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INTRODUCTION
By
Adel AR. Zohdy

Sabba S. Stefanescu was one of the primary contributors to the study of theoretical
electrical methods in geophysical exploration. He published the present paper in 1950 on
what is now known as the "a-center” model (Stefanescu, 1950). The paper became a
classic as it formed the foundation for many subsequent studies on the same subject.
However, one cannot mention Stefanescu's contributions to electrical prospecting without
first referring to his 1930 classical contribution where he derived an elegant-integral
equation for the electrical potential at a point on the surface of a horizontally stratified
ground caused by a point-current electrode placed at the surface of the ground
(Stefanescu, in collaboration with Conrad and Marcel Schlumberger, 1930). In the
following paragraphs, I will discuss the history and the impact of Stefanescu's 1930
integral equation for horizontal layers and then I will provide a summary of the work that
followed the present paper on the a center, from 1950 to 1992.

One year prior to Stefanescu's 1930 publication, Hummel! (1929 a and b)
published two papers on the subject of the electrical-potential distribution in a
horizontally-stratified earth model using the method of images. Stefanescu referred to
Hummel's work and he also referred to work by Ollendorf (1928) which was published in
Die Erdstrome [Earth currents] and he stated that his work follows that of Ollendorf 2.
The kernel function in the integral equation that Stefanescu derived became known as the
Stefanescu-kernel function (Kunetz, 1966), and also the integral itself became known as
Stefanescu's integral. Kunetz (1966) was the first to show, but without being explicit, that
via the redefinition of the integration variable (1), Stefanescu's integral took the form of a
convolution integral. Kunetz may have been the first to derive a convolution filter for the
calculation of direct-current electrical soundings, because he was the first to allude to the
method of convolution in the very last sentence of his 1966 book, but unfortunately he did
not publish his filter coefficients. A few years later, at a meeting of the Society of
Exploration Geophysicists, which was held in the late 60's or early 70's, Geza Kunetz told
me that he had developed a filter several years earlier and that his filter was composed of
three- to four-hundred coefficients with the number of coefficients depending on the
accuracy with which one wished to compute a sounding curve. In the 1970's, digital filters
with fewer coefficients were designed and published by Ghosh (1971), Anderson (1975),
O'Neill (1975), and by many others. These digital filters made it possible to compute
direct-current resistivity sounding curves at exceptional speeds on personal computers.

The present paper by Sabba S. Stefanescu was published in 1950 in the Romanian
journal "Comitetul Geologic, Studii Technice si Economice, Seria D, Nr. 2, Imprimeria
Nationala, Bucuresti, p 51-71." 1t is the first paper in which Stefanescu stated and
defined his ideas about an a-center model, which is an inhomogeneous-isotropic earth

I Also see Hummel (1932) in the list of references for an English version of the 1929 papers.
2 Stefanescu did not provide the first initial of Ollendorf's name nor did he give the year of Ollendorf’s
publication, but this information is given in the list of references following this introduction.



model that contains a point, o, where the resistivity is zero (infinite conductivity) and from
which the resistivity increases radially according to certain rules. The a-center concept
made the calculation of apparent resistivities, for electrical soundings and for horizontal
profiling, much simpler than for other heterogeneous media. In the following years,
several papers were published extending the knowledge about the possible applications of
an a-center model. Similar to the present article, almost all the early European literature
on the a-center model was written in French, and mostly was published in the "Revue
Roumaine de Geologie, Geophysique et Geographie, Serie de Geophysique.”

The studies and extensions to the application of the a-center method were made
in;

(a) The direct current method, including two- and three-dimensional inversion
methods, and two- and three-dimensional resistivity tomography studies using cross-hole
data (Petrick and others, 1981; Radulescu, 1967; Sakayama and Shima, 1986, Shima,
1990 a and b; Shima, 1992; Stefanescu D., 1972b; Stefanescu, 1970; Stefanescu, 1987,
Stefanescu and others, 1964; Stefanescu and Radulescu, 1965 and 1966; Stefanescu and
Stefanescu, 1974, Stefanescu and Tanasescu, 1965; Tran-Ngoc-Toan, 1971).

(b) The magnetic field of a direct current, or the magnetometric resistivity method
(Edwards and others, 1978; Stefanescu, 1953; Stefanescu and Tang-Muoi, 1971; Tang-
Muoi, 1972).

(¢) The induced polarization method (Stefanescu D., 1972a).

In 1990, Sabba S. Stefanescu was awarded Honorary Membership in the Society
of Exploration Geophysicists in recognition of his life-long contributions to electrical-
geophysical methods.

In this translation, editorial insertions have been added to help the flow of the
sentences in English and are placed in brackets. Editorial annotations are indicated as
Editor's notes, are written in ifalics, and also are placed in brackets. The French words
"courant continu" or "courant stationair" are translated here as "direct current” (instead of
continuous current or stationary current, respectively). Although this paper was not
written in a fluid style, was not presented systematically throughout, and it included some
mathematical derivations that are not self-evident, it remains as a classic in the field of
electrical exploration.
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Theoretical Models of Heterogeneous Media for
Electrical Prospecting Methods with Direct Currents

By
Sabba S. Stefanescu

{Translated, edited, and annotated from French by Adel A.R. Zohdy]

[Sabba S. Stefanescu, 1950, Model theorique des milieux heterogenes
pour les methodes de prospection electrique a courant stationair:
Comitetul Geologic, Studii Technice si Economice, Seria D, Nr. 2,

Imprimeria Nationala, Bucuresti, p 51-71]

