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Examples of Active Faults in the Western
United States -- A Field Guide

By Robert C. Bucknam and Kathleen M. Haller

INTRODUCTION

This field guide has been prepared as a part of the final meeting of International Geological Correlation
Program (IGCP) Project 206--"A Worldwide Comparison of the Characteristics of Major Active Faults."
IGCP is a joint undertaking of the International Union of Geological Sciences (IUGS) and the United Nations
Educational, Scientific and Cultural Organization (UNESCO). The project was begun in 1984 to synthesize
current knowledge on the characteristics of selected major active faults on a worldwide basis. Major active
faults undergoing contemporary or geologically recent deformation are a focus of study in many parts of the
world, and studies of these faults provide critical insight into the nature and rates of tectonic processes. As
potential seismogenic sources, active faults are major keys to the evaluation of seismic hazards of the regions
in which they occur.

This field trip provides an opportunity to observe a variety of active faults occurring in diverse geologic
environments in the Western United States. Many of these faults have undergone displacements in historic
time in a generally semi-arid climate, which results in frequently spectacular preservation of geomorphic
features associated with active faults. The trip begins at the western margin of the North American plate,
traverses the Basin and Range province, and ends at the boundary between the Basin and Range and Middle
Rocky Mountains-Colorado Plateaus provinces (fig. 1-1B), passing through portions of the most seismically
active regions of the United States (fig. 1-2).
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Figure 1-2. Earthquakes (M > 1.5) in California and Nevada, 1980 - 1984 (from Hill and Eaton, 1987).

DAY 1--SAN BRUNO TO PASO ROBLES, CALIFORNIA

Summary

During the first two days through the California Coast Ranges (fig. 1-1) the field trip will focus on the
geomorphic expression of the fault, its geologic setting, and historic deformation along the San Andreas and
other major active faults in the region. The trip starts near the locality for which the San Andreas fault was
named by Lawson (1895), close to the epicenter of the 1906 San Francisco earthquake, and follows the fault
nearly 300 km southeasterly to the Parkfield-Cholame area, site of a major ongoing experiment in earthquake
" prediction.



Tectonic Setting of the San Andreas Fault

Many important geologic relations in the Coast Ranges are closely linked to the evolution of the San
Andreas fault, and an understanding of many important characteristics of the present behavior of the San
Andreas fault ultimately depends on an understanding of the local and regional geologic setting of the fault.
Current models of the evolution of the continental margin of California view the presently active San Andreas
fault as an integral feature of the evolving margin between the North American and Pacific plates. Many of the
stages in the evolution of the California continental margin also were critical in the evolution of areas far to
the east, in the region of the present Great Basin. Because the focus of this trip is on active faults, only brief
summaries of some major elements of the regional geologic setting are given in this guidebook to provide an
appropriate context for more detailed discussions at individual stops. For an extensive review of the tectonic
evolution of the region refer to papers in Ernst (1981) and the extensive bibliography of that work.

The North American continental margin in California has evolved through four basic types of tectonic
configurations since late Precambrian time (fig. 1-3) as summarized by Dickinson (1981). The San Andreas
transform system formed during the last of these four stages, and intraplate deformation during this fourth stage
also produced the Basin and Range province.
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The major rock units of the California Coast Ranges, the Franciscan complex and the Great Valley se-
quence, and the Sierran rocks to the east, are regarded as related elements of a late Mesozoic arc-trench system
that was oriented roughly parallel to the present California coast. Subduction of sea-floor lavas and sediments
produced the melanges and sheared rocks of the Franciscan complex, whereas sedimentation of detritus derived
from volcanic and plutonic rocks produced the largely coeval Great Valley sequence (Dickinson and Rich, 1972;
Dickinson, 1981). The Sierra Nevada batholith is the intrusive root of a magmatic arc associated with the arc-
trench system. Tectonic events in Paleogene time reflect a change in character of the subduction, perhaps
reflecting a decrease in dip of the subduction zone. Although abundant Paleogene clastic sediments in the
Franciscan indicate that subduction continued, magmatism in the Sierra Nevada ceased by this time (Dickinson,
1981). By Miocene time the Pacific and American plates came into contact as the intervening Farallon plate
was subducted under the continental margin (fig. 1-4B), and strike-slip movement began on the San Andreas
transform (Atwater, 1970). Dickinson (1981) points out that during Miocene time much of the transform
movement was on faults other than the San Andreas fault, probably offshore, but since Pliocene time the
transform movement has been primarily along the presently active trace of the San Andreas fault.

