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ABSTRACT

Analyses of recordings include processing of data, determining analytical models that
match the record, and identification of the system from which the record is obtained.

Current methods that are used to analyze recordings in structural engineering are
based on the classical filtering and Fourier analysis approach. These methods assume
that: (a) either the signal and noise spectra are nonoverlapping, or there is a frequency
band where the signal to noise ratio is high (i.e., noise can be neglected), and (b) the
properties of the signal within the selected time window are time-invariant.

Recently, new methods for record analysis have been developed based on the concepts
of adaptive filtering and stochastic approximation. These methods are commonly known as
the stochastic-adaptive methods. Stochastic-adaptive methods make use of the statistical
properties of the record, and integrate filtering, modeling, and identification into a single
algorithm. The advantages of stochastic-adaptive methods over the classical methods are:
(a) they can remove the noise from the signal over the whole frequency band, (b) they
can track time-varying characteristics of the signal, and (c) they make it possible to apply
adaptive control on unknown systems.

In this report, a concise theory of stochastic-adaptive methods, and their applications
in structural engineering are presented. The theoretical part includes the following topics:
discrete models for dynamic systems, one-step-ahead prediction, stochastic approximation,
recursive prediction error method, model selection, model validation, spectral estimation,
and adaptive control. The application part presents ten examples by using earthquake, am-
bient vibration, and simulated data. The examples include identification of time-invariant
and time varying simulated systems; identifications of buildings with soil-structure in-
teraction, nonlinear behavior, and ambient vibrations; modeling of spectral shape, site
amplification, and source scaling of earthquake ground motions; and adaptive minimum

variance control of a simulated system and a building with ambient vibrations.
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1. INTRODUCTION

Instrumentation of structural systems to investigate their dynamic behavior under
various loads is becoming increasingly popular. Rapid developments in digital recording
and computer technologies made instrumentation cheaper and more attractive today than
they were before. In structural engineering, instrumentation has been used extensively
to measure the quantities related to loads, such as earthquake ground accelerations, wind
velocities, wave heights, and blast pressures. The development of models for structures
has been mainly based on the theoretical approach, which makes use of the physical laws
that govern the structural system (e.g., Newton’s law), and the mechanical properties of
the components (e.g., mass, stiffness, damping, etc.). When available, the recordings from
structures were used to check the validity of the models. As a result of recent increases in
the number of instrumented structures, the use of actual data along with the theoretical
approach is becoming popular in structural analysis. The data from instrumented struc-
tures can be used to check the validity or to determine parameters of analytical models,
and to develop empirical models. Instrumentation is also used for safety evaluation, where
the load resistance characteristics of aging structures are determined by measuring their
motions. A recent application of structural instrumentation is the fatigue detection of
steel offshore platforms (e.g., Ibanez, 1987). The motion of the platform is continuously
monitored. A sudden change in the characteristics of the recorded signal usually is a sign
of crack initiation due to fatigue.

Increasing use of instrumentation has necessitated faster and more reliable methods
for signal processing, modeling, and identification. It is well known that all recordings
from dynamic systems contain noise due to mechanical imperfections in the recording
instruments, and also due to ambient noise exists in the recording environment. Because
of the random effects involved, it is not generally possible to determine the exact structure
of this noise, so that it might be completely removed from the signal. The classical signal
processing approach has been to remove the frequency components of the record that are
dominated by noise by using band-pass filters. For the retained frequencies, although they
still contain noise, it is assumed that the actual signal amplitudes are dominant over the
noise, and therefore noise can be neglected. A large number of such filters are available in
the literature (for detail, see Rabiner and Gold, 1975). Two types, the Butterworth and
Ormsby filters, have commonly been used for earthquake recordings (Hudson, 1979).

During the last twenty years, new methods for signal processing based on the concepts
of stochastic-adaptive filtering and prediction have been developed. These methods use
statistical characteristics of data to filter the noise from the signal. The filter characteristics
are initially unknown. They are estimated recursively in the time domain, and adjusted
continuously by using the information extracted from the data. Such an approach inte-
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grates filtering, modeling, and identification into a single algorithm. The filtering problem
becomes equivalent to the estimation of the parameters of two recursive filters, one for the
noise and one for the actual signal. Since the noise is generally unknown and random, a
stochastic approach rather than a deterministic approach is used in the process. Various
terms have been used in the literature to distinguish such signal processing methods, e.g.,
stochastic, adaptive, on-line, recursive, sequential, and real-time. The term that will be

used in this report is stochastic-adaptive.

Stochastic-adaptive methods present four main advantages over the previous meth-
ods: (a) removal of the noise from the signal is done over the whole frequency band, which
can not be accomplished by classical band-pass filters, (b) because of the recursive form of
the algorithms, time-varying characteristics of the signal can be tracked, (c¢) only a small
segment of the data is needed during the computations, and (d) the algorithm makes it
possible to apply adaptive control on the system. The development of stochastic-adaptive
methods are based on the pioneering works by Kolmogorov (1941) and Wiener (1949), and
later by Kalman (1960) and Kalman and Bucy (1961). Today, these techniques are suc-
cesfully being applied to various practical problems in guidance and navigation, automatic
control, speech processing, and econometrics.

In this report basic principles of stochastic-adaptive filtering and prediction techniques
are introduced, their use in modeling, identification, and control of discrete-time recordings
is presented, and examples for applications in structural dynamics are given. Stochastic-
adaptive techniques have been developed rather recently, mainly by researchers in statistics,
electrical and control engineering, and econometrics. There are literally hundreds of papers
on the subject, scattered in many journals in the above fields. The theory given in this
report is concise and limited to that necessary to follow the examples. However, a large

list of references is provided in the report for those interested in more detail.

The first part of the report presents the theoretical development, which includes sec-
tions 2 through 11. Section 2 gives the relationship between continuous and discrete-time
representations of linear systems. Section 3 presents the time-domain and frequency-
domain representation of discrete, single-input single-output (SISO) systems. Section
4 introduces a general discrete-time domain model and its special forms for unknown
SISO systems with noise. Section 5 presents basic components of recursive identification
algorithms, including one-step-ahead prediction, the least-squares and maximum likeli-
hood methods, the concept of stochastic approximation, and the recursive prediction error
method. Section 6 discusses the convergence and consistency of the identification, and
section 7 gives the limits for the accuracy of the identification. Sections 8 and 9 present
methods for model selection and model validity. Section 10 shows the use of the identifica-
tion algorithm for spectral estimation. Section 11 introduces an adaptive control algorithm
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as an extension of the identification algorithm.

