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INTRODUCTION

More than a decade ago we presented equations for predicting peak horizontal
acceleration and response spectra in terms of moment magnitude, distance, and site
conditions for shallow earthquakes in western North America (Joyner and Boore, 1981,
1982). We are currently developing a new set of equations taking account of the data
recorded since 1980. In addition to incorporating the new data, we plan to reprocess all
the data for greater uniformity and for the purpose of extending the period range to as long
a period as possible. Because of the time that will be required to complete the long-term
project, we decided to present an interim report (Boore et al., 1993, hereafter referred to as
“BJF93”) updating our earlier equations to incorporate data from three recent California
earthquakes (Loma Prieta, 1989, Petrolia, 1992, and Landers, 1992) that provided data in
the large-magnitude, close-distance range where the earlier data set was severely deficient.
In addition to including the new data, we changed the site classification system to a three-
category classification based on average shear-wave velocity to a depth of 30 m. Other
changes are described in BJF93. In order to make the new equations available as soon as
possible, we published the interim report before we had completed several auxiliary studies
of the data set. Those additional studies are the subject of this report, which we designate
as part two of the interim report.

This report contains ten items, summarized below. In general, new topics not
contained in BJF93 are discussed first.

1. As an alternative to the three-category site classification, we present a way of
calculating the site effect as a continuous function of the average shear-wave velocity
to a depth of 30 m.

2. We study residuals within 10 km and perform a Monte Carlo simulation study to see if
the scaling with magnitude at close distances is different from that at larger distances.

3. We examine residuals for the BJF93 equations to see if the variance depends on

magnitude or if it depends on ground-motion amplitude.

4. We examine differences in ground motion between strike-slip and reverse-slip earth-

quakes.



5. We perform a Monte Carlo simulation study to assess the sensitivity of the predicted
values to stochastic uncertainties in the regression coefficients.

6. We compare response spectra predicted from equations developed by one-stage and

two-stage maximum-likelihood methods.

7. We present plots showing how residuals for peak horizontal acceleration depend
on magnitude, distance, and site conditions (similar plots were given in BJF93 for
response spectra but not for peak acceleration).

8. We include equations for predicting smoothed response spectra in terms of cubic

polynomials in period, from which predictions can be obtained for periods not included
in BJF'93.

9. We discuss limitations of the present equations and prospects for improvement 1in

future work.
10. We include errata for BJF93.

The one-stage and two-stage calculations in this report and in BJF93 were done by
the methods described by Joyner and Boore (1993) as corrected (Joyner and Boore, 1994),
except that, in the first stage of the two-stage regression, the sum of square errors was
minimized with respect to the parameter & in equation (2) of BJF93 by a simple numerical
search (using the routine GOLDEN [Press et al., 1992]) rather than by linearization as
described in Joyner and Boore (1993).

THE SITE EFFECT IN TERMS OF SHEAR-WAVE VELOCITY

In the equations of BJF93 the site-effect term takes on different values depending
on whether the average shear-wave velocity to a depth of 30 m is greater than 750 m/s
(Class A), between 360 and 750 m/s (Class B), or between 180 and 360 m/s (Class C).
The class definitions are taken from site-effects provisions proposed for the 1994 National
Earthquake Hazards Reduction Program (NEHRP) model building-code provisions. (The
NEHRP proposal also has a Class D with average velocity less than 180 m/s, but Class D
was poorly represented in the BJF93 data set and was excluded from the analysis.) We
are confident that the use of a classification system based entirely on shear-wave velocity
represents an improvement over systems based on subjective descriptions of site geology.

Even though the classification system 1s an improvement, it would be better still to compute



the site effect as a continuous function of shear-wave velocity, if available. We have done
that, generally following the ideas of Joyner and Fumal (1984).

