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UNIT CONVERSION

Data listed in this report are defined in the inch-pound system of units. 
A list of these units and the factors for their conversion to International 
System of units (SI) are provided below.

Abbreviations of units are defined in the conversion table below or where 
they first appear in the text. Symbols are defined where they first appear in 
the text.

Multil inch-ound unit To obtain SI unit

foot (ft)
inch (in)
pound (Ib)
slug
slug per cubic foot (slug/ft3 )

slug per foot second
(slug/s ft)

pound per cubic foot (lb/ft3 ) 
pound per square foot (lb/ft2 ) 
square foot per second (ft 2 /s) 
pound per square inch (lb/in2 ) 
pound per cubic inch (lb/in3 ) 
pound per inch (Ib/in) 
pound second per square foot

(Ib s/ft2 )
foot per square second (ft/s2 ) 
cubic foot per second (ft3 /s) 
degree Fahrenheit (°F)

0.3048
0.02540
4.448

14.59
515.4

47.88

157.1
47.88
0.09290

6,895
271,400

175.1
47.88

0.3048 
0.02832 

3C = <°F-32)/l.

meter (m)
meter (m)
newton (N)
kilogram (kg)
kilogram per cubic meter

(kg/m3 ) 
newton per meter second

(N/m2 )
newton per cubic meter (N/m3 ) 
pascal (Pa)
square meter per second (m2 /s) 
pascal (Pa)
newton per cubic meter (N/m3 ) 
newton per meter (N/m) 
pascal second (Pa s)

meter per square second (m/s 2 ) 
cubic meter per second (m3 /s) 
degree Celsius (°C)

	SYMBOLS AND UNITS 

Symbol Explanation

A Total area of a section
Ai Total cross-section area at the cross-section number i

ai Area of a subsection i
B Width of opening
b Width of channel upstream of opening
C Chezy resistance coefficient
D Depth
Dfc Brink depth
Dc Critical depth
Do Normal depth
Dp Diameter or height of a culvert
d Depth in overflow section
dp Particle size that is larger than p percent of the bed

	material
E Specific energy
F Force

Unit

ft'2
ft 2 

ft 2

ft
ft

ftl/2/s

ft 
ft 
ft 
ft 
ft 
ft 
ft

ft 
Ib

VI



Symbol Explanation Unit

FH Horizontal force Ib
FR Resultant force Ib
F<3 Drag force Ib
Fp Water-pressure force Ib
F r Froude number
Fv Vertical force Ib
FX Shear force Ib
f Darcy-Weisbach friction factor
g Acceleration of gravity ft/s^
H Total head ft
h Hydraulic (piezometric) head ft
he Head loss due to local causes ft
hf Head loss due to boundary friction ft
h\ Head loss due to any cause ft

ht Tail-water elevation ft
hv Velocity head ft
I Acceleration ft/s^
K Conveyance ft^/s
Ki Total conveyance at cross-section number i ft^'s
k Effective roughness height of boundary ft
ke Expansion or contraction loss coefficient

ki Conveyance at subsection i ft^/s
kv Local loss coefficient
L Distance along channel or length of structure ft
I Length scale for Reynolds number or Prandtl's mixing ft

	length
lm The meander length of a channel reach ft

Is The straight length of a channel reach ft
M Mass slug
m Channel contraction ratio
n Manning's roughness factor
P Wetted perimeter of channel or height of weir ft

p Pressure
pc Pressure at the center of pressure

Q Discharge ft^/s
q Discharge per unit width ft^/s
R Hydraulic radius ft
RQ Reynolds number
r Radius of curvature ft
S Slope
Se Slope of energy grade line
Sf Friction slope
Sg Specific gravity of fluid
S0 Slope of bed
T Top width of the channel ft
t Time s
u^ Shear velocity ft/s

V Average or mean velocity ft/s
Vc Critical velocity ft/s
v Local velocity ft/s
W Width ft

VII



Symbol Explanation Unit

W0 Width of overflow section ft
wt Weight of water Ib
x Horizontal coordinate direction ft
y Vertical coordinate direction ft
yr Depth to center of pressure ft
Z Elevation ft
z Distance from datum to culvert invert ft
a Kinetic energy coefficient or Cariolis coefficient
Y Specific weight of the fluid lb/ft 3
AE Energy loss ft
Ah Change in water-surface elevation ft
0 Slope angle of bed or angle of V-notch weir
K von Karman constant
Jl Dynamic viscosity Ib s/ft2 , slug/s ft
\) Kinematic viscosity ft2 /s
p Density of the fluid slugs/ft 3
T Shear stress lb/ft2
TO Shear stress at the bed lb/ft2



BASIC HYDRAULIC PRINCIPLES OF OPEN-CHANNEL FLOW 

by Harvey E. Jobson and David C. Froehlich

ABSTRACT

The three basic principles of open-channel-flow analysis the conserva­ 
tion of mass, energy, and momentum are derived, explained, and applied to 
solve problems of open-channel flow. These principles are introduced at a 
level that can be comprehended by a person with an understanding of the prin­ 
ciples of physics and mechanics equivalent to that presented in the first 
college level course of the subject. The reader is assumed to have a working 
knowledge of algebra and plane geometry as well as some knowledge of calculus.

Once the principles have been derived, a number of example applications 
are presented that illustrate the computation of flow through culverts and 
bridges, and over structures, such as dams and weirs.

Because resistance to flow is a major obstacle to the successful appli­ 
cation of the energy principle to open-channel flow, procedures are outlined 
for the rational selection of flow-resistance coefficients. The principle of 
specific energy is shown to be useful in the prediction of water-surface 
profiles both in the qualitative and quantitative sense.

INTRODUCTION

Most of the principles and concepts presented in a beginning level 
college course in fluid mechanics are presented herein, but their application 
is focused on open-channel hydraulics. Some concepts that are unique to open 
channels for example, specific energy and channel roughness are developed in 
somewhat more detail here than would be expected in an introductory college 
course.

It is assumed that the reader is familiar with the physical principles 
of mechanics, at least to the level covered by a beginning college physics 
book. The reader also is assumed to have a working knowledge of algebra and 
trigonometry and to comprehend simple derivatives and integrations.

The emphasis of this text is on teaching the application of the theory 
of hydraulics to solving practical problems and not on the standard techniques 
used in problem solutions. The final equations developed in this text are 
frequently used as the starting point in other chapters of Book 3 of the 
Techniques of Water-Resources Investigations of the U.S. Geological Survey.

Manuscript approved for publication November 17, 1988



PART I - BASIC PRINCIPLES OF HYDRAULICS FOR AN IDEAL FLUID 

Lesson 1 - Fluid Properties

All quantities used in this report can be defined in terms of three 
basic units (length (foot), time (second), and mass (slug)). Another quantity 
that is commonly used is force (pound), but the units of this quantity are 
defined in terms of mass and acceleration.

The weight on earth (force) of a mass of one slug is defined to be 32.2 
pounds (Ib). Therefore, the units of pounds force are equivalent to the units 
of slug feet per second squared (slug ft/s ) or

Force = F = 32.2 Ib = Mg = (1 slug) 32.2 ft/s2 ,

where the mass of the body is M, and g is the acceleration of gravity (32.2 
ft/s2 ) .

Because fluid does not have a definite form and specific particles of 
fluid are difficult to identify, it is customary to work with the weight or 
mass of fluid per unit volume. The mass of a fluid per unit volume is defined 
as its density (p) :

Mass of fluid (slugs) Density = p =                ~  . 
Volume of fluid (ft j )

The specific (unit) weight of a fluid 7 is defined as:

. ,_ Weight of fluid (Ib) Specific weight = y =    *            r  .
Volume of fluid (ft 3 )

The specific gravity of a fluid is defined as the ratio of the density 
of the fluid to the density of water at standard conditions (1.94 slugs/ft 3)  
that is,

. ,.. . density of fluid (slugs/ft 3 ) Specific Gravity = Sg =                       T~  
density of water (slugs/ft-3 )

Because it is a ratio, specific gravity is unitless. By multiplying both the 
numerator and the denominator of the expression for the specific gravity by g, 
it is seen that the specific gravity also is equal to the ratio of specific 
weights,

I slug ft\ 
^ Kf ^ ft3 j*^'o , , f ^ft3 " s2 J Yf(lb/ft3)

Sg ~ Pw " n fsluc^ g (ft/32, ~ y (-L- slug, ft^ Yw db/ft 3 )
; 2

in which the subscripts f and w refer to the fluid and water, respectively. A 
fluid is a substance that can flow. Specifically, this means that it continu­ 
ally deforms as long as a shearing stress is applied and that the internal 
shear stress is a function of the rate of deformation rather than the amount 
of deformation as in a solid. A Newtonian fluid is a substance in which the 
internal shear stress is determined as



(1-D

in which T is the shear stress (lb/ft2 ), 3v is the change in velocity (ft/s) 

that occurs over a small distance 3y (ft), and the dynamic viscosity \i
s Ib 
ft2 or

is a specific fluid property, which is a measure of its resistance to 
s ft
deformation (shear or flow). Table 1-1 contains some tabulated viscosities of 
fluids and gases. The kinematic viscosity V is defined as

V = U Sluq/S ft ft2 

p slug/ft 3 s

Figure 1-1 shows a free body diagram of an isolated block of fluid of 
height y, width dx, and thickness of 1 foot. Figure 1-1 is called a free-body 
diagram. A free-body diagram is a cutaway view of the fluid or object in 
which the effect of any surface that is cut is replaced by the forces exerted 
on that surface. For example, the bottom surface could exert a shear force 
(Tdx(l)) on the fluid and a pressure force (pdx(l)). These are the only 
forces the water beneath could exert on the block of fluid. The fluid is at 
rest, therefore, all shear stresses (T) are zero (see equation 1-1).

Figure 1-1. Free-body diagram of 
fluid element.

dx

The pressure (p) at the bottom of the block in figure 1-1 can be com­ 
puted as follows. Because the sides are vertical and the shear stress is 
zero, the weight (wt) is balanced by the pressure at the bottom times the area 
of the bottom of the block or

but the weight is

or

therefore

wt = pdx(1) ,

wt = YVolume = y ydx(l)

yydx(l) = pdx(l) ;

p = y y. (1-2)

which shows that in a fluid at rest, the pressure increases linearly with 
depth below the surface.



Table 1-1. Mechanical properties of some fluids

[ft 3 , cubic foot; lb/ft 3 , pounds per cubic foot; s Ib, second times pound;
°F, degrees Fahrenheit]

(A) Some properties of air at atmospheric pressure

Temperature 
°F

0
40
80

120

Density 
slug/ft 3

P

0.00268
.00247
.00228
.00215

(B) Mechanical properties

Temperature 
°F

32
40
50
60
70
80
90

100
120

Density 
slug/ft 3

P

1.94
1.94
1.94
1.94
1.94
1.93
1.93
1.93
1.92

Specific weight 
lb/ft 3

Y

0.0862
.0794
.0735
.0684

Kinematic viscosity 
ft2 /s
V

12.6 x 10~5
14.6 x 10~5
16.9 x 10~5
18.9 x 10~ 5

of water at atmospheric pressure

Specific weight 
lb/ft 3

Y

62.4
62.4
62.4
62.4
62.3
62.2
62.1
62.0
61.7

Dynamic viscosity 
s lb/ft2

H

3.75 x 10~ 5
3.24 x 10~ 5
2.74 x 10~ 5
2.36 x 10~ 5
2.04 x 10~ 5
1.80 x 10~5
1.59 x 10~ 5
1.42 x 10~5
1.17 x 10~ 5



Table 1-1.--Mechanical properties of some fluids continued

(C) Specific gravity and kinematic viscosity of certain liquids 
(Kinematic viscosity = tabular value x 10"^)

Carbon tetrachloride 
Kinematic

Temperature Specific 
°F gravity

Sg

40 1.621
60 1.595
80 1.569

100 1.542

Medium

Temperature Specific 
°F gravity

Sg

40 0.865
60 .858
80 .851

100 .843

viscosity 
ft2 /s

V

0.810
.700
.607
.530

fuel oil
Kinematic
viscosity 

ft2 /s
V

6.55
4.75
3.65
2.78

Medium 
lubricatincr oil

Specific 
gravity

Sg

0.905
.896
.888
.882

Regular

Specific 
gravity

Sg

0.738
.728
.719
.710

Kinematic
viscosity 

ft 2 /s
V

477
188
94
49.2

gasoline
Kinematic
viscosity 

ft2 /s
V

0.810
.730
.660
.600

(D) Specific gravity and kinematic viscosity of some
other liquids

Liquid and temperature
Specific 
gravity

Kinematic
viscosity

ft2 /s
V

Turpentine at 68 °F 
Linseed oil at 86 °F 
Ethyl alcohol at 68 °F 
Benzene at 68 °F 
Glycerin at 68 °F 
Castor oil at 68 °F 
Light machinery oil at 62

0.862
.925
.789
.879

1.262
.960
.907

1.86
38.6
1.65
0.802

711
1,110

147



PROBLEMS

1. Compute your mass in slugs.

2. The density of alcohol is 1.53 slugs/ft^. Calculate its specific weight 
and specific gravity.



3. A stream gager falls in the river and gets his boots full of water. He 
manages to get to shore but his boots are still full of water. What is 
the maximum pressure inside his boots when he stands up? His boots are 3 
feet high.

3 ft

4. The inside of a pipe, which has an inside diameter of 6 inches, is coated 
with heavy oil. A 2-lb cylinder 6 inches long and 5.98 inches in diame­ 
ter falls through the vertical pipe at a rate of 0.15 ft/s. Calculate 
the dynamic viscosity of the oil.



Lesson 2 - Forces on Submerged Objects

Only fluids at rest will be dealt with in this lesson so no tangential 
(shear) forces are exerted, and hence all forces are normal to the free body 
surfaces in question. Consider the force on a vertical rectangular gate as 
illustrated in figure 2-1. As seen from equation 1-2, the pressure increases 
with increasing distance below the water surface; hence, the force (dF) on a 
narrow strip of the gate of height dy and width W is computed as

Figure 2-1. Pressure prism for
vertical rectangular 
gate.

The total force on the vertical surface may be computed as the sum of 
all of the differential force values (dF on fig. 2-1). Hence, the total hori­ 
zontal force on the surface is

= JF = J dF = 
A

W
 

y dy = (2-1)

Another technique to compute the force is based on the fact that the 
force is equal to the volume of the pressure prism defined by the solid abcdef 
in figure 2-1. The force on any submerged surface is equal to the volume of 
the pressure prism. The pressure prism is the solid with a base equal to the 
area of the surface in contact between the gate and the water and with a 
height equal to the pressure on the surface. It is often easier to visualize 
the pressure prism and compute its volume than to integrate an expression such 
as the equation for dF. For example, the pressure prism in figure 2-1 is a 
solid of triangular shape and width W. The area of the base is the area of 
the triangle with one side equal to D and the other side equal to "YD. For 
complex shapes it is usually possible to break up the pressure prism into 
simpler geometric shapes and compute the volume of each simple shape. The 
total force is then the sum of the volumes.

A third way to visualize the force on a surface is that it is equal to 
pressure at the centroid of the wetted area (called the center of pressure, 
Cp, see fig. 2-1) times that area. The total force on an object can always be 
correctly computed using this approach also. On figure 2-1 the wetted area is



a rectangle (bcfe), which has its centroid at D/2 feet below the surface. The 
force is therefore

F = pc A = Cyo/2) (DW) .

Example:

As an example, the horizontal and vertical components of the force of 
the water on the 4-foot wide gate shown in figure 2-2 will be computed. The 
pressure prism for the horizontal force is shown on the figure with a height 
defined by a b c d a and a base of 4 feet by 8 feet.

Water surface

4 feet

Figure 2-2. Pressure prism for a 
submerged gate 4 feet 
wide.

Solution :

The volume of the pressure prism may be obtained by breaking it into a 
triangle with sides of 8ylb/ft 2 and 8 feet and a rectangle with sides of 
4ylb/ft 2 and 8 feet. The total horizontal force, FH , of the water on the 
vertical plane c d x 4 feet is then computed as the sum of these two volumes

8Y = (8) (4) + 4y (8) (4) = 256y = 15, 974 lb.

The fluid force on this plane is the same as the horizontal component of the 
force of the water on the gate because there are no shear stresses when the 
fluid is at rest.

The vertical force of the water, Fv, on the plane d e x 4 feet is 
computed from the volume of the pressure prism defined by the points d e f q d 
and the 4-foot width.

Fv = 12y (7) (4) = 336y = 20,966 lb.

This force supports the weight of the water in the volume c d e c x 4 feet; 
the balance being the force exerted on the gate. The vertical force of the 
water on the gate is therefore

Fv = [12y(7)(4)] - [<8/2)y (7) (4)] =13,9781b.



The vertical component of force on any area is equal to the weight of 
that volume of fluid that would extend vertically from the area to the free 
surface. As a result of this, the buoyant force on any object is equal to the 
weight of the water displaced.

The total resultant force is

FR = + FH2 = 340.2y = 21,226 Ib.

Another way to compute the resultant force is to draw the pressure prism 
as shown in figure 2-3. This time the force on the surface b c will be com­ 
puted directly and it should be the resultant force on the gate. As before, 
it is natural to break the pressure prism into a triangle with sides 8ylb/ft2 
and 10.63 feet and a rectangle with sides of 4ylb/ft2 and 10.63 feet. Notice 
one side is 10.63 feet long in this case rather than 8 feet long when looking 
at only the horizontal component. The volume of the pressure prism is

FR = -|^ (10.63)4 + 4y(10.63)4 = 340.27= 21,226 Ib, 

which is the same result as obtained above.

Figure 2-3.--Pressure prism to compute 
the total force of the 
water on a 4-foot wide 
gate.

Forces not only have a magnitude and direction but a line of action as 
well. The line of action is the location where a single resultant force must 
be applied to have the same effect on a body as the distributed forces it 
replaces. For example, the center of gravity of a solid body is the point 
where a single force must be applied to the body to counter its weight without 
causing a torque (or moment) on the body.

Consider the line of action of the resultant pressure force on the 
surface in figure 2-1. The resultant force F must act at a point such that 
its moment (or torque) about any point is equal to the sum of the moments of 
each small force dF. Sum the moments about the line b-e and set them equal to 
F times yr to determine the distance of the line of action of the resultant 
force below the water surface

10



F yr = (yWD2 /2) (yr ) = y dF = yw y2 dy = yWD 3 /3

Jo Jo

from which

yr = 2/3 D. (2-3)

Notice the line of action is through the center of gravity of the pressure 
prism abcdef . This will always be the case. Complex pressure prisms can 
usually be subdivided into simpler shapes for which the center of gravity can 
be easily determined. The resultant line of action is then obtained by 
summing the moments of each subvolume about a convenient reference point.

Example :

Compute the location of the resultant force of the water on the gate 
shown in figure 2-3.

Solution:

The location of the force due the rectangular part of the pressure prism 
(FR-^) in figure 2-3 is located 5.32 feet from the top of the gate. The resul­
tant force, FR2' due to the triangular part of the pressure prism is located 
7.09 feet from the top of the gate. The total resultant force is located by 
summing moments .

(5.32) + FR2 (7.09)

or

17Q.iy(5.32) + 170.17(7.09) . _ A _ ^ Y -           "           = 6.20 feet,

so the resultant force is located 6.20 feet from the top of the gate, which is 
between FR, and Fp^ as would be expected.

11



PROBLEMS

Determine the total horizontal water-pressure force on a 1-foot wide 
section of the dam shown below. If this distributed pressure were 
replaced by a single resultant hydrostatic force, at what distance below 
the water surface y would it be considered to act?

Water surface

15ft

12



2. Determine the magnitude and location of the resultant water-pressure 
force acting on a 1-foot wide section of the gate shown below.

Water surface

f
5ft

__j____m

10ft Qate

13



3. Compute both the horizontal and vertical hydrostatic forces acting on a 
1-foot wide section of the sloping rectangular gate shown below.

14



4. Compute the net horizontal force acting on a 1-foot wide section of the 
gate separating two tanks as shown below. The specific gravity of the 
oil in the right-hand tank is 0.750.

5ft I

Water surface

Water
Oil surface

Oil i 3ft

15



5. The quarter cylinder is 10 feet long. Calculate the horizontal and 
vertical components of the forces acting on the cylinder.

Water surface

8ft

i

16



Lesson 3 - Similitude and Dimensional Analysis

Similitude

Many approximations are made in analyzing any but the simplest of flow 
problems. And for complex situations it is usually desirable to test the 
validity of the computations before large investments in hydraulic structures 
are made. In many cases this validity is first checked by use of physical 
models of proposed structures. It costs very little to build and test a model 
of a structure in comparison to the cost of building a prototype, which may 
not function as desired. On the other hand, analytical computations are cheap 
in comparison to building and testing a scale model, so models are only built 
where the validity of the computations are in doubt.

Although the basic theory for interpretation of model results is quite 
simple, it is seldom possible to design and operate a flow model from theory 
alone. In general, only by use of experience, judgement, and patience can 
correct prototype behavior be predicted from model results. Similarity of 
flows between the model and prototype requires that certain laws of similitude 
be satisfied.

There are many types of similarity, all of which must be obtained if 
complete similarity is to exist between fluid phenomena. The first of these 
is geometric similarity,, which states that model and prototype must have the 
same shape and, therefore, that the ratios between corresponding lengths in 
the model and prototype are the same. In the model and prototype of figure 
3-1, for example, geometric similarity exists if

BT Lp

It follows that the requirements for geometric similarity are met if the 
ratio of all linear dimensions in the model are the same as in the prototype.

D

T
bp

J.
Prototype

Figure 3-1. Flow through constriction, 
model, and prototype.

- 

t bm Model

Corollaries of geometric similarity are that corresponding areas vary 
with the squares of their linear dimensions,

and that volumes vary with the cubes of their linear dimensions.
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Consider now the flows through the model and prototype, figure 3-1. If 
the ratio of corresponding velocities and accelerations are the same through­ 
out the flow, the two flows are said to possess kinematic similarity. For 
kinematically similar flows, the streamline patterns will be similar in shape.

In order to maintain geometric and kinematic similarity between the flow 
pictures, the forces acting on the corresponding fluid masses must be related 
by ratios similar to those above this similarity is known as dynamic 
similarity. The forces that may exist in a fluid flow are those of pressure, 
Fp, gravity, Fg, viscosity, Fv , elasticity, FE, and surface tension, FT. The 
vector sum of all forces acting on a fluid mass must equal its mass times its 
acceleration, which is the inertial force, Fj. Written in mathematical terms 
for the prototype

(FP + Fg + Fv + FE + FT = FI = MI) p ,

in which M = mass of the fluid parcel and I = acceleration of the fluid 
parcel. Of course an identical equation can be written for a mass of fluid in 
the model. For the ratio of accelerations (and therefore velocities) to be 
similar between the model and prototype requires that the ratio of inertial 
forces be similar, or

(Fi) m _ Mm I m _ (F p + F q + F v + F E + F T ) m
 >  ~ -> ~~ -> ->  >  >  >
(Fi) p Mp Ip (F p + F g + F v + F E + F T ) p

The ratio of the inertial forces will be constant if the ratio of the inertial 
force to each component force is constant, so dividing the inertial force by 
each component force one sees that dynamic and kinematic similarity can only 
be achieved provided that

which states that the accelerations (Fj) due to pressure forces (Fp) must be 
similar in both the model and prototype and that

= fit

which states that the accelerations due to viscous forces must be similar, 
etc.