The second part of the report, section 12, starts with guidelines for preprocessing
the data. Section 13 presents ten examples for the application of the theory, using both
simulated data and actual recordings. Examples presented are as follows:

identification of a time-invariant simulated system,
identification of a time-varying simulated system,
identification of a building with soil-structure interaction,
identification of a building with nonlinear behavior,
identification of a building using ambient vibration data,
spectral modeling of ground accelerations,

identification of earthquake site amplification,

identification of earthquake source scaling,

S R A i o e

adaptive control of a simulated system, and

—
e

adaptive control of ambient vibrations of a building.

Section 14 discusses the other applications of the method, and section 15 is the summary

and conclusions.

2. DISCRETE-TIME REPRESENTATION OF CONTINUOUS SYSTEMS

Linear dynamic systems are generally described by continuous-time domain ordinary
or partial differential equations. Modern recording instruments, however, are all digital and
give measurements in the discrete-time domain. Thus, it is appropriate first to show the
relationship between continuous and discrete-time representations, and present methods
for converting from one to another.

The most straightforward approach to convert from the continuous to discrete domain
is to approximate the differentials by difference equations. There are three approximation
rules commonly used; they are the forward rectangular rule, backward rectangular rule, and
the trapezoid rule. The forward rectangular rule (also known as Euler’s approximation)
approximates an nth order derivative by the following equation:

v = [0 (20)" 1)

where T denotes the sampling interval, g is the shift operator, such that ¢=*y(¢) = y(t—k),
and the index t — k enumerates the sampling instant. The forward rectangular rule uses
present and future values of y(¢). A corresponding approximation using present and past
values of y(t) is the backward rectangular rule given by the equation
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H—yt—1)n 1—qgI\»
(™) (4) = [y( y "= (F55) v 2.2
¥ (1) k )" (e (22)
If T is not sufficiently small (in comparison with the smallest period in the signal), rect-
angular approximations can give erroneous results because of the accumulation of errors.
A better approximation is given by the trapezoid rule, or the so-called Tustin’s method

(Tustin, 1947), where the same derivative is approximated as

—ag-I\n
0 = (7 ) 1) (23)
Inserting these discrete forms for continuous derivatives gives the equivalent difference
equation for the system.

The second approach for converting continuous-time systems to discrete-time systems
is based on covariance equivalence. The discrete-time system is determined by requiring
that the output covariance function coincides at all the sampled points with that of the
continuous system (Bartlett, 1946). For a simple damped oscillator with zero-mean white-

noise excitation, for example, the continuous equation of motion is

d?y(2)

d
a2 250%%& +wiy(t) = -T-;—e(t) (2.4)

where e(?) is the white-noise input, y(t) is the response, and m, £, and wy denote the mass,
damping ratio, and the natural frequency, respectively, of the oscillator. The corresponding
discrete system is given by the following equation

y(t) + aly(t - 1) + Olzy(t - 2) = ﬂlaz(t - 1) + ﬂz.’L‘(t - 2) (25)

The coefficients ay, as, 1, and B2 can be calculated in terms of m, &, wo, and T from the
equivalence of the continuous and discrete output covariance functions. They are given by
the equations (Gersch and Luo, 1972)

a; = —2coswoT/1 — €% exp(—&owoT) (2.6)
ay = exp(—2&woT) (2.7)

B = ';'(V bo + 261 + /60 — 261) (2.8)
B2 = ‘;‘(\/ 6o + 261 — /b0 — 26y) (2.9)

where §; and ép are given as



(51 = Ry(l) + alRy(O) + OlzRy(].) (210)
52 = Ry(O) + OllRy(].) + OlzRy(2) + 01151 (211)

R,(k) denotes the autocorrelation of y(t) for lag k, calculated by the equation

N

Ry(k) = Ely(0)y(t — B)] = 7 S v(thu(t — k) (2.12)
t=k

where N is the number of sampling points.

Two other approaches for discritization of continuous systems are the pole-zero map-
ping and the hold equivalence. They both aim to match the continuous transfer function
by a discrete equivalent. More on these two techniques can be found in Franklin and Powell
(1980).

Regardles of the approach used for discretization, the discrete-time equivalent of a
continuous SISO linear system can be represented by a linear difference equation of the
following form

y(t) + a1yt — 1)+ -+ an, y(t —ne) =boz(t) + bzt — 1)+ -+ + bn,z(t — np) (2.13)

where z(t) and y(t) are the discrete input and output sequences, respectively, and a; and
b; are called the parameters of the system.

The most important element of discrete-time representation is the sampling interval,
T. The sampling interval determines the highest frequency, the so-called Nyquist frequency,
that the discrete signal can contain. Nyquist frequency is given in hertz as fy = 1/2T.
No frequency information beyond fy can be extracted from a signal sampled with time
interval T. A continuous signal f(t) with frequency content between (—f., f.) can be

completely reconstructed from its sampled values by the equation

=S f(sT)Si;:;I{ ’(‘; (t_“s;rf) (2.14)

8§=—0CC

provided that fy > f.. This is known as Shannon’s sampling theorem (Shannon, 1949).
The techniques used in practice for reconstructing continuous signals from their sampled
forms are much simpler. The most widely used one is the zero-order hold, where the signal
amplitude is assumed constant (i.e., equal to the value at the first sampling point) between

two sampling points. That is



f(t) = f(sT), for sT<t<(s+1)T (2.15)
The largest error, €y, made by using the zero-order hold is
€0 = max lf(s+1)— f(s)| < T max If' (2] (2.16)

where f'(t) is the derivative of f(t). An improved version is the first-order hold, where
the signal amplitude is assumed linear between two sampling points. First-order hold
reconstruction is given by the equation

LT ~ ST -T), for sSTSt<(s+1T  (217)

f(t) = f(sT) +
The largest reconstruction error, ¢;, for the first-order hold is

CL AT ~ (6T - T))| < T*max | 7'()] (2.18)

