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UNIT CONVERSION

Data listed in this report are defined in the inch-pound system of units.

A list of these units and the factors for their conversion to International
System of units (SI) are provided below.

they first appear in the text.

Abbreviations of units are defined in the conversion table below or where
Symbols are defined where they first appear in

the text.
Multiply inch- 3 . By T ] in SI .
foot (ft) 0.3048 meter (m)
inch 0.02540 meter (m)
pound (1lb) 4.448 newton (N)
slug 14.59 kilogram (kg)
slug per cubic foot (slug/ft3) 515.4 kilogram per cubic meter
(kg/m3)

slug per foot second 47.88 newton per meter second

(slug/s ft) (N/m?)
pound per cubic foot (1b/£t3) 157.1 newton per cubic meter (N/m3)
pound per square foot (1b/£t2) 47.88 pascal (Pa)
square foot per second (£t2/s) 0.09290 square meter per second (m2/s)
pound per square inch (1b/in2) 6,895 pascal (Pa)
pound per cubic inch (1b/in3) 271,400 newton per cubic meter (N/m3)
pound per inch (1lb/in) 175.1 newton per meter (N/m)
pound second per square foot 47.88 pascal second (Pa s)

(1b s/ft2)
foot per square second (ft/s2) 0.3048 meter per square second (m/s?)
cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
degree Fahrenheit (°F) °C = (°r-32)/1.8 degree Celsius (°C)

SYMBOLS AND UNITS
Symbol Explanation Unit
A Total area of a section ft2
Aj Total cross-section area at the cross-section number i ft2
aj Area of a subsection i ft2
B Width of opening ft
b Width of channel upstream of opening ft
c Chezy resistance coefficient fe1/2/5
D Depth ft
Dp Brink depth ft
D¢ Critical depth ft
Do Normal depth ft
Dp Diameter or height of a culvert ft
d Depth in overflow section ft
dp Particle size that is larger than p percent of the bed ft
material

E Specific energy ft
F Force 1b

vi
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Local loss coefficient

Distance along channel or length of structure
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The meander length of a channel reach

The straight length of a channel reach
Mass

Channel contraction ratio
Manning's roughness factor

Wetted perimeter of channel or height of weir
Pressure

Pressure at the center of pressure
Discharge

Discharge per unit width

Hydraulic radius

Reynolds number

Radius of curvature

Slope

Slope of energy grade line
Friction slope

Specific gravity of fluid

Slope of bed

Top width of the channel

Time

Shear velocity

Average or mean velocity

Critical velocity

Local velocity

width

vii

1b
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Depth to center of pressure
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Kinetic energy coefficient or Cariolis coefficient
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von Karman constant

Dynamic viscosity
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BASIC HYDRAULIC PRINCIPLES OF OPEN-CHANNEL FLOW

by Harvey E. Jobson and David C. Froehlich

ABSTRACT

The three basic principles of open-channel-flow analysis--the conserva-
tion of mass, energy, and momentum--are derived, explained, and applied to
solve problems of open-channel flow. These principles are introduced at a
level that can be comprehended by a person with an understanding of the prin-
ciples of physics and mechanics equivalent to that presented in the first
college level course of the subject. The reader is assumed to have a working
knowledge of algebra and plane geometry as well as some knowledge of calculus.

Once the principles have been derived, a number of example applications
are presented that illustrate the computation of flow through culverts and
bridges, and over structures, such as dams and weirs.

Because resistance to flow is a major obstacle to the successful appli-
cation of the energy principle to open-channel flow, procedures are outlined
for the rational selection of flow-resistance coefficients. The principle of
specific energy is shown to be useful in the prediction of water-surface
profiles both in the qualitative and quantitative sense.

INTRODUCTION

Most of the principles and concepts presented in a beginning level
college course in fluid mechanics are presented herein, but their application
is focused on open-channel hydraulics. Some concepts that are unique to open
channels--for example, specific energy and channel roughness--are developed in
somewhat more detail here than would be expected in an introductory college
course.

It is assumed that the reader is familiar with the physical principles
of mechanics, at least to the level covered by a beginning college physics
book. The reader also is assumed to have a working knowledge of algebra and
trigonometry and to comprehend simple derivatives and integrations.

The emphasis of this text is on teaching the application of the theory
of hydraulics to solving practical problems and not on the standard techniques
used in problem solutions. The final equations developed in this text are
frequently used as the starting point in other chapters of Book 3 of the
Techniques of Water-Resources Investigations of the U.S. Geological Survey.

Manuscript approved for publication November 17, 1988,



PART I - BASIC PRINCIPLES OF HYDRAULICS FOR AN IDEAL FLUID
Lesson 1 - Fluid Properties

All quantities used in this report can be defined in terms of three
basic units (length (foot), time (second), and mass (slug)). Another quantity
that is commonly used is force (pound), but the units of this quantity are
defined in terms of mass and acceleration.

The weight on earth (force) of a mass of one slug is defined to be 32.2
pounds (lb). Therefore, the units of pounds force are equivalent to the units

of slug feet per second squared (slug ft/sz) or
Force = F = 32.2 1b = Mg = (1 slug) 32.2 ft/sZ2,

where the mass of the body is M, and g is the acceleration of gravity (32.2
ft/s2) .

Because fluid does not have a definite form and specific particles of
fluid are difficult to identify, it is customary to work with the weight or
mass of fluid per unit volume. The mass of a fluid per unit volume is defined
as its density (p):

Mass of fluid (slugs)
Volume of fluid (ft3)

Density = p =

The specific (unit) weight of a fluid Y is defined as:

Weight of fluid (lb)
Volume of fluid (ft3)

Specific weight = y =

The specific gravity of a fluid is defined as the ratio of the density

of the fluid to the density of water at standard conditions (1.94 slugs/ft3)——
that 1is,

_ density of fluid (slugs/ft3)

Specific Gravity = Sg - 3
density of water (slugs/ft~>)

Because it is a ratio, specific gravity is unitless. By multiplying both the

numerator and the denominator of the expression for the specific gravity by g,

it is seen that the specific gravity also is equal to the ratio of specific

weights,

slug .y 2 1 slug ft
Pr Pe (ft3)g( T Ye |53 T 52 Y¢ (1b/£t3)

S - =
’ 3
Pu Py (Eizgj g(ft/s?) Yo (%l_ EEEQ_EE) Y, (1b/£t>)

ft3 ££3 s2

in which the subscripts f and w refer to the fluid and water, respectively. A
fluid is a substance that can flow. Specifically, this means that it continu-
ally deforms as long as a shearing stress is applied and that the internal
shear stress is a function of the rate of deformation rather than the amount
of deformation as in a solid. A Newtonian fluid is a substance in which the
internal shear stress is determined as



T=U %% ‘ (1-1)

in which T is the shear stress (lb/ftz), dv is the change in velocity (ft/s)
s 1lb

££2

that occurs over a small distance dy (ft), and the dynamic viscosity u

slug
s ft

deformation (shear or flow). Table 1-1 contains some tabulated viscosities of
fluids and gases. The kinematic viscosity V is defined as

or

is a specific fluid property, which is a measure of its resistance to

v = W slug/s ft ££2
p slug/ft3 s
Figure 1-1 shows a free body diagram of an isolated block of fluid of
height y, width dx, and thickness of 1 foot. Figure 1-1 is called a free-body
diagram. A free-body diagram is a cutaway view of the fluid or object in
which the effect of any surface that is cut is replaced by the forces exerted
on that surface. For example, the bottom surface could exert a shear force
(tdx (1)) on the fluid and a pressure force (pdx(l)). These are the only
forces the water beneath could exert on the block of fluid. The fluid is at
rest, therefore, all shear stresses (1) are zero (see equation 1-1).

wt

' T Figure 1-1.--Free-body diagram of
fluid element.

| dx

-y

The pressure (p) at the bottom of the block in figure 1-1 can be com-
puted as follows. Because the sides are vertical and the shear stress is
zero, the weight (wt) is balanced by the pressure at the bottom times the area
of the bottom of the block or

wt = pdx (1),
but the weight is

wt = YyVolume = Y ydx (1)
or

Yydx(l) = pdx(l):;
therefore

P =YY, (1-2)

which shows that in a fluid at rest, the pressure increases linearly with
depth below the surface.