Each of the forces is governed by relations between the dynamic and 
kinematic properties of the flow and by physical properties of the fluid. For 
example, the viscous force is given by the definition of viscosity (equation 
1-1)

AvFV = f A = p.   A (i-i)
Ay

or

Fv = \ 2 =
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where v = characteristic velocity and I = a characteristic length. Because 
the ratios of all velocities and lengths in model and prototype are equal, it 
theoretically makes no difference which length or velocity is used in the 
equation. The generalized expressions for the forces are as follows

Pressure force, Fp = Pi 2

2 
Inertial force, Fj = MI = pi 3 ~ = pv2 l 2

Gravity force, Fg = Mg = pl 3g

A TT I "Av v ' 
Viscous force, Fv = (l    A = (l    = (ivl

Elastic force, FE = EA = El 2 

Surface tension force, FT = crl

in which p = pressure, M = mass, E = elasticity, and a = surface tension force 
per unit length.

Each of the five force ratios, which are dimensionless numbers, have 
names. These are as follows:

FI pv2
   = rr - = square of the Euler number 
Fp AP

FI vpl
   =    = Reynolds number
FV \L

   = -  = Square of Froude number 
Fg Ig

FI pv2
   = r = Square of the Mach number 
FE E

Fortunately in most engineering problems for open-channel flow, the 
compressibility and surface tension effects can be ignored so only the Froude, 
Reynolds, and Euler numbers are important. The Euler number can be ignored 
because if four of the five ratios are satisfied, the fifth is automatically 
satisfied because the inertial force is the sum of the other forces.

In these ratios, v and I may be any velocity and length provided the 
same quantities are used in both the model and prototype. In open-channel 
flow, the depth of flow is commonly used for the length term and the mean 
velocity for the velocity term.
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Complete similarity is usually impossible to attain even when only the 
Froude number and the Reynolds number are significant. For example, if in 
figure 3-1 the prototype velocity and depth are 8 ft/s and 10 feet, respec­ 
tively, can both the Reynolds number and Froude number be the same in the 
model and the prototype? The Reynolds number for the prototype at 70 °F is

R|= 8 x 10x1.94 =7>6xlQ 6 
e 2.04 x 10~ 5

and the Froude number for the prototype is

F* = . 8 0.45 
V32.2 x 10

If water is used as the fluid in model and prototype, then density and 
viscosity are the same for both cases. If a depth of 0.5 was selected for the 
model, the corresponding velocity for the Froude numbers to be the same would 
be 1.8 ft/s. With a model depth of 0.5 foot, the velocity in the model would 
have to be 158 ft/s to have the Reynolds number in both the model and proto­ 
type to be equal.

From a practical viewpoint, equality of Reynolds numbers cannot be 
achieved for model and prototype in open-channel flow so model studies are 
limited to those cases for which the effect of viscosity can be neglected. 
This is generally true for highly turbulent flows that occur when the model 
Reynolds number is above 10^.

Froude number similarity can be easily achieved so the model approach is 
ideal for rapidly varied flow problems where the gravity force dominates the 
flow. The discharge coefficients for dams, culverts, and contracted openings 
have all been defined by model studies and are assumed to apply to full scale 
situations with an equal Froude number and geometric similarity.

Example:

Laboratory tests were conducted on a box culvert. It is known that 
dynamic similarity will be achieved if the Froude number in both the labora­ 
tory and field are equal. A 1/10 scale model is built and tested. Under test 
conditions,'the laboratory flow rate is measured as 1.0 ft^/s, the velocity at 
the wingwall was 1.3 ft/s and it required 1.6 seconds for a water parcel to 
move through the culvert. For the prototype culvert operating under similar 
conditions, calculate the flow rate, the velocity at the wingwall, and the 
time required for a water parcel to move through the culvert.

Solution:

Because the Froude number in the model and prototype must be equal

or
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So any velocity in the prototype will be 3.16 times the corresponding velocity 
in the model, and the velocity at the wingwall will be 3.16 (1.3) = 4.11 ft/s 
in the prototype.

As will be shown later in the course, the discharge (Q) can always be 
computed as the product of the velocity (V) times the flow area (A) and the 
area is proportional to the product of two lengths so

QJD_ = VPAP _ Vp lp2

Qm VmAm m

or

Qp = Qm (3.16) (-y-) - 316 Qm.

The discharge in the prototype under test conditions will be 316 ft-^/s.

The time for a parcel of water to move between two points is the 
distance between the points 1 divided by the average velocity of the water as 
it traverses the path between the points so

Tp = Ip/Vp = ]p_ Vra = / 10
Tw. 1 i\7 1 V»> \ 1 m im/ vm lm P

The time for a parcel to pass through the prototype structure will be 3.16 
(1.6) = 5.06 seconds.

Dimensional Analysis

Most variables used in engineering are expressed in terms of three 
dimensions. These basic dimensions are force (F), time (T), and length (L). 
In this section the "brackets" mean "the dimensions of"

Example: the dimensions of pressure can be designated as

F[p] = ~~o"- 
I/

All rational equations (those developed by basic laws of physics) must 
balance in magnitude and must also be dimensionally homogeneous. That is, the 
dimensions of the left side of a rational equation must be the same as the 
dimensions on the right side and each term in the equation must have the same 
dimension.

In 1915 Buckingham showed that the number of independent dimensionless 
groups of variables (dimensionless parameters) needed to correlate the vari­ 
ables in a given process is equal to the number of variables involved minus 
the number of basic dimensions included in the variables.

Example: If it is known from experience or from experimental results 
that the drag force E of a fluid moving past a sphere is a function of the 
velocity Y, mass density £, viscosity Ji, and the diameter Qf then five vari­ 
ables (F, V, p, \i f D) are involved and by inspecting the dimensions of each of 
these variables it is seen that three basic dimensions (L, F, T) are involved.
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Thus, by the Buckingham theorem one should be able to organize the five vari­ 
ables into two basic groupings for correlating experimental results.

The key to successful application of dimensional analysis is to select 
all necessary variables. Sometimes this can be done by looking at the appro­ 
priate physical laws that govern the process. If the appropriate physical 
laws are not available, a preliminary test can be run to gather all possible 
significant data, combine the variables using dimensional analysis, and 
discard those that do not have much impact. This may be done in advance by 
examining physical evidence of other experiments.

Repeating - the key to practical use of dimensional analysis is to 
select only those variables that are significant to the problem.

Once the variables are selected, there are numerous methods for combin­ 
ing the variables such that each remaining parameter is dimensionless. A 
process that is easy and reveals the process is outlined and applied below.

Keep in mind what the goal is to reduce the number of separate variables 
involved in the problem to the smallest number of independent dimensionless 
groups of variables (dimensionless parameters).

Rules of the game:

1. Identify all significant variables associated with the problem and 
write the functional equation.

Z = f (V, D, X, Y)

2. Select a dimension (F, L, T) you wish to eliminate and a variable
that contains this dimension. Then by inspection combine the vari­ 
able with all other variables that contain the dimension in such a 
way that the new terms do not contain that dimension.

Then select another dimension and variable and repeat process above.

If all three dimensions (F, L, T) are involved, the manipulation is 
performed three times.

HINTS:

a. Get rid of F dimension first. If p is one of the variables, get 
rid of the F first by combining p in an appropriate manner with 
each variable that has the F dimension. (Remember Newton's law

r\

that says force equals mass times acceleration so [F] = M L/TZ in
FT2

which M is mass so [M] =  - .) Use a power of p necessary to
L

cancel the force dimension. Combine p only with the variables that 
contain F. The power of p may vary from term to term.

b. If velocity is one of the variables present, get rid of the T 
dimension (as in a above).

NOTE: If only one variable in the entire group of variables has 
the T (time) dimension, it is usually advisable to add the 
acceleration of gravity (g) to the list of significant vari­ 
ables. (It is usually part of the driving mechanism for the 
flow.)
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c. If depth is one of the variables, combine it with all terms that 
have the L dimension, and eliminate all L dimensions.

d. After all terms are dimensionless, it is perfectly legal to take 
terms to any power if it is convenient to do so. Remember each 
term is dimensionless so it does not matter if it is raised to a 
power and/or inverted.

Example:

Consider all fluid variables that might be significant in a general flow 
situation in which pressure difference between two points in the flow field is 
expected to be a function of V, D, p, \i r E, a, and y.

E = bulk modulus of elasticity, F/L2 , a = surface tension F/L. 

Solution:

Because the difference in pressure (AP) is the main variable of 
interest, place it on the left side of the equation

AP = fi (V, D, p, p., E, a, y)

in which f^ means AP is a function of the variables in the parentheses. 
Display each variable and its dimension.

[AP] = ^j [V] = | [D] = L [ P ] = ^L

FT F F F[Hi = -T [E] = -5- [a] = - [y] = -rr
L^ L^ L L^

1. Eliminate F dimension by dividing appropriate terms by some power of p 
(p = M/L3 = FT2 /L4 )

AP I
VJ = f2 ,p' p p' p

p J j/FT

m FT L4 _ L2 

L2FT2 T2

P J L^FT<

[f] LFT

L3FT2
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2. Eliminate T using some power of V

, JL E g Y '
Pv' pv2 ' pv2 ' pv2

 r =  ~ ;r (dimensionless)pV2J T2 L2

F M- "I _ L2 T _
LpvJ ~TL~ L

T E "I L2 T 2
 TT] =  ^ ^- (dimensionless)LpV2J T2 L2

rj>£ J^ Jj

3. Eliminate L using appropriate power of D

. f , . JL_ _2_
IpVD' pV2' pv2D' pV2

-~r =   (dimensionless)L pvD -I L

r CT n L
- TT  =   (dimensionless)

L pV2D J L

T YD T L
-*  r =   (dimensionless)

L pv2 -I L

Rearranging and inverting as necessary

/pVD V pV2D V 
f4 ' "I ' E/p' a '

Euler Reynolds Mach Weber Froude 
number number number number number

If it is known that all of the parameters are significant, AP is a function 
of all four terms.

If viscosity is not significant, the Reynolds number can be eliminated. 
If compressibility is not significant, the Mach number can be eliminated. 
If surface tension is not significant, the Weber number can be eliminated. 
If there is no free surface, the Froude number can be eliminated.
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PROBLEMS

A 1:2000 tidal model is operated to satisfy Froude's law. A velocity of 
0.02 ft/s is observed in the model. What is the velocity at the corre­ 
sponding point in the prototype? What length of time in the model corre­ 
sponds to one day in the prototype?

An overflow spillway 1,600 feet long is designed to pass 120,000 ft^/s. A 
1:20 model of the cross section of the structure is built in the labora­ 
tory. It is assumed that the flow is two dimensional so only a 1-foot 
section (rather than an 80-foot section) is built. Calculate the required 
laboratory flow rate for the 1-foot section assuming that viscosity and 
surface tension can be neglected. The pressure at a point in the model is 
observed to be -1.0 psi (-0.067 atmosphere). How should this be inter­ 
preted for the prototype?
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3. Derive an expression for the drag force on a smooth object moving.through 
water if this force depends only upon the speed and size of object as well 
as the density and viscosity of the water.

4. By dimensional analysis develop a discharge
relation for the discharge over a broad-crested 
weir.
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Lesson 4 - The Energy Equation for an Ideal Fluid

Fluid flow may be either steady or unsteady. Steady flow exists when 
none of the variables in the flow problem change with time. If any of the 
variables change with time, the condition of unsteady flow exists. The 
following discussion deals with steady-flow problems.

Streamlines

A path line is the trace made by a single particle over a period of 
time. A streamline is a curve that is tangent to the direction of velocity at 
every point on the curve. For steady flow, a path line and a streamline are 
identical.

Streamline pictures are both qualitative and quantitative in value. They 
allow the flow to be visualized as well as regions of high and low velocity 
and regions of high and low pressure to be located. They also allow the flow 
to be visualized.

When streamlines are drawn for steady flow, they form a boundary across 
which fluid particles do not pass. Thus, the space between the streamlines 
becomes a tube or passageway called a streamtube. The flow in such a tube may 
be treated as if it were isolated from the adjacent fluid. The use of the 
streamtube concept broadens the application of fluid-flow principles; for 
example, it allows treating apparently different problems such as flow in a 
passageway and flow about an immersed object with the same laws.

The Continuity Equation

The application of the principle of conservation of mass (matter can 
neither be created nor destroyed) to a steady flow in a streamtube results in 
the equation of continuity, which expresses the continuity of flow from 
section to section of the streamtube. Consider the streamtube shown in figure 
4-1 through which passes a steady flow of fluid. At section 1 the cross- 
sectional area is AI and at section 2 the area is A2. If the mass of fluid

occupying position BB^- moves to position CC^ in time dt, the conservation of 
mass principle yields

p A-L dsi = p A2 ds2,

where dsi and ds2 are the displacement lengths at sections 1 and 2, respec­ 
tively. Dividing by p dt because p is constant yields

* ds l * ds 2 
Al IT = A2 IT''

however, dsi/dt and dS2/dt are the mean velocities of flow past sections 1 and 
2, respectively; therefore,

AiVi = A2V2 = Q, (4-1)

which is the equation of continuity. The product A x V is designated as the 
flow rate, Q, and has units of cubic feet per second.
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Figure 4-1. Steady flow through a 
streamtube.
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The Energy Equation

The fundamental equation of motion for steady flow may be derived by 
applying the principle of conservation of energy to individual fluid parcels. 
At this point it will be assumed that an ideal fluid exists for which no 
shearing stress occurs. In such a fluid there can be no frictional effects 
between moving fluid layers or between these layers and the boundary walls, 
and thus no cause for eddy formation or energy dissipation due to friction. 
The assumption of an ideal fluid allows a fluid to be treated as an aggrega­ 
tion of small particles that will support pressure forces normal to their 
faces but will slide over one another without resistance. Thus the motion of 
these ideal fluid particles is analogous to the motion of a solid body on a 
resistanceless plane; from this it may be concluded that unbalanced forces 
existing on particles of an ideal fluid will result in the acceleration of 
these particles according to Newton's Second Law.

Consider a 1-lb parcel of fluid at Point A in figure 4-2. Compute the 
amount of energy contained by this parcel of fluid relative to some arbitrary 
datum. The parcel contains energy of three types--kinetic, potential, and 
pressure potential. The potential energy of the parcel (relative to the 
datum) is its weight times the distance above the datum or simply Z& foot 
pound per pound. Notice the units of energy per pound are simply feet. In 
hydraulics, the term for foot pound per pound is usually called head, or the 
potential energy head of parcel A is ZA foot. The second form of energy is 
called pressure potential. If 1 Ib of fluid at A was placed into a plastic 
bag, this fluid could be lifted to the water surface without expending any 
energy because the fluid is neutrally buoyant and for an ideal fluid there is 
no resistance to motion. Because the parcel at A could exchange places with 
the parcel at the water surface without the expenditure of energy, its effec­ 
tive potential energy per pound is (ZA + YA) i-n which y& is also equal to the 
pressure at point A divided by the unit weight (equation 1-2). This term is 
called the pressure head. Notice that the effective potential energy for any 
parcel of fluid (or streamline) at section A is the same and equal to the sum

Total head = constant

Figure 4-2. Flow of an ideal fluid 
in an open channel.
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of the water depth plus the elevation of the bed above the datum. The sum of 
these two terms is called the piezometric (or hydraulic) head and for open 
channels its value is equal to the elevation of the water surface above the 
datum.

The kinetic energy of a 1-lb object moving at velocity VA is

Kinetic energy = KE/Vol = pv2 _ v2 (ft/s) 2 
Pound ~ wt/Vol 2y ~ 2g ft/s2

Notice the units of the kinetic energy per unit weight is also feet and the 
term is called the velocity head.

The sum of all three energies (heads) is called the total head and is 
often plotted pictorially as shown on figure 4-2. For an ideal fluid with no 
resistance to motion, the total energy of a pound of fluid is constant at all 
points along the streamline. For steady flow, the total head (energy) at 
section B, therefore, must be equal to that at section A or at any other 
section. Expressed mathematically,

2 T7T,2
YA + ZA =  - + YB + ZB = constant. (4-2) 

2g 2g

Equation 4-2 is usually called the Bernoulli equation or simply the energy 
equation. Almost all open-channel-flow problems are solved by the application 
of equations 4-1 and 4-2; therefore, a complete understanding of these equa­ 
tions is essential.

By assuming frictionless motion, the equations are considerably simpli­ 
fied and more easily assimilated by the beginning student. In many cases, 
these simplified equations allow solution of engineering problems to an 
accuracy entirely adequate for practical purposes. In real situations where 
friction is small, the frictionless assumption will give good results where 
friction is large, it obviously will not.. The identification of these situa­ 
tions is part of the art of fluid mechanics. However, as a general rule, 
accelerative processes are efficient and involve very little loss of energy 
while deceleration processes involve large losses of energy.

Example:

The discharge in the channel shown in figure 4-3 is 280 ft^/s. The 
depth at section A is 5.0 feet and the width is 8.0 feet. At Section B the 
width is 10.0 feet. Assuming ideal (frictionless) flow, compute the velocity 
and depth at section B.

Solution:

The first step is to draw the total head line as shown on figure 4-3. 
Because no energy is expended between sections A and B, the total head 
(energy) line is horizontal. The streamline along the bed is one of an infi­ 
nite number of streamlines that could be drawn for the flow between sections A 
and B. Next, label the figure to show the kinetic, potential, and pressure 
potential energy terms at each section for the streamline at the bottom. Next, 
record the known values of each term of the energy equation on the figure and 
compute the unknown values by use of equations 4-1 and/or 4-2.
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Figure 4-3.--Example problem of 
flow down a ramp.

Total head line (horizontal) = 8.011 feet

DA =5.0 feet

__ __l____'jrCg

2A = 2.25 feet " '<g?

J "^=£rJi zB ="i. 
__ __ .Datum_ __ _ __ Jfc

(A) (B)
Q = 280 cubic feet per second

0 feet 
_L__

In this example the potential energies of a parcel on the bottom of the 
channel at sections A and B are 2.25 and 1.00 ft Ib/lb, respectively, the 
pressure potential energy of the parcel at A is 5.0 ft Ib/lb, and the other 
three terms are unknown. For an ideal fluid the velocity at all points in the 
cross section are equal so VA = VA . It is easily seen that the continuity 
equation can be used to determine the velocity at section A as

Q = 280 = VA (5) (8.0) = vA (5) (8) 

or VA = 7.0 ft/s so the velocity head (kinetic energy) at section A is seen to be

(7) 2 /2(32.2) = 0.761 ft Ib/lb.

The total energy of a parcel of water passing section A on any streamline is 
seen to be

0.761 + 5 + 2.25 = 8.011 ft Ib/lb.

For frictionless flow, the total head is constant at all points along a 
streamline, specifically the total energy of a parcel at cross-section B on 
any streamline is equal to the total energy of a parcel at section A. The 
total head is 8.011 feet so writing the energy equation from point A to B:

8.011 =
VB 
2g

+ i.o.

This one equation has two unknowns, VB and DB- However, the continuity equa­ 
tion also applies at section B so that

or solving for VB

Q = 280 = VB DB (10.0),

28vB = VB =  ,

which can be combined with the energy equation to give

8.011 = (28/D B ) 2 /64.4 + D B + 1.0,

or
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This is a cubic equation that may be solved by trial. In other words, 
different values of DB are assumed until the right-hand side of the equation 
is equal to 7.011. Below, the value of the right-hand side is tabulated for 
different depths.

DB (ft)

10.0
8.0
7.0
6.75

6.74
6.0
4.0

12.174
D22 

10.12 
8.19 
7.248 
7.017

7.008
6.338
4.761

DB (ft)

2.0 
1.8 
1.5 
1.49

12.174 
D22

>*
48
30

1.00

5.043
5.557
6.911
6.973

7.038
8.503

13.174

>*

Notice that a depth of either 6.743 or 1.484 feet satisfies the equation and 
is possible for an ideal fluid. These are called alternate depths. Unless 
some constriction downstream caused the water to back up, the flow would 
accelerate as shown on the figure and the smaller depth will occur. In this 
case, the velocity at the section would be

vB - B
280

10 (1.484)
= 18.87 ft/s,

and the velocity head is

(18.87) 2 
64.4

= 5.527 ft Ib/lb

As can be seen, the total head at section B is

,r«2

2g
+ DB + ZB = 5.527 + 1.484 + 1.0 = 8.011,

the same as for section A so energy is conserved. A 1-lb parcel of water 
on the surface streamline contains 0.761 ft Ib of kinetic energy and 
2.25 + 5.0 = 7.25 ft Ib of potential energy as it passes section A. As it 
passes section B, it has only 1.0 + 1.484 = 2.484 ft Ib of potential energy, 
The difference 4.766 ft Ib has been converted to kinetic energy so as it 
passes section B it contains 0.761 + 4.766 = 5.527 ft Ib of kinetic energy.
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PROBLEMS

500 ft^/s of water flow in a rectangular open channel that is 20 feet wide 
and 8 feet deep. After passing through a transition structure, the width 
of the rectangular channel narrows to 15 feet and the bed raises as shown. 
The velocity in the contracted section is found to be 6 ft/s.
(a) What is the water depth in the narrow channel?
(b) What are the velocity heads in each section?
(c) Draw and label the total and piezometric (water surface) head lines.
(d) How much does the bed elevation increase in the contracted section?

Water surface

2. Water stands 9 feet deep in a large tank. A hole with an area of 0.1 : 
is punched in the side of the tank 5 feet above the bottom.
(a) Compute the discharge from the hole.
(b) Draw and label the total and piezometric head lines.
(c) What is the velocity of the water as it hits the ground? 
Note: If the hole is rounded as shown, the answers you compute for an 

ideal fluid will be correct to within about 1 percent.

Water surface

9ft T
5ft
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3. Compute the discharge in the 20-foot wide rectangular channel shown 
below. Draw and label the total head line and the water surface near the 
gate.

Water surface

I
10ft

I -

: Total head

i

*
    *  4ft 

t

4. Compute the discharge and 
depth in the contracted 
section for the indicated 
rectangular channel.

Plan view

Elevation 100 ft =
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PART II - STEADY UNIFORM FLOW OF REAL FLUIDS IN OPEN CHANNELS

Lesson 5 - Velocity Profiles 

General

In 1883 Osborne Reynolds demonstrated that there are two distinctly 
different types of fluid flow. He injected a fine threadlike stream of 
colored liquid, at the entrance to a large glass tube through which water was 
flowing. When the velocity of flow in the tube was small, this colored liquid 
was visible as a straight line throughout the length of the tube, thus showing 
that the particles of water moved in parallel straight lines. But, as the 
velocity of the water was gradually increased by permitting a greater quantity 
to flow through the tube, there was a point at which the flow abruptly 
changed. It was then seen that, instead of a single straight line, the parti­ 
cles of the colored liquid were flowing in a very irregular fashion and form­ 
ing numerous vortices. In a short time the color was diffused uniformly 
throughout the tube so that no streamlines could be distinguished. Later 
observations have shown that in this type of flow the velocities and pressures 
continuously fluctuate.

The first type of flow is known as laminar, streamline, or viscous flow. 
The significance of these terms is that the fluid appears to move by the slid­ 
ing of layers or laminations of infinitesimal thickness relative to adjacent 
layers, that the particles move in definite and observable paths or stream­ 
lines, and it is also a flow that is characteristic of a viscous fluid or at 
least a flow in which viscosity plays a significant part. For laminar flow, 
the shear stress is determined from the equation

I = H I2- . (1-1) 
dy

The second type of flow, where single water parcels move about within 
the flow in an erratic manner, is known as turbulent flow. The distinguishing 
characteristic of turbulence is its irregularity. There is no definite 
frequency (as in wave action) or any observable pattern (as in the case of 
eddies).