For more than half the records used in developing the BJF93 equations the time-
weighted average shear-wave velocities to 30 m (Vs) have been obtained from downhole
surveys at the sites (a histogram of these velocities is shown in Figure 1, and the recordings
used in the analysis are listed in Table 1). The average is computed by dividing 30 m by
the S-wave travel time to 30 m (in contrast to a depth-weighted average found by dividing
the sum of the product of the layer thickness and velocity by 30 m). For those records,
we take the residuals (R) with respect to the BJF93 equations for site Class A and fit the
following functional form to the residuals by two-stage regression:

log R = by(logVs — logVa) + €, + €. (1)

In this equation log R is the residual (log observed minus log predicted ground motion),
¢- is an independent random variable that takes on a specific value for each record, and
€. is an independent random variable that takes on a specific value for each earthquake.
The coefficients to be determined are by and log V4. In the first stage of the two-stage
regression the coefficient by is determined along with a set of amplitude factors, one for
each earthquake. In the second stage a weighted average of the amplitude factors gives
the product(—by log V4) from which V, is obtained. The weight w; for each earthquake is
given by

w; = (05 /Nr, +07)7", (2)

where o? is the variance of the first stage, Ny, is number of recordings for earthquake 1,
and o2 is the intrinsic variance of the amplitude factors. The value of 62 was determined
by requiring that the weighted sum of square deviations of the amplitude factors from the
mean be equal (or as close as possible to) the number of degrees of freedom, N, — 1, where
N, is the number of earthquakes. To show graphically the amplification as a function
of velocity, we removed the earthquake-to-earthquake variation by subtracting from the
residuals a constant given by evaluating, at a velocity equal to Vj, the straight-line fit
determined for each earthquake in the first stage of the regression. Figure 2 shows the
results for 5 percent damping and a set of eight oscillator periods uniformly distributed
logarithmically between 0.1 and 2 seconds (we use this set of periods for many of the
graphical results shown in this report). The plots show strong correlation of long-period
ground motion with shear-wave velocity. The values of by and log V4 are smoothed by
least-squares fitting of a cubic polynomial as was done for the coefficients of the BJF93
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equations. The results are given in Table 2 for response spectra and Table 3 for peak
acceleration. The term

by (log Vs — log V4 ) (3)

replaces the term
bsGp + b:Gc

in equation (1) of BJF93. The effect on the variance is negligible, and the standard
deviation values from Tables 7, 8, and 9 of BJF93 should be used for these computations
as well. (The equations in BJF93 give pseudo-velocity response spectra (psv); acceleration
spectra (S4), defined as (27 /T)psv, can be obtained by adding the column labeled “BSA”

in Table 2 to equation (1) in BJF93, where the units of S4 are the acceleration of gravity

(9)-)

The dependence of the amplification on shear velocity is given by the coefficient by
in equation (3). As shown in Figure 3, the velocity dependence is remarkably similar to
that determined by Midorikawa (written comm., 1993) in Japan and to the coefficients
proposed by Borcherdt (1994) for use in determining short- and mid-period amplification

factors in building codes.

MAGNITUDE SCALING AT SHORT DISTANCES

Equations given by many authors for predicting ground-motion values have smaller
magnitude scaling at short distances than at long distances (e.g. Campbell and Bozorgnia,
1994). Our equations have the same magnitude scaling at all distances. Until recently
there were no data available to constrain the equations for large earthquakes at close
distances, and under these circumstances the differences in magnitude scaling could lead
to substantial differences in the predicted ground motions. The 1989 Loma Prieta, 1992
Petrolia, and 1993 Landers earthquakes have provided data in the critical large-magnitude,
close-distance range, however, limiting the variations in predicted motions permitted by the
data. To see if our data set would support a smaller magnitude scaling at short distance,
we took residuals at stations within 10 km with respect to the equation determined for
the whole data set. We then used the two-stage regression method to find the linear
function of magnitude that best fit the residuals. The results are shown in Figure 4 for
peak horizontal acceleration and response spectra at 5 percent damping and 8 periods from
0.1 to 2.0 sec. The slopes of the best-fitting straight lines are positive in some cases and
negative in others. The absolute value of the slope is less than the standard error of the

slope for peak acceleration and for response spectra at all but one of the 8 periods (0.85



sec). We conclude there is no support in the data for smaller magnitude scaling at short
distance.