A NORTH AMERICAN PLATE T~
Los Angeles TRENCH

30 Ma
<
B NORTH AMERICAN PLATE ~
20 Ma
c NORTH AMERICAN PLATE ol

Figure 1-4. Evolution of the San Andreas fault since 30 Ma (modified from Dickinson, 1981). Heavy
lines are faults, double lines are spreading ridges, fine lines are continental margin, and M and R are
Mendocino and Rivera triple junctions, respectively. Reprinted by permission of Prentice Hall, Inc.,
Englewood Cliffs, New Jersey.
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Within the California Coast Ranges the San Andreas fault juxtaposes primarily clastic sedimentary rocks
that form the upper and lower plates of the Coast Range fault northeast of the San Andreas fault against crys-
talline rocks of the Salinian block (fig. 1-5). The lower plate of the Coast Range fault is composed of rocks of
the Franciscan complex, and the clastic Great Valley sequence forms the upper plate. The primary components
of the Franciscan are clastic sedimentary rocks, primarily graywacke, but minor amounts of shale, siltstone,
and conglomerate are present. Altered mafic volcanic rocks (greenstones), bedded chert, ultramafic rocks
(primarily serpentinite) and sparse, but distinctive assemblages of metamorphic rocks, including blue glauco-
phane schists (Bailey and others, 1964) are secondary but important components of the Franciscan. Shearing of
the complex is nearly ubiquitous at outcrop scale and melange is developed widely.

Great Valley sequence

Franciscan complex

> 4 Crystalline rocks of
. the Salinian block

\ Fault

C Calaveras fault

H Hayward fault

S San Andreas fault

Figure 1-5. Major structural elements along the San Andreas fault in the Coast Ranges (modified from
Irwin and Bames, 1975). The Salinian block lies west of the fault and the Franciscan complex and Great
Valley sequence lie on the east side. The Coast Range fault is the regional contact between the
Franciscan rocks and the serpentinite at the base of the Great Valley sequence. Vertically-ruled areas
are where parts of the Great Valley sequence has been removed to view subsurface relations.
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The Great Valley sequence consists of a moderately deformed, predominantly clastic sequence (Bailey and
others, 1964) that is largely coeval with the Franciscan complex. Shale locally comprises more than half of
the section, but well-bedded sandstone and locally thick lenses of conglomerate are also major components. An
ophiolite consisting of serpentinized ultramafic and volcanic rocks, interpreted as former oceanic crust, lies at
the base of the Great Valley sequence in the California Coast Ranges (Hopson and others, 1981). Intensely
sheared serpentinite at the base of the sequence, which marks the tectonic contact with the underlying
Franciscan complex, is interpreted by Emst (1970) as the result of underthrusting on a former Benioff zone.
Jayko and others (1987) have argued that, although in some places the contact between the two units may be a
thrust fault, it is generally a low-angle normal fault (detachment) related to uplift of the Franciscan complex;
they have proposed that it be referred to as the Coast Range fault.