Large eddies, swirls, and irregular movements of large bodies of fluid, 
which can be traced to obvious sources of disturbance, do not constitute 
turbulence but may be described as a disturbed flow. By contrast, turbulent 
flow commonly occurs in streams that appear to be very smoothly flowing and in 
which there is no detectable source of disturbance. The fluctuations of 
velocity and pressure are furthermore comparatively small and can often be 
detected only by special means of observation.

Reynolds Number

Reynolds was able to generalize his results and predict whether the flow 
would be laminar or turbulent by use of a dimensionless ratio later called the 
Reynolds number. The Reynolds number is the ratio of inertial to viscous 
forces in the flow

vpl vlRe = -1-  =   , (5-1) 
I V
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in which v = velocity of flow, p = density of fluid, I *= a characteristic 
length dimension (depth for open-channel flow, diameter for pipe flow), 
\i = dynamic viscosity, and V = kinematic viscosity (Jl/p) .

The concept of a critical Reynolds number delineating the regimes of 
laminar and turbulent flow is indeed a useful one in promoting concise gener­ 
alization of certain flow phenomena. Applying this concept to the flow of any 
fluid in cylindrical pipes, it is possible to predict that the flow will 
generally be laminar if Re<2,100 and turbulent if Re>4,000. However, it is to 
be emphasized that the critical Reynolds number is very much a function of 
boundary geometry. For flow between parallel walls (using mean velocity V, 
and spacing I), Re = 1,000; for flow in a wide open channel (using mean veloc­ 
ity V and depth D), Re = 500; for flow about a sphere (using approach velocity 
V and diameter d), Re = 1. Also noteworthy is the fact that such critical 
Reynolds numbers must be determined experimentally; because of the obscure 
origins of turbulence, analytical methods for predicting critical Reynolds 
numbers have yet to be developed.

Laminar Flow

Laminar flow only occurs in open channels when the depths are very 
small. It is often assumed to occur in sheet flow or flow over the ground 
after a rainfall. Consider the uniform flow of constant depth D over a very 
wide plane surface as illustrated on figure 5-1. Assume a unit weight of y 
for the fluid, that the slope is small, the flow is laminar, and a width of W 
feet.

Figure 5-1. Sheet flow over a wide
inclined plane of width W,

Because the flow is uniform, the acceleration of the mass of fluid 
enclosed by abed is zero and the sum of all forces on it must equal zero 
Summation of forces in a direction parallel to the bottom gives

+ wt sin 9 - F2 - TLW.ZF = 0

Because the flow is uniform, the pressure forces (FI and F2) cancel and the 
component of the weight parallel to the flow must be balanced by the shear 
force. This gives an expression for shear stress in open-channel flow

yL(D - y) W sin 9 = TLW

or

T = Y (D - y) sin 9, 

which is valid in either laminar or turbulent flow.

(5-2)
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For laminar flow, the shear stress is given by equation 1-1 that when 
substituted into equation 5-2 yields an expression for the variation of veloc­ 
ity with distance from the bed

T = p,TV-=y(D-y) sin 6. 
dy

Separating the variables and integrating one obtains an expression for the 
velocity profile in laminar, open-channel flow

v - -^ sin 6 f (D - y) dy = -^ sin 6 | Dy - ^ ] + c
M- J y M- ^ y )

where c is a constant. Because the velocity must be zero at the bed (fluid 
clings to a solid surface), the value of c is zero. Thus the velocity distri­ 
bution in laminar, open-channel flow is given by the parabolic equation

v / y2 \
v = -1 sin 6 Dy -  *  (Laminar) . (5-3)M- I y)

The discharge per unit width is obtained by integrating again

fD v D3 
q = I v dy - -*  sin 6 -r~ . (5-4)

J 0 **

The mean velocity is found by dividing the unit discharge by the cross- 
sectional area (D (1))

V = D = U Sin ° ^T ' (5 " 5) 

Turbulent Flow

The expression for the shear stress given by equation 5-2 results simply 
from a force balance and so it is valid in either laminar or turbulent flow. 
In turbulent flow, however, the random particle movement causes additional 
momentum transfer (or apparent shear) so that the shear stress relation 1-1 is 
not valid. Prandtl developed a theory based on momentum transfer and assumed 
the shear stress in turbulent flow is given by

,2 /3v
Tturb = P I 2 (^

in which I is the distance each parcel of fluid moves from its mean position 
during each excursion. This excursion distance is called the mixing length. 
Because a boundary limits the excursion length of parcels, the mixing length 
should be small near the bed or the surface and increase with distance from 
the boundary. An equation for mixing length that predicts a value of zero at 
both the bed and the surface and a maximum at middepth is

I = K y Vl - y/D,
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in which y is measured from the bed upward and K is a constant called the von 
Karman kappa value. The turbulent shear stress equation with the above equa­ 
tion for mixing length can be substituted into equation 5-2 to obtain the most 
popular expression for velocity distribution in turbulent flow,

pK2 y2 (1 - y/D) (r ) = Y (D - y) sin 9.
r \ cfy / '

Rearranging

9v = /YD sin 9 1 = flo. 1 _ u * 
3y V p Ky V p Ky Ky '

where To = shear stress at the bed. Because the shear at the bed is equal to 

YD sin 9 (see equation 5-2), the term Vlo/P has the dimensions of velocity and 

is called the shear velocity or friction velocity, u^ = "Vto/P- Tne above

expression can be integrated by separating the variables to give the Prandtl- 
von Karman universal velocity distribution law in turbulent flow

u* 
v =   In (y/y0 ) (5-6)

1C

where yo is a constant of integration physically equal to the value of y at 
which the velocity (from equation 5-6) is zero. For points closer to the bed 
than yo , equation 5-6 is not valid because the flow is laminar, not turbulent. 
In fact, equation 5-6 indicates that the velocity is negative for values of y 
less than yo .

The value of K is generally assumed to have a value of approximately 
0.4.

The discharge per unit width of channel is found by integrating the 
velocity given by equation 5-6 over the range yo to D:

fD u* PD .
J vd* = Tj ln (£)
Yo Yo 

from which

= ^ - / D 
^ K

where e = 2.718... (the base of natural logarithms). The average velocity in 
the vertical section of a channel is found by dividing q by D

q U* / D \
V = £ =    In (  ) . (5-8)

D K \ ey0 /

It is easily seen by comparing equations 5-6 and 5-8 that v is equal to 
V when y is equal to D/e, or approximately 0.368 D. It is common practice to 
take single velocity observations in shallow streams at 0.6 the depth measured 
from the surface. This corresponds closely to 0.368 D in equation 5-8.
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When the channel boundary is smooth, the value of the constant yo has 
been found to equal V/9u*. Substituting this value into equation 5-6 yields 

and converting to common logarithms

v = 5.75 u^log
V v (smooth surfaces) (5-9)

for the velocity distribution of turbulent flow over a smooth surface where V 
is the kinematic viscosity. The 5.75 is equal to In 10/0.4 and 
In x = (log x)In 10.

When the boundary is rough, the constant yo has been found to be approx­ 
imately equal to k/30 where k is the effective height of the irregularities 
forming the surface. Substituting this expression for yo yields the universal 
velocity distribution for rough boundaries,

v = 5.75u^log \~~j~) (rough surfaces), (5-10)

where k is the effective height of the irregularities forming the surface. 

Example:

A velocity of 3.5 ft/s is measured at a distance of 1.6 feet above the 
bottom of a wide open channel that is 4.0 feet deep. The channel slope is 
0 = 0.0003 radian. Assuming a fully developed turbulent flow over a rough 
surface, compute the velocity at a point 0.5 foot above the bed. See figure 
5-2.

Water surface

Figure 5-2. Velocity distribution in 
a fully developed, rough 
turbulent flow.

I
4.0 f

i

eet

j
y = 1.6 feel

/
v = 3.5 feet/second/

* /

/

t I ___ -''

The velocity distribution in turbulent, rough flow is given by equation 
5-10. To use this equation the value of shear velocity (u*) and the effective 

height of the bed roughness k must be known. The shear velocity has been

defined as Vt0 /P where the bed shear stress lo is given by equation 5-2 with 
y = 0 so

TO = 62.4 (4.0 - 0.0) 0.0003 = 0.0749 lb/ft2 

and the shear velocity is

.0749
1.94 = 0.1965 ft/s.
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Because the velocity is given at one depth, k can be computed from equation 
5-10 as follows:

3.5 = 5.75 (0.1965) log 

giving

3.098 = log  

or

48 = 10 3.098 = 1/25 4 
Jc

and
k = 0.0383 ft.

With k and u* determined, equation 5-10 can be used to compute the velocity at 

any depth. In particular at y = 0.5,

v = 5.75 (0.1965) log 3Q° ' = 2.93 ft/s.

At y = 0.0383/30 = 0.00127 foot the velocity computed from equation 5-10 is 

u = 5.75 (0.1965, log ( ' ° °  £ ° ' ) - 0.0 ,

and for values of y less than 0.00127, equation 5-10 indicates a unreasonable 
(negative) velocity.
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PROBLEMS

1. Water flows down an incline that slopes downward 1 foot for each 1,000 
feet of horizontal distance. The water depth is 0.02 foot. What is the 
unit discharge, the maximum velocity, the mean velocity, and the Reynolds 
number? (Assume laminar flow and a water temperature of 60 °F.)
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2. A wide channel carries a uniform flow at a depth of 5.0 feet on a slope of 
0.0001. Compute the shear stress at the bed and the friction velocity.

The bottom for the channel in problem 2 is smooth and the water tempera­ 
ture is 40 °F. Compute and plot a curve showing the theoretical velocity 
distribution. What is the mean velocity?

y ft 

0.0000146

0.021

0.1

0.2

1.0

1.5

1.84

2.0

3.0

4.0

5.0

V
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4. Show that if velocity measurements in a deep natural stream are taken at
depths of 0.2D and 0.8D, then averaged where D is the total depth, the
result is nearly equivalent to substituting 0.368D in Equation 5-6.
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Lesson 6 - The Energy Equation Applied to Real Fluids

The total energy of a pound of water in an open channel can be expressed 
as the sum of three forms of energy: the potential energy, the pressure 
potential, and the kinetic energy. The potential energy per pound of fluid at 
a section is represented as the distance of the channel bed above an arbitrary 
datum. Because the units of the quantity of energy (foot pound per pound of 
fluid) is feet, the energy term is commonly referred to as head and the poten­ 
tial energy per pound of fluid is called the potential head. In figure 6-1 
the potential head is shown as Zi at section 1 and Z2 at section 2.

The pressure potential is equal to the depth of flow (Di and D2 on fig. 
6-1). The sum of the potential plus the pressure potential energies at a 
cross section is called the piezometric or hydraulic head.

Horizontal line

1-2

Figure 6-1.--Energy diagram for 
open-channel flow.

(D

Kinetic Energy

The kinetic energy per pound of fluid is called the velocity head and is 
equal to v^/2g where v is the velocity of the fluid. For an ideal fluid, the 
velocity of all parcels of fluid passing a section are the same so the veloc­ 
ity head for any streamline or water parcel at a particular section is the 
same. For a real fluid, the velocity varies over the cross section, small 
near the boundaries and maximum near the surface and center of the cross 
section. As a result, a parcel of fluid moving near the boundary has less 
kinetic energy (velocity head) than a parcel moving near midstream.

The average kinetic energy of all water parcels passing a section is 
needed to apply the energy principle at a cross section. Because the kinetic 
energy is proportional to the velocity squared, the average kinetic energy is 
always greater than kinetic energy of a parcel moving at the average velocity 
V. The average kinetic energy, per pound of fluid, can be computed from the 
average velocity V, as

kinetic energy

where oc is defined as

a = r
2g '

i ai
(6-1)
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in which A is the total cross-sectional area, a^ is the area of a subsection 
where the velocity is vi, and a is called the kinetic energy coefficient or 
the Coriolis coefficient (Chow, 1959, p. 27). Because the average of the 
cubes of positive numbers will always be greater than the cube of the average, 
the value of a will always exceed 1.0.

The value of a is determined by the variations of velocity in the cross 
section with more uniform velocities yielding a closer to 1.0. Typical 
values of the kinetic-energy coefficient, a, for open channels are given by 
Chow (1959) as shown in table 6-1. For low velocities, the velocity head is 
small, so a is frequently not considered in practical problems dealing with 
regular channels.

Table 6.1 Kinetic energy correction coefficients for natural 
channels.

Value of a
Channel type Minimum Average Maximum

Regular channels, flumes, spillways
Natural streams
Rivers under ice cover
River valleys, overflooded

1.10
1.15
1.20
1.50

1.15
1.30
1.50
1.75

1.20
1.50
2.00
2.00

The average energy per pound of real fluid is computed as the sum of the 
piezometric head (D + Z) and the velocity head as (XV2 /2g and is called the 
total head, H, where

(XV2
H =    + D + Z. 

2g

Energy Loss'

In an ideal fluid the total head at any point along the flow is constant 
because no energy is expended in moving parcels of water from one section to 
another. In a real fluid, however, energy must be expended in moving the 
fluid parcels along streamlines so the total head must decrease as a parcel 
moves downstream. The energy expended in moving the water from section 1 to 
section 2 in figure 6-1 is indicated as h^ 1 "2 and is called the head loss.

Two modifications must be made in the Bernoulli (energy) equation 
derived for an ideal fluid to make it applicable to real fluids. First, the 
velocity head must be corrected for the nonuniform distribution of velocity by 
use of the a coefficient and, second, the energy expenditure necessary to 
move the water between sections must be accounted for. Therefore, the energy 
equation for real fluids moving from section 1 to section 2 is written as

(Xi Vi 2 Ot? V? 2 i o
X2 X + DI + Zi = 2^~ + D2 + Z2 + hi 1 "2 . (6-2)
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Example:

Compute the discharge through the bridge constriction shown in figure 6-2. 
The kinetic energy correction coefficients are 1.45 and 1.08 at sections 1 and 
3, respectively, and all cross sections are rectangular. The head loss between 
sections 1 and 2 is 0.25 foot due to boundary friction, and the head loss 
between sections 2 and 3 is 0.35 foot because of entrance losses and boundary 
friction. The bed at section 1 is 0.34 foot above the bed at section 3.

t
70 feet

\

i
Plan view 40 feet     +- Q

f

Figure 6-2. Typical flow through 
a bridge constriction

(3)

Solution:

The first step, as always, is to roughly sketch the energy line and label 
the known and unknown parts. As is seen in figure 6-2, the total energy expen­ 
diture by a pound of water moving from section 1 to 3 is 0.25 + 0.35 = 0.60 ft 
Ib. Assuming the datum is at the channel bottom at section 3, the potential 
energy at section 1 is seen to be 0.34 foot. Because both depths are given, the 
total piezometric heads are known at both sections leaving only the two velocity 
heads as unknowns. The continuity equation may be used to express each velocity 
head in terms of the discharge and then the energy equation will contain only 
one unknown, Q.

Apply the continuity equation

V3 =

Then applying the energy equation 

2 1.45

5.0(40)

6.5(70)

Q 
200

Q 
455

455 64.4 + 6.5 + 0.34 =
200 64.4 + 5.0 + 0 + 0.25 + 0.35,
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simplifying

1.24 = Q (4.19 - 1.09) x 10~7 f

giving

Q2 = 4.00 x 10 6 or Q = 2,000 ft 3 /s.

The relative size of the terms in the energy equation may be evaluated by 
computing the size of the velocity heads. At section 1 the velocity is

At section 3

o
=   = 4.39 and = 0.43 ft. 

AI 2g

V3 =   = 10.0 and ^ J = 1.68 ft. 
A3 2g
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PROBLEMS

1. The discharge over the spillway is 
150 ft^/s per foot of width.

(a) Assuming a = 1.0, compute the 
head loss between points A and 
B and between points B and C.

(b) Accurately sketch and label the 
total head line.

(c) Calculate the temperature rise 
of the water passing from point 
A to C. (1 BTU will raise the 
temperature of 1 Ib of water 1 
°F and 1 BTU = 778 ft Ib of 
energy.)

Elevation 200 ft

Elevation 100 ft rJ=fe/S/^S^^W^^^^J =^r
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2. The measuring flume has rectangular 
sections throughout and the head loss 
between points A and B, h\, is

Plan view

V
0.1

(a) Compute the discharge assuming all 
(X's are 1.0.

(b) The head loss between points B and 
C is given by the same expression 
as above except the coefficient, 
0.1, is different. Compute the 
coefficient for the expansion 
loss.

(c) Accurately sketch and label the 
total head line.
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3. A flow of 2.5 ft^/s/ft occurs in an infinitely long open channel with a
bottom slope of 10 ft/mi. The head loss per unit length is known to obey 
the law:

By writing the energy equation between two points 1 mile apart, assuming 
a = 1.0 and observing that the depth and velocity cannot increase indefi­ 
nitely, compute the depth of flow.
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4. A flow of 50 ft^/s/ft exists in the river and the head loss per unit 
length is given by

hi =
120 D"

Compute the water depth at point A assuming a = 1.0.
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Lesson 7 - Flow Resistance

As indicated previously, real fluids differ from ideal fluids mainly 
because of their resistance to movement, which results in an energy loss as 
the water moves along the channel. Accounting for this energy loss, or head 
loss, is a major difficulty in hydraulic computations. Consider a flow in a 
prismatic channel as illustrated in figure 7-1.

***\ Water surface x"'

Cross section

T.1-2

Figure 7-1. Flow in a prismatic 
open channel.

Applying Newton's law to the water in this section of river, one obtains 

ZF = MI = FI + wt S0 ~ F2 - PL TO (7-1)

in which I = acceleration of the water mass, SQ = slope of bed (nearly equal 
to sin 0 for small angles), P = perimeter of the wetted area. The components 
of forces parallel to the bed are summed and set equal to the mass of water in 
the section times its acceleration. The forces FI and F2 are the forces 
caused by the hydrostatic pressure at the ends of the section, wt is the 
weight of the water.

The term PL To quantifies the resistance of the water to movement 
through the channel. It is the shearing force on the control volume pictured 
in figure 7-1.

The energy expended in overcoming friction when the control volume moves 
downstream a distance of ds may be computed as the product of the resistance 
force times the distance moved:

Energy Loss = PL TO ds ft Ib.

But the energy expended per pound of fluid in the control volume is the head 
loss occurring over the distance ds and it is computed as the energy loss 
divided by the weight of fluid so

hi =
PL ds

yLA
TQ ds 
pg R
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where the hydraulic radius, R, is defined as the area divided by the wetted 
perimeter and y = pg. The slope of the total energy line must be equal to the 
head loss per unit length so

ds \ p / gR '

or rearranging

U* = \"p" = g R Sf ' (7 "2) 

Solving equation 7-2 for the shear stress, yields

TO = pg R Sf = Y R Sf . (7-3)

If the energy expenditure is due only to boundary friction, the slope of 
the total energy line will be directly related to the boundary shear as 
indicated in equation 7-3. This equation is valid for either uniform or 
nonuniform flow as well as both steady and unsteady flow.

A special case occurs for steady uniform flow. In this case, equation 
7-1 can be solved directly to obtain 7-3 by noting that force FI is equal and 
opposite to F2 and that the acceleration is zero. In this case,

in which So is equal to Sf because the flow is uniform.

It has been observed in many experiments and in many different situa­ 
tions that boundary shear is proportional to the square of the velocity for 
turbulent flow. This empirical observation can be expressed as

V = C'^M-- = C'u* = C 1 g R Sf (7-4)

by use of equation 7-2 because the density is constant.

As early as 1769, the French engineer Antoine Chezy ran extensive tests 
on an earthen canal and the Seine River and concluded that

V = cVRS~ . (7-5)

Chezy apparently never had a course in dimensional analysis so he did not

worry about the fact that the dimensions of vRS and V are not the same. As a 
result, he left out the gravity term. On the other hand, the concept of 
gravitational acceleration was relatively new. At any rate, Chezy's equation 
today is often written as

V = ~r VgRS = -pr u* , (7-6) 
Vg Vg

in which C is called the Chezy resistance coefficient.
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After Chezy's formula became generally known, there was a lot of inter­ 
est in developing formulas to predict the value of C. The most enduring of 
the resulting empirical prediction formulas is usually attributed, wrongly 
according to Henderson (1966, p. 96) , to Robert Manning. After some modifica­ 
tion, Manning's formula became

c = R , (7 . 7) 
n

in which n is the Manning coefficient. According to Chow (1959, p. 98), 
Manning developed his formula by combining seven formulas all based on Bazin's 
data and verified it by 170 observations. Substituting equation 7-7 into 
equation 7-5, the more common form of the Manning expression is

1.49 R1/6u, 
V =      ==    = ^^- R^/ J Sf 1 /^ . (7-8)l * I- 49 ->/3

n

Combining the continuity equation with equation 7-8

Q = ^^-AR2/3 Sfl/2 . (7-9) 
n

Notice that Manning was not too concerned about dimensional analysis 
either. Equation 7-7 has the units ft/s on the left and ft^/3 On the right; 
thus, the units of n must be s/ft^'3 making n to appear to be a function of 
time, which is not realistic. Assuming the 1.49 contains the square root of 
the acceleration of gravity, Manning's n has the units of ft 1 /^. These units 
are more logical because the resistance the resistance should increase as the 
size of the roughness projections of the bed increase. Converting Manning's 
equation to the SI system, the units of 1.49/n is converted to m^/^s f rOm 
ft 1/3s, so

49 ftl/3 seel f lm 1 1/3 = i m tt sec m
ft

or in the SI system

v   ± R2/3 Sf 1/2 ,

where the units of V are m/s and the units of R are meters. The numerical 
value of n is considered to be the same in either system of units, and the 
conversion is included in the formula .

The Manning (7-8) and Chezy (7-6) equations are the most common equa­ 
tions used in the United States to describe resistance to flow in open 
channels. Another expression developed for use in pipes is sometimes used in 
open channels. This is the Darcy-Weisbach equation which can be written for 
open channels as

IQ ,        IQ

(7-10)

in which f is called the Darcy-Weisbach friction factor or simply the friction 
factor.
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All three velocity equations, the Manning, the Chezy, and the Darcy- 
Weisbach, are based on the assumption that the shear stress is proportional to 
the velocity squared and the energy dissipation is caused entirely by boundary 
resistance.

Example:

Compute the depth of uniform flow in a trapezoidal channel with a 10- 
foot bottom width and side slopes of 1 vertical to 2 horizontal when the dis­ 
charge is 4,000 ft^/s. The channel slope is 0.002 and Manning's n = 0.013.

Solution:

Manning's equation relates discharge to area, hydraulic radius, and 
friction slope

Q = 1.49 
n Sf 1 / 2

Discharge is given and the friction slope is equal to the bed slope because 
the flow is uniform. The area and hydraulic radius can be expressed as func­ 
tions of depth because the geometry is given. The area is computed as the 
area of a rectangle 10 feet wide and D feet high plus two triangles 2 D feet 
wide at the top and D feet high so

A = 10D + 2(1/2 D (2D)) = 10D + 2D2 .

The slope distance along the sides will be the square root of the sum of the 
squares of the two other sides of the triangle so

P = 10 + 2 + (2D) 2 = 10 + 2D VI.
Substituting these expressions into Manning's equation gives one complex equa­ 
tion and one unknown that must be solved by trial. A solution may be obtained 
by constructing a table as shown below in which values of depth are assumed 
and discharges are computed from Manning's equation. The depth is selected as 
the value that gives a discharge of 4,000 ft^/s. It is also convenient to 
simplify Manning's equation as follows

O -Q - 1>49 
0.013

'0.002 =5.13 AR2 / 3 .