€1 = Mmaxmax f(t) — f(sT) -

3. DISCRETE-TIME MODELS FOR SISO SYSTEMS

The general form for discrete-time representation of a SISO system is given by Eq.
2.13. Equation 2.13 can be written in a more compact form by introducing the following
polynomials in the backward-shift operator

AlQ)=1+a1g7 ' +... +an, ¢ ™ (3.1)
B(¢)=bo+big7 ' +... +bpg™ (3.2)

Equation 2.13 then becomes

y(t) = % (1) (3.3)

The coefficients a;j and b; of the polynomials A(¢) and B(q) can be constant (time-invariant
systems), or functions of ¢ (time-varying systems). The polynomial ratio B(q)/A(q) is
called the system transfer operator (the term operator is used since ¢ is not a variable,
but an operator). By actually dividing B(g) by A(q) an infinite power series H(g) in the
variable ¢~! is obtained. Equation 3.3 then becomes
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y(k) = H(g)z(k) (34)

In terms of the more familiar impulse response functions, the input-output relationship
can also be written as

y(t) = ) h(k)a(t — k) (35)
k=1

where h(k) is the discrete impulse response function of the system. By simple manipulation,
Eq. 3.5 becomes

y(t) = > h(B)a*e@)] = [ h(k)a~*]a(t) (3.6)
k=1 k=1
From a comparison of Eq. 3.6 with Eq. 3.4, we can write

H(q) =Y h(k)g™* (3.7)
k=1

In terms of filtering, the transfer operator H(q) (or B(q)/A(q)) represents a recursive linear
filter, which converts the input signal z(¢) into the output signal y(t).

System equations can also be expressed in the frequency domain by taking the Z-
transforms of the time-domain Eqs. 2.13, 3.3, and 3.4. The Z-transform is the discrete

equivalent of the continuous Laplace transform. The Z-transform of a discrete sequence
f(kT) is defined by the equation

Z[f(kT)] = f(kT)z™* (3:8)
k=0

where Z[ | denotes the Z transform, and z is any complex number. The theory of Z-
transforms can be found in texts on discrete systems (e.g., Cadzow, 1973). By taking the
Z-transform in Egs. 3.3 and 3.4, we obtain the following frequency domain equation for
the system

Zly(t) = % Zla(t)] = H(z)Z[a(t) (3.9)

Polynomials A(z) and B(z) are the same as defined by Eqs. 3.1 and 3.2, respectively, with
the ¢’s replaced by z’s. Because z is a variable rather than an operator, H(z) is now called
the transfer function. The roots of the numerator polynomial

7



blz_l +b22_2 +°"+bnbz_nb =0 (310)

are called the zeros of the transfer function, whereas the roots of the denominator polyno-

mial
l+a1z7  dagz 2+ +ap 2™ =0 (8.11)

are called the poles of the transfer function. The use of terms poles and zeros come from
the observation that if H(z) is plotted in three dimensions such that the horizontal axes are
the real and complex parts of z and the vertical axis is H(z), the resulting shape resembles
a tent. The poles are where the tent is supported, and the zeros are where the tent is tied
to the ground.

The transfer function can be represented in terms of more familiar harmonic functions
by simply selecting z = e!2"fT | where i = /=1, f denotes the cyclic frequency, and T is the
sampling interval. H(e*?™fT) is known as the frequency response function of the system.
The physical meaning of H(e*2™/T) is that the output y(t) is obtained by multiplying the
amplitude of each frequency component of the input z(t) by |H(e*2"fT)|, and shifting its
phase by arg H(e2™fT).

In order to have a stable system, it is required that any bounded input gives a bounded
output. This corresponds to the condition for the impulse response function (k) that

> |h(k)| < oo, or Jim A(k) =0 (3.12)
k=1 >

For the transfer function, the stability means that the poles should all be in complex-
conjugate pairs with modulus less than one (i.e., located inside the unit circle in the
complex plane).

For ny < n, (Egs. 3.1 and 3.2), the transfer function H(z) = B(z)/A(z) can be put
into the following form by using a partial fraction expansion (if ny > n,, first a polynomial
division, then a partial fraction expansion should be made):

Ng a;
=1 !

where p; is the jth complex root of the polynomial A(z), and g¢; is the corresponding
residue of H(z). The residue g; can be calculated from the equation (Tretter, 1976)

8



blp;—l = bnbpj_m

¢j = lim (1- piz H(z) = —— (3.14)
’ I1 (1 —pep;?)
i

If the pairs of terms corresponding to pairs of complex-conjugate roots are combined, then
ng /2

H(z) =Y _ Hj(z) (3.15)
i=1

with

2R(q;) — 2R(g;p;)2 "

i) = T (et + Iy o

(3.16)

where ~ and ® denote the complex-conjugate and the real part, respectively. Each H;(z)
is equivalent to a simple-damped oscillator. The form given by Egs. 3.15 and 3.16 for
H(z) is known as the parallel form realization, where the filter output y(¢) is modeled as
the linear combination of the outputs of second-order filters each subjected to input z(¢).
A schematic of parallel form realization is given in Fig. 3.1. From the comparison of Eq.
3.16 with Egs. 2.6 and 2.7, we can write

a1 = —2R(p;) = —2cos 2 fo; T4 /1 — &5; exp(—£o;27 fo;T) (3.17)
az; = |pjl* = exp(—2¢0;27 fo; T) (3.18)

where the frequency fo; is in Hz. Solving for &; and fo;, we obtain the frequency and
damping of the corresponding oscillator in terms of pole locations as

_ ln(l/’r'j) 319
EOJ [¢3 + 11'12(1/7']')]1/2 ( 1 )
foj = % (3.20)

where r; and ¢; are the modulus and the arguments of the jth pole calculated from the

equations

rj =p;p; and ¢;= tan™? [?Rf%%] (321)
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with R(p,;) and S(p;) denoting the real and imaginary parts of p;. Each H;(z) can be
considered as a mode of the system. The numerator of H;(z) gives the weighting factor
(i.e., effective participation factor; Beck, 1978) for that mode.