1. Introduction: Among the numerous theoretical problems that are posed in
electrical-prospecting methods, there is one problem which seems at first glance to be
susceptible to a complete mathematical treatment, inasmuch as its data are exactly
necessary and sufficient to determine a unique and well defined solution. This is the
"modeling problem"; a problem about which one can make the following statement:
assuming that the distribution of the conductivity, ¢, as a function of the coordinates x, y,
and z in an infinite half-space is known, what is the electromagnetic field produced in this
medium by an, equally known, assemblage of current [sources] located at the surface of
the earth? This is the problem of the electric [field] distribution in a heterogeneous
medium. We are calling it the "modeling problem" to indicate its role in electrical
prospecting. This type of problem has been the subject of numerous studies which [almost
always] run into the well known difficulties of [setting up and solving] partial differential
equations in Mathematical Physics. It is not our intention to revue the rather
disappointing results in which [most of] these efforts have ended. We shall only note that
nearly all theoreticians have concentrated their attacks on simplified models, where the
subsurface heterogeneity is reduced to a body having a well-defined geometric form [such
as] a sphere, an ellipsoid, an elliptic cylinder, etc., and whose conductivity is constant and
different from that of the surrounding medium. The solutions one obtains by using the
method of linear integral equations, by using the appropriate3 coordinate system [that is,
using cylindrical coordinates for bodies with cylindrical symmetry, spherical coordinates
for bodies with spherical symmetry, etc.], or by using other mathematical artifices, are
undeniably scientifically important but, in general, they lack practical consequences. The
complexity of the numerical calculations necessary to describe the most modest of
theoretical models is what may discourage those who do not subscribe to [solving] these
types of problems which are of purely-speculative interest. If one would object [to the
fact] that Hummel* and Stefanescu® used a method developed by Rankine to construct

3 Editor's note: Here, Stefanescu used the unusual term "isotherm coordinates”, which I changed to
"appropriate coordinate system".

4J.N. Hummel: Untersuchung der Potentialverteilung um verschiedene Storungskorper, etc. Gerlands
Beitrage z. Geoph. Bd. XX, H. 2/3 1929. [Editor's note: the termination of the title of Hummel's
paper with an "etc.” was made by Stefanescu and not by this editor]



models of perfectly conducting or insulating bodies and to determine the perturbation of a
normal Schlumberger field® using simple graphical methods, then one might also object to
the fact that these bodies [seem to] change continuously in form [or seem to change their
effect on the electric field] as one displaces the electrodes, which makes them awkward to
study using mobile-electrode methods (resistivity [profiling], electrical sounding, etc.).

We propose to show in the present study that, by sacrificing the geometric form
and the constancy of the electrical conductivity of the models (which are particularities
that a prospector does not actually care about), it is possible to construct models of
continuous heterogeneity, resembling diffuse impregnations, and on which one can operate
[mathematically] correctly, no matter which direct-current method [one uses]. One can
thus build experiences "on paper" which we believe, can be of real interest in the
application and in the discussion of the possibilities of these methods.

2. Changing the form of the general equation of the direct-current electric
field; the a and @ scalars: One knows that the distribution of direct currents in a
heterogeneous but isotropic medium is governed by two Maxwell equations:

div j = 0, (1)
curl E = 0, )

and complemented by Ohm's Law,
j = oE, 3)
where, as usual,
j = current-density vector,

E = electric-field vector,
o = conductivity of the medium, which is assumed to be isotropic.

|

We shall assume in the following, unless otherwise specified, that ¢ is a continuous
function of the coordinates x, y, z and that it has continuous second partial derivatives.

Ordinarily, we resort to the preceding system of equations in order to define the
electric field as the negative gradient of a scalar potential ¢ :

E=-Vg

> 8. S. Stefanescu: Etudes theorique sur la prospection electrique. 1 Serie. Inst. Geol. Rom. Studii
Tehnice si Economice, vol. X1V, fasc. 1, 1929, p. 48 - 53.

6 Editor's note: a Schlumberger field or an S-field is the electric field generated in the ground by two
current electrodes, one positive and one negative, placed at the surface of the ground. It was named afier
Marcel Schlumberger by Stefanescu in his 1929 article - see footnote 5.



which will satisfy equation (2) identically [Editor's note: because curl grad = 0].
From Ohm's Law (equation (3)), equation (1) can be written as
div(cVeg) = 0, (5)
or, more explicitly,
ocVi¢ + Vo.Vo = 0. (6)
This relation expresses in a condensed form all that the classical theory of
electricity has to say on the subject of the distribution of direct currents in a heterogeneous
isotropic medium; it is also what we shall call in the following: the general equation of

direct currents’.

Let us transform this equation by assuming that:
o= a?, a=+/o, Vo=2a Va, )

where a, similar to o, is a scalar which is always positive. Substituting equations (7) in
the general-equation (6), we get:

a V¢ + 2aVa V¢ = 0,
and dividing by a, we get:
aVe + 2Va .Vp = 0. (7
In view of the identity:

Vifap)=a V¢ + 2Va. Ve + ¢ V’q,

Vi(ag)-@eVa = a Ve + 2Va.Ve,
and, [according to equation (7"), the right side of the above equation equals zero] therefor:

Vi(ap) - ¢ V'a = 0. (7")

7 Editor’s note: Equation (6) is the general equation for a heterogeneous and isotropic medium. For a
homogeneous and isotropic medium Vo = 0 and equation (6) reduces to Laplace's equation V2¢> =0,
which is oflen used as the starting point for solving other boundary value problems as Stefanescu did in
his 1930 article for horizontally stratified media. Also note, Stefanescu used the symbol A to designate
the Laplacian V2.



Now if we define a new scalar field, y, by the quantity:
y = ap, (®)
then the general equation of direct currents takes the symmetric form:

Viy Via

v a

©)

[Editor's note: This is done by substituting equation (8) in equation (7"), dividing by v,
and moving the a term to the right side of the equal sign. Also note that the equation
numbers (7') and (7") were added by this editor]

The form of equation (9) is remarkable because of the perfect analogy of roles
which are played by the field of the quantity, &, which is a characteristic of the material of
the medium, and the field, y, which is caused by the applied e.m.f. (electromotive force).
From this, we can deduce that if we interchange the surfaces, a@ = constant with the y =
constant in a domain D, then the new distribution of conductivities and potential will again
represent a possible electric field in D.