We also used Monte Carlo simulation (Press et al., 1992) to examine the question of
magnitude scaling at close distance. A different magnitude scaling at close distance can
be obtained by setting the parameter k in equation (2) of BJF93 equal to

hy exp(h2[M — 6]). (4)

We take as our null hypothesis that h; = 0 and see if that hypothesis is compatible with
the data. To do so we start with an input set of parameter values determined by fitting
the real data set with h, constrained to be zero. We take the magnitude, distance, and
site-condition values from the data set and use the input parameter set in equation (1)
of BJF93 with the aid of a pseudorandom-number generator to simulate a set of ground-
motion values, which we analyze by the two-stage method with k given by equation (4).
We do 100 simulations for peak horizontal acceleration and 100 simulations for response
spectra at 5 percent damping and each of 8 periods equally spaced logarithmically between
0.1 and 2.0 sec. We then analyze the real data using the two-stage method with h given
by equation (4). (In the first stage the sum of square errors is minimized with respect to
ki and h,; by the downhill simplex method [Press et al., 1992].) The h; values determined
from the real data are compared in Figure 5 with the distribution of values simulated under
the null hypothesis. For peak acceleration the value determined from the data is at the
31st percentile level of the distribution of simulated values. For the response spectra, the
smallest value is at the 6th percentile level, two values are smaller than the 10th percentile
level, and the remaining six are less than the 90th percentile level. We see no basis for

rejecting the null hypothesis hp = 0.

THE EFFECT OF MAGNITUDE AND AMPLITUDE ON VARIANCE

Dependence on Magnitude. A number of authors have suggested that the variance of peak
horizontal acceleration depends on magnitude (for example, Idriss, 1985, and Youngs et al.,
1994, who show that the dependence is statistically significant). We examine the suggestion
for our data, using prediction equations derived by the one-stage maximum-likelihood
method to make the results comparable to those of Youngs et al. (1994). We divide the data
into three magnitude classes, 5.00-5.99, 6.00-6.99, and 7.00-7.99, and take the residuals in
each class with respect to the equation determined for the whole data set. For each class we

determine the variance o2 of the horizontal components (BJF93, equation [3]). Then for
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each class we average the residuals of the two horizontal components and use the one-stage
maximum-likelihood method to determine o2, the earthquake-to earthquake component
of the variance, and o2, which represents the remaining components of variability. The
total variance oy, y is equal to of + 02 + 02. To estimate the standard error of the total
variance we use the large-sample expressions given by Searle (1971, p.474) for the variance
of 07 and o2 and the covariance of 0? and o2, and we assume that o2 is independent of o2
and 02, an assumption that may not be strictly correct. The results for peak horizontal
acceleration and response spectral values at eight periods are given in Figure 6, which
shows the estimate of 01,5y for each magnitude class with error bars corresponding to
plus and minus one standard error of of,, y. For peak acceleration we, like Youngs et al.
(1994), find that o105y decreases with increasing magnitude and we, like they, find that
most of the effect appears below magnitude 6.0. For response spectral values we see no
significant dependence of variance on magnitude. The difference between the results for
peak acceleration and response spectral values is probably due, at least in part, to the
relatively few records in the response spectral data set from earthquakes with magnitude
less than 6.0 (1 and 5 records from earthquakes of magnitude 5.3 and 5.8, respectively; see
Figure 1 in BJF93).

Dependence on Amplitude. Some authors have suggested that the variance of peak
horizontal acceleration depends on the value of peak acceleration (Donovan and Bornstein,
1978; Campbell and Bozorgnia, 1994). We examine our peak acceleration data for such
dependence using equation (1) in BJF93. We divide the data into three classes, using a
three-to-one ratio between the values defining the middle class: 1) those records for which
the predicted peak acceleration is less than 0.1 g, 2) those for which the predicted value
falls between 0.1 and 0.3 g, and 3) those for which the predicted value is greater than or
equal to 0.3 g. As above we determine, for each class, the variance o2 of the horizontal
components (BJF93, equation [3]). Then, for each class, we average the residuals of the two
horizontal components and use the one-stage maximume-likelihood method to determine
02 the earthquake-to earthquake component of the variance, and 02 which represents the
remaining components of variability. We also study the response-spectral data for evidence
of an amplitude-dependent variance. As before, we maintain a three-to-one ratio between
the boundary values used to define the middle amplitude class and adjust the values to
maintain a sufficient number of data points in each category. The boundary values, which
depend on oscillator period, are given in Table 4. The values of o, y for each class are
determined as described above. The results for peak horizontal acceleration and response