The above interpretation of the transfer function is based on the parallel form realiza-
tion. Two other forms widely used in signal analysis are the ladder (cascaded) form and
the state space form. They will not be given here, but can be found elsewhere (e.g., Tret-
ter, 1976). A rigorous analysis of the relationship between time-series and linear systems
is given in three sequential papers by Willems (19864, 19865, 1987).

4. MODELS FOR UNKNOWN AND NOISY SYSTEMS

As mentioned earlier, the recordings from dynamic systems are always contaminated
by noise due to ambient noise existing in the recording environment, as well as the imper-
fections in the recording instrument. In a very general case, the dynamics that generate
the noise is different from the dynamics of the actual system. Also, not only the output but
also the input is contaminated with noise. Since the noise in the input goes through the
system dynamics along with the actual input, the final noise in the output would include
input noise modified by the system dynamics, as well as noise independent of the system
dynamics. Since the system is linear, we will consider two linear filters to represent the
system dynamics and the noise dynamics. We will also assume that the unknown noise
is a stationary random process, which is the case in most real-life problems, so that ac-
cording to the Wold decomposition theorem it can be written as the output of a linear,
time-invariant system driven by a white-noise process (Wold, 1938).

Let B(q)/[A(q)F(q)], and C(q)/[A(¢q)D(q)] denote two linear filters representing the
system dynamics and noise dynamics, respectively, with A(q) and B(g) defined as in Eqgs.
3.1 and 3.2, and

Cl)=14+cig +...4¢caqg ™ (4.1)
D(@)=14+dg ' +... +dn,g™ (4.2)
Fle)=1+ fig ' +...+ fa,q7™ (4.3)

We can write the following equations for the signal sequence y;(t) and the noise sequence
ya(t):

(t) = i st = ) (44

bn(t) = A(q)%)(q) e(t) (45)
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where e(t) denotes a white-noise sequence, and k is the time delay between input and
output. The factor 1/A(q) in Egs. 4.4 and 4.5, common to both filters, accounts for the
effect of system dynamics on the output noise. The recorded output is the sum of signal
and noise sequences. Therefore, by combining Eqgs. 4.4 and 4.5, we obtain the input-output
relationship (i.e., system equation) for a SISO linear system; that is

—k B(Q) C(Q)
F(g) " Dig) (*9

Equation 4.6 represents a general family of model structures for SISO linear systems, and is

known as the black-boz model (Ljung and Séderstrém, 1983). A schematic of the black-box
model is given in Fig. 4.1. In the majority of applications, not all the polynomials in Eq.

Alg)y(t) = ¢ z(t) + =+

4.6 are needed (i.e., some of the polynomials can be taken equal to one). By eliminating
various polynomials a number of special forms of the black-box model are obtained. Some

of these forms are known by special names in the literature. They are summarized in Table
4.1.

5. SYSTEM IDENTIFICATION

System identification constitutes determining the coefficients of the polynomials in
the black-box model, Eq. 4.6, for a given pair of input and output sequences. The steps
for identification are outlined in the following subsections.

5.1. ONE-STEP-AHEAD PREDICTION

One-step-ahead prediction involves predicting the output at the next time step by
using the information available at the present and past time steps. The main problem in
doing this is the unknown noise term. To handle the noise, let us first rewrite Eq. 4.6,
such that the white-noise term e(?) is isolated. With some algebraic manipulations, we

can write

D(g)A(9) ~x D(9)B(g)

t)=|1—- ————=|y(t) +¢ t) +e(t 5.1
v(0) = [1= =5 v + a7 G @ + el (5.1)
It can be shown by inserting the expressions for A(g), C(q), and D(g) (from Egs. 3.1, 4.1,
and 4.2) inside the bracket on the right-hand side of Eq. 5.1, that the coefficient of y(¢) is

~! with no constant term. Therefore, the right-hand side of Eq.

a polynomial with order ¢
5.1 includes y(t) terms only up to time ¢ — 1. Assume that all the input, output, and the
polynomial coefficients are known up to time ¢ — 1. Then, all the terms on right-hand-side
of Eq. 5.1 are known, except the noise term e(t). The best estimate we can make for e(t)

would be to use its expected value, i.e., zero. Therefore, by taking the expectation in Eq.
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5.1, and also noting that E[e(t)] = 0, we can write for the best estimate of y(¢) in terms
of past values of the input, output, and parameters, as

~ oy = [1 _ P@A@) -« D(@)B(0)
96,0) = [1 = =5 v + g R ) (5:2)

7(t, 0) is the expected value of y(t) at time ¢ for given 8, and 8 is the vector composed of
the model parameters (i.e., coefficients of the polynomials); that is

8= (a1, "y @ngy b1y, by €15ty gy 1y s gy f1y o0y fry )T (5.3)

where superscript T' denotes the transpose. y(t,6) is known as the one-step-ahead predic-
tion of y(¢). 0 is included in the argument list of y(2, 6) to emphasize that the predicted

value depends on the past values of the model parameters.
The difference

e(t,6) = y(t) - §(t, 6) (5.4)

gives the error in the estimation at time ¢. Note by comparing Eqs. 5.1 and 5.2 that,
if 8 is estimated perfectly, then the error would be equal to a white-noise sequence, i.e.,
(t,8) = e(t). Therefore, one of the criteria for accurate identification is to have the error
sequence £(t,0) as close to a white-noise sequence as possible.

5.2. WEIGHTED LEAST-SQUARES METHOD

The goal of any identification algorithm is to minimize the total estimation error.
First, however, we have to decide on how to measure the total estimation error. The most
popular and algebraically the most convenient one is to use the least-squares approxima-
tion, which was first introduced by Gauss to calculate the six coefficients that determine
the elliptical orbit of a planetary body (Gauss, 1809). An historical review and evolution
of the least-squares method is given by Sorensen (1970).