It is important to note that equation (9) is identically satisfied if one assumes that
and a are harmonic functions, that is:

Viy = 0, Via = 0 (10)

Conversely, if y and a are two harmonic functions in the D domain, with a
always being positive in this domain, then the functions ¢ = wa and o= a?
represent the potential and conductivity, respectively, for the field of an electric current
that flows in medium D. The demonstration of this theorem can be verified by the inverse
suite of the preceding equations, from equation (9) to the general-equation (6).

It is completely indicated that (for the practical construction of models) we must
choose, for y and @, Newtonian potentials that are caused by discrete-point sources which
are arbitrarily distributed in space. Furthermore, in the following, we shall speak of
sources or centers of a as sources of conductivity, and of sources of y as sources of
potentials.

8 It is well understood that these nomenclatures are useful but incorrect, considering that a is not a
conductivity and that y is not a potential, in the usual sense of these concepts. We believe that we should
wait until these quantities demonstrate their real utility in the study of heterogeneous media before we
propose such names for them. It seems more adequate for example [to use the terms]: "prendivite' for a
and "parapotential” for y. [Editor's note: There is no clear translation for the word "prendivite”, ]

10



3. Case of an a-source and a y-source. The simplest solutions to equations (10)
which can be of physical interest are:

%=£ a=B+§- (11 a,b)
r R
[but since @, =22 and o=a?, therefore:]
g, =2 a=(B+£) (12 a,b)
r B+£ R
R

where r and R designate the distances from the current source at O and from the a source
at S to a measurement point at M, respectively. The conductivity of the "host" medium,
or the conductivity "at infinity", equals B. [Editor's note: The subscript, o, indicates that
the potential and parapotential, @ and y, are caused by the current electrode at O.]

A, B, and C are positive constants.

Let us investigate the physical significance of the electrical distribution represented
by equations (12 a,b).

The conductivity, o, is distributed in a spherically symmetric manner around §. At
large distances from S, it tends to B?; and at small distances, it behaves as (C/R)°.

The potential ¢, represents a pole at O and is reduced to zero at S [Editor's note:
because in equation (12a) @, tends to infinity as r tends to zero and it tends to zero as R
tends to zero, respectively]. In the vicinity of O,

AL T 1
a,r 4nar

(13Y)

P,

where / is the total intensity [of the current] which enters [the space] at point O, and «,
and o, are the values of & and o at that point.

[Editor's note: The first part of equation (13') is derived by substituting equation (11b)
in equation (12a). In the second part, Stefanescu uses the general expression for the
potential at a point in a homogeneous space, and applies it in the vicinity of the electrode
at O, as follows:

ﬂl_[l[l

dmr 4mo, r 4ndr

o

o

11



where the resistivity p, = 1 and o, = a’ . Note, the equation-number (13') was

introduced by this editor, the original article did not include an equation number. End of
editor's note].

[From equations (13') and (11b),] we can deduce that:

I =4na A =4rn (B-l-%) A (13)

where d is the distance between O and S.

Since the potential @, does not represent other singularities except at O and since
the potential diminishes at large distances as //7, we can state that the field we are
studying is that of a point electrode O which introduces a current I (see equation (13)) in
an infinite medium, in which the conductivity is variable (see equation (12b)) and in
which the point S is maintained at zero potential [see equation 12a as R goes to zero].

It is easy to demonstrate that the act of maintaining . at zero potential corresponds
to an absorption of the current at that point [Editor's note: That is, the a-center at §
behaves as a current sink]. To this effect, let us calculate the total intensity of the current
that traverses the surface of a small sphere of radius R and whose center is located at the
point S.

The current density is;

J=-a’Vo,=-a Vy,+y Va

14
((5+Q)a% AcR @4

r r R?

[Editor's note: see Appendix I for a derivation of equation (14 ).]

The intensity of the [portion of] current [d]] that passes through an elemental
surface area [ds] of a sphere of radius R [where ds = R2d(2, and (2 is the solid angle
subtended from the a-center at S to the elemental area ds on the surface of the sphere] is
given by:

[dl =] (J.VR)RdQ = {(BR’ +CR)—§-Vr.V - -“%9 (VR)z} Q. (5)

By integrating over the surface of the sphere, we can prove that the first term [in
the right side of the above expression] converges to zero as R tends to zero [Edifor's
note: This can be seen readily before the integration is performed.] Therefore

12



. 2 AC 2 AC "
[G.VRR dQ=-7j(VR) dQ=-—"4r (15"

[Editor's note: The derivation of equations (15') and (15"), which is at the heart
of the a-center theory, is not very obvious. See Appendix II for detailed derivations. ]

To summarize, at S there is an absorption of current [or a current sink] whose
intensity is equal to /-]424C/d. To avoid this loss [of current], let us place at S a source
of current having a flow precisely equal to /+]424C/d. This source will produce a radial
field with a [current] density given by:

N

AC r AC VR
4 2 :] 2
47 R d R

VR
_V¢s=.|32":i4362' Cz ’

R+—

(+5)

and a potential
_AC 1 4C 11
b = 2B r+ & a R
B

1(,4 AC 1)
=@Qot@, = —|—+—> = 16
¢=0ro, =\ ¥ R (16)
which corresponds to

r dBR

[Editor's note: At first glance it may seem that the potential @ will tend to infinity as R
tends to zero in equation (16), which would be the result of placing a current source at
the point S where the a center is located. However, because of the term (1/a) outside the
parentheses this does not occur because there is another 1/R term in a. The following
equations show how:

13



4 AC11

ar dB a R
3 A AC 1 1

= + -
(8+S) ® (5+E)"
R R
__AR___4C_ 1
r(RB+C) dB RB+C

A
Therefor, as R—>0, ¢—>—
erefor (1) 5

and as r—»0, @—>o

and so, although we have placed a current source at S (where R = 0), the potential has a
finite value of A/dB at R = 0. According to equation 17, however, the parapotential (y)
will tend to infinity as r tends to zero and also as R tends to zero. End of editor's note. ]

The conservation of the electrical flux? is now assured at all points in the infinite
medium under consideration (except at the current electrode [at] O) and accordingly,
equation (16) represents the potential, ¢, of a point source [at] O in this particular
medium.