Table 1-1.--Mechanical properties of some fluids

[ft3, cubic foot; lb/ft3, pounds per cubic foot; s lb, second times pound;
°F, degrees Fahrenheit]

(A) Some properties of air at atmospheric pressure

Temperature Density Specific weight Kinematic viscosity
oF slug/ft3 1b/£t3 ft2/s
p Y v
0 0.00268 0.0862 12.6 x 10~3
40 .00247 .0794 14.6 x 1079
80 .00228 .0735 16.9 x 1073
120 .00215 .0684 18.9 x 1073

(B) Mechanical properties of water at atmospheric pressure

Temperature Density Specific weight Dynamic viscosity
°F slug/ft3 1b/ft3 s 1b/ft?
P Y 1
32 1.94 62.4 3.75 x 1072
40 1.94 62.4 3.24 x 1073
50 1.94 62.4 2.74 x 1072
60 1.94 62.4 2.36 x 1073
70 1.94 62.3 2.04 x 10~5
80 1.93 62.2 1.80 x 1073
90 1.93 62.1 1.59 x 103
100 1.93 62.0 1.42 x 10~3
120 1.92 61.7 1.17 x 10~5




Table 1-1.--Mechanical properties of some fluids--continued

(C) Specific gravity and kinematic viscosity of certain liquids
(Kinematic viscosity = tabular value x 1075)

Medium
Kinematic Kinematic
Temperature Specific viscosity Specific viscosity
°F gravity ft2/s gravity ££2/s
Sg v Sg \Y
40 1.621 0.810 0.905 477
60 1.595 .700 .896 188
80 1.569 .607 .888 94
100 1.542 .530 .882 49.2
Kinematic Kinematic
Temperature Specific viscosity Specific viscosity
°F gravity £t2/s gravity ft2/s
Sg A% Sg \"%
40 0.865 6.55 0.738 0.810
60 .858 4.75 .728 .730
80 .851 3.65 .719 .660
100 .843 2.78 .710 .600
(D) Specific gravity and kinematic viscosity of some
other liquids
Kinematic
Specific viscosity
Liquid and temperature gravity £t2/s
Sg v
Turpentine at 68 °F 0.862 1.86
Linseed oil at 86 °F .925 38.6
Ethyl alcohol at 68 °F .789 1.65
Benzene at 68 °F .879 0.802
Glycerin at 68 °F 1.262 711
Castor oil at 68 °F .960 1,110
Light machinery oil at 62 °F .907 147




PROBLEMS

1. Compute your mass in slugs.

2. The density of alcohol is 1.53 slugs/ft3. Calculate its specific weight
and specific gravity.



A stream gager falls in the river and gets his boots full of water. He
manages to get to shore but his boots are still full of water. What is
the maximum pressure inside his boots when he stands up? His boots are 3
feet high.

The inside of a pipe, which has an inside diameter of 6 inches, is coated
with heavy oil. A 2-1b cylinder 6 inches long and 5.98 inches in diame-
ter falls through the vertical pipe at a rate of 0.15 ft/s. Calculate
the dynamic viscosity of the oil.




Lesson 2 - Forces on Submerged Objects

Only fluids at rest will be dealt with in this lesson so no tangential
(shear) forces are exerted, and hence all forces are normal to the free body
surfaces in question. Consider the force on a vertical rectangular gate as
illustrated in figure 2-1. As seen from equation 1-2, the pressure increases
with increasing distance below the water surface; hence, the force (dF) on a
narrow strip of the gate of height dy and width W is computed as

dF = p dA = Yy W dy.

Water surface e (
N

Figure 2-1.--Pressure prism for
vertical rectangular
gate.

The total force on the vertical surface may be computed as the sum of
all of the differential force values (dF on fig. 2-1). Hence, the total hori-
zontal force on the surface is

D
F = j dF = ¥ WJ y dy = ywD2/2. (2-1)
A o)

Another technique to compute the force is based on the fact that the
force is equal to the volume of the pressure prism defined by the solid abcdef
in figure 2-1. The force on any submerged surface is equal to the volume of
the pressure prism. The pressure prism is the solid with a base equal to the
area of the surface in contact between the gate and the water and with a
height equal to the pressure on the surface. It is often easier to visualize
the pressure prism and compute its volume than to integrate an expression such
as the equation for dF. For example, the pressure prism in figure 2-1 is a
solid of triangular shape and width W. The area of the base is the area of
the triangle with one side equal to D and the other side equal to YD. For
complex shapes it is usually possible to break up the pressure prism into
simpler geometric shapes and compute the volume of each simple shape. The
total force is then the sum of the volumes.

A third way to visualize the force on a surface is that it is equal to
pressure at the centroid of the wetted area (called the center of pressure,
Cps see fig. 2-1) times that area. The total force on an object can always be
correctly computed using this approach also. On figure 2~1 the wetted area is



a rectangle (bcfe), which has its centroid at D/2 feet below the surface. The
force is therefore

F =pc A= (1D/2) (DW).

Example:

As an example, the horizontal and vertical components of the force of
the water on the 4-foot wide gate shown in figure 2-2 will be computed. The
pressure prism for the horizontal force is shown on the figure with a height
defined by a b ¢ d a and a base of 4 feet by 8 feet.

Water surface<\ 7 feet ——

Figure 2-2.--Pressure prism for a
submerged gate 4 feet
wide.

«
oy

Solution:

The volume of the pressure prism may be obtained by breaking it into a
triangle with sides of 8Y1lb/ft2 and 8 feet and a rectangle with sides of
4Ylb/ft2 and 8 feet. The total horizontal force, Fy, of the water on the
vertical plane ¢ d x 4 feet is then computed as the sum of these two volumes.

Fg = %} (8) (4) + 4y (8)(4) = 256y = 15,974 1b.

The fluid force on this plane is the same as the horizontal component of the
force of the water on the gate because there are no shear stresses when the
fluid is at rest.

The vertical force of the water, Fv, on the plane d e x 4 feet is
computed from the volume of the pressure prism defined by the points d e £ g d
and the 4-foot width.

Fy = 12y (7) (4) = 336y = 20,966 1b.
This force supports the weight of the water in the volume c d e c x 4 feet;
the balance being the force exerted on the gate. The vertical force of the

water on the gate is therefore

Fy = [12Y(7) (4)] - [(8/2)Y(7) (4)] = 13,978 1b.



The vertical component of force on any area is equal to the weight of
that volume of fluid that would extend vertically from the area to the free
surface. As a result of this, the buoyant force on any object is equal to the
weight of the water displaced.