The least-squares approximation uses quadratic critera for measuring errors. We will
also include a weighting factor in the criterion, so that we can have the flexibility of
manipulating the effect of data on total error. With these, we will define the total error

up to time t as

V(t,6) = 37(5) 3 B(t,9)e(5,6) (5.5)

where (%, s) is the weighting factor, and ~(2) is the normalization factor for 3(t, s), defined
by A
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W) = or,  A(®)DB(ts) =1 (5.6)

Lot

For time-invariant systems, weighting factors can all be taken equal to one. However,
when the initial conditions are unknown, it is advantageous to use weighting factors that
gradually decrease to much smaller values towards the beginning of data, so that the effect
of unknown initial conditions on the total error is minimized. For time-varying systems,
weighting factors are essential to track the time variation of system parameters. The
weighting factors localize the identification by giving more weights to the current values,
and by gradually discounting the past values.

A moving rectangular window, or exponential window can be used as the weigthing
factor for time-varying systems. For a rectangular window

0, fors<t— sy

Blt,s) = { 1, for s>t — sy (5.7)

where s,, is the length of the rectangular window in terms of number of data points (the
actual window length is s, T). s, should be selected such that s, T is not smaller than
the largest significant period of the system.

For an exponential window, first assume that 3(t, s) has the following recursive form

B(t,s) =A(t)B(t—1,8) with 1<s<t-1 (5.8)
where
At) £1, and B(t,t)=1 (5.9)

This recursive form leads to the equations

T : ()
ﬂ(t,s>—j=1:I+1A(J) and () = Y (5.10)

If A(t) is chosen constant, i.e., A(t) = ), the weighting factors become exponential, that is
B(t,s) = A (5.11)

where the constant A is called the forgetting factor (Ljung and Soéderstrém, 1983). Also
note from Eq. 5.10 that if A(¢) = 1 and «(0) = 1, then 4(t) = 1/t.
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Figure 5.1 shows three windows, a rectangular window with s,, = 10, and two expo-
nential windows with A = 0.9, and 0.7. The smaller the ) value the sharper is the decay of
the weighting factor. For constant A(t) values the weighting factors are moving windows
of the same shape. To reduce the effect of initial conditions and speed up the convergence
rates, a time-varying forgetting factor, which initially is small and grows towards the value
Ao as more data points are processed, is more appropriate. Such time variation can be

modeled by the following recursive equation:

At) = AoA(E—1)+1 =g (5.12)

In order to start the recursion, Ag and A(0) values need to be specified. Suggested values
are Ao = 0.99 and A\(0) = 0.95 (Ljung and Soderstrom, 1983; Young, 1984). However, these
values should be used with care, since it is the sampling interval and the rate of change of
the frequency content of the signal that actually determine the most appropriate values.
As will be shown later by examples, identification results can be very sensitive to A\¢ and
A(0) values. It is recommended that either the frequency content and time variations of
the signal should be investigated by Fourier analysis techniques, or several combinations
of A\p and A(0) should be tried, before deciding on the final values for identification.

In order to track fast variations in the system parameters, the window length should
be small (i.e., the decay of the weighting factors should be steep). On the other hand, to
remove the random noise from the signal, the number of sampled points used at any time
(defined by the window length) should be large enough, so that averaging over the sampled
points can actually remove the noise effects. Therefore, there is a trade-off between the
time-tracking ability and the noise sensitivity of the identification.

Although the use of quadratic critera makes the least-squares method analytically
simple, it also makes the propagation of estimation errors very wide. An isolated error,
such as a large instrument noise at one sampling point, can effect the estimation in all the
other points. One way to prevent this is to check the estimation error (Eq. 35) at every
sampling point for a sudden large jump, and if there is one, calculate the error for that
point by using a power less than two, say 1.5.

5.3. MAXIMUM LIKELIHOOD METHOD

Another popular method for error minimization and parameter estimation is a sta-
tistical one, the maximum likelihood method, attributed to Fisher (1922). The basic
principles of the maximum likelihood method can be summarized as follows. Assume
that the output y(t) is an observation (i.e., a sample) from a random process, whose
probability density function depends on the unknown parameter vector §. Let Plyn|6)
denote the joint conditional probability density function of y(t) for t = 1.--N (i.e,
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Plyn|0) = Ply(1),y(2),---,y(N)|f]). For given 6, P[yn|0] shows the probability that
the output will take the measured values y(1),y(2),---,y(IN). Once the observed values
of y(t) are inserted, P[yn|6] becomes a deterministic function of §. This function is called
the likelthood function. 6 is then selected as the value which makes the likelihood function
maximum (i.e., the observed output becomes as likely as possible). By using Bayes’ rule,

we can write

Plyn|6] = Plynlyn-1,6) Plyn-1lyn-2,6) - -+ Plyz2|y1,6] Ply1|6] (5.13)

Now, assume that the conditional densities are Gaussian, such that

_ 1 (y —m4)
P[ytlyt_1,9] - Ut\/é? exp[ 20_t2 ] (5.14)

where m; and o, are the conditional mean and standard deviation of y(t). They both
depend on unknown parameters 6, and the past data. Based on the arguments for Eq.
5.2, we can write

me = Y(t,6); therefore, y—my =y(t) —y(t,0) =€(t,6) (5.15)

The equation for 6 is obtained by maximizing Plyn|6]. Instead of maximizing Plyn|6], we
can maximize its logarithm. Using Eq. 5.15 in Eq. 5.14 and the resulting equation in Eq.
5.13, we can write for the negative logarithm of P[yx|6]

2

—1In P[yn|6] =1 2] + %ln27r (5.16)

l\')

Maximization of P[yn|6] is now equivalent to minimization of the right-hand side of Eq.
5.16. Note that if o; is constant or independent of 8, the maximum likelihood criterion
becomes equal to the quadratic criterion of the least-squares method, given by Eq. 5.5,
with unit weighting factor. The advantage of the least-squares method is its simplicity. The
advantages of the maximum likelihood method are its independence from the model type,
and better convergence properties. For Gaussian observations, however, these two methods
are equivalent, and result in the same 6 values. The method suggested by Friedlander
(1982) combines the least-squares and the maximum likelihood methods. The formulation
that will follow is based on the weighted least-squares method.