Thus, we have obtained the simplest of models of a field in a heterogeneous
medium, subject to the constraints of our method.

4. Influence of an a center, placed in the ground, on a normal S-field 1°:
Using a classical artifice, it is easy to obtain the effect of the presence in the interior of the
ground of an a-type heterogeneity [as the one described by equation] (11b) on the electric
field of a point electrode placed at the surface of the ground. We will assume that the
surface of the ground is a plane boundary that splits the infinite medium in two-half spaces
such that the lower half-space (the ground) is complemented by an upper half space in
which the conductivity at any given point is equal to that at a point, in the lower half
space, symmetrically placed across the ground surface. Following a classical point of
view, the posed problem is described as follows: Find the distribution of the potential
around a point electrode placed in the median plane of an infinite medium containing two
a centers that are equal and symmetrically located with respect to that [median] plane.
Before we solve this problem, however, we will first investigate the more general problem
of [the field of] a point electrode in the presence of two « centers that are unequal and
that are arbitrarily placed in an infinite medium.

With the notations shown in Figure 1, at any arbitrary point M,

2 Editor's note: Stefanescu used the term "electrical fluid".
10 Editor's note: the S in S-field designates the name Schlumberger, see footnote 6.

14



o = B+%‘-+% (18)
1

where B, C,, and C, are positive constants [and R, and R, are the distances from the a
centers at S, and S, to the measuring-point M, respectively].

In order to realize the conservation of the S,
electric flux in all the space, we must adopt an
expression - as we did in the previous paragraph - for q, R
¥ which has the form:

A D D
W=7+_RT+R2 (19)

where 4, D,, and D, are also constants.

Let us attempt to determine the constants D,
and D, by using the condition that the electricity is Figure 1

conserved at the points §; and S,. In effect, we
express this condition by constraining the fluxes which traverse the surfaces of two small
spheres (of radii R, and R, and with centers located at S, and S,) to be equal to zero.
The current density

J=y Va-a Vy

D,
(A2 ((Sog -Coun)
r R R 1 R}

D
+(B+C’+C2](AV +Dl VR, + 2VRJ
, R,/ \r R} R;

that passes across an element of the surface R’dQ of the first of these spheres [has] an
element of current flux [, d/, given by]:

[dl =] (J.VR)) R} dQ

o 2
_ _[ﬁ+21,+91) C,(VR,)’ +C2%(VRI.VR2):I dQ
2

r R R,
2 2
+(B+%-+%) R —(Vr.VR)+D,(VR,) +D, ;(VRI.VRZ):I aQ
1 2 8 2

When R, tends to O we can show that the terms that contain R? become negligible
and, after simplification [see editor’s note in Appendix IlI] we can rewrite [the above
equation as]:
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[l =} (J.VR) R} dQ~ {-(-4+92-) C, +(B+§lj Dl} dQ
r R R,

In the limit [as] R, =0, r =d,, and R, = L, the flux of the current that enters at

the point §,, obtained by integrating the above expression over all the surface of the
sphere, thus becomes:

=] 4z {—(3’-‘1-+%]c, *(B’“%‘]D'}

\

and the conservation of this [total-current] flux [,that is, setting / = 0], at point S, is
expressed by the equation

C C C
(B+Tz) I-Tlpz = AE'- (20)
1

In a similar way, we can find that at the point S,

Gn+(:4)p, - 4& @1
L L d,

The linear system of equations (20) and (21), which expresses the conservation of
the current flux, completely determines the unknowns D, and D,. In effect, according to
the assumptions made about B, C,, and C,, the determinant:

A = B*+B(C,+C,)/L

is essentially positive; the system thus always admits [the following] single solution:
DI=£CI £+(_C.L+£1'_) _l ,
A d \d d,) L
D2=-A;C2 _Bi_.*_(g..{._ql) l )
A d, \d d,) L

If, in particular, the two a sources are placed at equal distances [d, and d,] from
the electrode [at] O and if they are of equal strength, then we can write

(22)

d=d=d C=C-=C Q=Q=%§. 23)
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We can see that the constants D, and D, in this case attain the same value as if
each of the a sources is by itself in the medium under consideration. If instead of a single
electrode we imagine two [electrodes], such that the second [electrode] absorbs the
current emitted by the first, we find [ourselves] in the customary conditions of applying
the [horizontal-profiling] resistivity method and of applying the vertical electrical sounding
method, such as those that have been used on a grand scale by Schlumberger (S-field).
Because of its practical importance, we shall examine in detail the classical quadripole
electrode array PMNQ (where P and Q are current electrodes and M and N are potential
electrodes) placed over an a heterogeneity.

First of all let us assume the presence of only a single emitting electrode, P, located
at the surface of the ground. According to the preceding derivations, the potential at the
surface of the ground is given by:

2C 1
Bd R
+2Q

1
—+
r

p = 4
B

Since the current, of total intensity 7, as we recall, flows only in the lower half
space (the ground), we precisely define the constant 4 by the condition that in the vicinity
of the electrode P

po L 1_ 1 )
2na, 1 g2 L 1
dP
From which we obtain
4L 1 _1_ 1 (24)

27 g, C r  2ma,

P

where a; is the value of « at the point P.