spectral values at eight periods are given in Figure 7, which shows the estimate of 0o, y for



each amplitude class with error bars corresponding to plus and minus one standard error
of alzogy. For peak acceleration we, like Campbell and Bozorgnia (1994), find that ciog v
decreases with increasing peak acceleration. Figure 7 shows that most of the effect for peak
acceleration with our data set appears for Amplitude Class 1 (below 0.1 g). For response
spectra our data set shows no clear trend. The difference between peak acceleration and
response spectra reflects in part the relatively fewer low-amplitude data points in the

response spectral data set.

THE EFFECT OF FOCAL MECHANISM ON
RESPONSE SPECTRAL VALUES

Many authors (most recently Campbell and Bozorgnia, 1994) have proposed that
ground-motion values depend on the focal mechanism of the earthquake. We examine
that proposition for response spectra. Table 5 gives the rake angles for the earthquakes
in the response spectral data set, using the convention of Aki and Richards (1980) that
reverse slip earthquakes have positive rake angles, and the absolute value of the rake for
left-lateral slip is less than 90 degrees. The rake angle for the Daly City earthquake is
indeterminate (given by 999 in Table 5), because the fault plane is indistinguishable from
horizontal. We define strike-slip earthquakes as those with a rake angle within 30 degrees
of horizontal. The remaining earthquakes are reverse-slip, because there are no normal-
slip events in the data set. We do a two-stage regression analysis using equation [1] in
BJF93, except in the second stage we replace the constant term b; by bssGss + brsGrs,
where Ggs = 1 for a strike-slip earthquake and zero otherwise, Gps = 1 for a reverse-
slip earthquake and zero otherwise, and bss and bpgs are coefficients to be determined.
The magnitude-dependence given by coeflicients b, and b3 values need not be the same as
before. In fact, for all periods the quadratic magnitude dependence (b3) is small compared
to the uncertainty in the coefficient. For this reason, we reran the problem constraining
b3 to be zero. The ratio of the response spectral values between reverse- and strike-slip
earthquakes (Yrs/Ysg) is given by 10 raised to the power brs — bss. This ratio is plotted
against period in Figure 8. The error bars represent plus and minus one standard deviation
of the difference. The plotted values can be thought of as the difference in the logarithm
of Figure 8 shows that the response spectral values are larger for reverse-slip earthquakes
than for strike-slip earthquakes, but the differences are relatively small and of marginal
significance statistically. We await our future analysis using the more complete data set

before deciding whether or not focal mechanism should be used as a predictor variable.
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SENSITIVITY OF PREDICTION ERROR TO PARAMETER UNCERTAINTY

We used Monte Carlo simulation (Press et al., 1992) to evaluate the contribution to
prediction error from stochastic uncertainty in the parameters of the prediction equations.
We start with an input set of parameter values determined by fitting the real data set. We
take the magnitude, distance, and site-condition values from the data set and use the input
parameter set in equation (1) of BJF93 with the aid of a pseudorandom-number generator
to simulate a set of ground-motion values, which we analyze by the two-stage method
to obtain a set of simulated parameters. We then use the set of simulated parameters
to predict ground-motion values at Class C sites for M = 6.5 and 7.5 at d = 0 and 20
km. We used 100 simulations for peak horizontal acceleration and 100 simulations for
response spectra at 5 percent damping and each of 8 periods from 0.1 to 2.0 sec. The
mean predicted values of the ground motions from the simulations are within about 3%
of the ground-motion values predicted from the input parameters. This close agreement
indicates that there is no bias introduced by the particular distribution of the data set over
magnitude, distance, and site condition and no bias introduced by the analysis method.
The contribution to prediction error from stochastic uncertainties in the parameters is less
than 35 percent for d = 0 km and substantially less at d = 20 km. These contributions

are small compared to the standard error of an individual prediction.