5.4. STOCHASTIC APPROXIMATION

For the least-squares method, to minimize the total error we require in Eq. 5.5 that
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d ,
V(60 =V'(t,6) =0 (5.17)

where the superscript ’ is used to denote derivative of V' with respect to §. Note in Eq. 5.1
that each y(t) includes the unknown white-noise term e(t). Therefore, £(t,6) (Eq. 5.4),
V(t,6) (Eq. 5.5), and V'(t,8) are all functions of white-noise terms e(0), e(1),--- ,e(t).
Since the noise is random, any new set of measurements would result in a different V'(¢, 9)
function, and consequently, different  values. Thus, Eq. 5.17 should be considered by
using the expected value of V'(¢,0) over the set of measurements, that is

EV'(t,8) =0 (5.18)

Solution of this equation can be accomplished by using stochastic approzimation techniques.
The general theory of stochastic approximation can be found in Albert and Gardner (1967),
Nevelson and Khasminskii (1973), and Kushner and Clark (1978). A brief outline of the
concept will be given below by summarizing the Robbins-Monro algorithm (Robbins and
Monro, 1951), which is the prototype stochastic approximation scheme.

Let Q(n,v) denote a function of unknown parameters n and the random measurement
vector v. The problem we want to solve is to determine the values of n which satisfy the
equation

EQ(n,v)=0 (5.19)

Assume that the probabilistic distribution of v is unknown (the exact form of Q(n,v) may
also be unknown). However, since measured values of v are available, we can determine
Q@(n,v) for any chosen 5. Thus, if we have a large set of v values, we can choose a value for
n, calculate @Q(n, v) for each set of v, take the average, and check whether it is zero; and, if
not, continue the procedure by choosing new 7 values until it becomes zero. However, this
is a very tedious and time consuming procedure. Moreover, in most cases we do not have
a large set of v. Robbins and Monro (1951) introduced a more efficient algorithm to solve
the problem. They showed that n can be solved recursively by the following algorithm:

ni+1 = nj + o;Q(n;,v) (5.20)

where subscript j denotes the iteration number, and «; is a sequence of positive constants
satisfying the conditions (Young, 1984)

o0 o0
a; > 0; Zaj = o00; and Za? < o0 (5.21)
Jj=1 j=1
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The harmonic sequence 1/j (i.e., 1, 1/2, 1/3,---) is the best known example of the se-
quences that satisfy these conditions. For time-varying systems, the last condition in Eq.
5.21 is usually violated in order to track the time variations of the parameters; however,
the algorithm still works.

Going back to our original problem, Eq. 5.18, we can write by analogy to Eq. 5.20
that

6;(t) = 8j-1() + a;V'(£,6,1) (5.22)

This equation is basically the stochastic equivalent of the gradient method that is widely
used for minimization of deterministic functions. As is well known from deterministic
theory, the gradient method becomes very slow when the iteration approaches the minimum
(Luenberger, 1973). An improved version of the gradient method is obtained by modifying
the search direction of the iteration by the second derivative (i.e., Hessian), of the function.
This results in Newton’s method. There are also methods that are the combination of
gradient and Newton’s methods, such as the Marquardt algorithm (Marquardt, 1963).
Modification of Eq. 5.22 according to Newton’s method gives

0;(t) = 6;-1(2) + o [V"(£,8,-1)] T V'(t,8;-1) (5.23)

If V is quadratic in § this iteration would converge to minimum V' in one step (Ljung and
Soderstrom, 1983). To speed up the calculations, the usual practice is to add one more
data point at each iteration. When this is done Eq. 5.23 becomes

8(t) = 6(t — 1) + a;[V"[t,0(t — 1)]] " V'[t,6(¢ — 1)] (5.24)

5.5. RECURSIVE PREDICTION ERROR METHOD (RPEM)

The iterative algorithm given by Eq. 5.24 with Eqs. 5.2, 5.4 and 5.5 for system
identification is known as the Recursive Prediction Error Method, RPEM for short. For
ease of notation, denote that

Y(t) = —dage’e) = dggé ) and R(t)=V"(t,0) (5.25)

¥(t) is the gradient and R(¢) is the Hessian of the prediction. Note that () is a vector
with dimension dg = n, + ns + nc + ng + ny, whereas R(t) is a matrix with dimension
dg x dg. V'(t,8) is calculated from Eq. 5.5 by taking the derivative with respect to 6, that

18
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V/(t,6) = —v(t) > _ B(t, syp(s)e(s, 6) (5.26)

It can be shown by using Eq. 5.10 that Eq. 5.26 can be put into following recursive form:

V'(t,6) =4[5V - 16) — $(0)e(t 0] .27

or

VI(t,6) =V'(t — 1,6) + v()[—¥(t)e(t, 6) — V'(t — 1, 6)] (5.28)

If we assume that V' was actually minimized in the previous time step, we can then write
V!(t —1,8) = 0. Therefore, Eq. 5.28 becomes

V/(t,0) = —(tW(D)e(t, 6) (5.20)

The components of (t) can be calculated by using Eq. 5.2 in Eq. 5.25. They are given
by the following recursive equations:

B9 = ) 50
a(z y(t,8) = C(ql-)l()q;(z-l)y(t - 7) (5.31)
56;37(@ 0) = C(;_l)e(t— 7,6) (5.32)
63 9(t,8) = %[A(q“l)y(t—j) - ?EZ:I;w(t —7) (5.33)
a_fjg(t’ 0) = ‘C(qi(;];;_l) : ?Ez:igw(t —J) (5.34)

The Hessian R(t) is calculated by taking the second derivative of V(t,6) with respect to
6. Thus, by taking one more derivative in Eq. 5.26 we obtain

R(t) = V"(£,6) = 4(t) Y A(t,5) [} (2) +¥'(B)e(t, 6) (5.35)

It can be shown that close to minimum V(t,8), the term 9'(t)e(¢, #) becomes very small,
such that it can be neglected (Ljung, 1987). Thus we can approximate
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R(t) m (1) ) B, s)p(t)pT (t) (5.36)
s=1
R(t) can also be put in a recursive form:

R(t) = R(t — 1) +y(t)[()9" (t) — R(t - 1)] (5.37)

Using Eqgs. 5.29 and 5.35 in Eq. 5.24, and also taking a; = 1 give the following final form
for the RPEM algorithm:

6(t) = 6(t — 1) + v() R~ (H(De(?) (5.38)

The matrix inversion, R~1(#), in Eq. 54 makes it computationally inefficient. There
are various algorithms developed to calculate R™!(t) without actually inverting the matrix.
One is to use the matrix inversion lemma, by which the matrix inversion can be put into a
form of recursive multiplications (Householder, 1964). A straightforward application of the
matrix inversion lemma, however, leads to equations that are susceptible to accumulation
of round-off errors. Numerically more sound forms are obtained by using the so-called
factorization techniques, such as the square root algorithm (Potter, 1963), or the U-D
factorization algorithm (Bierman, 1977). Application of these algorithms to obtain R™1(#)
is given in Ljung and S6derstrém (1983).