The potential at any point, T, resulting from the injection of a current, /, at point P,
becomes (see Figure 2)

I 1 2C 1
= ~—+ — 25
r 2rapar (rp Bd, R,} 23)
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Figure 2

Similarly, the potential at the same point, T, caused by the exit of the current, /, at
a second electrode, Q, will be

oo 1 [1 2C LJ
¢ 2r a, @, \r, Bd, R,

According to the principle of superposition of electrical states, the potential at the
point T in the presence of two electrodes P and Q, that are functioning simultaneously,
becomes:

V= o re, = L 1_1+2C1_1J a6
d T 2ra; |apr, ayr, BR.\a,d, ayd,

Let us consider the particular case of the Wenner-electrode array in which the
points P, M, N, and Q are equally spaced at a distance (a) from each other [as shown in
Figure 2]. When we apply equation (26) successively to the points M and N, we get:

I 1 1 2C 1 1
Vy = - + _
2ra, (a@pa ajz2a BR,\a,d, a,d,
I 1 1 2C 1 1
Vy = - + -
2ray {(a@p2a aya BRy\a.d, ayd,

The apparent resistivity which is defined by the well known formula:

VM — VN

P, = 2ma

can be written as
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_1(1_1)+1(1__1)+2Ca(1_1}(1__1)(27)
P ap\a,, 2a, a,\ay 20, Bl\asR, apR,) \a,R, oyR,
where, because of the symmetry of the notation, we have made dp = Rp and dy, = R,

Let us assume as an example of an application, that we make an electrical
sounding at a point T at the surface in such a manner that the direction of PQ is
perpendicular to the straight line joining T to the source S [Editor's note: the key word
here is that the sounding line PQ is perpendicular to the line ST, otherwise the symmetry
required by the following equations is not satisfied.] In this case:

R.=R,, R, =R,, a,=a

(o34 aM Z(ZN

and the apparent resistivity, expressed by equation (27), reduces to:

1
Pap = = Pr Pu (28)

Ap Ay,

which is thus equal to the geometric average of the resistivities at the point electrodes P
and M. The analogous property is equally valid for the apparent conductivity (inverse of
the apparent resistivity). Figure 3 shows the form of two electrical soundings, [the center
of] one is located directly on top of the source S, and the other is located at a horizontal
distance equal to the depth of that source. Because of the equality given by equation (28)
one can predict that neither of these soundings reveals the existence of an apparent-
conductivity maximum located at depth.

Electrical soundings:

oap as a function of electrode spacing (a).

Sounding directly above S

Sounding at a distance equal to depth of 8

— B=C=1
\\\
1
S=1

0 | l ] | ] | |

1 2 3 4 5 6 7
S a

Figure 3

[Editors note: In the above figure Stefanescu chose to plot the results on a linear scale,
rather than a logarithmic scale, and chose to use apparent conductivity rather than

19



apparent resistivity. The above figure is an approximate sketch of his original plot.
Remember that the sounding line PQ, for either of these soundings, is perpendicular to
the line ST. Stefanescu did not show soundings curves for PQ lines that are not
perpendicular to the line ST}

5. The case of several a sources. Theory of equivalence with linear circuits: If
an infinite medium contains an »-number of «a sources, then, according to the above, the
general equations for the potential of a single point electrode will be:

k=n p=nC
o=¥, y=4, D a-B:T2, (29)
a r ok p=l Rp

where R; designates distances from the [a] sources [at] S, to the measuring point, D; are
the constants to be determined by the equations of conservation of electricity at the [a-
sources at]S;; [Editors note: B and C; are constants that define the various a sources,
and R; are distances from the a sources to the measurement point. Here, the subscript i
is a number between 1 and n, designating a particular value of k in equation (29).]

We obtain these [conservation of electricity] equations by following a procedure
that is absolutely similar to that described in the preceding paragraphs. The condition for
this procedure is that the current density,

k=n pnC
J=_(£+ _Qk_) S —2VR
r =R, R,

p=1

(B;’Z"C j( or+5 Lo

k

results in a zero current flux upon traversing a small sphere of center S; which results in:

k=n _

di k=1"

where L;; designates the distance between the sources S; and §; , and d; designates the
distance between S; and O. It is somewhat simple to recover this equation and to rewrite
it in the following form:

4,5D,

di k=1 Lik - 2_5_ (31)
e, G

B Kk i
k=1 L!k
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It follows therefore that the potential ¢; at the point S, , which is caused by the
current electrode at O and by the other sources at S; , is equal to D; / C;.

The system of 7 equations which one would obtain from equation (30) by letting i
=12 ... , h, is linear with respect to the unknown values of D; and one can determine
these constants unambiguously. In order to see this, one can verify -- as in the case of »
= 2 -- that the determinant A of this system is always positive provided that the constants
B and C; (wherei = 1, ..., n) are positive, which is what we have expressly assumed.

Another way to render this certain result, is to assimilate the same linear system as
that of currents in a Kirchhoff's circuit where the nodes are represented by the points O
and S; (where i = 1, ....., n). Inorder to clarify and fix these ideas, we shall develop the
theory for the case of #» =3, and the passage to the general case where n is arbitrary
does not present any difficulty.