West of the San Andreas fault, basement rocks of the Salinian block are granitic plutons, largely
Cretaceous in age, and metasedimentary host rocks genetically unrelated to the Franciscan complex which is
exposed to the east and west of the block (Ross, 1978). The Salinian block is anomalous in the context of the
subduction that gave rise to the rocks of the Franciscan complex and Great Valley sequence, and there currently
is no widespread agreement on the source of the preplutonic rocks of the Salinian block. Page (1981) believes
that plutons of the Salinian block represent a former southern continuation of the Sierra Nevada batholith and
infers that the block was moved several hundred kilometers toward its present position in Paleocene time and an
additional 300 km northward in in the Neogene. Relatively thin sections of Tertiary marine and nonmarine
clastic sedimentary and volcanic rocks locally overlie a late Cretaceous erosion surface on the Salinian
basement rocks. Correlation of one of these volcanic units, the Pinnacles rhyolite, with the Neenach volcanics
in the Mojave Desert provide some of the best evidence that about 315 km of right-lateral slip has occurred on
the San Andreas fault since the early Miocene (Page, 1981; Sims, 1989). Additional details of the Cenozoic
chronology of slip on the fault are discussed at Stop 1.3.

Historical Surface Faulting on the Central San Andreas Fault

The San Andreas is a well-defined single fault zone for over 1,100 km in length. About 840 km of that
distance has broken during historical earthquakes (Allen, 1981). Two great historic earthquakes--the 1857 Fort
Tejon earthquake and the 1906 San Francisco earthquake -- produced most of the historical surface faulting (fig.
1-6). Each earthquake was associated with several hundred kilometers of surface rupture that had as much as 6
m of right-lateral slip. Some sections of the fault have ruptured repeatedly in historic time. A striking
example of repeated slip is along the part of the fault adjacent to the San Francisco Bay area. A large
earthquake that occurred on the San Andreas fault in that area in 1838 produced surface faulting from at least
San Francisco to the latitude of San Jose, a distance of 64 km. The same section of the fault broke again dur-
ing the 1906 San Francisco earthquake (Louderback, 1947).



38°

36°

34°

122° 120° 118°

| | | 1 {
RODGERS CREEK FAULT

GREEN VALLEY FAULT

/
N
///1966 —

7\ "
7Y§, Parkfield

PACIFIC OCEAN

4 Gorman
(2
7
7> Palmdale
7
2320
/
7
7

Los Angeles

O

Figure 1-6. Map of central San Andreas and related faults, California. Patterned intervals show extent
of surface rupture associated with 1838, 1857, 1906, and 1966 earthquakes on the San Andreas fault.

To the south, surface faulting has occurred along the section of the San Andreas fault near Parkfield dur-
ing four historic earthquakes with magnitudes of 5.5 to 6.5 in 1901, 1922, 1934, and 1966. The rupture from
the 1966 earthquake was 38 km long (Brown and Vedder, in Brown and others, 1967) and corresponds to a part
of the fault that had broken earlier during the great 1857 earthquake (Sieh, 1978a). The regularity and
similarity of characteristics of the earthquakes has led to the selection of the Parkfield area as the site of an
earthquake-prediction experiment (Bakun and Lindh, 1985).



The Working Group on California Earthquake Probabilities (1988, p. 12) has subdivided the San
Andreas fault into 10 segments that are expected to slip independently in large earthquakes. The segments are
characterized by: 1) elapsed time since the last earthquake to rupture the segment, 2) recurrence interval, 3)
amount of slip per event, and 4) the long-term slip rate. One of the segments, from San Juan Bautista to
Cholame, is characterized by creep, at rates as high as 30-34 mm/yr in the central part of the segment, and is

regarded as an unlikely site for a magnitude 7 or greater earthquake.

San Francisco Earthquake of 1906

On April 18, 1906 a major earthquake (M; = 8.3) and an ensuing fire devastated the city of San
Francisco, California. Soon afterward, the California Earthquake Commission under the direction of A.C.
Lawson prepared a detailed report on the effects of the earthquake (Lawson, 1908). Detailed study of the fault-
ing associated with the earthquake, combined with analysis of geodetic surveys of the region made before and
after the earthquake, led to Reid's (1910) elastic rebound theory of earthquakes and to the subsequent ongoing
interest in the geological nature of the fault. The earthquake may have been the largest historical earthquake in
the continental United States, inasmuch as it produced a nearly continuous surface rupture (fig. 1-6) from Point
Arena to San Juan Bautista, over 300 km to the south (Lawson, 1908). The total length of faulting, including
offshore regions, is believed to have been more than 400 km and right-lateral horizontal displacements were
locally as much as 6 m (Bonilla and others, 1984).

