell mounds of the Pettet Formation were deposited during periods of low
sediment influx from land (Bushaw, 1968).

Figure 19 is a structure map on the top of the Pettet Formation and the
top of the Hosston Formation, which shows the configuration of the
northwestern part of the East Texas basin., Figure A-1 is a generalized
stratigraphic chart showing regional correlations of Coahuilan and Comanchean
Series strata across the southern United States (Forgotson, 1956).

Trinity Group.--During this period, the bordering uplands were slightly
uplifted (Rainwater, 1970) and the Pine Island Shale was spread periodically
and widely over the carbonates of northeast Texas (fig. 20). Then, as sea
level transgressed and regressed slightly, interbedded shales and continental
shelf limestones of the James Formation were accumulated in shallow neritic
and continental shelf depositional environments, respectively, on the
south-southeast side of the basin (figs. 21, 22) (Bushaw, 1968; Rainwater,
1970). On the north-northwest side of the basin, alluvial plain (cherty
conglomerates-red beds), delta plain (red beds and sandstones), and
transitional sediments (sandstones, skeletal limestones and oolitic
limestones) were deposited, grading south-southeastward into deep open-shelf
sediments (limestones and shales). Sandstones and limestones in
beach-nearshore and shallow open-shelf depositional environments are reservoir
quality deposits (Bushaw, 1968).

During deposition of the Bexar Formation, eustatic sea-level was nearly
stationary and depositional environments and their associated facies began to
regress, Alluvial plain and delta plain deposits of cherty conglomerates, red
beds, and sandstones characterize the northwest parts of the basin,
Southeastward, sedimentary rocks of reservoir quality sandstones, oolitic
limestones and skeletal limestones, were deposited in beach-nearshore and
shallow open-shelf environments (fig. 23). The south-southeast part of the
basin is covered by basinal shales and limestones deposited in deep open shelf
and deep basin environments (Bushaw, 1968).
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