For n = 3, the system of conservation equations is given by:

A Q__B D| +C1D2-C2D1 +C1D3-C3D1 =0
4 L, L,

4% _pp, SB-GDh GD-CD, (32)
d, Ly L,

A __(':3__B D3+C3D1-C1D3 +C3D2-C2D3 = 0
d, Ly, Ly,

Consider a fictitious circuit of wires (a Kirchhoff's
circuit) where the electrode [at] O is connected with the [a]
sources [at] §; and the sources themselves are interconnected
(as shown in Figure 4), and let us look for assimilating the
system of equations (32) into that which expresses the
conservation of electricity at the nodes, S;, of this fictitious

circuit. Let: Figure 4 S,
A D.
E = — =
1 Bd' ’ ¢t C’. )
A A
]l = —C.-BD = ] —— 0.
oi d'_ C, B i BC, (Bd’ ¢')
= BC, [Ei+(0-¢i)] > (i=1,2,3)
I, = -1 =D2G-CD _ GG (D,. _Dk) (33)
Lik Lik Ci Ck
=§&(¢i_¢k), (i¢k=1,2,3)
L,
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With these notations, the system of equations (32) can be written simply as:

I,.+1,+I,, =0 ,
I, +1,+1, =
I, +1,+1,

(34)

| T
© o

which expresses the conservation of current at the nodes S; of the fictitious network. If
we use the following notation:

Gik = = G, (35)

to define the conductance of an internal branch of the circuit that connects S, and S,
(where i=k ), and if we use:

G, = BC (36)

to define the conductance of an external branch of the circuit that connects S; to the
electrode O, then the definitions in equations (33) become:

Iy = Go:-[Ei +(0-¢i)]
and
I, = Gik(¢i“¢k)

Let us insert these expressions in the system of equations (34), and we will see that
the potentials established at the nodes S; in the circuit thus defined are precisely the

potentials @, = —IC—)'— caused by the sources [at] S; in the heterogeneous medium under

the condition that:

a) an electromotive force E;, as defined in equations (33) is applied to the external
branches OS; and,

b) the potential at the point O is maintained at zero value [Edifors note: at first,
this does not make sense, because how can the current electrode be placed at O and we
maintain a zero potential there?! The answer is: here Stefanescu is referring to the point
O in the fictitious circuit not O in the inhomogeneous medium. |

In summary, we are led to enunciate the following general theorem:

Consider a medium in which the conductivity at each point P is defined by the
equation:
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i=n C
= B L
Vo= B33

where B and C; are arbitrary positive constants, R; are the distances of the point P from n
conductivity-sources [at] S;.

A point electrode [at] O injects into this medium a current of intensity / which
causes potentials @; at the points §;. These potentials are identical to those which occur at
the nodes S; in a fictitious network of wire conductors!! in which the points §; are
connected to each other and to the point O, and in which!2:

a) The conductance of the branch which joins any two sources §;, S (internal
branches) is G = C; C /Ly, where Ly, is the distance [between] S; and S,

b) the conductance of the branch that joins a source ; to the electrode O (external
branch)is G;, =B C,;,

c) the electromotive forces E; , equal to A/Bd; are applied to the external branches
OS;, with , A, being a constant equalto 1/ 4x /o, , and where o, is the conductivity of
the medium at point O,

d) the potential at O is maintained at zero value.

This equivalence theory, between the heterogeneous medium and a Kirchhoff's
circuit, can eventually serve in the electrical resolution of the system of linear equations
which yield the constants D; = C; @;. It is sufficient, to this effect, to realize that the
conductances and the e.m.f. [electromotive forces] E; indicated in this theory, can be used
to measure the potential differences @; between the nodes §; and O.

Let us remark again that the internal conductances, defined by equation (35) have
a simple physical interpretation in the case where the conductors which connect S;
amongst themselves are filiform, rectilinear, and are constructed from identical materials.
It is sufficient that for each of these "wires”, for example [connecting] S; [to] S, to have a
section proportional to C; C;, so that the conditions required to construct the circuit are
realized. As for the "wires"!3 of the external circuit, they will have the conductances G,;
= B C,;, independent of their length.

6. Applications: The considerations in the preceding paragraph allow [us] to
obtain useful results if one will complete them by the artifice described in section 414, by

11 Editor's note: Stefanescu describes those as rectilinear filiform conductors.

12 Editor's note: In the original article, Stefanescu used @), f), 3), and ) instead of the more common
a), b), ¢), and d) as used above.

13 Editor's note: Stefanescu used the word "bars", which I translated into the word "wires".

14Editor's note: Stefanescu referred to section 2 instead of section 4. However, it is in section 4 where
he describes the use of the earth's surface as a reflecting boundary for the sources at S; and S>.
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knowing the coupling of the sources [at] §; in pairs that utilize the surface of the ground as
a plane of symmetry.

If one would use the superscript 1 to designate the quantities that correspond to
the symmetric source, one will always get C; = C;/. By reason of symmetry, the current
electrodes placed at the surface [of the ground] generate a field characterized by D; = D;/.
The system of 2n conservation-equations for » pairs of sources (S; S;/) (withi=1,...,n)
will be reduced to » equations which will completely fix the unknown constants D;.

In order to illustrate all our theoretical considerations by an example, we will
present in detail the procedure to be followed to determine the unexpected deformations
of a Schlumberger field (S field) caused by the presence of two a sources placed in the
ground -- coupled with two [a] sources symmetrically placed across the plane of the
ground surface. In order to simplify the numerical computations, we will assume that the
electrodes P and Q (see Plate 1) are placed in the plane of the [a] sources [at] S;.

Using a rectangular coordinate system, with its origin at the surface and directly on
top of the source S;, and its horizontal axis, ox, coinciding with the line of electrodes, the
coordinates of different interesting points are arbitrarily fixed to the following values:

electrodes [at]: P (-4,0), Q (11,0),
a sources [at]: S;(0,2), S;7(0,-2), S,(3,6), S, (3,-6).