The southern part of the surface break intersected the Pacific coast at Mussel Rock, about 8 km north-
west of the starting point for this trip. The trace of the fault in the 25-km-long interval southeast of Mussel
Rock was described by Lawson (1908) as ". . . marked by a belt of upturned earth resembling a gigantic mole-
track. . . The typical occurrence in turf-covered fields is a long, straight, raised line of blocks of sod broken
loose and partly overturned.” It was also noted that the break commonly followed valley margins, rather than
following valleys bottoms.

Although parts of the surface trace commonly appeared relatively simple with slip confined to a narrow
zone, a comparison of measured displacements at the fault with geodetic estimates of the coseismic fault slip
by Thatcher and Lisowski (1987) showed that deformation occurred over a zone ranging from about 20 m to 2
km in width. Measured displacements at the fault average only about 70 percent of the total displacement (fig.
1-7) across the fault zone.
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Figure 1-7. Slip on the San Andreas fault associated with the 1906 San Francisco earthquake
(modified from Working Group on California Earthquake Probabilities, 1988). Solid dots show fault slip
reported by Lawson (1908); straight line segments are geodetic measurements of 1906 fault slip with one-
standard-deviation error bars shown for each determination (Thatcher and Lisowski, 1987). Patterned
rectangle at bottom of graph indicates amount of slip recovered by elastic-strain accumulation since

1906.

Thatcher (1975a) reexamined geodetic data from surveys, made as early as 1853, of an approximately
100-km-wide region affected by the 1906 earthquake to determine the mechanism of strain accumulation and re-
lease associated with the earthquake. His analysis showed that the earthquake was preceded by about 50 years or
more of relatively rapid preseismic strain accumulation, which he postulated followed an earlier period of slow
accumulation of shear strain over a broad region. Seismic slip during the 1906 earthquake, which averaged
about 4 m, appears to have been confined to the upper 10 km of the crust and was followed by at least 30 years
of relatively rapid aseismic deformation near the fault. This postearthquake rebound is consistent with an addi-
tional 3-4 m of slip on the San Andreas fault at depths between about 10 and 30 km. Since 1950, the rate of
shear-strain accumulation around San Francisco Bay has been comparatively low and has been uniformly dis-
tributed across an 80-km-wide zone immediately east of the fault and may reflect a shift in slip at depth to the
Hayward-Calaveras fault systems (Thatcher, 1975b).
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Segment 1A--San Bruno to San

Jose (43 Miles)
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Figure 1-8. Route map for Segment 1A, San Bruno to San Jose, California. On this and remaining
route maps, solid arrowheads mark endpoints of field-trip segments, open circles with numbers show
locations of field-trip stops.
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Route Narrative--The field trip begins in San Bruno near the locality in San Andreas Valley for which
Lawson (1895, 1908) presumably named the San Andreas fault. We leave from the intersection of California
Highway 82 (El Camino Real -- The King's Road) and San Bruno Avenue and drive southwest on San Bruno
Avenue, climbing up into the low hills that border the coastal zone of the bay; our route intersects the San
Andreas fault at Skyline Boulevard. The low hills are formed primarily on poorly consolidated sandstones of
the lower Pleistocene and upper Pliocene Merced Formation, which locally contains beds of white volcanic ash
dated as about 500,000 years old by Andrei Sarna-Wojcicki (Brabb and Pampeyan, 1983).

Turn left onto Skyline Boulevard at about 1.6 miles from E1 Camino Real and head southeast along a
linear ridge overlooking the valley of the San Andreas rift (on the right). The road is virtually on the trace of
the San Andreas fault for the first 0.5 mile, beyond which the fault gradually trends down the hillslope to the
southwest. Soon after turning onto Skyline Boulevard you can get glimpses of San Andreas Lake, which is
impounded by an earthfill dam built in 1870. Highly sheared Franciscan rocks in the eastern abutment of the
dam were offset about 3 m (Hall, 1984) across a narrow zone of surface faulting from the 1906 earthquake, but
the dam did not fail. The trace of the active fault lies about 100 m northeast of the axis of the valley, on the
lower part of the slope between the valley floor and the ridge that we are traversing.