*<

9
9.1
9.2

9.3 266.0 51.59

3.58
4.54

02
06

5.11

5.16 2.98
>*

4,068

As can be determined by interpolation, a depth of 9.23 feet will deliver 4,000 
ft 3 /s at uniform flow in the given channel.
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PROBLEMS

1. Explain why a uniform flow cannot occur in either a frictionless or a 
horizontal channel.

2. The figure shown is a cross section of a canal forming a portion of the 
Colorado River Aqueduct that carries 1,600 ft^/s of water. The canal is 
concrete lined with an n value of 0.014. What must be the grade of the 
canal in feet per mile?

3. What would be the capacity of the canal of problem 2 if the grade were 1.2 
ft/mi?



4. If the flow in the canal of problem 2 was reduced to 800 ft^/s, what would 
be the depth of water?

5. Compute the value of the Chezy C and the Darcy-Weisbach f for the canal of 
problem 2.
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6. Construct a rating curve for the indicated channel. A rating curve 
defines the relation of discharge to depth, or stage.

5 = 0.0025

Water surface

I
V

| ^h    100ft    1
-   50 ft   *«|

V

1 ft

5ft

5.1 ft

6ft

10ft

A R
n = 0.03

V Q
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Lesson 8 - Computations for Steady, Uniform Flow

Stream channels are rarely, if ever, uniform in nature. Contractions 
and expansions of stream width and depth occur in random fashion as one 
proceeds along the course of a stream channel. Despite these complexities, 
the principles of hydraulics of steady, uniform flow can usually be applied 
with only a few modifications to obtain satisfactory results.

The Geological Survey uses the Manning equation to determine discharges 
in natural channels and the conveyance of the channel section, K, is defined 
as

K = 1 ' 49 AR2 / 3 . (8-1) 
n

So discharge in a channel may be expressed as

Q = VA = K Vs , (8-2)

which is commonly referred to as the slope-conveyance method of computing 
discharge. The conveyance is a measure of the carrying capacity of the 
channel section because it is directly proportional to the discharge, Q. The 
slope S should be the slope of the energy grade line, Sf ; but if the flow is 
uniform, the slopes of the bed, water surface, and energy grade line are all 
equal. In field applications the flow is assumed to be steady, which is 
essentially true for the peak discharge of a flood wave moving down a channel.

The expression AR2 / 3 is called the section factor for uniform flow. 
From equations 8-1 and 8-2 it is seen that the section factor may be expressed 
as

1.49\Sf
(8-3)

The right side of equation 8-3 contains the values of n, Q, and Sf, but the 
left depends only on the geometry of the wetted area. Therefore, it shows 
that for a given condition of n, Q, and Sf , there is only one possible depth 
for maintaining a uniform flow. The single depth that can deliver a discharge 
of Q given a particular n value and slope is called the normal depth.

Equation 8-3 is very useful for the computation and analysis of uniform 
flow. When the discharge, slope, and roughness are known, equation 8-3 gives 
the section factor, AR2 / 3 , from which the normal depth can be determined 
either by trial-and-error computation or by use of design charts for regular 
sections. If the values of n, Sf, and D are given, the discharge can be 
computed directly from Manning's equation.

58



PROBLEMS

1. Determine the conveyance, normal discharge, and velocity in channels
having the following sections for normal depth = 6 feet, n = 0.015, and 
Sf = 0.0020.

(a) A rectangular section 20-feet wide.
(b) A triangular section with a bottom angle of 60 degrees.
(c) A trapezoidal section with a bottom width of 20 feet and side slopes 

of 2 horizontal on 1 vertical.
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2. If the discharge in the channel of problem 1-C is 1,000 ft^/s, compute the 
normal depth.

Depth i^VIF A = 20D + 2D 2 P = 20 + 2D>/5 R Q
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PART III - ADVANCED PRINCIPLES OF STEADY FLOW 

Lesson 9 - Flow in Channel Sections with Variable Roughness

The cross section of a channel may be composed of several distinct sub­ 
sections with each subsection different in roughness from the others. For 
example, an alluvial channel subject to seasonal floods generally consists of 
a main channel and two side overbank channels. The overbank channels are 
usually found to be rougher than the main channel; so the mean velocity in the 
main channel is greater than the mean velocities in the overbank sections or 
in the overbank flow region. For such composite sections, the routine calcu­ 
lation of hydraulic radius from the total area divided by the total wetted 
perimeter and the direct application of Manning's equation will result in 
large errors. This is because such calculations imply that the effect of 
boundary resistance is uniformly distributed throughout the flow cross sec­ 
tion, which is clearly not the case. Furthermore, accurate estimation of the 
effective value of n is virtually impossible because n for each subsection may 
be very different.

For composite sections the Manning formula may be applied separately to 
each subsection in determining the mean velocity for that subsection. Then 
the discharges in each subsection can be computed and the total discharge is 
the sum of the discharges in each subsection.

This logical (but not necessarily precise) method of treating such 
problems is derived by assuming that the total section is composed of parallel 
channels separated by vertical boundaries across which there is no shear. 
Because the water-surface elevation is generally horizontal across a channel, 
the slope of each of the subsections is identical. Writing Manning's equation 
for each subsection and summing, it is seen that the slope can be factored out 
because it is constant. Factoring out the slope indicates that the total 
discharge is equal to the slope times the sum of the conveyances for each 
subsection.

The general procedure for computing the discharge in a composite sec­ 
tion, therefore, is to compute the conveyance for each subpart of the cross 
section wherein the roughness and depth are approximately constant and to sum 
the conveyances for each subsection to compute the total conveyance of the 
composite section. The discharge is then equal to the composite conveyance 
times the square root of the slope.

Figure 9-1 illustrates river cross section with overbank flow. The ques­ 
tion naturally arises: how nonuniform must a section be before subdivision is 
necessary? Probably the safest approach is to compute the discharge at a

Water surface

Figure 9-1. Cross section with 
overbank flow.
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number of depths both by subdividing the section and by considering it as a 
single section. A plot of each of these discharges versus depth should indi­ 
cate whether or not a subdivided section should be used. On the other hand, 
the Geological Survey has developed some criteria based on wide experience. 
In general, subdivide the cross section if

or

W0
~T > 5 (9-1) 
d

where the symbols are defined on figure 9-1. Davidian (1984) presents a more 
detailed discussion of subdivision considerations.

In applying the energy equation to a stream cross section that has been 
subdivided, the kinetic-energy correction coefficient is determined using

Evi^aia =   V^^ , (6-1) 
V^A

in which vi is the velocity in each subsection of area ai and V is the average 
velocity for the entire cross section, A. Equation 6-1 is somewhat inconve­ 
nient when working with a subdivided section because the velocity in each sub­ 
section is not normally computed. Computing the velocity as the discharge 
divided by the area where the discharge is computed as the conveyance times 
the square root of the slope (equation 8-2) , one obtains

(9-2) 
*i

and

K V^F V =  £-E- , (9-3)

in which K is the total conveyance of the section.

Substituting equations 9-2 and 9-3 into equation 6-1 yields an equation 
for a in terms of the areas and conveyances of each subsection. These values 
are usually computed instead of the velocity; and the slope, being constant, 
cancels out of the equation giving

N
I ki3/ai2

a = 1~ 1 ~    (9-4)
K3 /A2

where N is the total number of subsections. Notice that a can be computed 
without knowing the stream slope. It depends only on the depth, geometry, and 
roughness as used to determine the conveyance.
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Example:

Given the channel information shown below, compute the kinetic energy 
correction coefficient, a, and the slope for a discharge of 2,600 ft3 /s

1 Right overbank
2 Main channel
3 Left overbank 

Total

Solution:

Applying equation 9-4 to a three-section channel, 

a = (ki 3 /ai2 + k2 3 /a22 + k33 /a32 )/(ki + k£ + ks) 3 / 

It is convenient to construct a table as follows:

Area
2

162.5
390.0
108.3
660.8

Perimeter
ft

37.1
45.7
26.0

0
0
0

n

.060

.035

.070

+ as)

R ft k ft 3 /s

Q£ r= _

(86,105) 3 /(660.8) 2 1.462xl0 9

Q = K VSf~ = 2,600 ft 3 /s = 86,105

2
= 0.000912

k3 /a2

1 Right
2 Main
3 Left
Total

2.257xl0 9

4
8
4

.38

.53

.17

10,803
69,334
5,968

K = 86,105

2.257x109

0.047xl0 9
2.191xl0 9
O.OlSxlO 9
2.257xl0 9
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PROBLEMS

A flood occurs in the channel shown below. The roughness of the main 
channel (B) is 0.015, but dense bush exists on the right flood plain so 
that n = 0.12, and a field of corn exists on the left so that n = 0.06. 
The slope of the water surface and the bed is known to be 0.00031. Compute 
the conveyance, discharge, and velocity by applying Manning's equation to 
the total section (n = (0.06 + 0.015 + 0.12)/3). Compute the conveyance, 
discharge, and velocity in each subsection. What is the flood discharge?

Elevation 910 ft  

Elevation 905 ft  

? !

n=0.06

Water surface
n=0.12

500ft

n=0.015

  Elevation 909 ft

500ft

   Elevation 900 ft

U  200ft  *|
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2. Compute the velocity head coefficient, a, for the flow in problem 1
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Lesson 10 - The Momentum Principle

The impulse-momentum principle provides a third basic tool for the solu­ 
tion of fluid-flow problems. Sometimes its application leads to the solution 
of problems that cannot be solved by the energy and continuity principles 
alone, but more often all three tools must be used together.

Consider the steady flow of water, Q, with velocity, V]_, into a black 
box. For steady flow, continuity requires that a steady flow of Q must exit 
the box with a velocity V2. While passing through the box, individual water 
parcels are accelerated (or decelerated) from V]_ to V2. Newton's law says 
that the acceleration of a mass requires a force, that is,

->->->
-> AV V2 - Vi F = MI = M -   = M -

At At

where M is the mass being accelerated. In this case, it is the mass of water 
in the box

M = p Vol,

in which Vol is the volume of water in the box. The value of At must be the 
time required for a water parcel to pass through the box so

combining the equations and allowing for several forces

- vi)n -*  -* 
F = pvol    = P°- < V 2 - v l) (10-1)

Because forces and velocities are vector quantities (containing a magnitude 
and direction), equation 10-1 is a vector equation. This means it can be 
applied in the three coordinate directions using only components of the 
velocities and forces. If V2 is larger than V]_, the parcels are accelerated 
and the force on the parcels is in the positive direction.

Equation 10-1 is valid and precise, no matter what the fluid, as long as 
all forces, including shearing forces, are considered.

Interesting hydraulic problems seldom occur for which water is flowing 
into and out of a black box. On the other hand, most problems can be analyzed 
using the black box principle when a control surface is constructed around an 
element of the flow. Within the control surface or control volume, the 
internal pressures and shearing forces existing at the surfaces of adjacent 
elements cancel. Only the forces acting on the control surface must be 
considered.

Example :

A 2-foot by 2-foot rectangular pier is to be placed in a horizontal 
rectangular channel 8 -feet wide. Laboratory tests indicate that the drag 
force, Fd, on the pier can be computed as

Fd = 2.1 Af Vx2 ,
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in which Af is the frontal area and V]_ is the approach velocity. A flow of

240 ft^/s exists in the channel for which the normal depth is 5 feet. As will 
be shown later, normal depth will exist downstream of the pier and the flow 
constriction at the pier will increase the water depth upstream of the pier. 
Compute the depth upstream of the pier by use of the momentum principle. 
Ignore the shearing force along the bed and the weight component of the water 
in the control volume.

Solution:

The most difficult part of momentum problems is usually selecting the 
control volume. In this case, the control volume is shown in figure 10-1 by 
dashed lines in which the line a-b is along, but just above the bed, b-c is 
just far enough downstream of the pier to be outside the very local distur­ 
bances, c-d is above the pier, and d-a is upstream of the pier just far enough 
to be outside the very localized effects of the flow around the pier. Along 
each boundary of the control volume, forces on the boundary due to water pres­ 
sure or structural members must be accounted for. Along boundary a-b three 
forces are present: the water pressure force Fp, the shear force of the bed 
on the water F^, and the drag force of the pier on the water F^. The pressure 
force on the bottom is balanced by the weight of the water in the control 
volume and acts vertically. Because we are only interested in the horizontal 
components of the forces, these two forces can be neglected. It is assumed 
that the shearing force of the bed on the water F^ is small enough to be 
ignored. Along lines b-c and d-a the hydrostatic pressure force of the water 
on the control volume must be accounted for. No forces occur along line c-d.

Cross section 

 *  2 feet

Figure 10-1. Control volume for
applying the conserva­ 
tion of momentum equa­ 
tion for the flow past 
a pier.
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The problem gives the value of the drag force as 

Fd = 2.1 (2.0 Di)Vi2 = 4.2

and the hydrostatic forces FI and F2 are easily determined from equation 2-1 
or

F = YWD2 / 2 < 2 -D

for which

Dl2 o 
FI = 62.4 (8) Hr- = 249.6 Di2 

£

and

5 2 
F2 = 62.4 (8) ^ = 6,240 Ib.

Likewise, the velocities Vi and V2 are computed from the continuity equation 
as

Y! = 240/8 DI

and

V2 = 240/8(5) = 6.0 ft/s. 

The momentum equation (equation 10-1) can now be applied as

EF - 249.6 Di2 - 4.2 D]Vi2 - 6,240 = 240(1.94) (6.0 - 30/Di) ,

where forces and velocities to the right are positive. The direction of the 
forces is the reaction of the force on the water in the control volume. For 
example, the pier is assumed to push upstream on the water in the control 
volume.

Substituting for the value of V]_ in terms of DI

249.6 Di2 - 3,780/Di - 6,240 = 2,793.6 - 13,968/Di, 

simplifying

249.6 Di2 4- 10,188/Di = 9,033, 

from which the depth DI can be obtained by trial and error as follows:

Dl(ft) 249.6 Dj2 4- 10 f 188/Di

5.0 8,277.6
5.2 8,708.4
5.3 8,933.5

> 5.34 ft 

5.4 9,165.0
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PROBLEMS

1. The passage is 4-feet wide normal to the paper. The flow rate is 120 
ft-^/s. What will be the horizontal force exerted by the water on the 
structure?

The flow rate passing over the 
thin, sharp-crested weir in a 
channel 1-foot wide is 3.5 
ft-^/s. Calculate the magnitude 
and direction of the force 
exerted by the water on the weir 
plate. Is the indicated down­ 
stream depth reasonable?

Water surface
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3. Water flows in a horizontal open channel at a depth of 2 feet the flow
rate is 40 ft^/s/ft of width. Calculate the depth just downstream from 
the hydraulic jump and the head loss across the jump.

Water surface

Water surfaca

20 ft/s- 2ft
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Lesson 11 - Specific Energy

Specific energy is defined as the energy per pound of water at any 
section of a channel measured with respect to the channel bottom. Consider, 
for example, the energy of two rivers of the same size and slope but one is 10 
feet above sea level and one is 5,000 feet above sea level. Both rivers have 
the same velocity, assuming they have equivalent roughness, even though the 
total energy (measured relative to sea level) of the river at 5,000 feet 
elevation is much greater than the river at lower elevation. Likewise, the 
total energy of flow in a cross section measured relative to some datum below 
the bottom of the channel is not a very good measure of the energy available 
for movement in the channel. By contrast, specific energy is determined 
directly from the energy equation but excluding the potential energy term, Z, 
that is

E = D +
(XV
2g' (ii-D

which indicates that the specific energy is equal to the sum of the depth of 
water and the velocity head. Because the velocity is equal to the discharge 
divided by the area, equation 11-1 may also be written as

E = D +
go/
2gA: (11-2)

It is seen that, for a given channel section and discharge, the specific 
energy in a channel section is a function of the depth of flow only.

When the depth of flow is plotted against the specific energy for a 
given cross section and discharge, the specific energy curve (fig. 11-1) is 
obtained. This curve has two limbs: CA and CB. The limb CA approaches the 
horizontal axis asymptotically toward the right. The limb CB approaches the 
line OF as it extends upward and to the right. The line OF passes through the 
origin and is at an angle of 45°. At any point on the specific energy curve, 
the ordinate represents the depth and the abscissa represents the specific 
energy, which is equal to the sum of the depth, D, and the velocity head, 
aV2 /2g.

Figure 11-1.--Specific energy curve.
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The curve shows that, for any specific energy greater than the minimum 
value, there are two possible depths, a low depth, DI, and a high depth, D2 . 
These two depths are called alternate depths. At point C, the specific energy 
is a minimum. It will be proven later that this condition of minimum specific 
energy corresponds to a critical state of flow. At the critical state the two 
alternate depths become one, which is known as the critical depth, Dc . When 
the depth of flow is greater than the critical depth, the velocity of flow is 
less than the critical velocity for the given discharge, and hence, the flow 
is subcritical. When the depth of flow is less than the critical depth, the 
flow is supercritical. Hence, DI, is the depth of a supercritical flow f and 
D2 is the depth of a subcritical flow.

The critical state of flow is defined as the state of flow at which the 
specific energy is a minimum for a given discharge. A theoretical criterion 
for critical flow may be developed from this definition as follows:

Assuming a to be 1 and differentiating equation 11-2 with respect to 
depth

A V2

dD gA3 dD gA3 g(A/T) r

because the discharge is constant and the change of area with respect to depth 
(dA/dD) is equal to the top width. The quantity A/T is recognized as the

V 
hydraulic depth and the quantity .    is defined as the Froude number, Fr .

VgD
Rearranging equation 11-3 and recognizing that the rate of change of specific 
energy with respect to depth is zero at critical depth, it follows that:

V( 2

2g
_ idfi. (11-4)

Thus at the critical state of flow, the velocity head is equal to one-half the 
hydraulic depth. Equation 11-4 may be also written as

(11-5)

which means the Froude number, Fr , is equal to 1 at critical flow. Finally, 
at critical flow, equation 11-5 may also be written as

(11-6)

which is the velocity of a small gravity wave. In other words, at critical 
velocity the channel velocity is precisely equal to the velocity of a small 
gravity wave. For stream velocities equal to or greater than critical, 
gravity waves do not propagate upstream.

For rectangular channels, the ratio of area to top width is constant and 
equal to the depth therefore, equations 11-4, 11-5, and 11-6 can all have the 
hydraulic depth replaced by the channel depth Dc . Also, in a rectangular 
channel, the discharge per unit width, q, is equal to the velocity times the 
depth. Therefore, equation 11-6 could be rewritten as

q = VCDC = VgDc 3 or Dc = Vq2 /g . (11-7)
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Of great significance is the fact that critical depth is dependent upon flow 
rate only the many other variables of open-channel flow are not relevant to 
the computation of this important parameter. Equation 11-7 also suggests the 
use of critical depth as a means of flow measurement if critical flow can be 
created or identified in a channel, the depth may be measured and the flow 
rate determined from equation 11-7. This is the basis for designing "critical 
depth flumes" (Kilpatrick and Schneider, 1983).

Combining equations 11-1 and 11-6, for a rectangular channel with 
<X = 1, yields

E = = D (11-8)

For sections where a is not unity, it is seen from equation 11- 3 that 
the Froude number may be defined as

Fr = (11-9)

provided a is constant. If a varies with depth, special precautions should 
be taken in applying these equations.

Change of the state of flow from subcritical to supercritical or vice 
versa occurs frequently in open channels. Such change is manifested in a 
corresponding change in the depth of flow from a high stage to a low stage or 
vice versa. If the change takes place rapidly over a relatively short 
distance, the flow is rapidly varied. The hydraulic drop and the hydraulic 
jump are the two types of rapidly varied flow that may be described as 
follows:

Hydraulic drop. A rapid change of flow from a subcritical to super­ 
critical will result in a steep depression in the water surface. Such a 
phenomena is generally caused by an abrupt change in the channel slope or 
cross section or both (see fig. 11-2). At the transitory region of the 
hydraulic drop, a reverse curve usually appears, connecting the water surfaces 
before and after the drop. The point of inflection on the reverse curve marks 
the approximate position of the critical depth at which the specific energy is 
a minimum and the flow passes from subcritical to supercritical.

Hydraulic drop ^^S^vOSs

* t
^r=r' -^

it

\ / * r r

J ^^--^ Water surface

Figure 11-2. Flow changes from subcritical and supercritical
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The free overfall is a special case of the hydraulic drop. It occurs 
where the bottom of a flat channel is discontinued as in figure 11-2. There 
will be no reverse curve in the water surface until it strikes some surface at 
a lower elevation. If the specific energy at the upstream section is E, as 
shown on a specific energy curve, potential energy will be converted to 
kinetic energy as the water approaches the brink and the total specific energy 
will decrease until it finally reaches a minimum energy content Emin . The 
specific energy curve shows that the section of minimum energy, or the criti­ 
cal section, should occur at the brink. The brink depth cannot be less than 
the critical depth because a further decrease in depth would require an 
increase in specific energy, which is impossible unless compensating external 
energy is applied. Nevertheless, it should be remembered that equations 11-7 
and 11-8 are based on the assumption of parallel flow, which is only approxi­ 
mately applicable to rapidly varied flow. The flow at the brink is actually 
curvilinear, and the curvature of flow is pronounced hence, the brink depth is 
not exactly equal to the critical depth. The brink section is the true 
section of minimum energy, but it is not the critical section as computed by 
the principle based on parallel flow assumptions. It has been found that for 
small slopes the computed critical depth is about 1.4 times the brink depth, 
or

Dc = 1.4 Db

and that Dc is located a distance of about three to four times the critical 
depth upstream from the brink in the channel. The actual water surface as 
well as the theoretical surface are shown in figure 11-2.

Example:

Flow passes through critical depth as it leaves an 8-foot square box 
culvert (see fig. 11-3). What is the discharge if the critical depth at the 
outlet is measured as 2.5 feet?

Box culvert

Figure 11-3. Critical flow at the
outlet of a box culvert.

depth = 2.5 feet

Solution:

Because critical flow occurs at the outlet, the Froude number is 1.0 or

FT- = 1.0 =

assuming CX = 1.0

so the discharge is

Vc = VgD c = V32.2 (2.5) =8.97 ft/:
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Q = VA = 8.97(8) (2.5) = 179.4 ft3 /s. 

Likewise equation 11-7 could be used:

Q = 8q = 8 V32.2(2.5) 3 = 179.4 ft 3 /s.

Hydraulic Jump. A change of flow from supercritical to subcritical 
almost always occurs abruptly and the water surface has an abrupt increase in 
elevation. This local phenomenon is known as the hydraulic jump. It 
frequently occurs in a channel below a regulating sluice, at the foot of a 
spillway, or at the place where a steep channel slope changes to a flat slope.

Sometimes when the flow is only slightly supercritical, the jump will 
not rise abruptly but the flow will pass from a low stage to a high stage 
through a series of undulations gradually diminishing in size. Such a low 
jump is called an undular jump.

When the flow is highly supercritical, on the other hand, the change in 
depth is great and sudden and the jump is called a direct jump. The direct 
jump involves a large amount of energy loss through dissipation in the turbu­ 
lent body of water in the jump. Therefore the energy content of the flow 
after the jump is much less than that before the jump and the energy equation 
is of little value in predicting the downstream depth.

The water depth before the jump is always less than the depth after the 
jump. The depth before the jump is called the initial depth and the depth 
after the jump is called the sequent or conjugate depth. The initial and 
sequent depths can be shown on the specific energy curve (fig. 11-1) . They 
should be distinguished from the alternate depths, which are the two possible 
depths for the same specific energy on the specific energy curve. The initial 
and sequent depths are actual depths before and after the jump in which the 
energy loss is h[. In other words, the specific energy, EI, at the initial 

depth is greater than the specific energy, £2, at the sequent depth by an 
amount equal to the energy loss, h[. If there were no energy losses, the

initial and sequent depths would become identical with the alternate depths in 
a prismatic channel.
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PROBLEMS

800 ft 3 /s flow in a rectangular channel of 20-foot width having 
n = 0.017. Compute the specific energy at the intervals shown in the 
table. Plot the specific energy diagram using the same scales for D and 
E. Determine from the diagram (a) the critical depth, (b) the minimum 
specific energy, (c) the specific energy when the depth is 7 feet, and (d) 
the depths when the specific energy is 8 feet. What type of flow exists 
when the depth is: (e) 2 feet, (f) 6 feet; what are the channel slopes 
necessary to maintain these depths? What type of slopes are these, and 
(g) what is the critical slope? Show graphically that DC = 2E/3.