In order to start the recursion in Eq. 5.38, we need the initial values for the vectors
6(t), ¥(t), and the matrix R™!(t). For stable systems, it can be assumed that

6(0)=0, %(0)=0, and 4(0)R}(0)=K-I (5.39)

where K is a large constant and I is the identity matrix. A suggested value for K is
(Franklin and Powell, 1980)

K = ’N'"ﬁ E y2(t) (5.40)

If there is a large amplitude difference between the input and output, either two K values
proportional to amplitudes should be used (so that the elements of R~! will have the same
magnitude during the recursion), or the input and output should be scaled to have similar
magnitudes prior to recursion.

Application of the RPEM algorithm to an input-output set can be summarized by the
following steps:
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Read and preprocess the input-output series (as will be discussed in section 12).
Select Ag and A(0) for the weighting factor (Eq. 5.12).

Select initial values 6(0), ¥(0), and v(0)R~(0) (Eq. 5.39); set V(0) = 0 (Eq. 5.5).
Calculate for the next time step y(¢,60) (Eq. 5.2), €(¢,0) (Eq. 5.4), V(t,6) (Eq. 5.5),
¥(t) (Eqgs. 5.30-5.34), 4(t) (Eq. 5.10), and R(t) (Eq. 5.37).

5. Calculate 8(t) (Eq. 5.38).

6. Move to next time step, and repeat steps 4 and 5.

- W

For strongly time-varying systems, step 5 may require iteration over 6 as shown by Eq.
5.23. To select the best model order and the weighting factor, the algorithm is repated for
different model orders and weighting factors, and the variation of total estimation error
V(N,8) (Eq. 5.5) is observed.

The RPEM algorithm presented above is for the general black-box model structure
(Eq. 4.6), where all the polynomials exist. For the special model structures given in Table
4.1, the equations would be simplified significantly. Although the general procedure for
the black-box models would also apply to any special model, it is possible to develop more
efficient, and model-specific algorithms for special model structures. To give an example,
consider the ARX model given by the equation

A(q)y(t) = B(g)z(t) + e(t) (5.41)
It can be shown for the ARX model that the one-step-ahead prediction of the output
(Eq. 5.2) is
9(t,6) = ¢7 (1) (5.42)
where

¢(t) = [_y(t - 1)’ et 7y(t - na)’ :l)(t - 1)7 T (B(t - nb)]T (543)

Equation 5.42 is simply a linear regression equation, with ¢(t) being the regression vector.
@ can be calculated by taking (¢, ) = y(t) and using standard regression analysis. If the
system is time-invariant, and all the data is available beforehand, then the ARX model can
also be identified in off-line fashion using correlation methods. If N denotes the number
of data points, the total error can be written as

N
V(N,8) =Y B(N,t)y(t) — 67 (£)6] (5.44)

Minimization of V(N, ) with respect to 8 gives
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g = Lz AUV 6D (5.45)
S eca BN, )9(1)87 (1)

6. CONVERGENCE AND CONSISTENCY OF ESTIMATION

As for any iteration method, the convergence and consistency of the above algorithm
should be investigated before it is applied to real-life problems. This involves showing that
the algorithm converges to a global minimum not a local minimum, and that the estimated
parameters are unique. These problems have been investigated extensively (Astr6m and
Bohlin, 1965; Hannan, 1973; Ljung, 1976, 1978, 1981; Anderson et.al., 1978; Anderson and
Taylor, 1979; Dugard et. al., 1980; Solo, 1981; Fogel, 1981; Typskin et.al., 1981; Lai and
Wei, 1982; Rootzen and Sternby, 1984; and Stoica and Nehorai, 1987). Basic results are
summarized below.

For convergence and consistency, first the system and the model should satisfy the
following three conditions: (a) the system is stable, i.e., bounded input gives bounded
output (system does not have negative damping), (b) the selected model includes the true
system, meaning that the number of parameters used in the model is greater or equal to
that of the true system (although we do not know much about the true system, we can
assume that this condition is eventually satisfied by increasing the number of parameters),
and (c) the input is persistently ezciting, which means that the input should have a non-zero
spectral amplitudes at frequencies corresponding to frequencies of the system (generally
satisfied because of the existence of noise).

For the black-box, ARARMAX, and ARMAX models (see Table 4.1), the conver-
gence to a local minimum is theoretically possible. Various model validity checks that
will be discussed later will show clearly whether a local or global minimum is reached. If
a local minimum is encountered, the calculations should be restarted by using different
initial values for §. The process is repeated until the global minimum is obtained. In
practical applications, however, local minima are not encountered frequently. In none of
the applications that will be presented later has a local minimum been encountered. For
some special forms of the black-box model, it is possible to prove analytically that no local
minima exist. They can be summarized as follows:

a. For FIR models there are no local minima (since the criterion function is quadratic in
0).

b. For ARX models there are no local minima (since the criterion function is quadratic
in 6).

c. For ARMA models there are no local minima (Astrém and Séderstrom, 1974).

d. For ARARX models there are no local minima if the signal-to-noise ratio is large
(Séderstrom, 1974).

21



e. For Box-Jenkins models there are no local minima only if F' =1 (Séderstrém, 1975a).
f. For Output-Error models there are no local minima if the input is white noise (Séderstrém,
1975a).

The uniqueness of the identification of a black-box model is satisfied if the polynomials
for the true system (which will be distinguished by the superscript * from those of the
estimated system) satisfy all of the following conditions (Astrém and Bohlin, 1965):

a. there is no common factor to all three polynomials 2"+ - A*(z), z™ - B*(z), and
2" - C*(2);

b. there is no common factor to polynomials 2™ - B*(z) and 2™ - F™*(z);

c. there is no common factor to polynomials 2™ - C*(z) and z™¢ - D*(z); and

d. if n, > 1, there is no common factor to polynomials z"¢ - D*(z), and 2™/ - F*(z).