RESIDUALS OF PEAK HORIZONTAL ACCELERATION

-

Figure 9 gives the average residual for the two horizontal components of peak
acceleration plotted against distance for different site and magnitude classes for the
prediction equations of BJF93. Similar plots were presented in BJF93 for response spectra
at 0.3 s and 1.0 s and 5-percent damping.

PREDICTION EQUATIONS AS CONTINUOUS FUNCTIONS OF PERIOD

Even though we evaluated the regression coefficients at a relatively dense set of
oscillator periods, for some purposes it may be desired to predict response spectra at
other periods. A convenient way to do this is to take advantage of our smoothing of
the coefficients over period. As discussed in BJF93, we settled on fitting the regression
coefficients by cubic polynomials in log T as follows:

B =Cq + CilogT + Cy(log T)? + C3(log T)?, (5)
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where B is a regression coefficient. We give the polynomial coefficients for the prediction
of response spectra in terms of site classes in Tables 6 and 7 and in terms of average-
shear wave velocity in Tables 8 and 9. These coefficients should not be used to predict
response spectra outside of the period range from 0.1 to 2.0 sec (where the coefficients
were determined). Extension of the cubic polynomial outside that range is likely to lead
to ridiculous results.

COMPARISON OF ONE-STAGE AND TWO-STAGE
MAXIMUM-LIKELIHOOD METHODS

The equations for response spectra given in BJF93 were obtained with the two-stage
maximum-likelihood method. One-stage maximum-likelihood methods have been proposed
(for example, Brillinger and Preisler, 1984, 1985), and we here compare spectra obtained
using one-stage and two-stage methods (for the one-stage method we used the procedure
described in Joyner and Boore, 1993). The results were very similar as illustrated by Figure
10, which compares unsmoothed, five-percent-damped spectra for the random horizontal
component computed using the one-stage method (heavy lines) with spectra computed
using the two-stage method (light lines) for a C site in a magnitude 7.5 earthquake at
distances of 0, 10, 20, 40, and 80 km.

LIMITATIONS OF THE PRESENT WORK
AND PROSPECTS FOR IMPROVEMENT

Few response spectral data below magnitude 6.0. Earthquakes with magnitudes less than
6.0 are poorly represented in the response-spectral data set, which includes only one
record from a magnitude 5.3 earthquake and six records from a magnitude 5.8 earthquake.
Prediction of ground motion for the smaller earthquakes is less important, of course, but
1t would be desirable to increase the number of data for small earthquakes. This will be
accomplished when we add all the recently recorded earthquakes to the data set.

Few Class A data. Ground-motion predictions for Class A are not as well determined as
for the other classes because there are very few Class A sites. In the response-spectral data
set there are 11 Class A sites, 49 Class B sites, and 46 Class C sites. (The total number of
sites is less than the total number of records because some sites recorded more than one
earthquake.) The residual plots for class A data (Figure 9) suggest that the predictions
may be somewhat low within about 12 km for peak acceleration. When we add all the
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recently recorded earthquakes to the data set, we will increase the number of Class A data,
but there will always be fewer data in Class A than in the other classes.

Poor distribution of Class D sites. We did not include records from Class D sites in the data
analysis, because those records were available from only one earthquake (Loma Prieta) and
only from a limited area and we could not presume that they constituted a representative
sample. This situation will not improve until more recordings are made at Class D sites.
The Loma Prieta Class D recordings were used by Joyner et al. (1994) to estimate site

effects on response spectral values by comparison with recordings at other nearby sites.