V2 /2g

1.5

3.5

10
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2. A hydraulic jump occurs in the channel of problem 1. The upstream depth 
is 2 feet. Compute the downstream depth. Label your plot of problem 1. 
Compute the energy loss.
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3. A uniform flow at a depth of 5 feet occurs in a long rectangular channel 
of 10-foot width and having a discharge of 289 ft^/s: (a) Calculate the 
minimum height of hump that can be built on the floor of this channel to 
produce critical depth. What happens if the hump is larger than your 
computed value? lower? (b) Without the bottom hump, what is the maximum 
width of contracted section to produce critical depth?
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PART IV - GRADUALLY VARIED FLOW IN OPEN CHANNELS 

Lesson 12 - Determination of Flow Resistance in Open Channels 

Measure of Flow Resistance

The Manning equation for the mean velocity V is defined as

v = £ R2/3 s l/2 (7-9) 
n

where <j) equals 1.0 when using metric units and 1.486 when using inch-pound 
units, R is the hydraulic radius, S is the friction slope, and n is the 
Manning coefficient. In applying the Manning equation to open-channel flow, 
the greatest difficulty lies in determining the coefficient, n. The value of 
n indicates not only the flow resistance caused by the sides and bottom of the 
channel, but also all other types of irregularities of the channel that add to 
flow resistance. Choosing the proper value of n remains largely a matter of 
engineering judgment and experience. To the untrained beginner, the selection 
of a resistance coefficient can be no more than a guess with different 
individuals obtaining different results.

The following discussion will emphasize ways to estimate Manning's n, 
but this coefficient is directly related to other measures. The Darcy- 
Weisbach. equation for open conduits is written as

/ 8g\ 1/2 /   
V = \f) *V RS (7-11)

where f is the Darcy-Weisbach friction factor. The Chezy equation is written 
as

V = C vRS (7-8) 

where C is the Chezy resistance coefficient.

Comparing equations 7-9, 7-8, and 7-11, it is seen that

= c    (12-1)

or that

. 49 ^l/6 _ _^ <12 _2)

It is not uncommon to think of a channel as having a single value of n 
for all occasions. In reality, the value of Manning's n is highly variable 
and proper selection is dependent upon a basic understanding of the factors 
affecting this variation. The factors having the greatest influence upon the 
Manning coefficient in both artificial and natural channels are listed below:

Surface roughness
Vegetation
Channel irregularity
Channel alignment
Silting and scouring
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Obstructions
Size and shape of channel
Stage and discharge
Seasonal change
Suspended material and bedload

It should be noted that these factors are somewhat interdependent; hence, the 
influence of one factor may include the effect of another. All the above 
factors, however, should be studied and evaluated. They provide a basis for 
determining the proper value of n for a given channel. As a general guide, it 
may be assumed that conditions tending to induce turbulence and cause retar- 
dance of the flow will increase the n value while those tending to reduce 
turbulence and retardance will decrease the n value.

Approaches for Estimating Resistance in Stable Channels

Stable-bed channels are those in which bedload transport is negligible 
and the channel boundary is rigid. Possibly the chief contributors to 
hydraulic resistance for these channel types is grain roughness and internal 
distortion of the flow (form resistance) generated by relict or remnant bed 
forms of previous floods.

In order to provide guidance in determining the proper value of the 
Manning coefficient, four general approaches will be discussed namely:

1. Understanding the factors that affect the value of n and thus
acquiring a basic knowledge of the problem. The Cowan procedure 
illustrates this approach.

2. Consulting a table of typical n values for channels of various
types. Abbreviated tables presented by Chow (1959) will illustrate 
this approach.

3. Comparative methods that are based on examining and becoming 
acquainted with the appearance of some typical channels whose 
Manning coefficients are known.

4. A number of formula are presented that compute the value of n from 
measures of the bed material size and other geometric data.

Cowan's Procedure for Estimating Manning's Coefficient

Recognizing several primary factors affecting the Manning coefficient, 
Cowan (1956) developed a procedure for estimating the value of n. By this 
procedure, the value of n may be computed as

n = (no + ni + n2 + n3 + n4)ms, (12-3)

where no is a basic n value for a straight, uniform, smooth channel, in the 
natural materials involved, ni is a value added to no to correct for the 
effect of surface irregularity, r\2 is a value added to account for variations 
in shape and size of cross sections, n3 is a modifying value for obstructions, 
n4 is a correction value for the retarding effect of vegetation, and m.$ is a 
correction factor for channel meanders.

Arcement and Schneider (1984) modified and extended the Cowan method to 
develop procedures to aid engineers in the selection of Manning coefficients
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for channels especially with overbank flow. Their method is especially appli­ 
cable for flow through heavily vegetated flood plains in which n values as 
large as 0.2 have been documented.

In the selection of the modifying values associated with the five 
primary factors, it is important that each factor be examined and considered 
independently. In considering each factor, it should be kept in mind that n 
represents a quantitative expression of retardation of flow. A discussion and 
tabulated guide to the selection of modifying values for each factor is given 
under the following procedural steps.

First step. Selection of basic n value, no. This step requires the 
selection of a no value for a straight uniform channel in the natural materials 
involved. The selection involves consideration of what may be regarded as a 
hypothetical channel. The conditions of straight alignment, uniform cross 
section, and smooth side and bottom surfaces without vegetation should be kept 
in mind. Thus the no will be visualized as varying only with the materials 
forming the sides and bottom of the channel. The value of no , for natural or 
excavated channels, may be selected from the table below. Where the bottom and 
sides of a channel are of different materials, this fact may be considered in 
selecting no.

____Character of channel_____ nO

Channels in earth 0.02
Channels cut into rock 0.025
Channels in fine gravel* 0.024
Channels in coarse gravel* 0.028
Channels in very coarse gravel* 0.032
Channels in cobbles* 0.036

*See table 12-3.

Second step. Selection of modifying value for surface irregularity, ni. 
The selection is to be based on the degree of roughness or irregularity of the 
surfaces of channel sides and bottom. Consider the actual surface irregularity 
first, in relation to the degree of surface smoothness obtainable with the 
natural materials involved, and second, in relation to the depths of flow under 
consideration. The table below may be used as a guide to the selection.

Degree of 
irregularity

Smooth

Minor

Moderate

Surfaces comparable to

The best obtainable for the 0.000 
materials involved.

Good dredged channels; slightly
eroded or scoured side slopes
of canals or drainage channels. 0.005

Fair to poor dredged channels; 
moderately sloughed or eroded 
side slopes of canals or drainage 
channels. 0.010
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Severe Badly sloughed banks of natural
channels; badly eroded or sloughed
sides of canals or drainage
channels; unshaped, jagged, and
irregular surfaces of channels
excavated in rock. 0.020

Third Step. Selection of modifying value for variations in shape and 
size of cross sections, n2. In considering changes in size of cross sections, 
judge the approximate magnitude of increase and decrease in successive cross 
sections as compared to the average. Changes of considerable magnitude, if 
they are gradual and uniform, do not cause significant turbulence. Greater 
turbulence is associated with alternating large and small sections where the 
changes are abrupt. The degree of effect of size changes may best be visual­ 
ized by considering it as depending primarily on the frequency with which 
large and small sections alternate and, secondarily, on the magnitude of the 
changes.

In the case of shape variations, consider the degree to which the 
changes cause the greatest depth of flow to move from side to side of the 
channel. Shape changes causing the greatest turbulence are those for which 
shifts of the main flow from side to side occur in distances short enough to 
produce eddies and upstream current in the shallower portions of those 
sections. Selection of modifying values may be based on the following guide.

Character of variations in 
size and shape of cross sections n2

Changes in size or shape occurring
gradually. 0.000

Large and small sections alternating 
occasionally, or shape changes causing 
occasional shifting of main flow from 
side to side of the channel. 0.005

Large and small sections alternating 
frequently or shape changes causing 0.010 
frequent shifting of main flow from to 
side to side of the channel. 0.015

Fourth step. Selection of modifying value for obstructions, n3. The 
selection is to be based on the presence and characteristics of obstructions 
such as debris deposits, tree stumps, exposed tree roots, large boulders, 
fallen and lodged logs. Care should be taken that conditions considered in 
other steps are not reevaluated or double counted by this step.

In judging the relative effect of obstructions, consider: the degree to 
which the obstructions occupy or reduce the average cross- sectional area at 
various stages; the character of the obstructions (sharp-edged or angular 
objects induce greater turbulence than curved, smooth-surfaced objects); the 
position and spacing of obstructions both transversely and longitudinally in 
the reach under consideration. The following table may be used as a guide to 
the selection.
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Relative 
effect of 

obstructions ____n3

Negligible 0.000
Minor 0.010 to 0.015
Appreciable 0.020 to 0.030
Severe 0.040 to 0.060

Fifth step. Selection of modifying value for vegetation, n4. The 
retarding effect of vegetation is due primarily to the turbulence induced as 
the water flows around and between the limbs, stems, and foliage, and, secon­ 
darily, to the reduction in cross-sectional area. As depth and velocity 
increase, the force of the flowing water tends to bend the vegetation. There­ 
fore, the ability of vegetation to cause turbulence is partly related to its 
resistance to bending. Furthermore, the amount and character of foliage is 
important (that is, growing season versus dormant season). In judging the 
retarding effect of vegetation, critical consideration should be given to the 
following: the height in relation to the depth of flow; the capacity to 
resist bending; the degree to which the cross section is occupied or blocked 
out; the transverse and longitudinal distribution of vegetation and the 
different types; and densities and heights in the reach under consideration. 
The following table may be used as a guide in the selection.

_____Vegetation and flow conditions___ Degree of effect ____n4______

Dense growths of flexible turf grasses Low 0.005 to 0.010 
or weeds (for example, Bermuda and 
blue grasses) where the average depth 
of flow is two to three times the 
height of vegetation.

Supple seedling tree switches such as 
willow, cottonwood, or salt cedar 
where the average depth of flow is 
three to four times the height of the 
vegetation.

Turf grasses where the average flow is Moderate 0.010 to 0.025
one to two times the height of the
vegetation.

Stemmy grasses, weeds, or tree seedlings 
with moderate cover where the average 
depth of flow is two to three times the 
height of the vegetation.

Brushy growths, moderately dense, 
similar to willows 1 to 2 years old, 
dormant season, along side slopes of 
channel with no significant vegetation 
along the channel bottom, where the 
hydraulic radius is greater than 2 feet.
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Vegetation and flow conditions___ Degree of effect ____n4

Turf grasses where the average depth High 0.025 to 0.050 
of flow is about equal to the height 
of the vegetation.

Dormant season, willow or cottonwood 
trees 8 to 10 years old, intergrown 
with some weeds and brush, none of the 
vegetation in foliage, where the 
hydraulic radius is greater than 2 feet.

Growing season, bushy willows about 1 
year old intergrown with some weeds in 
full foliage along side slopes, no 
significant vegetation along channel 
bottom, where the hydraulic radius is 
greater than 2 feet.

Turf grasses where the average depth Very high 0.050 to 0.100 
of flow is less than one-half the 
height of the vegetation.

Growing season, bushy willows about 1 
year old, intergrown with weeds in 
full foliage along side slopes; dense 
growth of cattails along channel 
bottom; any value of hydraulic radius 
up to 10 or 15 feet.

Growing season, trees intergrown with 
weeds and brush, all in full foliage; 
any value of hydraulic radius up to 10 
or 15 feet.

Sixth step. Determination of the modifying value for meandering of 
channel, m$. The modifying value for meandering may be estimated in the 
following way. Let

l s = the straight length of the reach under consideration, and 

lm = the meander length of the channel in the reach.

Compute the modifying value 1115 in accordance with the following table. 

Ratio lm/ls Degree of meandering 1115

1.0 to 1.2
1.2 to 1.5 
1.5 and greater

Minor
Appreciable 
Severe

1.00
1.15 
1.30

Where lengths for computing the ratio lm/ls are not readily obtainable, the 
degree of meandering can usually be judged reasonably well by field inspection,
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Seventh step. Computation of n for the reach. The value of n for the 
reach under consideration is obtained by adding the values determined in steps 
1 through 5 and multiplying this total by the modifying value found in step 6.

This method was developed from a study of 40 to 50 small to moderate 
sized channels. Therefore, the method is questionable when applied to large 
channels where the hydraulic radii exceed, say, 15 feet. In the case of flood 
plains, the estimate of n would be based on all factors except meandering 
(that is, nuj would be taken equal to 1.00) .

Tables of Manning's n

The following table 12-1 contains parts of a table presented by Chow 
(1959) and gives a list of n values for various types of channels. For each 
type of channel, the minimum, normal, and maximum values of n typically 
observed are shown. The normal values for artificial channels given in the 
table are recommended only for well-maintained channels. This table was 
compiled from a variety of sources and will be found useful as a guide to the 
quick selection of the n value to be used in a given problem. The tabular 
approach is somewhat like the Cowan approach in that the Manning coefficient 
is selected based on a written description of boundary texture and form.
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Table 12-1. Values of the Manning resistance coefficient 
(from Chow, 1959)

Type of channel and description Minimum Normal Maximum

A. Closed conduits flowing partly full 
A-l. Metal

a. Brass, smooth 0.009 0.010 0.013 
b. Steel

1. Lockbar and welded .010 .012 .014
2. Riveted and spiral .013 .016 .017 

c. Cast iron
1. Coated .010 .013 .014
2. Uncoated .011 .014 .016 

d. Corrugated metal
1. Subdrain .017 .019 .021
2. Storm drain .021 .024 .030 

A-2. Nonmetal
a. Lucite .008 .009 .010 
b. Glass .009 .010 .013 
c. Cement

1. Neat, surface .010 .011 .013
2. Mortar .011 .013 .015 

d. Concrete
1. Culvert, straight, and

free of debris .010 .011 .013
2. Culvert with bends, 

connections, and 
some debris .011 .013 .014

3. Sewer with manholes,
inlet, etc., straight .013 .015 .017

4. Unfinished, rough wood
form .015 .017 .020 

e. Wood
1. Stave .010 .012 .014
2. Laminated, treated .015 .017 .020 

f. Clay
1. Common drainage tile .011 .013 .017
2. Vitrified sewer with

manholes, inlet, etc. .013 .015 .017 
g. Glazed brickwork .011 .013 .015 

mortar .012 .015 .017 
h. Sanitary sewers coated with

sewage slimes, with bends
and connections .012 .013 .016 

i. Paved invert, sewer, smooth
bottom .016 .019 .020 

j. Rubble masonry, cemented .018 .025 .030

86



Table 12-1.--Values of the Manning resistance coefficient 
(from Chow, 1959) continued

Type of channel and description Minimum Normal Maximum

B. Lined or built-up channels 
B-l. Metal

a. Unpainted smooth steel
surface .011 .012 .014 

b. Corrugated .021 .025 .030 
B-2. Nonmetal

a. Concrete
1. Finished, with gravel

on bottom .015 .017 .020
2. Gunite, good section .016 .019 .023
3. Gunite, wavy section .018 .022 .025
4. On good excavated rock .017 .020
5. On irregular excavated

rock .022 .027 
b. Concrete bottom float 

finished with sides of
1. Dressed stone in mortar .015 .017 .020
2. Dry rubble or riprap .020 .030 .035 

c. Gravel bottom with sides of
1. Formed concrete .017 .020 .025
2. Dry rubble or riprap .023 .033 .036 

d. Asphalt
1. Smooth .013 .013
2. Rough .016 .016 

e. Vegetal lining .030     .500

C. Excavated or dredged
a. Earth, straight and uniform

1. Clean, recently
completed .016 .018 .020

2. With short grass, few weeds .022 .027 .033 
b. Earth, winding and sluggish

1. No vegetation .023 .025 .030
2. Dense weeds or aquatic

plants in deep channels .030 .035 .040
3. Cobble bottom and clean

sides .030 .040 .050 
c. Dragline-excavated or 

dredged
1. No vegetation .025 .028 .033
2. Light brush on banks .035 .050 .060 

d. Rock cuts
1. Smooth and uniform .025 .035 .040
2. Jagged and irregular .035 .040 .050 

e. Channels not maintained, 
weeds and brush uncut
1. Dense weeds, high as

flow depth .050 .080 .120
2. Clean bottom, brush on

sides .040 .050 .080
3. Dense brush, high stage .080 .100 .140
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Table 12-1. Values of the Manning resistance coefficient 
(from Chow, 1959) continued

Type of channel and description Minimum Normal Maximum

D. Natural streams
D-l. Minor streams (top width at 

flood stage <100 feet) 
a. Streams on plain

1. Clean, straight, full 
stage, no rifts or 
deep pools .025 .030 .033

2. Clean, winding, some
pools and shoals .033 .040 .045

3. Sluggish reaches,
weedy, deep pools .050 .070 .080

4. Very weedy reaches, 
deep pools, or flood- 
ways with heavy stand
of timber and underbrush .075 .100 .150 

b. Mountain streams, no vegetation
in channel, banks usually steep,
trees and brush along banks
submerged at high stages
1. Bottom: gravels, cobbles,

and few boulders .030 .040 .050
2. Bottom: cobbles.with

large boulders .040 .050 .070 
D-2. Flood plains

a. Pasture, no brush
1. Short grass .025 .030 .035
2. High grass .030 .035 .050 

b. Cultivated areas
1. No crop .020 .030 .040
2. Mature row crops .025 .035 .045
3. Mature field crops .030 .040 .050 

c., Brush
1. Scattered brush, heavy

weeds .035 .050 .070
2. Medium to dense brush,

in winter .045 .070 .110
3. Medium to dense brush,

in summer .070 .100 .160 
d. Trees

1. Dense willows, summer,
straight .110 .150 .200

2. Cleared land with tree
stumps, no sprouts .030 .040 .050

3. Heavy stand of timber, a 
few down trees, little 
undergrowth, flood stage 
below branches .080 .100 .120

4. Same as above, but with 
flood stage reaching 
branches .100 .120 .160
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Table 12-1. Values of the Manning resistance coefficient 
(from Chow, 1959) continued

Type of channel and description Minimum Normal Maximum

D-3. Major streams (top width at flood 
stage >100 feet). The n value is 
less than that for minor streams 
of similar description, because 
banks offer less effective 
resistance 
a. Regular section with no

boulders or brush .025     .060 
b. Irregular and rough section .035     .100

Comparative Methods

Photographs of a number of typical channels, accompanied by descriptions 
of the channel conditions and the corresponding n values, are contained in a 
report by Barnes (1967) . These photographs represent a wide range of channel 
conditions and facilitate selection of an n value for a given problem.

Sites used in Barnes (1967) were selected for study after a major flood 
had occurred in a given region. Each site met the following criteria:

1. the peak discharge of the flood was measured by the current-meter 
method or determined from a well-defined stage-discharge relation;

2. good high-water marks were available to define the water-surface 
profile at the time of the peak;

3. a fairly uniform reach of channel was available near the gage; and

4. the flood discharge was within the channel banks that is, exten­ 
sive flow in flood plains did not exist.

A transit stadia survey of each reach was completed shortly after the 
flood. The necessary information was obtained in this survey to plot accu­ 
rately to a common datum the water-surface profile as determined by high-water 
marks, a plan view of the reach, and cross sections at intervals along the 
reach.

Photographs of the reach were taken during the time of the survey. The 
photographs shown in Barnes (1967) thus represent conditions in the reach 
immediately after the flood.
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A size description of the bed material at some of the sites is included 
in the reach description. The bed samples were, in general, taken several 
years after the flood for which the Manning coefficient was determined and, 
therefore, may not be representative of the bed material at the time of the 
peak. Frequency distributions of the bed material size were determined by 
sieve analysis where the medium size of the material was less than 50 mm and, 
where the material was too large to sieve, by measuring the intermediate axis 
of particles selected at random from the bed surface.

Equations for Manning's n Based on Measures of Roughness

A number of equations have been developed for predicting Manning's n 
based on a measure of the bed particle size, usually in the form of a repre­ 
sentative particle diameter, dp, which is larger than p percent of the bed 
material. This measure of roughness is typically related to n either directly 
or as a dimensionless ratio of roughness, R/dp, which is often called the 
relative roughness (or relative smoothness) . These equations are generally 
applicable to gravel or cobble bed streams, and only a few of these equations 
are presented in table 12-2. Table 12-3 contains reference sizes for bed 
material of various descriptions. The table is not complete in that only the 
major size classes are shown.

Special Considerations in Mobile-Bed Channels

Mobile-bed channels are those in which the bedload transport rate is 
significant and in which the channel boundary deforms. Two types of mobile- 
bed channels will be considered those whose beds are composed of sand and 
those whose beds are composed of coarser material (that is, gravel, cobbles, 
and boulders) .

Gravel-Bed Channels

In contrast to sand-bed channels, which can have a variety of bed forms, 
apparently only dunes or bars can develop under subcritical flows on the 
channel bottoms of gravel-bed rivers. When the channel boundary is stable, 
the resistance to fully turbulent flow in straight, regular reaches of coarse 
gravel-bed rivers have been found to be largely dependent on the relative 
roughness. Equations listed in table 12-2 are generally applicable. For 
channels with active bedload transport where the boundary is mobile and bed 
forms develop, flow resistance was found by Griffiths (1981) to depend on a 
mobility parameter as

n = 0.042    - , (12-4)

where mobile boundary conditions were assumed to occur if

< 11RS.

Notice that as the velocity increases, and more material is moving, the resis­ 
tance to flow decreases. This relation of decreasing resistance with 
increased bed-material movement is often observed. The rolling bed-material 
particles act much as marbles on the floor reducing the resistance between the 
flowing water and the stationary bed.
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Table 12-2. Equations for resistance based on bed-material size

Equation* Channel description Investigators

n = 0.034

n = 0.032

n = 0.039

n =

n =

n =

n =

n =

0.0927 R1 / 6

n =

n =

0.35 + 2.03 log(R/dso) 

0.048 d5 o 0 - 179

0.126 R1 / 6 (R/d50)~°' 281

_____0.0927 R1 / 6_____\ 
0.248 + 2.36 log(R/d5 o)J

_____0.0927 R1 / 6_____\ 
0.760 + 1.98 log(R/d5o)J

i ia I R \ -0.297 0.104 R1 / 6 (-£-} 
\ dso '

0.39 S°- 38 R-0.16

= 0.245 R°- 14 (-^-) ~°' 
\ dso /

Gravel-bed rivers 
in Switzerland

Sand mixtures in 
flumes

Canals lined with 
cobbles

Gravel-bed rivers 
in California

Gravel-bed rivers 
in Alberta, Canada

Gravel- and cobble- 
bed rivers in the 
United States, 
Canada, New Zealand, 
and England

0.103

Steep streams in 
Colorado with 
cobbles and small 
boulders

30 Gravel- and cobble- 
bed rivers in the 
United States

Strickler (1923)

Meyer-Peter and 
Mueller (1948)

Lane and Carlson 
(1953)

Limerinos (1970)

Bray (1979)

Griffiths (1981)

Jarrett (1984)

Froehlich (1978) 
unpublished

*A11 length dimensions are in feet
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Table 12-3. Sediment grade scale (Guy, 1969)

Sediment in 
millimeters

>256
256-128
128-64
32-16
8-4
1-0.50
0.50-0.25
0.25-0.125
0.062-0.031
0.016-0.008
0.004-0.0020
0.0010-0.0005

Size in 
inches

40-20
10-5
5-2.5
1.3-0.6
0.3-0.16

Class

Boulders
Large cobbles
Small cobbles
Coarse gravel
Fine gravel
Coarse sand
Medium sand
Fine sand
^v^dJ-oti oJLJLL.