At about Mile 7.5 we pass the interchange for Black Mountain Road and Hayne Road, and a mile beyond
that we cross a high bridge across San Mateo Creek. Lawson (1895) considered San Mateo Creek to be a su-
perimposed stream because it cuts across and through the broadest part of the high plateau (Buri-buri plateau)
that we have generally been driving on. The plateau, at an elevation of about 215 m, is the lower of two
prominent geomorphic surfaces in the area. The upper surface is at an elevation of about 350 m, at the level of
the flat-topped ridges several kilometers southwest of the rift, in the area between San Andreas Lake and Lower
Crystal Springs Reservoir. Lawson believed the plateaus are erosional features which developed during rela-
tively stable intervals separating periods of uplift.

Continue southeast on Interstate 280 another 6 miles and exit at Edgewood Road. Drive under the
Interstate, turn left onto the entrance ramp for northbound Interstate Highway 280, drive 0.5 mile north, exit
right on road marked "Vista", and continue to the parking area on the hilltop.

Stop 1.1--San Andreas Rift

The vista point is near the contact of Eocene Butano(?) sandstone to the north and sheared fine-grained
graywacke, siltstone, and shale of the Franciscan complex to the south. To the southwest, beyond the linear
valley of the San Andreas rift, you can see the Santa Cruz Mountains, which are underlain, on this side, by
Eocene Butano sandstone. On the other side of the Santa Cruz Mountains, near the Pacific coast, the San
Gregorio fault trends roughly parallel to the San Andreas (fig. 1-8). In the opposite direction, you can look to
the northeast across San Francisco Bay, toward Oakland and the East Bay Hills, which are visible on a clear
day. The Hayward and Calaveras faults trend roughly parallel to the San Andreas fault along and within the
East Bay Hills, respectively. Much of the movement between the Pacific and North American plates is
distributed across a broad zone that includes four major faults: the San Gregorio, the San Andreas, the
Hayward, and the Calaveras (fig. 1-8).

Based on geodetic measurements made between 1970 and 1980 in the San Francisco Bay area, Prescott
and others (1981) determined a relative horizontal deformation rate of 32 mm/yr across a nearly 100-km-wide
zone eastward from the Pacific coast. They did not detect localized slip on faults on the San Francisco penin-
sula but did find evidence that deformation is occurring over a broad zone near the San Andreas fault, consistent
with about 12 mm/yr slip on the fault at depths greater than a few kilometers. To the east, across the bay,
rigid-block slip is occurring at a rate of 7 mm/yr on the Hayward fault, and an additional 7 mm/yr of slip is oc-
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curring on the Calaveras fault, about half of which is distributed over a zone a few kilometers wide (fig. 1-9).
The net slip rate across the entire zone parallel to the plate boundary is noticeably less than the 56 mmy/yr for
the rigid plate tectonic mode! of Minster and Jordan (1978).

-4+—— Hayward Fault

«—— Calaveras Fauit
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Figure 1-9. Distribution of slip parallel to faults in the San Francisco Bay region (from Prescott and
others, 1981).

Geologic estimates of the long-term slip rate on faults in this area are sparse, but Hall (1984) determined
a minimum rate of 12 mm/yr for the past 1,100 years for the San Andreas fault in the vicinity of this stop.
Right-lateral offset of marine terraces along the San Gregorio fault indicate an average slip rate of 6-13 mm/yr
during the past 200,000 years (Weber and Lajoie, 1977).