The distances that are useful to know are:

d,=PS, =d, = 4472136, d,, = PS, = d., = 9.219544
d, = 0§, = d/Q = 11180340, d,, = 0S, = d,Q =10
S8, =L =255 =5 S8 =85 = L' = 8544004
One can also choose:
B = 1, Cl=C=0C=¢C, =1
sO that:
1 1 1 1
= = l+—+—=+—+
@=Vo s Lt R R

We thus obtain the distribution of the conductivities indicated by the contours of o
shown in Plate 1 (where we have omitted the representation of fast changes of o in the
vicinity of the sources [at] Sjand S,).

The function y has the form:
4, 4 1 1 1 1
y = —P—-—Q+(D1P—DIQ) (F+F)+(D2P +D29) (—+———)

1
Fp Iy ] ] R, R,
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where P and Q designate the electrodes P and Q, respectively. If we assume that the
intensity of the current that enters the ground at P and exits at Q to be equal to 1, we get:

Ay, = 1+-E-+—2— = 1664144, A4, = I = 0.0956377,
d, d,, 2ra,
2 2 1

a, = 1+—+— = 1.378886, AQ = = 0.1154228 .
de dzg na,

[Editor’s note: In the original article, the Ay and ag in the second line, second
expression, were erroneously designated as Ap and ap , respectively.]

The equations of conservation at .S; and S>become:

Ap AQ
(B+C,8)D,-C,SD, = C, | -2--21|,

le de

A A4
~C,8D, +(B+C,S)D, = cz( L Q] :

dzp dzg

where we have used the following to simplify the notation:

1 1
D, = DIP-DIQ’ D, = Dzr"ng’ § = Z+Z‘_
We can deduce that:
A, A A, 4,
D, = D, (d_P____Q_] + Dy, (E‘L-TJ
1P de 2P 20
A A A A
D, = Dy ('_p—"'&] + Dy, [__I_’__d_Q_J
le de dzp 20
with:
C/(B+C.S
L= (B+G.S) = 0805982 |,
B[B+(C, +C,) S]
D, =D, = 6,65 = 0194 018 ,
B[B+(C, +C,) S]
C,(B+C,S
2 = {(B+CS)  _ og0s 082
B{B+(C, +C,) S}
We finally find:
D, = 8.008 688 75, D, = 0.001 204 02
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We have thus determined all the constants that appear in the expression for the
potential @ = y/a and we can proceed to trace - point by point- the intersections of
the equipotential surfaces with the vertical plane that contains the sources [at] $; and S;

(Plate 1).

Practically the procedure of the operation is as follows:
The values of @ and y are calculated at each node of a square-mesh network, the
equidistance of the nodes is chosen - for the convenience of the design - equal to 1 cm.
The numerical calculation of o and y was greatly facilitated by the construction of a
preliminary table of the values 1/R at the nodes of the square-mesh network. Using
numerical tables of @ and y for the nodes of the network, one can deduce the values of
@ = y/ «a at the same points. Finally, rectilinear profiles along the sides of the squares
for [intermediate] values of ¢ allow the graphical definition of the points of intersection
of these rectilinear profiles with the equipotential lines in the vertical plane of S, S,. The
number of points thus obtained for each of these lines is sufficient to construct a precise
graph. [Editor's note: in other words, by linearly interpolating the values of the
potential, ¢, along the sides of each square, one can generate sufficiently accurate
equipotential contours.] The dotted lines on Plate 1 show (for the purpose of
comparison) the form of the equipotential lines for a homogeneous ground with a
fundamental conductivity o = B?. [Editor's note: This statement in incorrect. In Plate
1, there are no dotted lines that represent equipotential lines for a homogeneous half
space of constant conductivity. There is only one dashed (not dotted) vertical line that
represents the zero-equipotential line for a homogeneous half space. The only dotted
lines in the original plate (shown here as dashed contour lines) represent conductivity
contours not equipotential contours. See caption of Plate 1 for additional details. ]

7. Remarks on a models: The type of heterogeneity that our work has analyzed
makes it obvious that it is characterized by particularly simple "reactions" in the presence
of fields emitted by point electrodes. It should always be remarked that this simplicity
only exists if one uses isolated a sources. If one analyzes the generalization of the
preceding to where the a sources are continuously distributed along lines or surfaces, one
will run against the specter of attempting to determine equally continuous values of the
constants D; , and [the evaluation of] linear integral equations which represent difficulties
very comparable to those encountered in the study of "bodies" of finite form, embedded in
a homogeneous medium (see section 1).

We propose to return to these difficulties in a later work, which will concentrate
mainly on the magnetic effects of a models placed in an S field.

Received: March 1946. [Editor's note: and was published in 1950.)
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Appendix I

Editor's note on derivation of equation (14):

Starting with Ohm's Law:

J=cE=-a’V¢p,=-a’ V(W"):—az(l
a

but since:

1 Va
Ve = ——2
a a
J =-aVy,+y,Va

Substituting for a and y from equations (11 a and b), we get:

09249

but sinceV}—=——V—C and V—l— v

=———, therefore:
r r R R /

C Vr AC VR
J =(B —) A - ) E.D
" R/ r* r R? (@ED)

Also note: Stefanescu's equation (14) in the original text was in error for missing the
quantity (A) in the first term on the right side of the above equation. In subsequent
equations the quantity (A) is correctly included. End of editor's note].

Appendix I

Editor's note on the derivation of equations (15') and (15"):

In Stefanescu's paper, there was only one equation (15). Equation (15') did not

have an equation number and equation (15") is equation (15). I introduced the notation
(15°) and (15") to facilitate the following discussions.

The magnitude of the current density, J, is defined as the ratio of the current
intensity, I, to the area of a surface, s, that the current passes through. That is:

=L
S

()
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The portion of current, dl, that crosses an elemental-area, ds, is given by:

dl = Jds = (Jr)ds = Jdscos 6 (i)

where:
J = current-density vector,
ds = elemental-area vector, defined by the magnitude of the area, ds,
and a unit vector, r, perpendicular to it.
r = unit vector that lies in a direction perpendicular to the elemental
area ds. The magnitude of r equalsunity (| r |=1)

6 = angle between the vectors J and r.