Fine silt
Coarse clay
Fine clay

Sand-Bed Channels

Resistance to flow in sand-bed channels varies between wide limits 
because the configuration of the channel bed is a function of the flow itself. 
Estimation of flow resistance in sand-bed channels is a complex subject that 
cannot be treated adequately here. For further detail the reader is referred 
to Simons and Senturk (1977). Flume experiments and field observations have 
shown that bed forms can be classified on the basis of a lower, a transition, 
or an upper flow regime. The bed forms that occur are ripples, ripples on 
dunes, dunes, washed-out dunes, plane or flat bed, antidunes, and chutes and 
pools. These specific bed forms and the regime classification, as indicated 
in figure 12-1, are associated with a specific mode of sediment transport and 
a specific range of resistance to flow. An example of the effect of bed- 
material size and Froude number on the bed form and Manning's n is given in 
figure 12-2. In an 8-foot wide laboratory sand channel, it is noted that 
ripples generally cause Manning's n to range from 0.020 to 0.028; dunes, from 
0.020 to.0.033; washed-out dunes, from 0.013 to 0.025; antidunes, from 0.014 
to 0.020; and chute and pools from 0.020 to 0.026 (Guy, 1970).

It is important to note that different bed forms and flow regimes may 
occur side by side in a stream cross section or one after another in time. The 
relatively large resistance to flow in the lower regime results mostly from 
form roughness whereas most of the resistance in the upper regime results from 
grain roughness and wave formation and subsidence. Resistance to flow for a 
plane bed is less when the bed material is moving than when the bed material 
is not moving.
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A. Typical ripple pattern, little sediment movement 
Smooth surface

E. Plane bed
Water surface, little turbulence

B. Dunes and superposed ripples
F. Antidune standing waves, surface waves in phase with 

sand waves

C. Dunes, surface waves out of phase with sand waves 
Boil G. Antidune breaking wave

D. Washed-out dunes or transition 
_____ _____Water surface

H. Chute and pool

Figure 12-1. Eight types of roughness found in sand-bed channels. 
Types A through C are representative of the lower 
flow regime where the Froude number is usually <0.4, 
E through H are representative of the upper flow 
regime where the Froude number is usually >0.1 f and 
D represents the transition regime. Modified from 
Simons and Richardson (1966, p. J5) .
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0.035
I ' I ' I

V//\ dp = 0.46 millimeter 

dp = 0.28 millimeter

0.005.
0.2 0.4 0.6 0.8 1.0 1.2 

FROUDE NUMBER, Fr - V/VgD

1.4 1.6 1.8

Figure 12-2. Effect of size of bed material and Froude
number on the bed form and Manning's n for a 
range of flow conditions with sands of 0.28- 
and 0.45-millimeter median diameter in an 
8-foot wide flume. Modified from Guy (1970)

The Manning coefficient for a plane bed with motion depends primarily on 
the size of the bed material. Values of Manning's n for plane bed flow may be 
selected from the following table, which shows the relation between median 
grain size (dso) and the Manning n.

Median Grain Size

0.2 mm
.4
.6
.8 

1.0

Manning's n

0.012
.020
.023
.025
.026

After the discharge and velocity are computed from the Manning equation, 
it must be shown that the bed configuration is actually in the assumed flow 
regime. This can be done by using figure 12-3 below, which relates unit 
stream power to the type of flow. In the lower flow regime the form resis­ 
tance of the dunes greatly increases the value of n.
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4.0

2.0

« 1-0 

CL 0.8

O °'6

LU

" 0.4

0.2
0.2

Uppar ragima

Dunas

0.4 0.6 0.8 

MEDIAN SIZE, IN MILLIMETERS

1.0 1.2

Figure 12-3. Relation of stream power and median 
grain size to the bed form.
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PROBLEMS

At a gaging station on the Mississippi River near New Orleans, a dis­ 
charge of 1,200,000 ft^/s was measured when the cross-sectional area was 
202,000 ft2 , the wetted perimeter was 2,700 feet, and the slope was 0.168 
ft/mi. Assuming uniform flow, compute the Chezy discharge coefficient, 
C, the Manning, n, and the friction factor, f.

2. Use the Cowan method to estimate the Manning n for the channel reach 
described below.

Reach description: Straight, approximately 660 feet long. Cross 
section has very little variation in shape; variation in size is 
moderate, but changes are gradual. Side slopes are fairly 
regular, but the channel bottom is uneven and irregular. Soils in 
the channel consist of a yellowish-gray clay along the bottom and 
light-gray silty clay loam along the banks. Banks are covered 
with a heavy growth of poplar trees 2 to 3 inches in diameter, 
large willows, and climbing vines during the summer growing 
season. There is a thick growth of water weed on the channel 
bottom. At bankfull stage, average depth and top width are about 
8.5 and 40 feet, respectively.

3. Using three appropriate equations, compute the Manning n for the follow­ 
ing two channels.

Channel A Channel B

Area (ft2) 6,976 599
Top width (ft) 429 115
Wetted perimeter (ft) 435 117
d50 (ft) 0.44 0.31
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Lesson 13 - Classification of Water-Surface Profiles

Uniform open-channel flow is a limiting condition that is approached 
asymptotically but never attained. That is, any local nonuniformity of the 
channel boundary will produce a nonuniformity of the flow that--though contin­ 
uously decreasing in magnitude theoretically extends extremely far upstream 
or downstream.

Assume, for example, that a canal of constant cross section and bottom 
slope is designed to carry a discharge, Q, at a normal depth, Do , which is 
greater than the critical depth, DC, as indicated by the dashed line in figure 
13-1. If the sluice gate in the channel is partly closed, the depth will 
increase directly upstream until the head on the gate corresponds to the 
discharge, Q. Then, however, the decrease in velocity resulting from the 
increase in depth causes the rate of energy dissipation to be less than that 
for normal uniform flow conditions. As a result, the free surface and the 
total head lines must have slopes that are less than that of the bed. Because 
the total head line has a slope that is flatter than the bed slope, the 
specific energy increases in the downstream direction. For subcritical flow, 
an increase in specific energy results in an increase in depth as shown on 
figure 13-1. Because the degree of departure from uniformity decreases as the 
depth approaches normal depth, the resulting lines of total head and surface 
elevation approach their limits asymptotically far upstream as shown on the 
figure. The vertical scale on figure 13-1 is greatly exaggerated, backwater 
effects commonly extend many miles upstream in natural channels. Nonuniformity 
of this type is called gradually varied flow to distinguish it from rapidly 
varied flow (for example, in the immediate vicinity of a hydraulic jump).

Sluice gate

Figure 13-1. Gradually varied flow in an open channel-­ 
longitudinal scale greatly reduced.
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Directly downstream from the sluice gate, at point C, the depth is less 
than either the critical or the normal depth. Because the velocity is higher 
than normal (depth less than normal) , the slope of the total energy line is 
greater than the slope of the bed. This large slope of the total head line 
indicates a decreasing specific energy with increasing distance downstream. 
For supercritical flow, a reduction in specific energy results in an increase 
in depth as shown in figure 13-1. The depth tends to increase with distance 
in the downstream direction approaching the critical depth as a limit. If the 
flow reached the critical depth, a paradox would develop because the flow 
would need to continue decreasing its specific energy; however, the critical 
depth would be the point of minimum specific energy. This situation cannot 
exist so before the flow reaches the critical depth, a sudden change occurs in 
the form of a hydraulic jump. The flow shifts suddenly from a supercritical 
depth to a subcritical depth resulting in a large decrease in total energy.

The depth just downstream of the hydraulic jump is at the normal depth. 
This is proven by assuming first that the flow depth downstream of the 
hydraulic jump is less than normal depth. The velocity would be larger than 
normal so the head loss per foot would be larger than normal and the specific 
energy would decrease with distance downstream. Decreasing specific energy 
results in decreasing depth (for subcritical flow) so the flow departs further 
from normal rather than approaching it. Furthermore, if the water depth is 
greater than normal just downstream of the hydraulic jump, the velocity would 
be less than normal so the energy dissipation per unit length of the channel 
(the slope of the total head line) would be less than the bed slope and the 
specific energy would increase with the distance downstream. Because the flow 
is subcritical, the water depth would also continually increase, resulting in 
another impossible situation. Therefore, the water depth downstream of the 
jump must be at the normal depth for the channel.

The flow at the brink is at critical depth as was seen before. Just 
upstream of the overfall the velocity will be larger than normal and the head 
loss will be larger than normal therefore, because the flow is subcritical, 
the depth will decrease with increasing distance downstream. The water- 
surface profile would approach the normal depth asymptotically with distance 
upstream from the brink.

Water-surface profiles of all types can be sketched for various combina­ 
tions of channel reaches and transitions. Keep in mind that if the depth is 
greater than critical (subcritical flow), the surface profile will be con­ 
trolled by a downstream transition because the velocity is less than the 
celerity of even the smallest disturbance. If, on the contrary, the depth is 
less than critical (supercritical flow), the surface profile will be con­ 
trolled by an upstream transition because disturbances cannot travel upstream 
in supercritical flow. Any disturbance that is large enough to travel 
upstream in supercritical flow, will, in doing so, change the depth to a value 
larger than the critical value (as does the hydraulic jump), and the control 
will shift downstream.

In figure 13-2 water-surface profiles are categorized in terms of the 
bottom surface slope (whether steep, critical, or mild) and the water depth 
whether it is greater than both critical and normal (case 1), between critical 
and normal (case 2), or less than both critical and normal (case 3). A more 
complete version of this table can be found in Vennard (1962) .

To qualitatively sketch water-surface profiles, the following approach 
may be used. First, if the depth is greater than normal, specific energy will 
increase in the downstream direction. Likewise, if the depth is less than
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Steep 

S0 >SC

D > Dc > DO 

surface

Dc > D > D0 DC > DO > D

F r <1

Mild 

S0 <SC
F r

1

D > DO > DC DO>D>D

Figure 13-2. Surface profiles of varied flow.

normal, specific energy will decrease. Second, if the depth is greater than 
critical, an increase in specific energy results in an increase in depth and 
if the depth is less than critical, an increase in specific energy results in 
a decrease in depth. In sketching the water-surface profiles, first draw the 
bed, critical depth, and normal depth in their proper relative positions. 
Next, consider what happens to the depth if the water surface is in any of the 
three zones: above both normal and critical depth, between the two, or below 
both depths. Then draw the water-surface shape from figure 13-2 in each zone 
indicating the direction of depth change, provided the water surface is within 
the zone. These shapes will be found very helpful in sketching the water- 
surface profile because the true water-surface shape must be continuous and 
have the indicated shapes in each zone.

On figure 13-1, for example, suppose the channel slope is mild and the 
water level is at point A that is above normal depth. Because the depth is 
greater than normal depth, the flow gains specific energy as it moves down­ 
stream (it will have a smaller velocity and energy loss per unit length than 
normal). Because point A is also at a depth greater than critical depth, an 
increase in specific energy is accompanied by an increase in depth. Therefore, 
the depth will increase in the downstream direction as shown by the shape of 
the MI water-surface profile. Because the depth passes through critical at 
the drop off and the shape of the MI curve is concave up, it is impossible for 
the jump to raise the water above the normal depth.

On the other hand, if the water level is at point B, the depth is less 
than normal depth. This causes the velocity to be greater than normal and the 
flow loses specific energy as it moves downstream. Point B is still greater 
than the critical depth and so the decrease in specific energy causes the 
depth to decrease as shown by the M£ profile. This curve is consistent with 
the true water-surface profile provided that the brink is not too far away.
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Finally, if the depth were at point C, the flow will lose specific 
energy as it moves downstream and the flow is supercritical so the reduction 
in specific energy causes an increase in depth as shown by the MS water- 
surface profile.

Qualitatively drawing the water-surface profiles aids visualizing many 
natural flow phenomena and understanding these profiles can be useful in 
stream-gaging applications.
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PROBLEMS

A wide channel flows from a reach where the slope is 0.001 to a reach 
where the slope is 0.0005. The discharge is 100 ft^/s/ft and the rough­ 
ness is 0.015. Compute the critical depth, the critical slope, and the 
two normal depths. Draw the critical depth, normal depths, and the 
water-surface profile through the transition between slopes. Label the 
water-surface profile.
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2. A wide channel flows from a reach where the slope is mild to a reach
where the slope is 0.003. The discharge and roughness are the same as in 
problem 1. Compute the normal depth in the steeper reach and draw the 
water-surface profile.

3. Repeat problem 2 except the upstream reach slope is mild and the down­ 
stream slope is steeper than the upstream reach but still mild.

102



4. Repeat problem 2 except both slopes are steep; that is, the flow passes 
from a steep slope to a steeper slope.
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Lesson 14 - Local Energy Losses in Natural Channels

The Manning, Chezy, or Darcy-Weisbach equations can be used to compute 
the slope of the energy grade line (energy loss per unit distance) for 
channels where all resistance to flow is caused by boundary friction. 
Boundary friction will be the dominant source of resistance in prismatic 
channels with no local disturbances. Natural channels are seldom prismatic, 
however, and so energy losses are generally greater than in prismatic channels 
such as flumes or lined canals. Examples of disturbances that increase energy 
losses in natural channels include boulders, fallen trees, bridge constric­ 
tions, bends, and natural contractions and expansions. Generally speaking, 
the resistance caused by small obstructions is lumped in with boundary fric­ 
tion and the resistance coefficient is modified to account for the greater 
energy loss.

Major disturbances such as expansions and contractions are generally 
accounted for separately and the energy loss, he , is assumed to occur instan­ 
taneously. The energy is converted to turbulence or to turbulent eddies that 
in turn convert the energy to heat as they dissipate while moving downstream. 
Figure 14-1 shows the usual way of drawing the water surface and energy grade 
line in the vicinity of a local disturbance. The true shapes probably look 
more like the dashed curves.

Plan view

Figure 14-1. Energy grade lines at a local obstruction

Applying the energy equation between points 1 and 3 (point 2 is not a 
good point because the location of the total head is indeterminate), one 
obtains

+ h3 + hf x ~^ + hf
2g e , (14-1)
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in which h^ and h2 represent the sum of the potential plus pressure potential 
energies (the hydraulic head), and hf represents the head loss due to fric- 
tional resistance. The local energy loss, he , is generally computed as a per­ 
centage of the velocity head. Percentages (loss coefficients, kv ) for various 
geometric forms of obstructions are tabulated in handbooks of hydraulics. 
Here we are mostly interested in head losses at expansions and contractions. 
The head loss at either an expansion or contraction is usually computed as

laiVi 2 - OC3V3 2 |he = ke    0  =2-i2   , (14-2) 
e e 2g

where the absolute value of the difference in velocity heads allows the same 
expression to be used for either an expansion or contraction. For a sudden 
contraction the value of ke is usually found to be about 0.5. Its value 
decreases as the transition becomes more gradual or streamlined. For a sudden 
expansion the value of ke is usually found to be 1.0 which implies that all

the kinetic energy ((XiVi 2 /2g) in excess of that in the expanded channel is 
lost to turbulence. As the expansion is streamlined, the value of ke 
decreases but usually not very much. As can be seen by plotting the energy 
and hydraulic grade lines for an expansion, if the value of ke is 1.0, there 
is no increase in water surface elevation as the flow passes through the 
expansion. You probably recall that this is what is usually observed in the 
field. For subcritical flow, however, the water level will always decrease as 
the flow passes through a contraction.

Local energy losses become important when computing flow from changes in 
water-surface elevations such as occur at width constrictions. Figure 14-1 
could be used as the definition sketch for flow through a bridge opening; for 
example, where section 1 is a short distance upstream of the bridge, section 2 
is at the upstream side of the embankment, and section 3 is at the downstream 
edge of the opening. After a flood, peak water-surface elevations can be 
determined at sections 1 and 3, usually from high-water marks. The discharge 
can then be estimated as the value that allows the energy equation 14-1 to 
balance. Rewriting equation 14-1 in expanded form, in which the friction 
slope is expressed as a function of discharge and conveyance and the local 
entrance loss is expressed by equation 14-2, one obtains

in which L^2 and L23 are the distances from section 1 to 2 and 2 to 3, respec­ 
tively, V]_ = Q/AI and V2 = Q/A3. Because the areas and conveyances are all 
functions of the geometric shape of the section, roughness, and depth, equa­ 
tion 14-3 contains only one unknown (Q) besides the roughness coefficients in 
reach 1-2 and 2-3 as well as the contraction loss coefficient ke . Measurement 
of the water-surface elevations h^ and 113 as well as the channel shape and 
assuming the roughness coefficients and ke allows the peak discharge to be 
computed (by trial and error) from the energy equation 14-3.
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PROBLEM

1. After a flood the data in the table were measured at a bridge site.
Section 1 was located 40 feet upstream of the bridge opening and section 3 
was located 15 feet downstream of the bridge opening, but still within the 
zone of contracted flow. Assuming a contraction loss coefficient of 0.5, 
compute the peak discharge. Assuming a true discharge of 575 ft^/s 
(Matthai, 1968, p. 43), compute the actual value of ke . Draw and label the 
total and hydraulic grade lines on the sketch.

Section

1
3

Water-surface 
elevation (ft)

10.81
10.00

Area 
ft2

148.2
82.2

Conveyance 
ft 3 /s

10,840
6,560

a

1.39
1.0

Q

Assume
aiVi2
2g

(ft)

Total
head

at 1

(ft)

a 3V32
2g

(ft)

hf

(ft)

hf

(ft)

he

(ft)
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Lesson 15 - Water-Surface Profile Computations 

Methods of Computation

A common problem in open-channel hydraulics is to determine the water- 
surface profile of a stream under specific discharge and channel conditions. 
The term "backwater curves" is applied to such profiles.

Backwater curves are used to determine grade lines for flood-protection 
works, highways, and bridges. They are used to determine tailwater ratings 
for hydroelectric power plants, canal headworks, and energy dissipaters. They 
are also used to determine areas subject to flooding.

The computation of water-surface profiles basically involves solution of 
the energy equation for gradually varied flow. Broadly classified, there are 
three methods of computation:

1. the graphical-integration method,
2. the direct-integration method, and
3. the step method.

Explanations of both the graphical- and direct-integration methods may be 
found in Chow (1959) as well as other texts. Only the standard-step method 
will be discussed here.

Step method computations require the channel to be divided into short 
lengths, or reaches, which have relatively small variations in conveyance. In 
a series of steps starting from a point of control, each reach is solved in 
succession. For subcritical flow the computations proceed upstream from a 
downstream control and for supercritical flow the computations must proceed 
downstream from an upstream control. It is very helpful, almost necessary, to 
qualitatively analyze the problem using the methods developed in lesson 13 
before detailed computations begin.

The standard-step method allows computation of backwater curves in both 
nonprismatic natural channels and nonuniform artificial channels as well as in 
uniform channels. This method involves solving for the water-surface eleva­ 
tion at various locations along a channel. The energy balance used in the 
standard-step method is accomplished by writing energy equation between the 
upstream section, u, and the downstream section, d, in figure 15-1 as

2 2vi VH
hu + Otu 7* = hd + Od ^ + hi (15-1)

and solving for the water-surface elevation at the unknown section by trial 
and error.

Except for representing the hydraulic head, h, as the sum of the poten­ 
tial and pressure potential heads (D + Z), equation 15-1 is identical to the 
standard energy equation 6-2. The total energy loss in the reach, hi, is com­ 

puted as

hi = hf + he , (15-2) 

where hf = Sf L = energy loss due to friction and
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Figure 15-1. Water-surface profile 
computation.

£
2g

(14-2)cxu "Z"Z ~~ ad TT = eddy losses due

to expansion or 
contraction of 
the flow.

Eddy losses allow a three-dimensional flow to be modeled using a one-dimen­ 
sional theory. In nonprismatic channels, eddy losses may be appreciable.

Solving equation 15-1 for the hydraulic head at the upstream section 
(assuming subcritical flow), one obtains

2g 2g
hf (15-3)

The equation computes the upstream water-surface elevation from the 
downstream elevation when backwater computations are made for subcritical flow 
because the control is downstream.

The computation is carried out in steps, going from one cross section to 
the next. The general computational procedure is as follows:

1. Starting at a cross section with a known water-surface elevation, 
compute the necessary cross-sectional properties.

2. Estimate the unknown water-surface elevation at the next cross 
section.

3. Calculate the hydraulic properties that correspond to the estimated 
water-surface elevation.

4. Determine the energy losses that correspond to the estimated water- 
surface elevation.

5. Calculate the water-surface elevation using the energy equation 
(equation 15-3) and the energy losses computed in step 4.
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6. Compare the estimated and computed water-surface elevations. If 
they are close enough, go to step 1 where the just computed water- 
surface elevation is considered to be known. If they are not close 
enough, estimate a new water-surface elevation and go to step 3.

Friction-Loss Computation

Friction loss in a channel reach is computed by integrating the friction 
slope along the reach:

hf = Sf dx. (15-4)

Equation 15-4 is approximated by

hf = Sf L, (15-5)

where Sf = the average friction slope for the reach, and 
L = the reach length.

The product of Sf and L approximates the area under the actual Sf curve on 
figure 15-2. In general, the shape of the friction slope curve is unknown and 
depends on the type of water-surface profile (that is, Ml, M2, etc.).

Figure 15-2. Variation of friction 
slope with distance 
along the channel.

Possible ways of calculating Sf include the following: 

Weighted Average

Sf = (1-9) Sfd + 9 s fu

1/2; Arithmetic Average

Geometric Mean

(15-6)

for 9 =
Ti/4; Elliptic Average

Sf = S fu (15-7)

109



Harmonic Mean

Sf =
Sfd + Sfu

(15-8)

Average Conveyance

Sf = (15-9)

Any of the friction slope equations will produce satisfactory estimates 
of friction loss provided that the reach lengths are sufficiently short so 
that the conveyances at either end do not vary too much. The advantage sought 
in using alternative friction slope formulas is to maximize reach lengths 
without sacrificing profile accuracy. Table 15-1 presents the results of 
various investigations in a form that will enable proper selection of a fric­ 
tion slope formula. The Geometric Mean equation is the preferred friction- 
slope formula for all profile types in the Geological Survey step-backwater 
computer programs.

Table 15-1. Criteria used to select friction slope equation

Profile type Is Sfu > Sfd Equation used

Subcritical

Supercritical

Yes (Ml, SI) 
No (M2)

Yes (S2) 
No (M3, S3)

Arithmetic Average 
Harmonic Mean or 
Elliptic Average

Arithmetic Average 
Geometric Mean

where

Sf =

the known friction slope at the downstream cross 

section, and

the estimated friction slope at the upstream cross 

section.

Example:

A 100-foot wide rectangular channel has a slope of 0.0006 and a 
Manning's n = 0.03. At a discharge of 1,669.2 ft 3 /s the observed depth is 4.5 
feet. What is the depth 300 feet upstream? Assume all (X's = 1.0 and expan­ 
sion/contraction loss coefficients of 0.0 because it is a prismatic channel.
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Solution:

The first step is to qualitatively determine the type of backwater 
profile present. First, compute the Froude number to see if subcritical or 
supercritical flow exists.