Effect of site conditions on short-period motion. The equations developed from our current
data set show differences between site classes for peak acceleration and for response spectra
at all periods, while the earlier equations showed little or no difference for peak acceleration
or for response spectra at periods 0.3 sec and smaller. The change is the result of adding
new data, and it is an improvement in the sense that the new data set includes a broader
range of site conditions. The particular way in which site conditions affect short-period
motions, however, may depend on variables not included in the prediction equations. For
example, two sites may have the same average shear velocity over the upper 30 m, but
they may be underlain by different thicknesses of attenuating material. For a large enough
thickness, the effect of anelastic attenuation on short-period motions may largely offset, or
even reverse, the effect of amplification. When we add all the recently-recorded earthquakes
to the data set and compile all the available geologic site data, we will try addmg a variable

representing the thickness of attenuating material to the equations.

Averaging velocity over $0 m. The use of average shear-wave velocity to a depth of 30 m as
a variable to characterize site conditions is a choice dictated by the relative unavailability of
velocity data for greater depths. The ideal parameter would be average shear-wave velocity
to a depth of one-quarter wavelength for the period of interest, as was used by Joyner and
Fumal (1984; see also Boore and Joyner, 1991). By the quarter-wavelength rule, 30 m
is the appropriate depth for periods less than 0.16 sec for Class A, periods between 0.16
and 0.33 sec for Class B, and periods between 0.33 and 0.67 sec for Class C. The use of
shear-wave velocity averaged over 30 m may work reasonably well for other depths and
periods, because it will have a high correlation with the average over greater depths. We
hope, however, to develop estimates of average shear-wave velocity to greater depths at
a sufficient number of sites so that we can ultimately provide ground-motion prediction

equations in terms of average shear-wave velocity to a depth of one-quarter wavelength.
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Distance limitations. There are very few recordings in the data set for distances greater
than 100 km, and we recommend that the equations not be used for greater distances.
Such a limitation is inherent in the strong-motion data set as long as it is dominated by
conventional triggered instruments. In our future work we hope to extend the range of
our predictions to larger distances by using weak-motion data recorded on seismographic
networks to obtain the attenuation of ground motion with distance in combination with
stochastic methods (e.g., Hanks and McGuire, 1981; Boore, 1983) to define the magnitude
scaling. The magnitude scaling at distances beyond about 100 km may be somewhat
greater than at closer distances for two reasons: the periods controlling the oscillator
response may increase because of anelastic attenuation, and the energy radiated by the
earthquake may be spread over a longer duration. An example of the distance-dependence

of the magnitude scaling can be seen in Figure 9 of Atkinson and Boore (1990).

Basin-generated surface waves. Surface waves have been recorded by strong-motion
instruments at sites in deep sedimentary basins (Hanks, 1975). These waves arrive later
than the S body waves and have periods in the general range of 3-10 sec. In some,
perhaps most, cases these waves are generated at the margins of the sedimentary basins
by conversion from body waves in the high-velocity material bounding the basin (Vidale
and Helmberger, 1988; Frankel et al., 1991). At some sites the largest amplitudes at long
periods may be due to surface waves. Surface waves are probably not significant for the
periods covered by the equations in BJF93 and the present report (two seconds and less),

but they represent an important issue in ground-motion prediction.

Effect of distance cutoffs that are independent of geology and azimuth. The limits on the
distance range within which our equations may be used for predicting ground motion are
made more severe by our attempt to avoid bias due to instruments that do not trigger. To
avoid that bias, we exclude from the data set for each earthquake all records obtained
at distances equal to or greater than the closest operational instrument that did not
trigger or that triggered on the § wave. We use different cutoff distances for stations
employing a trigger sensitive to horizontal motion and those with a trigger sensitive to
vertical motion, but for simplicity we use cutoff distances independent of geologic site
conditions and independent of azimuth (see BJF93). Because amplitude depends on site
conditions and on azimuth through the effects of radiation pattern and directivity, the
use of cutoff distances independent of geology and azimuth may result in the unnecessary
exclusion of records. We choose simplicity and objectivity, however, over increasing the

number of records in the data set, and we believe avoiding bias is far more important than
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increasing the number of data. Alternative methods of avoiding bias are available that
do not require the exclusion of records (Toro, 1981; McLaughlin, 1991). Although these
methods add significantly to the complexity of the analysis we may consider these methods
in our future work. They will become largely unnecessary, however, if we have functions
giving ground-motion distance dependence developed by stochastic methods with the help
of data other than strong-motion data, as described above.