The total resultant force is

FR = VFVZ + Fy2 = 340.2y= 21,226 1b.

Another way to compute the resultant force is to draw the pressure prism
as shown in figure 2-3. This time the force on the surface b ¢ will be com-
puted directly and it should be the resultant force on the gate. As before,

it is natural to break the pressure prism into a triangle with sides 8’Ylb/ft2

and 10.63 feet and a rectangle with sides of 4‘ylb/ft2 and 10.63 feet. Notice
one side is 10.63 feet long in this case rather than 8 feet long when looking
at only the horizontal component. The volume of the pressure prism is

FR = %} (10.63)4 + 4y (10.63)4 = 340.2y= 21,226 1b,

which is the same result as obtained above.

Water surface

Figure 2-3.--Pressure prism to compute
the total force of the
water on a 4-foot wide
gate.

Forces not only have a magnitude and direction but a line of action as
well. The line of action is the location where a single resultant force must
be applied to have the same effect on a body as the distributed forces it
replaces. For example, the center of gravity of a solid bedy is the point
where a single force must be applied to the body to counter its weight without
causing a torque (or moment) on the body.

Consider the line of action of the resultant pressure force on the
surface in figure 2-1. The resultant force F must act at a point such that
its moment (or torque) about any point is equal to the sum of the moments of
each small force dF. Sum the moments about the line b-e and set them equal to
F times yy to determine the distance of the line of action of the resultant

force below the water surface (yyr).

10



D D 5
F yr = (ywn2/2) (yr) = J- y dF = YW vy dy = ’YWD3/3
0 0

from which
yr = 2/3 D. (2-3)

Notice the line of action is through the center of gravity of the pressure
prism abcdef. This will always be the case. Complex pressure prisms can
usually be subdivided into simpler shapes for which the center of gravity can
be easily determined. The resultant line of action is then obtained by
summing the moments of each subvolume about a convenient reference point.

Example:

Compute the location of the resultant force of the water on the gate
shown in figure 2-3.

Solution:

The location of the force due the rectangular part of the pressure prism
(Frq) in figure 2-3 is located 5.32 feet from the top of the gate. The resul-
tant force, Fry, due to the triangular part of the pressure prism is located

7.09 feet from the top of the gate. The total resultant force is located by
summing moments.

or

_ 170.1y(5.32) + 170.1y(7.09)
340.2Y

= 6.20 feet,

so the resultant force is located 6.20 feet from the top of the gate, which is
between FRr; and Fr, as would be expected.

11



PROBLEMS

1.

Determine the total horizontal water-pressure force on a l-foot wide
section of the dam shown below. If this distributed pressure were
replaced by a single resultant hydrostatic force, at what distance below
the water surface y would it be considered to act?

Water surface

12



2.

Determine the magnitude and location of the resultant water-pressure
force acting on a 1l-foot wide section of the gate shown below.

13



3. Compute both the horizontal and vertical hydrostatic forces acting on a
l1-foot wide section of the sloping rectangular gate shown below.

Water surface

14



4, Compute the net horizontal force acting on a 1-foot wide section of the
gate separating two tanks as shown below. The specific gravity of the
0il in the right-hand tank is 0.750.

15



5.

The quarter cylinder is 10 feet long. Calculate the horizontal and
vertical components of the forces acting on the cylinder.

Water surface

16



Lesson 3 - Similitude and Dimensional Analysis
Similitud

Many approximations are made in analyzing any but the simplest of flow
problems. And for complex situations it is usually desirable to test the
validity of the computations before large investments in hydraulic structures
are made. In many cases this validity is first checked by use of physical
models of proposed structures. It costs very little to build and test a model
of a structure in comparison to the cost of building a prototype, which may
not function as desired. On the other hand, analytical computations are cheap
in comparison to building and testing a scale model, so models are only built
where the validity of the computations are in doubt.

Although the basic theory for interpretation of model results is quite
simple, it is seldom possible to design and operate a flow model from theory
alone. 1In general, only by use of experience, judgement, and patience can
correct prototype behavior be predicted from model results. Similarity of
flows between the model and prototype requires that certain laws of similitude
be satisfied.

There are many types of similarity, all of which must be obtained if
complete similarity is to exist between fluid phenomena. The first of these
is geometric similaritv, which states that model and prototype must have the
same shape and, therefore, that the ratios between corresponding lengths in
the model and prototype are the same. In the model and prototype of figure
3-1, for example, geometric similarity exists if

Bm _bm _ Im
Bp bp Ip

It follows that the requirements for geometric similarity are met if the
ratio of all linear dimensions in the model are the same as in the prototype.

EEi=

¥

Vp — Bp bp Prototype
JL_ Figure 3-1.--Flow through constriction,
l l model, and prototype.
*Lm"LF"
Vm——> Bm Ibm Model
{ n

Corollaries of geometric similarity are that corresponding areas vary
with the squares of their linear dimensions,

Ay _(lm
Ap lp

and that volumes vary with the cubes of their linear dimensions.
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Consider now the flows through the model and prototype, figure 3-1. 1If
the ratio of corresponding velocities and accelerations are the same through-
out the flow, the two flows are said to possess kinematic similarity. For
kinematically similar flows, the streamline patterns will be similar in shape.

In order to maintain geometric and kinematic similarity between the flow
pictures, the forces acting on the corresponding fluid masses must be related
by ratios similar to those above this similarity is known as dynamic
similarity. The forces that may exist in a fluid flow are those of pressure,
Fp, gravity, Fgr viscosity, Fy, elasticity, Fg, and surface tension, Fgp. The
vector sum of all forces acting on a fluid mass must equal its mass times its
acceleration, which is the inertial force, Fy. Written in mathematical terms
for the prototype

(Fp + Fg + Fy + Fg + Fr = F1 = MI)p ,

in which M = mass of the fluid parcel and I = acceleration of the fluid
parcel. Of course an identical equation can be written for a mass of fluid in
the model. For the ratio of accelerations (and therefore velocities) to be
similar between the model and prototype requires that the ratio of inertial
forces be similar, or

- —>  d b d —> —> —>
—> —> —> —  d -

The ratio of the inertial forces will be constant if the ratio of the inertial
force to each component force is constant, so dividing the inertial force by
each component force one sees that dynamic and kinematic similarity can only

be achieved provided that
L) - (&
Fp Fp !

which states that the accelerations (F1) due to pressure forces (Fp) must be
similar in both the model and prototype and that

L) - (&
Fy Fy b '
which states that the accelerations due to viscous forces must be similar,
etc.
Each of the forces is governed by relations between the dynamic and
kinematic properties of the flow and by physical properties of the fluid. For
example, the viscous force is given by the definition of viscosity (equation

1-1)

Fy =T A =} A; (1-1)

or

=n %-12 =pn vl
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where v = characteristic velocity and | = a characteristic length. Because

the ratios of all velocities and lengths in model and prototype are equal, it
theoretically makes no difference which length or velocity is used in the
equation. The generalized expressions for the forces are as follows

Pressure force, Fp = pl2

Inertial force, F1 = MI = pl3 —— = pv2|2
Gravity force, Fg = Mg = pl3g
Viscous force, Fy = U Ay A= 1 = uv
Elastic force, Fg = EA = EI2

Surface tension force, Fp = ol

in which p = pressure, M = mass, E = elasticity, and 0 = surface tension force
per unit length.