. 
gD V32.2(4.5)

=0-31

Because the Froude number is less than 1, the flow is subcritical and the 
problem is well posed because the control will be downstream and backwater 
profiles should be computed in the upstream direction. Also, the critical 
depth is less than 4.5 feet and less than 5.0 feet.

Next, compute the normal depth. For normal depth the friction slope and 
the bed slope are equal so

Q = -j^jl" A R 2 / 3Vo.0006 = 1.22 (100 D) ( IO^^D) 

Solving by trial and error as shown below

2 / 3

_Q
4.5 1,408.9
4.6 1,459.7
4.8 1,563.2

Normal depth -» 5.0 1,669.2
5.2 1,777.6

The normal depth of 5.0 feet is larger than the critical depth so the slope is 
mild. The local depth is less than the normal depth and greater than critical 
depth so an M2 profile exists that is concave down as can be seen on table 
13-1. In other words, the depth 300 feet upstream will be larger than 4.5 
feet and less than the normal depth of 5.0 feet.

The exact value of the depth is computed from the energy equation as 
expressed in equation 15-1 or 15-3. Because the right side of equation 15-3 
is a function of the unknown upstream head, hu , a trial-and-error solution 
will be required, and it is convenient to organize the computations by use of 
a table such as 15-2.

The first step is to compute each term in equation 15-3 that pertains to 
the downstream section (which is called section 1) as follows:

The conveyance at the downstream section is

( 1 49 \ / 450 \ 2 / 3 ~ of) «5 °> (if?) - 57 ' 518 ft3/s '

so the friction slope is
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Table 15-2. Computation sheet for backwater analysis

Cross Depth Water-surface elevation K 

section (ft) Assumed Computed (ft^/s)

Sf hf V 

(ft) (ft/s)
2g

1 4 

2 4 

2 4

.5 

.7 4.88 

.57 4.75

4 

4 

4

.5 

.75 

.74

57, 

61, 

58,

518 

690 

966

0 
0 
0 
0 
0

.000842 

.000785 0.236 

.000732 

.000765 .230 

.000801

3. 

3. 

3.

71 

55 

65

0.214 

.196 

.207

the velocity is

and the velocity head is

V = 1,669.2
450

= 3.71 ft/s,

(XV
2g

2 1.0(3.71) 2
64.4

= 0.214 ft

These values are recorded in table 15-2 on the line marked section 1 with a 
known water-surface elevation and depth of 4.5 feet.

The next step is to assume a depth at the upstream section. Because we 
know the depth will increase upstream (M2), an assumption of 4.7 feet is made. 
The bed raises 0.0006 x 300 =0.18 foot so the assumed water-surface elevation 
(hu ) is 4.88. The next step is to compute the conveyance, velocity, etc., for 
section 2 (the upstream section) just as for section 1. The results of these 
computations are shown as the third line of table 15-2.

With the third line completed, compute the head loss terms and record 
the results on line 2 because the values represent the head loss between the 
two sections. The friction slope at section 1 is 0.000842 and at section 2 
for the assumed depth of 4.7 feet is 0.000732. The average slope is computed 
as the geometric mean

Sf = Vo. 000842 (0.000732) = 0.000785 

so the friction loss between section 1 and 2 is

hf = 0.000785 (300 ft) = 0.236 ft.

The loss term is recorded on line 2 of table 15-2. The next step is to 
compute the water-surface elevation at the upstream section by use of equation 
15-3 using data contained in table 15-2
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hu + 0.196 = 0.214 + 4.5 + 0.236 + 0.0

or hu = 4.75, which is recorded as the computed water-surface elevation at 
section 2. A poor assumption was made because the computed and assumed eleva­ 
tions at section 2 are not equal.

Another try is made by assuming the water-surface elevation at section 2 
is equal to the computed value of 4.75 feet. The conveyance, velocity, etc., 
are recomputed with the new assumed depth of 4.75 - 0.18 = 4.57 and the 
results recorded on the fifth line of table 15-2. The head loss terms are 
recomputed for the reach using data contained in lines 1 and 5 and the results 
are recorded between the sections on line 4. The second estimate of the 
upstream water-surface elevation is then computed as before as

hu = 0.214 + 4.5 + 0.230 - 0.207 = 4.74,

which may be close enough to the assumed value. So the approximate water- 
surface elevation 300 feet upstream of the measurement point is 4.74 feet and 
the depth is 4.5'6 feet, which is greater than 4.50 as it should be for an M2 
curve. The conveyance at sections 1 and 2 differ by only 3 percent so the 
method used in averaging the two friction slopes (geometric mean used here) is 
not very important. If the conveyance at the two sections differed by more 
than 20 percent, the computations probably should be made for sections that 
were closer together. For example, to get the water-surface elevation 300 
feet upstream, one might first compute it at 150 feet and then at 300 feet.
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PROBLEM

A channel with a trapezoidal cross section as shown below has a constant 
slope of 0.0016 and carries a discharge of 400 ft^/s. Manning's n has 
been computed to be 0.025. Compute the normal depth. Compute the back­ 
water profile created by a dam that backs up the water to a depth of 5.0 
feet immediately behind the dam. Use the standard-step method. Estimate

the average friction slope, Sf, as a geometric mean. Assume that 
ke = 0.0 for contractions and expansions, and a = 1.0. Locate cross 
sections 500 feet apart. Compute the profile until the depth is within 
0.10 feet of the normal depth. What type of profile is this (e.g., Ml, 
M2, etc.).

Water surface

T

S0 = 0.0016 
n = 0.025

For a channel with a trapezoidal cross section:

Area = (b + zy)y

Wetted perimeter = b 4- 2y \1 +

(b + zy)y
Hydraulic radius =

b + 2y Vl -I- z 2
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PART V - DISCHARGE COMPUTATIONS FOR RAPIDLY VARIED FLOW 

Lesson 16 - Rapidly Varied Flow at Constrictions

The contraction of a stream channel by a roadway crossing creates an 
abrupt drop in water-surface elevation between an approach section and the 
contracted section under the bridge provided the upstream flow is subcritical 
(Fr < 1). The contracted section framed by the bridge abutments and the 
channel bed is, in a sense, a discharge meter that can be used to compute 
floodflows. The piezometric (hydraulic) heads are defined by high-water marks 
and the geometries of the channel and opening are defined by field surveys. 
The energy equation is used to relate the change in piezometric heads to the 
discharge. This lesson describes the theory behind using contracted sections 
as flow meters. Details of the procedure are presented by Matthai (1968) and 
Schneider and others (1977) .

Consider the theoretical water-surface profile that occurs for steady 
flow through a contracted section of a rectangular channel which is 500 feet 
wide with a Manning's n of 0.03 and a slope of 0.0002 while the discharge is 
5,075 ft-Vs. Figure 16-1 is a plot of the theoretical water-surface and 
total-energy profiles that would occur if the constricted channel was a 100- 
foot wide rectangle with the same roughness and bottom slope as the natural 
channel. The opening is assumed to be 48 feet long (parallel to the flow) and 
have contraction (entrance) and expansion (exit) loss coefficients of 0.5 and 
1.0, respectively.

Plan view

136 feet

-*- v 500 feet

____L_

-*f-«   48 feet   H

100 feet

7.49 feet

1

6.83 feet

Local effects -\

. ux h a = 0.65 feet

J*a^c,

6.60 feet

= 1.54fee

   - 1 ^ 
1

5.00 feet Normal depth

1 D 3 = D3A = 5.00 feet

n = 0.03 1 1 
S0 = 0.0002 ' 1

Figure 16-1. Theoretical water-surface and energy profiles 
through a contracted opening.
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Within the contracted section, the normal depth, Do , is 14.43 feet, as 
can be seen by use of the Manning equation, and the critical depth is

while the wide channel has a normal depth of 5.0 feet and a critical depth of 
1.47 feet. For normal depth in the wide section the velocity is 2.03 ft/s and 
the Froude number is 0.16.

The flow is subcritical throughout because Do > Dc throughout and there 
is no sudden drop in bed elevation. For subcritical flow, the control is 
always downstream. As can be seen by applying the water- surface profile 
shapes discussed in lesson 13, normal depth must exist all the way up to the 
opening on the downstream side. For the present discussion we ignore the 
local effects and assume the velocity is capable of suddenly changing from one 
value to another as the water leaves the constriction and enters the expanded 
section. Therefore, just downstream of the outlet (section 3A) the depth is 
5.0 feet, the velocity is 2.03 ft/s, the velocity head is 0.06 foot (assuming 
a = 1.0), so the total head is 5.06 feet (assuming the bed is at zero eleva­ 
tion at the outlet) .

The depth just upstream of the outlet, section 3, can be computed from 
the energy equation as

where the values of a are assumed to be 1.0 and the expansion loss coeffi­ 
cient is assumed to be 1.0. Because the expansion loss coefficient is 1.0, 
the velocity heads exactly cancel so the value of 03 is equal to the value of 
D3A, and the theoretical water surface is continuous at the expansion. Had 
the expansion less coefficient been assumed to be 0.8, however, the theoreti­ 
cal value of 03 would have been 4.64 feet for example. This would have indi­ 
cated that the water surface suddenly increased by 0.36 foot as the flow 
expanded. In other words, 0.36 foot of the kinetic energy at section 3 would 
be converted instantaneously to pressure energy raising the water surface by 
0.36 foot. With the loss coefficient of 1.0, figure 16-1 indicates the instan­ 
taneous head loss at the expansion is 1.54 feet.

Within the contracted section, the depth is less than the normal depth 
of 14.43 but greater than the critical depth of 4.31, so an M2 profile is 
indicated as plotted on figure 16-1. Projecting the water-surface profile 
back to the entrance (using the methods as outlined in lesson 15), the depth 
and total energies at section 2A are as indicated on figure 16-1. Both the 
water-surface profile and energy line is concave downward as required by the 
M2 profile, but the curvature is probably too slight to detect on figure 16-1

The next step is to compute the depth at section 2 by use of the energy 
equation

Vo2 ( V? 2
-~  + D2 + 0.01 = 1.33 + 5.49 + 0.01 + 0.5 1.33 - -* 
2g ^ 2g

from which the value of D2 is seen to be 7.44 feet.
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The velocity and velocity heads are 1.36 ft/s and 0.03 foot, respec­ 
tively, at section 2. The energy loss at the entrance is seen to be 0.65 foot 
compared to the exit loss of 1.54 feet. The theoretical water-surface profile 
is discontinuous at the entrance because it has been assumed that the velocity 
changes instantaneously as it passes the opening and that the energy is 
suddenly dissipated. Of course this discontinuity does not exist in nature 
and the actual water-surface profile and energy line will look somewhat as 
shown by the dashed curves. In general, these effects, which are due to 
streamline curvature, are very localized.

Upstream the depth is greater than both normal and critical, so an Ml 
curve is indicated. The Ml curve is very slightly concave upward. For 
example, at 136 feet upstream of the entrance the theoretical depth is reduced 
to only 7.42 feet and it requires 36,300 feet for the depth to be reduced to 
5.06 feet, which is still 0.06 foot above normal.

The Geological Survey is frequently faced with the problem of estimating 
the discharge based on high-water marks left after a flood. A bridge opening 
offers an ideal place to make this estimate. This is because there is gener­ 
ally a large difference in water-surface elevations that are directly related 
to the energy equation. For example, if the energy equation is written from 
sections 1 to 3

(16-1)

in which there are several unknowns but the unknowns tend to be small. For 
example, if DI, Zi, 03, and Z3 are measured in the field, the values of AI and 
A3 can be computed from the geometry of the cross section so that

> > O / O O

tt3Q 1-9 9_-5 fV2A V2hi =     r- + h3 + hf  *- * + hf ' '-       
_ O ' "X _ O   ">?   "J.   "J.   '-tS I Or-r O^r

2g AI^ 2g A^ \ 2g 2g

In this equation, the unknowns are tti, 03, hf 1 "^^ ^f2~3 f ^^ 
Solving for Q

Q2 =    ^2    (hi - h3 - hf 1 ' 2 - hf2 ' 3 - he )

in which the entrance loss term is represented by he . For the example given 
in figure 16-1, hi - 113 = 2.46 feet, hf 1 " 2 = 0.01 foot, hf2 ~ 3 = 0.23 foot, 
and he = 0.65 foot. The accuracy of the result would not be very much 

affected by substantial errors in hf 1 "2 or hf2 " 3 and even the entrance loss is 
not large, so that a significant error in this can be tolerated. The value of 
OC3 will be nearly 1.0 because the section under the bridge is generally very 
regular in shape and the actual value of oci is rather insignificant because 

is 56 times larger than the value of

The depth and total energy lines are strongly affected by local condi­ 
tions at sections 2 and 2A. At sections 3A and 4 additional unknowns are 
added, the expansion loss and the friction loss between 3A and 4. The exit 
loss term is also large, 1.54 feet in this example, so estimates of its value
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should be avoided if possible. For these reasons, sections 1 and 3 are almost 
always selected as application points for the energy equation.

Figure 16-2 shows typical streamlines for flow through a sharp-edged 
opening. The water following streamline A approaches the opening at a 
significant angle and is unable to change directions instantly upon passing 
the opening. The active jet, therefore, continues to contract in the down­ 
stream direction for a short distance after it passes the opening. The vena 
contracta is defined as the point where the active area is smallest (often as 
much as 20 percent less than the gross area). At the vena contracta the flow 
is nearly parallel so the energy equation can be applied with accuracy. The 
energy equation should not be applied upstream of the vena contracta because 
the curvature of the streamlines is large and the simple one-dimensional 
assumptions are not applicable.

Figure 16-2. Streamlines for flow 
through a sharp-edged 
opening.

The upstream section should be selected such that it is upstream of the 
local drawdown caused by the converging streamlines. Generally the drawdown 
effects extend upstream less than one opening width. Wide, heavily vegetated 
floodplains present unique problems that have been addressed by Schneider and 
others (1977).

Detailed procedures for computing discharges at contracted openings are 
presented by Matthai (1986). The basic equation used in this manual can be 
derived from equation 16-1 by assuming the entrance loss can be estimated as

instead of the expression given in equation 16-1. This assumption is desir­ 
able and reasonable because the velocities at section 2 are not generally 
known and V3 z. V2A while V2 « V2A- Expressing the entrance loss as indicated 
above and replacing V3 by Q/A, equation 16-1 can be written

+ hi = + hf1-3
Q2 «

2g

or solving for Q yields

Q =
V«3 (l

(16-2)
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which is identical to Matthai's equation 1 

where

C =
Va3 (l + ke ) 

and Ah is the fall in water-surface elevation

Ah = DI + Zi - 03 - Z3 = hi - h3.

The entrance loss coefficient ke is dependent on the shape of the 
entrance, the angle of the approach flow, the length of the opening, etc. 
Values of C, which are mainly a function of ke , have been measured for many 
shapes and hydraulic conditions using laboratory studies. The results of 
these studies are presented as tables and charts by Matthai (1968) . It was 
found that the dominant factor in determining the value of C is the channel- 
contraction ratio (m) which describes the degree of contraction imposed by the 
constriction on the normal stream channel. The contraction ratio is a measure 
of the portion of the total flow that enters the contraction from the sides of 
the channel. It can be computed from the equation

m = (Q - q')/Q (16-3)

in which Q is the total discharge and q 1 is the discharge that would have 
passed through the area of the opening if the constriction was not there. For 
the example shown in figure 16-1, Q = 5,075 and q 1 = 5,075/5 because the 
channel is uniform so one-fifth of the flow would have passed through the 
center 100 feet had the constriction not existed. For very wide flood plains 
(width of flood plain greater than five times the width of the opening), or 
very rough approach conditions (Manning's n greater than 0.05), special pre­ 
cautions are needed. For these conditions the special procedures developed by 
Schneider and others (1977) should be used.

The total value of C is then computed as

C = C 1 kF k<j> ... (16-4)

in which C f is a function only of m and L/b where L and b are defined in 
figure 16-3C and kp, k(k, etc., account for other factors such as shape.

Figure 16-3 contains a copy of some of the figures for a type 1 opening 
(Matthai, 1968). For this opening, the value of C 1 is determined from figure 
16-3A. The value of C is equal to C 1 if the Froude number is 0.5, the corners 
are not rounded, etc. If the Froude number is not 0.5, the correction for C' 
can be determined from figure 16-3B if the corners are rounded, the correction 
can be determined from figure 16-3C, etc.
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TYPE 1

A. Curves for base coefficient of discharge
1.00

0.90 -

0.80 -

0.70 -

0.60

Standard conditions 
r/b= 0 or 
F r =0.5

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

CHANNEL CONTRACTION RATIO (m)

1.10

1.00

0.90

B. Adjustment factor variation with Froude number

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 

FROUDE NUMBER, F r = Q/A3Vgv^

C. Adjustment factor variation with entrance rounding 
1.20

D. Adjustment factor with angularity

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 

RATIO OF CORNER ROUNDING TO WIDTH OF OPENING (r/b)

1.00

0.90

0.80

0.70

0.60
0.10 0.20 0.30 0.40 0.50 0.60 070 

CHANNEL CONTRACTION RATIO (m )

Figure 16-3. Coefficients for type 1 opening, vertical embankments, 
and vertical abutments.
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PROBLEM

Compute the flood discharge through a highway bridge opening in a practically 
straight, uniform reach of a river. The bridge spans the main channel and 
completely blocks both overbanks. The bridge opening is 180 feet wide and 30 
feet in length with vertical embankments and vertical abutments (Type 1 open­ 
ing) and no piers as shown in the figure below. The average water surface at 
the contracted section was found to be 3.0 feet below that at the approach 
section. Data for the approach section and the contracted section are given 
below. The approach section is located 180 feet upstream from the obstruc­ 
tion.

Subarea
Approach section:

Left overbank
Main channel
Right overbank

Total
Contracted section:

Tctal

A (ft2)

4, 930
5,000
2,760

4,460

P (ft)

403
225
246

230

n

0.045
0.035
0.052

0.035

R K K3/A2
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Solution Procedure:

(a) Compute conveyances at approach section.
(b) Compute velocity head correction factor at approach section (al) .
(c) Compute conveyance at contracted section.
(d) Compute channel contraction ratio, m, and length-to-width ratio, L/b
(e) Determine C 1 for a Type I opening from figure 16-3A.
(f) Assuming a Froude number of 0.5, determine the discharge coefficient 

(C) from figures 16-3A and 16-3C.
(g) Compute the discharge through the contracted opening using equation 

16-2 and the following table.

Assumed 

Q

25,000

.1-2 _
K3

V3 Fr3
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Lesson 17 - Flow Through Culverts

When a roadway crosses a small stream, the streamflow is usually carried 
under the roadway by use of a culvert. Like a bridge opening, the culvert 
invariably constricts the flow and the channel transition usually results in 
rapidly varied flow wherein acceleration rather than boundary friction domi­ 
nates the flow pattern. Because acceleration is an efficient process, the 
energy losses are small and peak discharges through culverts can be determined 
from high-water marks that define the headwater and tail-water elevations. 
This indirect method is used extensively to estimate flood discharges from 
small drainage areas.

Culvert flow has been studied in laboratories by the Geological Survey, 
the Bureau of Public Roads, and many universities. Detailed procedures for 
indirect discharge measurements are outlined by Bodhaine (1968) . The purpose 
of this lesson is to review the theory upon which these procedures are based 
and to briefly outline the procedures that are used.

In all cases the flow rate is computed by writing the energy equation 
between a point upstream of the culvert and a second point within or down­ 
stream of the culvert, then solving for the discharge in terms of an estimate 
of the energy loss. The procedure has much in common with that used at bridge 
openings. Figure 17-1 represents a schematic of the flow through a culvert 
with the sections and terms defined. For culverts the best point to use as 
the downstream control (second point in energy equation) depends very much on 
the flow conditions. In general there are six types of flow possible. These 
are summarized in figure 17-2.

Horizontal line

.e[PI grade line

(1) 
Approach section (2) 

Culvert entrance
Culvert outlet (4) -"-  

Z = distance from datum to culvert entrance invert Tailwater section

Figure 17-1. Definition sketch of culvert flow.

Note: the loss of energy near the entrance is related to the 
sudden contraction and subsequent expansion of the live stream 
within the culvert barrel.
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TYPE

Critical depth 
at inlet

h,-Z

1.0

S0 > S

EXAMPLE

1 ' 2
- 2 +« 1 V 1 /2g- Dc -hf ')

Critical depth 
at outlet

h,-Z

h 4 /Dc <1.0 

S0 <SC 3 4

Tranquil flow 
throughout
h, - Z

< 1.5

Q = CA 3\/2g(h 1

'1
DP

< 1.0 

h 4 /Dc >1.0

!   . ' v'".v'<H Datum 
 ;1/-:-v--2 3 4

Submerged 
outlet

Rapid flow 
at inlet

hi -ZV 21 '5
h 4 /D p fi1.0

O^CAnVsglh,- Z)

m gi^pppfi.
 :'; ":-^*| Datum f-1-:': :  

:rtX-2 3 4

Full flow 
free outfall

Q = CA 0V2g(h 1 -h 3 -hf2-3 ) 

L

1.5

3 4

Figure 17-2. Classification of culvert
flow (after Bodhaine, 1968, 
p. 2).
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The discharge equation for type 1 flow will be derived to illustrate the 
procedure. Writing the energy equation from section 1 to section 2

U7-1)

where (X2 is assumed to be 1.0 because the flow velocity should be fairly 
uniform in the culvert. The entrance loss, he , for the contraction is 
approximated as

V22 
he = ke -%- . (17-2)

The value of ke has been found, by use of many experiments, to range from 0.1 
to 0.6 depending on the shape of the entrance.

- Do - hf ^ r 1 2

in which z is the distance from the datum to the culvert invert, but V2 = Q/A2 
and A2 = Ac , D2 = Dc since critical depth occurs at the inlet so

(1 + ke ) =
Ac^ 2g

Define the coefficient of discharge, C, as

C = . 1 (17-3) 
Vl + ke

then solve for Q as

Q = Ac C A/2g hi - z + " - Dc - hf-1 -^ (17-4)

and the formula in figure 17-2 is obtained. Notice as ke varies from 0 . 1 to 
0.5 the value of C ranges from 0.95 to 0.82 in excellent agreement with the 
values given in figure 17-3, which is a reproduction of Bodhaine's figure 23 
(1968). The values in figure 17-3, as for most other figures in Bodhaine's 
report, were derived from laboratory experiments on scale models. The head 
loss term is computed as

in which L is the distance from section 1 to section 2.
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3 LOO
(T

I

GO 0.90
Q
u.
O
K 0.80

u. 0.70
Ul
O 
O

Types 1 and 2 
F=1.0 

C = 0.95

Box culvert having square entrance 

I I    I    I   
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FROUDE NUMBER (F=V/v/gD) AT SECTION 3

Figure 17-3. Base coefficient of
discharge for types 1, 
2, and 3 flow in box 
culverts with square 
entrance mounted flush 
in vertical headwall.

The critical depth at section 2 must be determined to apply equation 
17-4. It will be recalled from lesson 11 (equations 11-4 and 11-8) that 
critical depth is uniquely related to specific energy and velocity head or

= 2/3 E = 2
Vf

(17-6)

The specific energy at section 2 can be easily computed by referring to equa­ 
tion 17-1 or figure 17-1 as

E2 = n l
Vl V2 2 

2g
(17-7)

letting HI be defined as the specific energy at section 1 relative to the 
bottom of the culvert entrance

Hi = hi + - z (17-8)

and combining equations 17-6 and 17-7 it is seen that

E2 = 1.5 Dc = HI - - k

or that

D,
Hi - hf

1-2

(1.5 + 0.5 ke )
(17-9)

If the entrance and friction losses were zero, HI would equal E2 and Dc would 
be 0.667 HI. However, ke and hf-*-"2 are never really zero so Dc is always 
less than 0.667 HI. The ratio of Dc to HI is called the dc factor and its 
value is computed from the coefficient of discharge (Bodhaine, 1968, p. 24) . 
For example, assume C = 0.96 and hf 1 "2 = 0. From equation 17-3 the entrance 
loss coefficient can be computed as

(0.96) 2 =
1 +

giving ke = 0.085 so
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0.648 HI,

which agrees with the value given by Bodhaine (1968, p. 25).