Route Narrative (continued)--Reenter Interstate Highway 280 northbound. Drive 1.7 miles to the marked
exit on the right to the next vista point. Turn left under the Interstate Highway, and then turn left again onto
the entrance ramp to southbound Interstate Highway 280. Proceed south to the intersection of Interstate
Highway 280 and U.S. Highway 101 at San Jose (Mile 43).
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Segment 1B--San Jose to Hollister (43 Miles)
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Flgure 1-10. Route map for Segment 1B, San Jose to Hollister. San Juan Bautista marks the southern
end of the surface rupture of the 1906 earthquake and the approximate northern end of the creeping
segment of the fault.
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Route Narrative--From the intersection of Interstate Highway 280 and U.S. Highway 101 at San Jose
proceed southeast on Highway 101 to Gilroy (about Mile 29). About 2 miles south of Gilroy turn left off

Highway 101 onto California Highway 25. Drive south toward Hollister across the plain formed by Lake San
the west.

Benito, a late Pleistocene-Holocene lake dammed by a landslide across the narrows of the San Benito River to

In about 5 miles (Mile 37) there is a conspicuous low hill in the valley directly ahead. It is a horst be-
tween two strands of the Calaveras fault which intersects our course from the left (fig. 1-11). Several miles
further, the highway passes a few hundred meters to the west of the hill. The active trace of the fault is at the
break in slope at the base of the hill and passes beneath the house and bam to the east which are being deformed
by fault creep (Radbruch and Rogers, 1969). The active trace diverges from the hill at about this point, crosses
the road about a mile ahead, and then follows the western side of a second, echelon hill (horst block). In about

a mile (Mile 40), you will see sag ponds on both sides of the road where it crosses the southern end of the
horst. These ponds lie on strands of the fault that currently have little or no creep.
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Figure 1-11. Horst blocks, cored by early Pleistocene San Benito formation, along the Calaveras fault
north of Hollister, California (modified from Radbruch and Rogers, 1969).
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About a mile beyongd the dry sag ponds, a hill topped by a water tank is visible through a gap in the
hills at 2 o'clock. The hill, Park Hill, is the western of 3 horst blocks within the Calaveras fault zone. Field-
trip Stop 1.2 is near the foot of the far (west) side of Park Hill.

Turn right on California Highway 156; as we drive into Hollister, we will pass exposures of the San
Benito gravel of Lawson (1893) in the north end of Park Hill on the right. The southern end of surface
faulting from the 1906 San Francisco earthquake is about 10 km to the west, at the town of San Juan Bautista.
This locality is nearly coincident with the northern end of the creeping section of the San Andreas fault, which
extends from a few kilometers north of San Juan Bautista to near Cholame, 180 km to the south (Burford and
Harsh, 1980; Lisowski and Prescott, 1981).

In Hollister turn right at Third Street and stop at the intersection of Virginia Drive and Locust Avenue,
three blocks to the west (fig. 1-12).
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Figure 1-12. Map showing location of Calaveras fault at Stop 7.2 in the city of Hollister, California
(modified from Radbruch and Rogers, 1969).
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Stop 1.2--Calaveras Fault at Hollister

The Calaveras fault extends about 120 km from about the latitude of San Francisco (fig. 1-6) to a point
several kilometers southeast of Hollister (Jennings, 1975), where it swings southeast and becomes parallel to
the San Andreas fault as two closely spaced branches, the Calaveras and Paicines faults (Dibblee, 1980). Slip
on the Calaveras fault occurs primarily by aseismic creep (Prescott and others, 1981), but several earthquakes as
large as magnitude 6 have occurred on the fault (Working Group on California Earthquake Probabilities, 1988).
The effects of creep on cultural features is particularly conspicuous in Hollister, where the fault trends through
residential neighborhoods. Schulz and others (1982) have determined a slip rate of about 7-10 mm/yr for the
Calaveras fault at Hollister.

This stop is a walking tour that begins at the northwest corner of the intersection of Central Avenue and
Locust Avenue where there is a conspicuous right-lateral offset of the sidewalk and curb and an echelon series
of cracks in the asphalt to the south. Walk south along Locust Avenue as far as Seventh Street, and note offset
curbs, sidewalks, and house foundations where the fault crosses streets to the east of Locust Avenue and Powell
Street (fig. 1-12).
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Segment 1C--Hollister to Peachtree Valley (62 Miles)
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Figure 1-13. Route map for Segment 1C, Hollister to Peachtree Valley.