Equation (ii) shows that the portion of the current intensity, dl, that crosses the
elemental-area, ds, is a function of the angle 6. At 6 = 0 degrees, all the current goes
through the elemental-area, ds, and at 6 = 90 degrees, none of the current goes through,

because r will be perpendicular to J and Lr=0 (which also means that the elemental-
area, ds, will be parallel to J).

If the elemental-area, ds, represents an element of the surface of a sphere, of

radius R, that surrounds the a center, such that the location of the a center coincides
with the center of the sphere, then the elemental-area ds can be expressed by :

ds = R2dQ (iii)
where
R = radius of the sphere, and
dQ = solid angle subtended from the center of the sphere to the elemental-area,
ds.

Substituting, R2 dQ), for ds, in equation (ii), we get:
dl =(J.r) R? dQ. (iv)

In equation (15'), Stefanescu used the VR instead of the unit vector, r, in the
above dot-product expression, and he wrote:

dl = (J.VR) R* dQ v)

Before proceeding any further, we will show that his notation is correct and that
the gradient of R, VR, is equal to the unit vecior, r.
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A position vector R, which represents the radius of the sphere surrounding the a
center, may be expressed in terms of x, y, z and the unit vectors i, j, k (along the x, y, z
directions, respectively) as:

R=xi+yj +zk, (vi)

A
or, it also may be expressed in terms of its magnitude, R, and a unit vector, r, along the
direction of R, so that:

R=Rr (vii)

From equations (vii) and (vi), we can write:

;=£=xt+y1+zk (viii)
R R
The magnitude of R, is given by:
R =|R| = Jx*+y*+2* , (ix)

and the gradient of R, VR, is defined by:

VR=2R ;IR ; IRy e
ox oy oz

thus, differentiating equation (ix), with respect 1o x, y, and z, we get:

OR _ 2 x _x

ox 2\ﬁc2 +y? + 2 R
AR 2 .
= 2 y2 2 = !_ (xl)

oy 2\/; +y“+z R

R _ 2z _z

Jz 2\x*+y*+22 R

and therefore,

VR=Xis2jylp=Xityitzk (xii)

R R R R

Comparing equations (viii) and (xii) we can see that:
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VR=r (QED,) (xiii)
Now we continue with the derivation of Stefanescu’s equations (15') and (15").

Substituting for J from equation (14) into equation (v), we get:

dl =

{(B C) AVr.VR A _ VRVR

— - —C R?

}Rz dQ)
r r

VrVR A
- -——C(VR)Z} aQ .

= {(BR2 +CR) A— :

(15)

From equation (15'), we can see that as R tends to 0, the first term tends to zero.
Furthermore, as shown in Figure 1 (see page 15), the distance, r (from the point
electrode at O to the measuring point at M) tends to d as the distance, R (from the a -

center at § to the measuring point at M) tends to zero. Therefore, as R tends to zero,
equation (15') reduces to:

dl = { - g C (VR)z} dQ. (xiv)

Let us re-examine the gradient of R:

As shown in equation (xii),

VR=Zi+Zj+lk
R R'TR

_xi+yj+zk
R

(xv)

The dot product VR . VR is equal to 1 (because i.i =1 andij =0, i.k = 0, etc.) and thus:

2 2 2 2
(VR)’ = VRVR = = +£2” = 22 =1. (ovi)

Therefore, equation (xiv) reduces to

ar = -2 40
d

Integrating both sides of the above equation, we get
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This completes the derivation of equations (15') and (15"). End of editor's note.]

Appendix I11
[Editor’s note on equation simplification:

In the original equation there is a typesetting error in a subscript of R and the
term (Vr. VR, ) should be (Vr.VR,), as it is given below.

The equation

[dl =] (J.VR)) R} d

- _(£+2*_+&j C,(VR,) +C, (wz VR )] dQ
r R R,J|
c, C > 2
+(B+——‘—+—2) A=-(Vr.VR,)+D,(VR)) +D2-—’2(VR,.VR2)} dQ
R, )T R,
is simplified as follows:

(1) as shown earlier (VR)? = I (see equation (xvi) in appendix II ), and therefore
the (VR)? terms in the brackets are set to unity,

(2) the terms with R;?, in the brackets, are set to zero.

(3) the terms with D}/R; and C /R, , in the parentheses, cancel (after the above
simplifications) as shown below:

[dI] ~ (f+-§—+%) [C\]+ (B+—-+ ) [D]

1

~ -4 C, —(D’C’j—Dz C, +BD, +(C’D’)+C2 D,
r R, R, R,

D
= —(—4 +—2) C, + (B, +§3—]D1
r R R,

end of editor's note].
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Plate 1. [Editor’s note:
The following plate caption was added by this editor because one was not
provided in the original article. The above diagram was scanned (from a
somewhat distorted Xerox copy of the original), then it was edited and annotated.
The letters P, Q, S;, and S); the axes labels and tick-mark values; and the
horizontal and vertical lines through S; and S,; were added to original diagram.]

Diagram showing equipotential contours (solid lines) and equal-
conductivity contours (dashed lines) in a vertical cross section that passes through
two a centers, S; and S,, located at (x, z) coordinates of (0, 2) and (3, 6),
respectively. + o and - o symbols represent the electrical potential at current
electrodes P and Q, which are located at (x, z) coordinates of (4, 0) and (11, 0),
respectively. The vertical dashed line (at x = 3.5) passes through the mid point
between the electrodes P and Q and represents the zero-equipotential line in a
homogeneous half space (with no a centers). Note deflection of zero-
equipotential line (to the right of the vertical dashed line) in response to the
presence of the two a centers.
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