As can be seen from figure 17-2, the six types of culvert flow can be 
divided into two groups (1, 2, 3) and (4, 5, 6) depending on whether or not 
the inlet is submerged. For subcritical upstream flow, critical depth is the 
smallest possible depth at the inlet to the culvert. So if critical depth at 
the inlet is larger than the pipe diameter, Dp, the inlet will be submerged. 
If you ignore the velocity head at section 1, the friction loss between 
sections 1 and 2 and the entrance loss, it can be seen from equation 17-9 that 
if hi - z is greater than 1.5 Dp, the inlet will be submerged.

The flow equations for types 2 and 3 are obtained in the same way as the 
equation for type 1 except the downstream energy point is section 3 and the 
energy loss in the barrel must be accounted for.

Types 4, 5, and 6 occur when the inlet is submerged. In this case the 
velocity head at section one is ignored because it is assumed it would be 
negligible due to ponding upstream from the culvert.

The equation for type 4 is derived by writing the energy equation from 
section 1 to section 4:

+ he + hf2 " 3 + h0 + hf 3" 4 ,

in which he and ho are the entrance and exit losses, respectively. Because of 
the large flow areas at sections 1 and 4, these velocity head terms are 
assumed to be negligible as is the friction loss from 1 to 2 and 3 to 4. The 
exit loss for a sudden expansion is computed in the usual way

h0 = 1.0
(V32 - V42 ) V32 = Vp2 

2g ~ 2g 2g

so rewriting with these assumptions

hx = h 4 + ke *£ + hf2-3 . 2g

computing the friction loss in the pipe from Manning's equation

2 _3 _ L Vp2 n2 
f ~ 1.492 R4 / 3

solving for Vp

2a n2 L
2g r e 1.492 

but 2g/1.492 = 29.01 so

Q2
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9letting -     = C^ as before
1 T JCfi

. Zg 
Q = AD C V

v"l ~
29 C n

R4/3

where C accounts for the entrance loss just as it does in all other cases.

The entrance loss coefficient is mainly a function of the rounding of 
the entrance as shown by table 17-1, which has been reproduced from Bodhaine's 
report (1968, p. 42).

Table 17-1. Discharge coefficients for 
box or pipe culverts set 
flush in a vertical head- 
wall; types 4 and 6 flow

r/D/p or r/D

0
0.04
0.08
0.12

0.84
0.88
0.96
0.98

radius of curvature of bell 
entrance

Type 5 acts as an orifice where the velocity at 2 is \2g(hi - z) and 
the C accounts for the vena contracta (contraction) at the orifice. Type 6 is 
treated as an orifice at section 3 (no contraction), but the head losses at 
the entrance and through the pipe must be accounted for.
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PROBLEMS

A 5-foot diameter concrete culvert is 180 feet long and has a Manning's n 
of 0.015. It has a bell entrance for which the radius of curvature of the 
bell is 0.4 foot, the pipe is set flush in a vertical headwall, and the 
pipe slope is 0.002. High-water marks observed after a flood indicate 
that the headwater elevation was 7.36 feet and the tailwater elevation was 
5.50 feet. The pipe is set flush in a headwall.

a. Was the outlet submerged? (See figure 17-2)
b. Was the inlet submerged? (See figure 17-2)
c. What type flow occurred? (See figure 17-2)
d. What was the flow rate? (See table 17-1)
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A box culvert 8-feet square is set on a steep slope and has a free getaway 
so there is no backwater. It has a square entrance mounted flush with a 
vertical headwall. The headwater elevation for a flood was observed to be 
10 feet, which is 8 feet above the entrance invert. The approach section, 
which is 20 feet upstream of the culvert entrance, had an area of 330 ft^ 
and a conveyance of 38,900 ft^/s. The Manning's coefficient in the pipe 
is 0.015.

a. How do you know it was not type 4 flow?
b. How do you know it was not type 5 or 6 flow?
c. How do you know it was not type 2 or 3 flow?

d. Make a rough estimate of the flow assuming
2g

= 0 and Dc = 2/3 HI.

Compute the actual critical depth at the entrance by accounting for 
the entrance loss by use of equation 17-9. Ignore the friction loss. 
Using the approximate discharge computed in step d as a first guess, 
compute the flow through the culvert by use of equation 17-4. Compare 
your results with those given in example 2 of Bodhaine (1968, p. 53). 
Draw the energy and hydraulic grade lines between sections 1 and 2 on 
a figure like that shown in figure 17-1 and compute the values of all 
components of the curve.
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Lesson 18 - Flow Over Weirs 

Definitions

A weir is an obstruction in a channel that causes water to back up 
behind it and flow over it, usually through an opening, or notch,, of regular 
form. The term is also applied to the structure containing such a notch. 
Thus a weir may be a depression in the side of a tank, reservoir, or channel, 
or it may be an overflow spillway of a dam. In addition, weirs are the 
simplest, least expensive, and probably the most common type of devices used 
to measure flow in open channels. Detailed procedures for measuring peak 
discharges using dams, weirs, and embankments are described by Hulsing (1967) 
This lesson will only give the background theory and briefly introduce the 
methods.

The edge or surface over which the water passes is called the crest of 
the weir. If the edge of the weir is thin or beveled with a sharp upstream 
corner so that the water springs clear of the crest on the downstream side, 
the weir is referred to as a sharp-crested weir (fig. 18-1). If the weir 
notch is mounted in a wall or some other structure that is too thick for the 
water to spring clear, the weir is called a broad-crested weir (fig. 18-2).

Water surface

Crest

Figure 18-1. Definition sketch for a contracted, 
sharp-crested weir.

Figure 18-2. Definition sketch for a broad-crested weir
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The sheet of water flowing over the weir crest is called the nappe. 
When the water surface downstream from the weir is far enough below the crest 
so that air moves freely beneath the nappe (aeration), the discharge is said 
to be free or critical. When the water level under the nappe rises to the 
point where free aeration is not possible, the nappe is not ventilated. When 
the downstream water surface rises to a level above the crest, the flow is 
said to be submerged or drowned. When the downstream water surface is above 
the weir crest a distance equal to about two-thirds or more of the distance 
between the crest and the upstream water surface, the flow rate will be 
appreciably affected.

Broad-Crested Weirs

Consider the flow over a broad-crested weir as shown in figure 18-2. A 
flow constriction occurs so potential energy upstream of the weir is being 
converted to kinetic energy as the water accelerates over the weir and there 
is a drop in water-surface elevation. If the tailwater elevation, ht, is less 
than the elevation of critical depth over the weir (=: 2/3 HI), the flow rate 
will be independent of the tailwater elevation.

To develop the flow equations for a broad-crested weir, write the energy 
equation from section 1 to 3 on figure 18-2. Let section 3 be located at the 
critical depth point that will be near the downstream side of the weir if the 
crest slope is less than critical. If the slope of the crest is greater than 
the critical slope, the critical depth will occur near the upstream side of 
the weir. In either case, applying the energy equation between section 1 and 
the critical depth (section 3) yields

Vc^ 10 oo
nl " H l = -5  + DC + hf 1 "^ + he + hfz ~ 3 . (18-1)

Because the velocity upstream of the weir is usually small, it is common to 
assume hf 1~2 = 0. Likewise the length of the weir, L, is usually small so the 

value of hf2~3 is also ignored. The value of he is approximated as usual by

Vcj 
2g 2g

where Vi is approximately zero, so simplifying equation 18-1 gives

Vc^ 
HI = Dc +    (1 + ke ). (18-2)

Recall from equation 11-8 that critical depth in a rectangular channel is 
related to the total specific energy and velocity as

Vc^ 
DC = 2 -- = 2/3 EC * 2/3 HI,

so

HI - f Hi - ^ - 2L
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or

2q
3(1 + ke ) 

The discharge can be directly computed as

Hi 0.5

Q = b DC VC = b

This equation can be written simply as

Q = b C H 1 - 5 , 

where the theoretical discharge coefficient is

ke )
Hi 1.5

 IV 2g
3(1 + ke )

(18-3)

(18-4)

(18-5)

Figure 18-3 has been extracted from Hulsing (1967) to illustrate the 
variation of C with weir height.

As stated before, the value of ke generally ranges from a low of 0 for 
very smooth openings or where the contraction ratio is small (h/L is small) to 
a maximum value of about 0.5 for sharp nonstreamlined openings and a large 
contraction ratio. As ke varies from 0.0 to 0.5, the theoretical value of C, 
based on equation 18-5 varies from 3.09 to 2.52, which are within the range of 
values indicated on figure 18-3. For values of h/L larger than 1.0, the 
length of the weir (L) is short and the weir begins behaving more like a 
sharp-crested weir, which as will be seen, has a larger coefficient of dis­ 
charge. The efficiency of the weir increases (C increases) as the upstream 
face is sloped. This in effect streamlines the entrance and reduces the value 
of ke .

Figure 18-3. Coefficients of dis­ 
charge for full width, 
broad-crested weirs 
with downstream 
slope = 1:1, and vari­ 
ous upstream slopes 
(Hulsing, 1967, p. 
10) .
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The coefficient of discharge in equation 18-4 is actually a function of 
many variables besides ke . In general, it is a function of the shape of the 
entrance and other variables as defined by

(18-6)C = f (-, -, HI, etc.
LI LI

in which r is the radius of the rounding on the upstream corners. The effect 
of many of these variables has been quantified by laboratory experiments and 
the results are presented by Hulsing (1967). Corrections for other variables 
are accounted for by letting

C = C 1 kr ks (18-7)

in which C 1 is determined from figure 18-3 and the k's are determined from 
other figures or tables. For example, if the slope of the downstream face of 
the weir is flatter than 1:1, the values of C from figure 18-3 must be multi­ 
plied by the factor, ks , given in the following table (Hulsing, 1967, p. 9) .

Value of ks for a downstream slope of

h/L 2:1 3:1 4:1 5:1

0.1
0.4
1.0
2.0

1.00
1.00
0.98
0.98

1.00
1.00
0.96
0.94

1.00
1.00
0.95
0.91

1.00
1.00
0.94
0.90

If the upstream weir face is vertical and the entrance corner is 
rounded, the value of C from figure 18-3 must be multiplied by a factor, kr , 
given in the following table (Hulsing, 1967, p. 9).

r/h .02 .04 .06 .08 .10 .12

1.00 1.01 1.03 1.04 1.05 1.06 1.08 1.09

Sharp-Crested Weirs

If the corner of the upstream face of the weir is very sharp and the 
length of the weir, L, is small, the water jet (nappe) will spring clear of 
the weir as shown in figure 18-1. In writing the energy equation for a sharp- 
crested weir, consider section 3 to be immediately downstream of the weir 
plate. Actually, the streamlines will have strong curvature at the face of 
the weir so the one-dimensional assumptions will not be strictly valid but 
nevertheless useful approximations result.
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Because the jet at section 3 is not supported from below, the pressure 
at all points in the jet is zero and does not increase from zero at the 
surface to Y°c at the bottom as it does for a broad-crested weir. The 
hydraulic head (potential plus pressure-potential energy) therefore is not Dc 
at section 3 but simply the average potential energy of parcels passing 
section 3. The potential energy of a water parcel on the bottom of the jet is 
zero while that of one on the top of the jet is Dc ft-lb/lb. Assuming the 
average potential energy of parcels passing section 3 is equal to the poten­ 
tial energy of the parcel passing through the centroid of the cross section, 
the energy equation yields

Hi = -  + - 2gJ'

because the centroid of the cross section (a rectangle) will be Dc/2 feet 
above the crest of the weir. Equation 18-8 is identical to equation 18-1 
except that the hydraulic head is adjusted to account for the fact that the 
pressure in the free jet is zero and so the average potential energy of water 
parcels passing section 3 is Dc/2 ft-lb/lb rather than Dc ft-lb/lb, which 
would occur if the pressure were hydrostatic. Because the depth upstream of 
the weir is generally large compared to the depth at the weir, we will con­ 
sider YI and hf!~3 to be zero.

With this slight modification to the energy equation, the flow over a 
sharp-crested weir can be analyzed exactly like that for flow over a broad- 
crested weir. The depth should be at critical depth at the weir plate so 
Dc = 2/3 HI, which can be substituted into equation 18-8 to determine the 
average velocity in the jet

3(1 + ke )

Comparing the velocity in a free jet as computed above to that on a broad- 
crested weir computed previously, it is seen that the average free jet . is 
two times faster. This is because there is no pressure in the jet holding the 
water parcels back.

Rectangular Weirs

Computing the discharge for a sharp-edged rectangular weir from the 
velocity and the area, one obtains

Again this equation is usually written as

Q = b C H 1 - 5 or Q = b C h 1 - 5 . (18-9)

The values of total head (H) or piezometric head are often used interchange­ 
ably because the velocity head upstream is usually negligible. The theoreti­ 
cal value of the coefficient of discharge is
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c =  
3(1 + ke ) '

(18-10)

As the entrance coefficient varies from 0 to 0.5, the theoretical 
discharge coefficient varies from 4.37 to 3.57, which is close to the experi­ 
mental values presented by Hulsing (1967, p. 6). The minimum discharge 
coefficient presented by Hulsing is 3.27 for a very small weir (h/P  » 0) and 
the maximum value is 4.29.

If the width of the weir is less than the width of the channel (b < B on 
fig. 18-1), then the flow tends to contract downstream of the weir plate (a 
vena contracta is formed). The discharge coefficient is reduced because of 
the smaller effective width of the jet. As can be seen from figure 3 in 
Hulsing (1967, p. 6), this contraction can reduce the flow area by almost 30 
percent.

If the nappe is not fully ventilated, a partial vacuum is created under 
the jet that reduces the pressure in the jet below atmospheric and increases 
the discharge just as reducing the pressure in the jet increases the discharge 
relative to the flow over a broad-crested weir.

Triangular Weirs

Triangular (V-notch) weirs permit the accurate measurement of much lower 
discharges than do horizontal rectangular weirs.

A definition sketch for the V-notch weir is shown in figure 18-4. The 
theoretical discharge for a V-notch weir is derived in the same manner as that 
for the rectangular weir.

Figure 18-4. Definition sketch of a 
V-notch (triangular) 
sharp-crested weir.

Section 3 is again just downstream of the opening and the pressure in 
the jet is zero so the average potential energy of water parcels must be used. 
For a triangular weir, the centroid of the cross-sectional area is at 2/3 Dc 
(see fig. 18-4) so the energy equation becomes

HI =
2g

_ D/-« + Ysl
2g

111 
2g

+ hf 1-3 (18-11)

The critical depth in a triangular channel is not equal to two-thirds of the 
total specific energy as in a rectangular channel. It can be easily shown 
that critical depth in a triangular channel is
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Vc2 4 4 
DC - 4 -;£--- E s - HI (18-12)

by use of equation 11-3. So the velocity at the critical section can be 
determined by use of equations 18-11 and 18-12 as

and the discharge is computed as

Q = ACVC = (   Hi J tan r-

or

Q = tan   C H5 / 2 

in which the theoretical discharge coefficient

-ii-J
25 \

14q
15(1 + k(

For a sharp, constricted entrance, the value of ke should be about 0.5 yield­ 
ing a theoretical discharge coefficient for a V-notch weir of 2.86. Experimen 
tal values of C range from 2.46 for a 60° weir to 2.48 for a 90° weir 
(Daugherty, 1931, p. 148) .

A correction factor, kt, for submergence of sharp-crested V-notch weirs 
is given by Villemonte (1947) as

kt f= L
in which h^ = tailwater elevation above the weir crest. This equation was 
found to apply equally well to all types of sharp-crested weirs if the expo­ 
nent of the term (h^/Hi) is equal to the exponent in the free-discharge equa­ 
tion of the particular weir.

Other Sharp-Crested Weirs

The Cippoletti (trapezoidal) weir is similar to a rectangular weir with 
side contractions except that the sides are inclined outwardly with slopes of 
4 vertical to 1 horizontal as shown in figure 18-5. The excess flow permitted 
by the flared sides of the Cippoletti weir corresponds to the decrement of 
flow induced by the lateral contraction. Therefore, the discharge can be com­ 
puted using equation 18-9 with the coefficient selected as for the rectangular 
weir and no correction is needed for the side contractions.

Other types of sharp-crested weirs are used which have been developed to 
achieve certain head-discharge relations or to achieve some benefit peculiar 
to a particular type of site. The most common of these special types of weirs 
is the sutro, or proportional, weir (fig. 18-6a) . Other special purpose weirs
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include the approximate linear weir (fig. 18-6b) , the approximate exponential 
weir (fig. 18-6c) , and the Poebing weir (fig. 18-6d) .

Crest length

Water surface

Figure 18-5. Definition sketch of a
Cippoletti (trapezoidal) 
sharp-crested weir.

A. Sutro or proportional weir 
Water

B. Approximate linear weir 
Water surface

C. Approximate exponential weir 
TTTT; Water ^*v .'.".*. >^.surface /T7 Figure 18-6. Various other sharp- 

crested weir profiles

0. Poebing weir 

Water ^fTT.'::':  ~T"*»>W_ surface
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PROBLEMS

A broad-crested weir 5 feet high and 10 feet long has a rounded upstream 
corner with a radius of curvature 0.3 foot, a downstream slope of 1:1, a 
vertical upstream face, and spans the entire width of a 20- foot wide 
rectangular channel. What is the discharge over the weir when the 
upstream water surface is 3 feet above the crest of the weir?
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2. Estimate the discharge over a vertical sharp-crested rectangular weir
extending over the full width of a rectangular channel 5 feet wide if the 
weir is 3 feet high and the head is 0.84 foot.
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3. A rectangular sharp-crested weir having a horizontal crest length of 3 
feet is located 2 feet above the bottom and is centered in a channel 5 
feet wide. Determine the discharge when the head is 0.40 foot.
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4. A 10-foot wide rectangular irrigation canal carries a flow of 200 ft^/s. 
At what height should a rectangular sharp-crested weir spanning the entire 
channel be installed in order to raise the water surface to a level 6 feet 
above the canal bottom?
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5. The head on a 60° V-notch weir located I foot above the channel bottom is 
0.5 foot. The approach channel is 4 feet wide. Compute the discharge and 
the velocity head in the approach channel. Is the velocity head in the 
approach channel significant?
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ANSWERS TO PROBLEMS 

Lesson 1

2. specific weight = 49.27 lb/ft3 
specific gravity = 0.79

3. 187.2 lb/ft2

4. 0.01417 Ib s/ft 2 

Lesson 2

1. FH = 7,020 Ib 
y = 10 ft

2. F = 6,240 Ib
yr = 5.83 ft below top of gate

3. FH = 4,000 Ib -» 
Fv = 3,000 Ib I

4. FH = 444 Ib -»

5. FH = 32,760 Ib -» 
Fv = 28,308 Ib T

Lesson 3

1. Vp = 0.89 ft/s Tp = 32.1 min

2 - Qm = 0.838 ft 3 /s APp = -1.34 atmosphere (impossible cavitation
will occur)

3. F/pV2L2 = f (H/pVL)

, Ah P r W \

g h3/2 i ' hi ' hi ' hi/

Lesson 4

1. (a) 5.56 ft, (b) 0.15 ft and 0.56 ft, (d) 2.03 ft

2. (a) 1.605 ft 3 /s, (c) 24.07 ft/s

3. 1,716 ft3 /s

4. Q = 1,200 ft3 /s D2 = 2.0 or 3.5 ft
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Lesson 5

1. q = 0.0071 ft2 /s, vmax = 0.529 ft/s, V = 0.355 ft/e, 
Re = 584 (barely Laminar)

2. TO = 0.0312 lb/ft2 , u* = 0.127 ft/s

3. vo.l = 2.80, vi = 3.53, V3 = 3.88, vs = 4.04, V = 3.72 

Lesson 6

1. hA~B = 10.69 ft, hB"C = 63.30 ft, AT = 0.1 °F

2. (a) 21.49 ft 3 /s, (b) 1.125

3. 3.018 ft

4. 24.05 ft 

Lesson 7

2. 0.784 ft/mi

3. 1,980 ft3 /s

4. 7.10 ft

5. C = 145, f = 0.0123

6. y
i
5

5.1
6
10

Q
121 ft 3 /s
1,610

920
1,815
8,100

Lesson 8

1. (a) K = 28,711 ft 3 /s, Q = 1,287 ft 3 /s, V = 10.72 ft/s 

(b) K = 2,707 ft 3 /s, Q = 121 ft 3 /s, V = 5.82 ft/s

(C) K = 48,855 ft 3 /s, Q = 2,185 ft 3 /s, V = 11.38 ft/s

2. 3.95 ft
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Lesson 9

1. K ft 3 /s Q ft 3 /s V ft/s

Total section 293,528 5,168 1.03
Right 6,200 109 0.22
Center 881,500 15,520 7.76
Left 180,300 3,175 1.27
Subdivided 1,068,000 18,800 3.76

2. 3.53 

Lesson 10

1. 1,065 Ib ->

2. 198.4 Ib  > , yes (the head loss is positive)

3. D2 = 6.12 ft, h[ = 1.43 ft 

Lesson 11

1. (a) 3.676 ft, (b) 5.515 ft, (c) 7.51 ft, (d) 7.57 ft, 2.04 ft,
(e) supercritical, (f) subcritical, 0.0263 steep, 0.0010 mild
(g) 0.00413

2. D2 = 6.12 ft, hi = 1.43 ft

3. (a) 1.08 ft, (b) W = 7.21 ft 

Lesson 12

1. C = 122, n = 0.0251, f = 0.0174

2. n = 0.02 + 0.01 + 0.05 = 0.08

3. Equation Channel A Channel B

Strickler
Limerinos
Bray 1979
Bray 1979
Bray 1979
Griffiths
Griffiths
Froehlich

0.030
0.046
0.041
0.073
0.037
0.038
0.040
0.028

0.028
0.049
0.039
0.075
0.039
0.038
0.043
0.035

Lesson 13

1. Dc = 6.77 ft, S c = 0.0017, DN = 7.97, 9.82 ft 
Ml, Normal depth

2. DN = 5.73, M2, Critical depth, S2

3. M2, Normal depth

4. Normal depth, S2
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Lesson 14

1. Q = 551 ft 3 /s, ke = 0.338 

Lesson 15

1. DN = 3.362 ft, MI, DSQO = 4.39 ft 

Lesson 16

1. (a) KL = 8.67 x 10 5 , KM = 1.68 x 10 6 , KR = 3.96 x 10 5 ft 3 /s
(b) 1.42
(c) 1.37 x 10 6 ft 3 /s
(d) 0.429
(e) 0.75
(f) 0.78
(g) 49,080 ft 3 /s 

Lesson 17

1. (a) 5.5 > 5.0 > yes
(b) (7.36 - 0.36)/5.0 > 1, yes
(c) Type 4
(d) 153.5 ft 3 /s

2. (a) Free getaway
(b) (10 - 2)78 < 1.5
(c) Steep slope, no backwater
(d) 559 ft 3 /s
(e) 5.15 ft
(f) 533.6 ft 3 /s

Lesson 18

1. 319 ft 3 /s

2. 13.73 ft 3 /s

3. 2.46 ft 3 /s

4. 3.1 ft

5. 0.292 ft3 /s, 0.00003 ft
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