Route Narrative (continued)--Proceed to the intersection of Third Street and San Benito Street (California

Highway 25) and note the odometer reading. Turn right onto San Benito Street and drive south on California
Highway 25 toward the town of Tres Pinos.
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Terraces of Tres Pinos Creek and the San Benito River

About 7 miles south of Hollister we pass through the town of Tres Pinos and begin following the
course of Tres Pinos Creek, a tributary of the San Benito River, for several miles. Both of these rivers have a
well-developed sequence of fluvial terraces that are visible at numerous places along the route. Dohrenwend
(1977) has identified six terrace levels along these drainages. The three lowest terraces, at about 6 m, 15 m,
and 25 m above stream level can be correlated throughout the drainage basin on the basis of distinctive soil pro-
files. The three higher terraces, which typically range from 45 to 85 m above present stream level and are be-
lieved to be several hundred thousand years old, lack diagnostic soil characteristics and cannot be correlated
throughout the drainage basin. Dohrenwend (1977) concluded that longitudinal profiles of 20,000- to 50,000-
year-old terraces (the three lowest) showed no evidence of warping parallel to the trace of the San Andreas fault.
However, he found that terraces are more abundant on the northeast side of the valleys, indicating progressive
migration of the rivers to the southwest, which he attributes to regional southwestward tilt of the San Benito
River basin during at least the past several hundred thousand years.

Route Narrative (continued)--At Mile 12, pass through town of Paicines. Note the sign "Next Services
65 Miles.” Just beyond Stone Canyon Ranch at Mile 19, a hillside trench on the right marks the trace of the
San Andreas fault. To the southeast, at 10 o'clock, there are exposures of dark gray and pale brown rocks of the
San Benito and Etchegoin Formations in the fault zone.

At Mile 25 the route passes through Bear Valley. The San Andreas fault lies on the east side of the near
low ridge at 9 o'clock. About 2 miles past the junction with California Highway 146 (to Pinnacles National
Monument), pull off at the roadcut at the crest of the hill,

Stop 1.3--Pinnacies Overiook, Bear Valiey-San Benito Area

Looking to the west you can see the jagged skyline of the Pinnacles. These are part of an early Miocene
(23.5 Ma) sequence of flow-banded rhyolite, rhyolite breccia and tuff, and andesite, all of which overlie granitic
basement rocks. Matthews (1976) correlated these rocks with a nearly identical sequence known as the Neenach
volcanics that are exposed 315 km to the southeast on the east side of the San Andreas fault on the basis of
stratigraphic, chemical, and petrographic characteristics. Nilsen (1984) documented a similar amount of offset
of correlative Eocene rocks overlying distinctive gabbroic basement at two sites on opposite sides of the San
Andreas fault zone. Thus, there appears to have been no significant strike-slip displacement on the San
Andreas fault from Eocene to Miocene time. The average rate of slip since early Miocene has been about 14
mm/yr based on the correlation of the Pinnacles and Neenach volcanics. Sims (1989) studied the spatial rela-
tionships of blocks of crystalline basement rocks and Tertiary sedimentary and volcanic rocks adjacent to the
San Andreas fault in the Parkfield area and inferred a history of increasing rate of slip since Miocene time. The
most recent stage, which he proposes began about 5 Ma, has an average rate of slip of 33 mm/yr and is compa-
rable to Holocene slip rates and current geodetic rates of 27-34 mm/yr.

To the east, a linear trench and ridge in the foreground mark the trace of the San Andreas fault, which
crosses the road a few hundred meters to the southeast. The Paicines fault lies on the opposite side of the ridge
in the middle distance.