Each of the five force ratios, which are dimensionless numbers, have
names. These are as follows:

F 2
=L - %5— = square of the Euler number
Fp P
Fr vpl
e = m = Reynolds number
v
Fr V2
== = — = Square of Froude number
Fg g
F 2
;i = 2%— = Square of the Mach number
F 1v2
E% = Pc = Weber number

Fortunately in most engineering problems for open-channel flow, the
compressibility and surface tension effects can be ignored so only the Froude,
Reynolds, and Euler numbers are important. The Euler number can be ignored
because if four of the five ratios are satisfied, the fifth is automatically
satisfied because the inertial force is the sum of the other forces.

In these ratios, v and | may be any velocity and length provided the

same quantities are used in both the model and prototype. In open-channel
flow, the depth of flow is commonly used for the length term and the mean
velocity for the velocity term.
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Complete similarity is usually impossible to attain even when only the
Froude number and the Reynolds number are significant. For example, if in
figure 3-1 the prototype velocity and depth are 8 ft/s and 10 feet, respec-
tively, can both the Reynolds number and Froude number be the same in the
model and the prototype? The Reynolds number for the prototype at 70 °F is

RE - 22022198 _ 5 4, 106
2.04 x 10
and the Froude number for the prototype is
FP = 8 = 0.45

V32.2 x 10

If water is used as the fluid in model and prototype, then density and
viscosity are the same for both cases. If a depth of 0.5 was selected for the
model, the corresponding velocity for the Froude numbers to be the same would
be 1.8 ft/s. With a model depth of 0.5 foot, the velocity in the model would
have to be 158 ft/s to have the Reynolds number in both the model and proto-
type to be equal.

From a practical viewpoint, equality of Reynolds numbers cannot be
achieved for model and prototype in open-channel flow so model studies are
limited to those cases for which the effect of viscosity can be neglected.
This is generally true for highly turbulent flows that occur when the model

Reynolds number is above 106.

Froude number similarity can be easily achieved so the model approach is
ideal for rapidly varied flow problems where the gravity force dominates the
flow. The discharge coefficients for dams, culverts, and contracted openings
have all been defined by model studies and are assumed to apply to full scale
situations with an equal Froude number and geometric similarity.

Example:

Laboratory tests were conducted on a box culvert. It is known that
dynamic similarity will be achieved if the Froude number in both the labora-
tory and field are equal. A 1/10 scale model is built and tested. Under test

conditions, ‘the laboratory flow rate is measured as 1.0 ft3/s, the velocity at

the wingwall was 1.3 ft/s
move through the culvert.
conditions, calculate the
time required for a water

Solution:

and it required 1.6 seconds for a water parcel to
For the prototype culvert operating under similar
flow rate, the velocity at the wingwall, and the
parcel to move through the culvert.

Because the Froude number in the model and prototype must be equal

or

glm Valp
g l
glm Im



So any velocity in the prototype will be 3.16 times the corresponding velocity
in the model, and the velocity at the wingwall will be 3.16 (1.3) = 4.11 ft/s
in the prototype.

As will be shown later in the course, the discharge (Q) can always be
computed as the product of the velocity (V) times the flow area (A) and the
area 1is proportional to the product of two lengths so

% _ VePp _ Vp lp?
Om  Vmlm  Vm 12

or

10\ 2
Op = Om (3.16) (TO) = 316 Qn.

The discharge in the prototype under test conditions will be 316 £t3/s.

The time for a parcel of water to move between two points is the
distance between the points | divided by the average velocity of the water as
it traverses the path between the points so

T lp/V 1

The time for a parcel to pass through the prototype structure will be 3.16
(1.6) = 5.06 seconds.

D . 1 Analvsi

Most variables used in engineering are expressed in terms of three
dimensions. These basic dimensions are force (F), time (T), and length (L).
In this section the "brackets" mean "the dimensions of"

Example: the dimensions of pressure can be designated as
F
pl = =
P L2

All ratjonal equations (those developed by basic laws of physics) must
balance in magnitude and must also be dimensionally homogeneous. That is, the
dimensions of the left side of a rational equation must be the same as the
dimensions on the right side and gach term in the equation must have the same
dimension.

In 1915 Buckingham showed that the number of independent dimensionless
groups of variables (dimensionless parameters) needed to correlate the vari-
ables in a given process is equal to the number of variables involved minus
the number of basic dimensions included in the variables.

Example: If it is known from experience or from experimental results
that the drag force F of a fluid moving past a sphere is a function of the
velocity ¥V, mass density p, viscosity W[4, and the diameter D, then five vari-
ables (F, V, p, U, D) are involved and by inspecting the dimensions of each of
these variables it is seen that three basic dimensions (L, F, T) are involved.
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Thus, by the Buckingham theorem one should be able to organize the five vari-
ables into two basic groupings for correlating experimental results.

The key to successful application of dimensional analysis is to select
all necessary variables. Sometimes this can be done by looking at the appro-
priate physical laws that govern the process. If the appropriate physical
laws are not available, a preliminary test can be run to gather all possible
significant data, combine the variables using dimensional analysis, and
discard those that do not have much impact. This may be done in advance by
examining physical evidence of other experiments.

Repeating ~ the key to practical use of dimensional analysis is to
select only those variables that are significant to the problem.

Once the variables are selected, there are numerous methods for combin-
ing the variables such that each remaining parameter is dimensionless. A
process that is easy and reveals the process is outlined and applied below.

Keep in mind what the goal is to reduce the number of separate variables
involved in the problem to the smallest number of independent dimensionless
groups of variables (dimensionless parameters).

Rules of the game:

1. Identify all significant variables associated with the problem and
write the functional equation.

z=f£f (v, D, X, Y)

2. Select a dimension (F, L, T) you wish to eliminate and a variable
that contains this dimension. Then by inspection combine the vari-
able with all other variables that contain the dimension in such a
way that the new terms do not contain that dimension.

Then select another dimension and variable and repeat process above.

If all three dimensions (F, L, T) are involved, the manipulation is
performed three times.

HINTS:

a. Get rid of F dimension first. If p is one of the variables, get
rid of the F first by combining p in an appropriate manner with
each variable that has the F dimension. (Remember Newton's law
that says force equals mass times acceleration so [F] =M L/T? in

2

FT
which M is mass so [M] = _E—') Use a power of p necessary to

cancel the force dimension. Combine p only with the variables that
contain F. The power of p may vary from term to term.

b. If velocity is one of the variables present, get rid of the T
dimension (as in a above).

NOTE: If only one variable in the entire group of variables has
the T (time) dimension, it is usually advisable to add the
acceleration of gravity (g) to the list of significant vari-
ables. (It is usually part of the driving mechanism for the
flow.)
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c. If depth is one of the variables, combine it with all terms that
have the L dimension, and eliminate all L dimensions.

d. After all terms are dimensionless, it is perfectly legal to take
terms to any power if it is convenient to do so. Remember each
term is dimensionless so it does not matter if it is raised to a
power and/or inverted.

Example:

Consider all fluid variables that might be significant in a general flow
situation in which pressure difference between two points in the flow field is
expected to be a function of V, D, p, U, E, 6, and Y.

E = bulk modulus of elasticity, F/LZ, o = surface tension F/L.
Solution:

Because the difference in pressure (AP) is the main variable of
interest, place it on the left side of the equation

Ap = £7 (V, D, P, U, E, G, V)

in which fj7 means AP is a function of the variables in the parentheses.
Display each variable and its dimension.