ERRATA FOR BJF93

Here is a list of typographical errors and omissions in BJF93 known to us at this time:
p- 4, 1. 2: Delete extra “.”.

p. 5, 1. 10 from bottom: Records for which only a single horizontal component was

available were not deleted if the other component was not operational.

p. 7, 1. 4: Replace extra “i” with “n” in “wiinowed”.

p. 11, last line: Replace “Agency” with “Commission”.

Tables 4 and 5: The Anderson Dam recording of the Loma Prieta earthquake was

obtained at the downstream site.
Table 6: The latitude of Hole 131 (Gilroy #7) should be 37.033.

Table 6: The information used to assign average shear-wave velocity to those boreholes
with a reference to “EPRI/CUREE” was preliminary, and has been superseded by the
report by Thiel and Schneider (1993). The average velocity at all sites has changed,
and in four cases the new shear-wave velocities have produced a change in site class.
Table 10 contains those sites that change class, and Table 11 gives updated borehole
information (including some sites not used in the regression analysis). We determined
that the changes had no significant effect on the equations in BJF93, and for that

reason we chose not to include corrected equations in this paper.
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Figure 2. Amplification of 5 percent-damped response spectra for the random

component as a function of average shear velocity, as given by equation (3). T is the
oscillator period, in seconds. The dots are the data used to determine the velocity

dependence.
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Figure 3. The coefficient that controls the shear-velocity dependence of response
spectral amplification, as determined in this study for California data and by Midorikawa
(written communication, 1993) for data from Japan. Also shown are the coefficients
proposed by Borcherdt (1994) for determining short-period and mid-period amplification
factors in building codes; these were determined from Fourier amplitude spectra of

recordings from the Loma Prieta earthquake.
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Figure 4. Residuals of peak acceleration and 5 percent-damped response spectra for

the random component at distances less than 10 km, with straight line fit to the residuals.

T is the oscillator period, in seconds. The only slope that is significantly different than

zero is that for the 0.85 sec oscillator.

34




25

20

15

10 -

5..-

Obs (31) | | Mean, Med

pga

T=0.10s

Obs (6)] Mean | |Med

T=0.15s

Obs (10) | Med||Mean

| I I T

25

20 -

15

10

|
"lh
T=024s

Med

Mean || | Obs (66)

—

.

T=036s
Med

Mean Obs (87)

T=055s

Mean

Med Obs (89)

) nl |"|I||" "l"hlh |
ll Ll 1

20 -

16 -

10 -

T=0.85s

Mean
Med | Obs (67)

0

H2

2

T=130s
Med

Mean Obs (75)

T=200s

Mean, Med Obs (71)

-2 0

H2

2

h I"IIIII|"I|||||"|IIIII o
L i i 1

-2 0 2

H2

Figure 5. Histograms of h, determined from regression analyses of 100 simulated

data sets obtained by setting hy = 0, for peak acceleration and 5 percent-damped response

spectra, random component. T is the oscillator period, in seconds. The lines show the mean

and median values of hy from the simulated data, as well as the value of h, obtained from

analysis of the observed data. The number in parenthesis after “Obs” is the percentage of
ha’s from the simulated data that fall below the value obtained from the observed data.
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Figure 6. 01,5y as a function of M, for peak acceleration and 5 percent-damped




0.4

0.3

0.1

0.3

0.2

Opgy

0.1

0.3

0.1

pga

T=0.85s

T=130s

1

4

2

T

3

Amplitude Class

T
1

4 1

2 3

Amplitude Class

T
1

Amplitude Class

Figure 7. 0105y as a function of amplitude class, for peak acceleration and 5 percent-

damped response spectra, random component. T is the oscillator period, in seconds.
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Figure 8. Ratio of response spectral values between reverse-slip and strike-slip

earthquakes, as a function of oscillator period.
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Figure 9. Residuals for peak acceleration.
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Figure 10. Comparison of one and two-stage regressions.
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