Route Narrative (continued)--Proceed southeast on California Highway 25. At Mile 40 cross through a
small ridge at a roadcut. Note the excellent geomorphic expression of the fault zone about 100 m to the right
of the road in this area. Continue 0.4 mile downhill to the junction with Coalinga Road, which is straight
ahead at the sharp right turn. Stay on California Highway 25 through the sharp right turn and continue into
Bitterwater Valley.
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Enter the northwest end of Peachtree Valley at Mile 51 and intersect California Highway 198 at Mile 62.
Turn left onto California Highway 198 (marked "Coalinga 38 miles").

Pleistocene Drainage from San Joaquin Valiey

The present outlet for drainage from the San Joaquin Valley is northeast of San Francisco, but it has had
different outlets through time as the geometry of drainages crossing the San Andreas fault were modified in re-
sponse to accumulating slip on the fault. The outlet for drainage from the San Joaquin Valley during late
Pliocene and most of the Pleistocene was at Bitterwater Valley, on the east side of the Temblor Range about 90
km southeast of here (see fig. 2-1). A series of corresponding underfit drainages west of the fault, which have
been displaced northerly by slip on the San Andreas fault, are preserved between Peachtree Valley and southern
Cholame Valley. Late Pliocene drainage through Bitterwater Valley crossed the San Andreas fault and flowed
into the Salinas River by way of Pancho Rico Creek (fig. 1-14) about 2.5 Ma (Sims and Hamilton, 1989).
The San Joaquin drainage was captured by Indian Valley about 2 Ma and then by Cholame Creek about 0.7 Ma
as slip on the San Andreas fault lengthened the drainage path. About 25 ka, with Cholame Creek near its pre-
sent position, the connection with Bitterwater Valley was broken, and a lake present in the previously closed
Cholame Valley was emptied.
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Segment 1D--Peachtree Valley to Parkfield (42 Miles)
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Figure 1-14. Route map for Segment 1D, Peachtree Valley to Parkfield.

Route Narrative--From the junction of Highways 25 and 198 in Peachtree Valley, drive about 4 miles
east on Highway 198 to the crest of the grade on the southwest side of Mustang Ridge, pass through a roadcut,
and park at a turnout at the gate on the north (left) side of highway for Stop 1.4.

Stop 1.4--San Andreas Fault at Mustang Ridge

Mustang Ridge is the result of vertical movement associated with two faults, subparallel to the San
Andreas fault, which bound the ridge. Franciscan rocks underlying the ridge have been thrust over Miocene to
Pliocene rocks on the northeast side of the fault and Pliocene rocks on the southwest side, forming in effect, a
thin elongate extrusion (Rymer, 1981; 1982). The instability of the ridge, reflected by numerous landslides on

its flanks, some up to 1 km wide, is probably due in part to the recency of the uplift (M.R. Rymer, 1989,
written commun.).
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Note the conspicuous modern sag pond along the trace of the San Andreas fault, which lies at the base of
the linear ridge on the south side of the highway. We will walk north along the trace of the fault to see geo-
morphic details of the fault zone.

From the gate, walk about 250 m northwest along the ridge on the northeast side of a prominent linear
gully to the first large tree. The tree is at the head of a shallow trench on the ridge crest where the linear gully
makes a right step. The tree is split and offset in a right-lateral sense. Several hundred meters northwest of the
tree you can see black mud deposits of another sag pond along the trend of the linear gully. From the vicinity
of the tree, and extending along the side of the gully to the northwest, a distinctive side-hill bench lies midway
up the slope from the bottom of the gully. This bench is, in part, marked by a concentration of burrows of
ground squirrels and likely marks the currently active trace of the San Andreas fault.

Route Narrative (continued)--Continue to the southeast on Highway 198 for 17 miles to the turnoff to
Coalinga Mineral Springs County Park. Turn left and drive 5 miles to the park at the end of the road. The
road from the main highway to the park passes through a section of Etchegoin Formation (Tertiary marine
sandstone and siltstone) dipping steeply to the south for about 1.5 miles and then enters the unconformably
underlying section of Panoche Formation (Cretaceous marine sandstone, micaceous shale, and conglomerate)
dipping more gently to the northeast (Dibblee, 1980). Locally the unconformable contact is the Curry
Mountain fault (fig. 1-15).
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