2
F L FT
[AP] = 12 [Vl = T [D] = L [p] = Y
FT F F 13
= == E] = — 6] = — [y] = —
(1] 12 [ 12 [o] L Y .3
1. Eliminate F dimension by dividing appropriate terms by some power of p

(p = M/L3 = FT2/1L4)
AP
[5]
FLt 12

[£] -5
P L2rr2 T2

1

’

f2 (V, D, gﬂ

o |
o {a

X
1)

4 2
8] 54
E 14 p2
3] -me %
FLt 13
3] -5=-%
[1] _F1t 1
P L3rr2 72
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2. Eliminate T using some power of V

©
[»]
25
| I
[t}

£3 n E o_
4 pvl pV2 14 pv2 14 pV2

2 m2
[égi = 23—25 (dimensionless)
pv T? L

T L
F B 2 q2
-Ef = L2 T2 (dimensionless)
| pV< ] ¢ L
"0.- _L3T2_L
lov2| 12 12
(¥ ] _ 27T _1
_pv2_ T2 1,2 L

3. Eliminate L using appropriate power of D

[A_P] ea (B E_ _O_ D
pv2 4 (PVD' pv2’' pv2p’ pvz)

fl

£ -
pVD

(dimensionless)

V2D

g 3

[
[ c ] - %. (dimensionless)
[

L R .
] = E- (dimensionless)

[3V]

Vv

he)

Rearranging and inverting as necessary

v - g, (B v pV4D v

[—Ap/p m 4 E/pl G [4 5
JY

Euler Reynolds Mach Weber Froude
number number number number number

If it is known that all of the parameters are significant, AP is a function
of all four terms.

If viscosity is not significant, the Reynolds number can be eliminated.

If compressibility is not significant, the Mach number can be eliminated.
If surface tension is not significant, the Weber number can be eliminated.
If there is no free surface, the Froude number can be eliminated.
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PROBLEMS

1. A 1:2000 tidal model is operated to satisfy Froude's law. A velocity of
0.02 ft/s is observed in the model. What is the velocity at the corre-
sponding point in the prototype? What length of time in the model corre-
sponds to one day in the prototype?

2. An overflow spillway 1,600 feet long is designed to pass 120,000 ft3/s. A
1:20 model of the cross section of the structure is built in the labora-
tory. It is assumed that the flow is two dimensional so only a l-foot
section (rather than an 80-foot section) is built. Calculate the required
laboratory flow rate for the 1l-foot section assuming that viscosity and
surface tension can be neglected. The pressure at a point in the model is
observed to be -1.0 psi (-0.067 atmosphere). How should this be inter-
preted for the prototype?
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3. Derive an expression for the drag force on a smooth object moving.through
water if this force depends only upon the speed and size of object as well
as the density and viscosity of the water.

4., By dimensional analysis develop a discharge
relation for the discharge over a broad-crested
weir.
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Lesson 4 - The Energy Equation for an Ideal Fluid

Fluid flow may be either steady or unsteady. Steady flow exists when
none of the variables in the flow problem change with time. If any of the
variables change with time, the condition of unsteady flow exists. The
following discussion deals with steady-flow problems.

Streamlines

A path line is the trace made by a single particle over a period of
time. A streamline is a curve that is tangent to the direction of velocity at
every point on the curve. For steady flow, a path line and a streamline are
identical.

Streamline pictures are both qualitative and quantitative in value. They
allow the flow to be visualized as well as regions of high and low velocity
and regions of high and low pressure to be located. They also allow the flow
to be visualized.

When streamlines are drawn for steady flow, they form a boundary across
which fluid particles do not pass. Thus, the space between the streamlines
becomes a tube or passageway called a streamtube. The flow in such a tube may
be treated as if it were isolated from the adjacent fluid. The use of the
streamtube concept broadens the application of fluid-flow principles; for
example, it allows treating apparently different problems such as flow in a
passageway and flow about an immersed object with the same laws.

he C - E .

The application of the principle of conservation of mass (matter can
neither be created nor destroyed) to a steady flow in a streamtube results in
the equation of continuity, which expresses the continuity of flow from
section to section of the streamtube. Consider the streamtube shown in figure
4-1 through which passes a steady flow of fluid. At section 1 the cross-
sectional area is Aj] and at section 2 the area is Aj. If the mass of fluid

occupying position BBl moves to position ccl in time dt, the conservation of
mass principle yields

p A; ds; = p A2 dsp,

where ds; and dsp are the displacement lengths at sections 1 and 2, respec-
tively. Dividing by p dt because p is constant yields

dsi ds2
M Tae T P2 Tq

however, dsi/dt and ds2/dt are the mean velocities of flow past sections 1 and
2, respectively; therefore,

A1Vy = ApV2 = Q, (4-1)

which is the equation of continuity. The product A x V is designated as the
flow rate, Q, and has units of cubic feet per second.
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Ay V.
Figure 4-1.--Steady flow through a 2
streamtube. dh—+1 1
ds g —»
The Energy Equation

The fundamental equation of motion for steady flow may be derived by
applying the principle of conservation of energy to individual fluid parcels.
At this point it will be assumed that an ideal fluid exists for which no
shearing stress occurs. In such a fluid there can be no frictional effects
between moving fluid layers or between these layers and the boundary walls,
and thus no cause for eddy formation or energy dissipation due to friction.
The assumption of an ideal fluid allows a fluid to be treated as an aggrega-
tion of small particles that will support pressure forces normal to their
faces but will slide over one another without resistance. Thus the motion of
these ideal fluid particles is analogous to the motion of a solid body on a
resistanceless plane; from this it may be concluded that unbalanced forces
existing on particles of an ideal fluid will result in the acceleration of
these particles according to Newton's Second Law.

Consider a 1-1b parcel of fluid at Point A in figure 4-2. Compute the
amount of energy contained by this parcel of fluid relative to some arbitrary
datum. The parcel contains energy of three types--kinetic, potential, and
pressure potential. The potential energy of the parcel (relative to the
datum) is its weight times the distance above the datum or simply Za foot
pound per pound. Notice the units of energy per pound are simply feet. In
hydraulics, the term for foot pound per pound is usually called head, or the
potential energy head of parcel A is zpa foot. The second form of energy is
called pressure potential. If 1 1b of fluid at A was placed into a plastic
bag, this fluid could be lifted to the water surface without expending any
energy because the fluid is neutrally buoyant and for an ideal fluid there is
no resistance to motion. Because the parcel at A could exchange places with
the parcel at the water surface without the expenditure of energy, its effec-
tive potential energy per pound is (Za + ya) in which ya is also equal to the
pressure at point A divided by the unit weight (equation 1-2). This term is
called the pressure head. Notice that the effective potential energy for any
parcel of fluid (or streamline) at section A is the same and equal to the sum

Total head = constant

Figure 4-2.-~-Flow of an ideal fluid
in an open channel.
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of the water depth plus the elevation of the bed above the datum. The sum of
these two terms is called the piezometric (or hydraulic) head and for open
channels its value is equal to the elevation of the water surface above the
datum.

The kinetic energy of a 1-lb object moving at velocity va is

Kinetic energy _ Kg/Vol pv2 _ v2 (ft/s)?

Pound wt/Vol  2Y 29 ft/s2

Notice the units of the kinetic energy per unit weight is also feet and the
term is called the velocity head.