7. FISHER INFORMATION MATRIX AND CRAMER-RAO INEQUALITY

No matter what the model structure and the estimation algorithm are, there is a
limit to the achievable accuracy of the estimated parameters. This limit is known as the
Cramer-Rao lower bound (Cramer, 1946; Rao, 1965). Let 6y denote the true value of
M)

the parameter vector 6, and g(y its estimate based on N sampling points. Then the

Cramer-Rao lower bound is given by the inequality

E[B(yN) — 60][8(y™) — 60]T > M1 (7.1)

The matrix M is known as the Fisher information matriz (Fisher, 1922), defined by the
equation
d2

M;=-E [W In P(yn|6)| - (7.2)
where P(yn|6) denotes, as before, the conditional joint probability density of y(t), t =
1,---, N, for given 6. Since 6 is unknown, M cannot be evaluated; therefore, the Cramer-
Rao lower bound does not have any significance, as far as the validation of estimated 6
values is concerned. It is important, however, to know that there is such a lower bound for
accuracy. Any unbiased estimator 6 (i.e., # which makes the expected value of residuals
zero) that attains the Cramer-Rao lower bound is said to be efficient. It can be shown that
in the linear Gaussian case, the weighted least-squares and maximum likelihood methods
result in efficient estimators (Brogan, 1987).

8. MODEL SELECTION

Model selection involves the selection of the form and the order of the model, and con-

stitutes the most important part of system identification. Any prior information about the
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system behavior and noise sources can be useful. The physical laws governing the system,
if known, give the dynamic equilibrium equations, which can be a good starting point for
model selection. For example, equilibrium equations for the uni-directional vibration of a
six-story building suggest that the building would have six distinct frequencies, provided
that the input has sufficient frequency content to excite all the modes (i.e., the input is
persistently exciting). We therefore conclude that the denominator polynomial for the sys-
tem transfer function should be at least twelfth order. Another useful tool is the Fourier
analysis of the data. The number of dominant peaks in the amplitude spectra of the input
and output give a good idea of the model order. It is also important to check whether the
data is linear or nonlinear by using various tests available in the literature (e.g., Haber,
1985; Varlaki, et.al., 1985). Young (1978) and Priestly (1980) have suggested that almost
any nonlinear system can be considered as a linear system with time-varying parameters.
However, from the identification stand point, we prefer to start with a model that is clos-
est to the actual system. In order to be able to describe all the possible forms of system
dynamics the model should have a sufficient number of parameters, i.e., the model should
be flezible. On the other hand, overparametrization causes a singular or ill-conditioned
R(t) matrix in Eq. 5.38, and pole-zero cancellations in the transfer function. This requires
that the model should contain the smallest number of free parameters to represent the
system adequately, i.e., the model should be parsimonious. A general recommendation
for selecting the model type is to start with the simplest model, and continue with the
next simplest model until the model validity tests (which will be given in the next section)
are satisfied, or until a pole-zero cancellation occurs (see, Soderstém, 19755 for tests for

pole-zero cancellation).

For selecting the model order, a straightforward approach is to investigate the vari-
ation of total estimation error, V(N, ) (Eq. 5.5), with model order. Normally, the total
estimation error decreases with increasing model order. However, as schematically shown
in Fig. 8.1, the decrease is very sharp at the beginning, and gradually flattens as the
order increases. The end of the steep decline usually indicates the optimal model order.
The beginning of the flat region suggests that any additional parameter is not significantly
improving the model for the system, although it may improve the model for noise. The
model order can be taken as the number of parameters in the denominator polynomial of
the system transfer function.

Another test available for selecting model order is to use Akaike’s information theoretic
criterion (AIC) (Akaike, 1981). AIC seeks a model order that minimizes the information
distance between the conditional probability density functions of the measurements and
the true system. The definition of the information distance is due to Kullback and Leibler
(1951). The minimization of information distance corresponds to maximizing the entropy
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of the measurement probability density with respect to the true probability density. AIC
gives the following equation for the best model order

N
. [1 Z dg
GAIC = meln [ﬁ t —lnP(tle) + N] (8.1)

where, as previously defined, P(t, ) is the conditional (i.e., for given 8) probability density
function of the measurements, and dy denotes the dimension of the vector 8 (i.e., number
of parameters). For Gaussian prediction errors £(t) and the maximum likelihood criterion
function, Eq. 8.1 becomes

N

Barc = mein{ln[% (1 + 2]\’&) Zez(t)] } (8.2)

t=1
AIC is based on the maximum likelihood estimation. For the least-squares estimation, the
criterion corresponding to AIC is the Akatke’s final prediction-error criterion (FPE). It is
given by the equation

N
. N+4dg 1 1,
HFPE—II%H[N_dO N t=El 26 (t)] (8.3)

Note that for N >> dy Eqgs. 8.2 and 8.3 result in the same criterion. Also note that both
equations penalize using too many parameters (i.e., the criterion function increases with
increasing dy).

Various other methods have also been suggested for model order selection (Hsia, 1977;
Schwarz, 1978; Hannan and Quinn, 1979; Fine and Hwang, 1979; Inagaki, 1981; Unton,
1981; Rissanen 1983; Fuchs, 1987). The method by Hsia (1977) allows iteration on model
order as well as on parameter estimates. A review of existing methods is given by Stoica
et. al. (1986).

9. MODEL VALIDATION

The final stage of an identification process is to confirm that the estimated model is a
realistic approximation of the actual system. This is known as model validation. There are
several tools available for model validation. The first and simplest test is to compare the
estimated system transfer function with that obtained from the standard Fourier analysis.
A second test may be to compare the output of the estimated system with the actual
output. Although a perfect match is not expected, these two tests should give a fairly
good match. Any gross mismatch is a clear indication of an incorrect model.

Another set of tests can be made over the residuals €(¢) (Eq. 5.4), of the model
(Anscombe and Tukey, 1963). As Eqgs. 5.1 and 5.2 indicate, the wh<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>