The sum of all three energies (heads) is called the total head and is
often plotted pictorially as shown on figure 4-2. For an ideal fluid with no
resistance to motion, the total energy of a pound of fluid is constant at all
points along the streamline. For steady flow, the total head (energy) at
section B, therefore, must be equal to that at section A or at any other
section. Expressed mathematically,

2 2
7 /-l _ i
29 va Za 29 + yB + Zp constant. (4~-2)

Equation 4-2 is usually called the Bernoulli equation or simply the energy
equation. Almost all open-channel-flow problems are solved by the application
of equations 4-1 and 4-2; therefore, a complete understanding of these equa-
tions is essential.

By assuming frictionless motion, the equations are considerably simpli-
fied and more easily assimilated by the beginning student. In many cases,
these simplified equations allow solution of engineering problems to an
accuracy entirely adequate for practical purposes. 1In real situations where
friction is small, the frictionless assumption will give good results where
friction is large, it obviously will not. The identification of these situa-
tions is part of the art of fluid mechanics. However, as a general rule,
accelerative processes are efficient and involve very little loss of energy
while deceleration processes involve large losses of energy.

Example:

The discharge in the channel shown in figure 4-3 is 280 ft3/s. The
depth at section A is 5.0 feet and the width is 8.0 feet. At Section B the
width is 10.0 feet. Assuming ideal (frictionless) flow, compute the velocity
and depth at section B.

Solution:

The first step is to draw the total head line as shown on figure 4-3.
Because no energy is expended between sections A and B, the total head
{energy) line is horizontal. The streamline along the bed is one of an infi-
nite number of streamlines that could be drawn for the flow between sections A
and B. Next, label the figure to show the kinetic, potential, and pressure
potential energy terms at each section for the streamline at the bottom. Next,
record the known values of each term of the energy equation on the figure and
compute the unknown values by use of equations 4-1 and/or 4-2.
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____Total head line_{horizontal) =8.011 feet

Figure 4-3.--Example problem of
flow down a ramp.

Q = 280 cubic feet per second

In this example the potential energies of a parcel on the bottom of the
channel at sections A and B are 2.25 and 1.00 ft 1lb/lb, respectively, the
pressure potential energy of the parcel at A is 5.0 ft 1lb/lb, and the other
three terms are unknown. For an ideal fluid the velocity at all points in the
cross section are equal so Va = va. It is easily seen that the continuity
equation can be used to determine the velocity at section A as

Q = 280 = Va(5) (8.0) = va(5) (8)

or vap = 7.0 ft/s so the velocity head (kinetic energy) at section A is seen to be

(7Y2/2(32.2) = 0.761 ft 1b/lb.

The total energy of a parcel of water passing section A on any streamline is
seen to be

0.761 + 5 + 2.25 = 8.011 ft 1lb/lb.

For frictionless flow, the total head is constant at all points along a
streamline, specifically the total energy of a parcel at cross-section B on
any streamline is equal to the total energy of a parcel at section A. The
total head is 8.011 feet so writing the energy equation from point A to B:

2

8.011 = =2~ 4 pg + 1.0
. _29 B .0.

This one equation has two unknowns, vg and Dg. However, the continuity equa-
tion also applies at section B so that

Q = 280 = Vg Dg(10.0),

or solving for Vg

Ulm
W |

Vg = v =

which can be combined with the energy equation to give
8.011 = (28/Dg)2/64.4 + D + 1.0,

or

7.011 = 33*%11 + Dg.
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This is a cubic equation that may be solved by trial. 1In other words,
different values of D are assumed until the right-hand side of the equation
is equal to 7.011. Below, the value of the right-hand side is tabulated for
different depths.

Dg(ft) ——-12D'21274 + D2 Dp(ft) ___12D.21274 + D>
10.0 10.12 2.0 5.043
8.0 8.19 1.8 5.557
7.0 7.248 1.5 6.911
6.75 7.017 1.49 6.973

>* >*
6.74 7.008 1.48 7.038
6.0 6.338 1.30 8.503
4.0 4,761 1.00 13.174

Notice that a depth of either 6.743 or 1.484 feet satisfies the equation and
is possible for an ideal fluid. These are called alternate depths. Unless
some constriction downstream caused the water to back up, the flow would
accelerate as shown on the figure and the smaller depth will occur. In this
case, the velocity at the section would be

-2 _ 280
vB o 10 (1.482) 18.87 ft/s,

and the velocity head is

(18.87)2
S = 5.527 £t 1b/1b.

As can be seen, the total head at section B is

R

%+ Dp + Zp = 5.527 + 1.484 + 1.0 = 8.011,

the same as for section A so energy is conserved. A 1l-1b parcel of water
on the surface streamline contains 0.761 ft 1b of kinetic energy and

2.25 + 5.0 = 7.25 ft 1lb of potential energy as it passes section A. As it
passes section B, it has only 1.0 + 1.484 = 2.484 ft 1lb of potential energy.
The difference 4.766 ft 1lb has been converted to kinetic energy so as it
passes section B it contains 0.761 + 4.766 = 5.527 ft 1lb of kinetic energy.
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PROBLEMS

1.

2.

500 ft3/s of water flow in a rectangular open channel that is 20 feet wide
and 8 feet deep. After passing through a transition structure, the width
of the rectangular channel narrows to 15 feet and the bed raises as shown.
The velocity in the contracted section is found to be 6 ft/s.

(a) What is the water depth in the narrow channel?

(b) What are the velocity heads in each section?

(c) Draw and label the total and piezometric (water surface) head lines.

(d) How much does the bed elevation increase in the contracted section?

Water surface

Water stands 9 feet deep in a large tank. A hole with an area of 0.1 ft2

is punched in the side of the tank 5 feet above the bottom.

(a) Compute the discharge from the hole.

(b) Draw and label the total and piezometric head lines.

(c) What is the velocity of the water as it hits the ground?

Note: 1If the hole is rounded as shown, the answers you compute for an
ideal fluid will be correct to within about 1 percent.

Water surface
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3.

Compute the discharge in the 20-foot wide rectangular channel shown

below. Draw and label the total head line and the water surface near the
gate.

Total head

—Water surface

Compute the discharge and
depth in the contracted Plan view
section for the indicated £

rectangular channel.

100 ft ———v=3ft/s

Elevation 100 ft

=
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PART II - STEADY UNIFORM FLOW OF REAL FLUIDS IN OPEN CHANNELS-

Lesson 5 - Velocity Profiles
General

In 1883 Osborne Reynolds demonstrated that there are two distinctly
different types of fluid flow. He injected a fine threadlike stream of
colored liquid at the entrance to a large glass tube through which water was
flowing. When the velocity of flow in the tube was small, this colored liquid
was visible as a straight line throughout the length of the tube, thus showing
that the particles of water moved in parallel straight lines. But, as the
velocity of the water was gradually increased by permitting a greater quantity
to flow through the tube, there was a point at which the flow abruptly
changed. It was then seen that, instead of a single straight line, the parti-
cles of the colored liquid were flowing in a very irregular fashion and form-
ing numerous vortices. In a short time the color was diffused uniformly
throughout the tube so that no streamlines could be distinguished. Later
observations have shown that in this type of flow the velocities and pressures
continuously fluctuate.

The first type of flow is known as laminar, streamline, or viscous flow.
The significance of these terms is that the fluid appears to move by the slid-
ing of layers or laminations of infinitesimal thickness relative to adjacent
layers, that the particles move in definite and observable paths or stream-
lines, and it is also a flow that is characteristic of a viscous fluid or at
least a flow in which viscosity plays a significant part. For laminar flow,
the shear stress is determined from the equation

T=UuU %% . (1-1)

The second type of flow, where single water parcels move about within
the flow in an erratic manner, is known as turbulent flow. The distinguishing
characteristic of turbulence is its irregularity. There is no definite
frequency (as in wave action) or any observable pattern (as in the case of
eddies) .

Large eddies, swirls, and irregular movements of large bodies of fluid,
which can be traced to obvious sources of disturbance, do not constitute
turbulence but may be described as a disturbed flow. By contrast, turbulent
flow commonly occurs in streams that appear to be very smoothly flowing and in
which there is no detectable source of disturbance. The fluctuations of
velocity and pressure are furthermore comparatively small and can often be
detected only by special means of observation.

Reynolds Number

Reynolds was able to generalize his results and predict whether the flow
would be laminar or turbulent by use of a dimensionless ratio later called the
Reynolds number. The Reynolds number is the ratio of inertial to wviscous
forces in the flow

vpl vl
Re=T=-\_'-' (5-1)
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in which v = velocity of flow, p = density of fluid, | = a characteristic

length dimension (depth for open-channel flow, diameter for pipe flow),
UL = dynamic viscosity, and v = kinematic viscosity (p/p).

The concept of a critical Reynolds number delineating the regimes of
laminar and turbulent flow is indeed a useful one in promoting concise gener-
alization of certain flow phenomena. Applying this concept to the flow of any
fluid in cylindrical pipes, it is possible to predict that the flow will
generally be laminar if Re<2,100 and turbulent if Rg>4,000. However, it is to
be emphasized that the critical Reynolds number is very much a function of
boundary geometry. For flow between parallel walls (using mean velocity V,
and spacing l), Re = 1,000; for flow in a wide open channel (using mean veloc-
ity V and depth D), Rg = 500; for flow about a sphere (using approach velocity
V and diameter d), Rg = 1. Also noteworthy is the fact that such critical
Reynolds numbers must be determined experimentally; because of the obscure
origins of turbulence, analytical methods for predicting critical Reynolds
numbers have yet to be developed.

Laminar Flow

Laminar flow only occurs in open channels when the depths are very
small. It is often assumed to occur in sheet flow or flow over the ground
after a rainfall. Consider the uniform flow of constant depth D over a very
wide plane surface as illustrated on figure 5-1. Assume a unit weight of ¥
for the fluid, that the slope is small, the flow is laminar, and a width of W
feet.

Figure 5-1.--Sheet flow over a wide
inclined plane of width W.

Because the flow is uniform, the acceleration of the mass of fluid
enclosed by abcd is zero and the sum of all forces on it must equal zero.
Summation of forces in a direction parallel to the bottom gives

ZFs = 0 = F1 + wt sin 6 -~ Fp» - TLW.

Because the flow is uniform, the pressure forces (F] and F2) cancel and the
component of the weight parallel to the flow must be balanced by the shear
force. This gives an expression for shear stress in open-channel flow

YL(D - y) W sin 8 = TLW
or

T=7v (D - y) sin 6, (5-2)

which is valid in either laminar or turbulent flow.
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For laminar flow, the shear stress is given by equation 1-1 that when
substituted into equation 5-2 yields an expression for the variation of veloc-
ity with distance from the bed

‘C=]J.%§=‘Y(D-y) sin 0.

Separating the variables and integrating one obtains an expression for the
velocity profile in laminar, open-channel flow

2
v=%sin9j (D - vy) dy=-g'sin9(Dy-%)+c

where ¢ is a constant. Because the velocity must be zero at the bed (fluid
clings to a solid surface), the value of c is zero. Thus the velocity distri-
bution in laminar, open-channel flow is given by the parabolic equation

2
v = X sin 6 |Dy - (Laminar) . (5-3)
3 y
The discharge per unit width is obtained by integrating again

D 3
q = j v dy ='& sin O 9'3— . (5-4)
0

The mean velocity is found by dividing the unit discharge by the cross-
sectional area (D (1))

=g=l 1 — -
v > m sin O . (5-5)

Turbulent Flow

The expression for the shear stress given by equation 5-2 results simply
from a force balance and so it is valid in either laminar or turbulent flow.
In turbulent flow, however, the random particle movement causes additional
momentum transfer (or apparent shear) so that the shear stress relation 1-1 is
not valid. Prandtl developed a theory based on momentum transfer and assumed
the shear stress in turbulent flow is given by

T - 12 Ql) 2
turb p ay I

in which | is the distance each parcel of fluid moves from its mean position

during each excursion. This excursion distance is called the mixing length.
Because a boundary limits the excursion length of parcels, the mixing length
should be small near the bed or the surface and increase with distance from
the boundary. An equation for mixing length that predicts a value of zero at
both the bed and the surface and a maximum at middepth is

l=xy~N1-y/D,
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in which y is measured from the bed upward and X is a constant called the von
Karman kappa value. The turbulent shear stress equation with the above equa-
tion for mixing length can be substituted into equation 5-2 to obtain the most
popular expression for velocity distribution in turbulent flow,

2
2 2 dv _ ,
K (1 - y/D = = (D - sin 0.
pPK= y y/D) (ay) Y y) si
Rearranging
Sin9L=«/kL=i"_
X p Xy

where 1o = shear stress at the bed. Because the shear at the bed is equal to
YD sin O (see equation 5-2), the term Vto/p has the dimensions of velocity and
is called the shear velocity or friction velocity, u, = Vto/p. The above

expression can be integrated by separating the variables to give the Prandtl-
von Karman universal velocity distribution law in turbulent flow

Uy
v = ::'ln (y/vo) (5-6)

where yo is a constant of integration physically equal to the value of y at
which the velocity (from equation 5-6) is zero. For points closer to the bed
than yo, equation 5-6 is not valid because the flow is laminar, not turbulent.
In fact, equation 5-~6 indicates that the velocity is negative for values of y
less than yq.

The value of X is generally assumed to have a value of approximately

The discharge per unit width of channel is found by integrating the
velocity given by equation 5-6 over the range yg to D:

D u D
q = J v dy = :} 1n (JL) dy ,

Yo
Yo Yo
from which
u,D D
= — -7
a-—m(=) (5-7)
where e = 2.718... (the base of natural logarithms). The average velocity in

the vertical section of a channel is found by dividing g by D

u
- 94._ = L -
vV=r_s==—1n (eyO . (5-8)

It is easily seen by comparing equations 5-6 and 5-8 that v is equal to
V when y is equal to D/e, or approximately 0.368 D. It is common practice to
take single velocity observations in shallow streams at 0.6 the depth measured
from the surface. This corresponds closely to 0.368 D in equation 5-8.
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When the channel boundary is smooth, the value of the constant yo has
been found to equal v/Su,. Substituting this value into equation 5-6 yields

and converting to common logarithms

Syu,
v =5.75 u,log ( v

) (smooth surfaces) (5-9)

for the velocity distribution of turbulent flow over a smooth surface where Vv
is the kinematic viscosity. The 5.75 is equal to 1ln 10/0.4 and
In x = (log x)1ln 10.

When the boundary is rough, the constant yo has been found to be approx-
imately equal to k/30 where k is the effective height of the irregularities
forming the surface. Substituting this expression for yo yields the universal
velocity distribution for rough boundaries,

v = 5.75u,log (E%Z) (rough surfaces), (5-10)

where k is the effective height of the irregularities forming the surface.
Example:

A velocity of 3.5 ft/s is measured at a distance of 1.6 feet above the
bottom of a wide open channel that is 4.0 feet deep. The channel slope is
9 = 0.0003 radian. Assuming a fully developed turbulent flow over a rough
surface, compute the velocity at a point 0.5 foot above the bed. See figure
5-2.

Water surface

I

i

I ,

Figure 5-2.--Velocity distribution in a0t /
a fully developed, rough 0 feet v=15hmhwgﬁ/

turbulent flow.

Solution:

The velocity distribution in turbulent, rough flow is given by equation
5-10. To use this equation the value of shear velocity (u,) and the effective
height of the bed roughness k must be known. The shear velocity has been

defined as VY1o/p where the bed shear stress 1T, is given by equation 5-2 with
vy = 0 so
To = 62.4 (4.0 - 0.0) 0.0003 = 0.0749 1b/ft2

and the shear velocity is

_Affo _ fo.0749 _
ue = N = VT gg = 0-1965 ft/s.
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Because the velocity is given at one depth, k can be computed from equation
5-10 as follows:

3.5 =5.75 (0.1965) leog 30(1.6)

k
giving
48
3.098 = log ”
or
48 _ 103-098 - 1,254
k
and

k = 0.0383 ft.

With k and u, determined, equation 5-10 can be used to compute the velocity at
any depth. In particular at y = 0.5,

30(0.5)

0.0383 2.93 ft/s.

v = 5.75 (0.1965) log

At y = 0.0383/30 = 0.00127 foot the velocity computed from equation 5-10 is

.00127(30)

0383 = 0.0

u=5.75 (0.1965) log (

and for values of y less than 0.00127, equation 5-10 indicates a unreasonable
(negative) velocity.
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PROBLEMS

1. Water flows down an incline that slopes downward 1 foot for each 1,000
feet of horizontal distance. The water depth is 0.02 foot. What is the
unit discharge, the maximum velocity, the mean velocity, and the Reynolds
number? (Assume laminar flow and a water temperature of 60 °F.)

40



2. A wide channel carries a uniform flow at a depth of 5.0 feet on a slope of
0.0001. Compute the shear stress at the bed and the friction velocity.

3. The bottom for the channel in problem 2 is smooth and the water tempera-
ture is 40 °F. Compute and plot a curve showing the theoretical velocity
distribution. What is the mean velocity?

y ft v
0.0000146
0.021
0.1
0.2
1.0
1.5
1.84
2.0

4.0
5.0
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Show that if velocity measurements in a deep natural stream are taken at
depths of 0.2D and 0.8D, then averaged where D is the total depth, the
result is nearly equivalent to substituting 0.368D in Equation 5-6.
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Lesson 6 - The Energy Equation Applied to Real Fluids

The total energy of a pound of water in an open channel can be expressed
as the sum of three forms of energy: the potential energy, the pressure
potential, and the kinetic energy. The potential energy per pound of fluid at
a section is represented as the distance of the channel bed above an arbitrary
datum. Because the units of the quantity of energy (foot pound per pound of
fluid) is feet, the energy term is commonly referred to as head and the poten-
tial energy per pound of fluid is called the potential head. In figure 6-1
the potential head is shown as Z3 at section 1 and Zp at section 2.

The pressure potential is equal to the depth of flow (D31 and D2 on fig.
6-1). The sum of the potential plus the pressure potential energies at a
cross section is called the piezometric or hydraulic head.

Figure 6-1.--Energy diagram for
open-channel flow.

The kinetic energy per pound of fluid is called the velocity head and is
equal to v2/2g where v is the velocity of the fluid. For an ideal fluid, the
velocity of all parcels of fluid passing a section are the same so the veloc-
ity head for any streamline or water parcel at a particular section is the
same. For a real fluid, the velocity varies over the cross section, small
near the boundaries and maximum near the surface and center of the cross
section. As a result, a parcel of fluid moving near the boundary has less
kinetic energy (velocity head) than a parcel moving near midstream.

The average kinetic energy of all water parcels passing a section is
needed to apply the energy principle at a cross section. Because the kinetic
energy is proportional to the velocity squared, the average kinetic energy is
always greater than kinetic energy of a parcel moving at the average velocity
V. The average kinetic energy, per pound of fluid, can be computed from the
average velocity V, as

kinetic energy = EXE
2g '

where o is defined as

A3

v3 A v3 a

a = ’ (6-1)
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in which A is the total cross-sectional area, aj is the area of a subsection
where the velocity is vij, and a is called the kinetic energy coefficient or
the Coriolis coefficient (Chow, 1959, p. 27). Because the average of the
cubes of positive numbers will always be greater than the cube of the average,
the value of & will always exceed 1.0.

The value of o is determined by the variations of velocity in the cross
section with more uniform velocities yielding & closer to 1.0. Typical
values of the kinetic-energy coefficient, @, for open channels are given by
Chow (1959) as shown in table 6-1. For low velocities, the velocity head is
small, so a is frequently not considered in practical problems dealing with
regular channels.

Table 6.1--Kinetic enexgy correction coefficients for natural

chanpels.
Value of o
Channel type Minimum Average Maximum
Regular channels, flumes, spillways 1.10 1.15 1.20
Natural streams 1.15 1.30 1.50
Rivers under ice cover 1.20 1.50 2.00
River valleys, overflooded 1.50 1.75 2.00

The average energy per pound of real fluid is computed as the sum of the

piezometric head (D + Z) and the velocity head as aV2/2g and is called the
total head, H, where

2
H=2"40p+ 2.
2g

Energy Loss'

In an ideal fluid the total head at any point along the flow is constant
because no energy is expended in moving parcels of water from one section to
another. In a real fluid, however, energy must be expended in moving the
fluid parcels along streamlines so the total head must decrease as a parcel
moves downstream. The energy expended in moving the water from section 1 to

section 2 in figure 6-1 is indicated as h[l'z and is called the head loss.

Two modifications must be made in the Bernoulli (energy) equation
derived for an ideal fluid to make it applicable to real fluids. First, the
velocity head must be corrected for the nonuniform distribution of velocity by
use of the o coefficient and, second, the energy expenditure necessary to
move the water between sections must be accounted for. Therefore, the energy
equation for real fluids moving from section 1 to section 2 is written as

+ Dy + %7 + h|172 | (6-2)
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Example:

Compute the discharge through the bridge constriction shown in figure 6-2.
The kinetic energy correction coefficients are 1.45 and 1.08 at sections 1 and
3, respectively, and all cross sections are rectangular. The head loss between
sections 1 and 2 is 0.25 foot due to boundary friction, and the head loss
between sections 2 and 3 is 0.35 foot because of entrance losses and boundary
friction. The bed at section 1 is 0.34 foot above the bed at section 3.

70 feet  Plan view 40 feet —Q

Figure 6-2.--Typical flow through
a bridge constriction.

The first step, as always, is to roughly sketch the energy line and label
the known and unknown parts. As is seen in figure 6-2, the total energy expen-
diture by a pound of water moving from section 1 to 3 is 0.25 + 0.35 = 0.60 ft
1b. Assuming the datum is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>