
THE MODULAR MODELING SYSTEM (MMS):
USER’S MANUAL

Updated for software version 1.1 (March 1998)

By G.H. Leavesley, P.J. Restrepo, S.L. Markstrom, M. Dixon, and L.G.
Stannard

U.S. GEOLOGICAL SURVEY

Open-File Report 96-151

Prepared in cooperation with the

UNIVERSITY OF COLORADO AT BOULDER, CENTER FOR
ADVANCED DECISION SUPPORT FOR WATER AND ENVIRONMENTAL
SYSTEMS (CADSWES)

Denver, Colorado

1996

2

PREFACE

The development of the Modular Modeling System (MMS) began with the establishment
of a 3-year cooperative agreement between the U.S. Geological Survey and the University
of Colorado at Boulder’s Center for Advanced Decision Support for Water and
Environmental Systems (CADSWES) in September 1989. The major components of MMS
were identified at that time but limited funding required that component development be
prioritized, with lower priority components to be developed later, as funding became
available.

The problems of limited funding for system development were addressed by the addition
of several collaborators who saw the potential of MMS for their own applications and
research. Contributions to the system by these groups were made in terms of funding and
in manpower to develop selected components of the system. Those contributing resources
were the U.S. Bureau of Reclamation, U.S. Forest Service, National Aeronautics and Space
Administration, Agricultural Research Service, and the Terrestrial Ecology Regional
Research and Analysis (TERRA) Laboratory. International contributions were made from
several groups in Germany whose research funding was supported by the federal
Deutscheforschungsgemeinschaft (DFG). Contributing to MMS development were the
Rheinisch-Westfälische Technische Hochschule in Aachen, the University of Bonn in Bonn,
the Friedrisch Schiller University in Jena, and the Potsdam Institute for Climate Impact
Analysis in Potsdam.

While the concepts and components of MMS were conceived by the senior author, and
the initial basic structure of MMS was designed, coded, and implemented by P.J. Restrepo
and M. Dixon, bringing these ideas and code to fruition entailed the knowledge, skills,
resources, and labor of a large number of people from a variety of groups and agencies.
Thus, while this user’s manual is authored by those who played the major part in writing it,
the contents reflect the efforts of many. It is not possible to list all the individuals who have
contributed their time and talents to the design, development and testing of MMS, but the
authors wish to give their wholehearted thanks to all who have made this system possible.

THE MODULAR MODELING SYSTEM (MMS): USER’S MANUAL1

THE MODULAR MODELING SYSTEM (MMS): USER’S MANUAL

By G.H. Leavesley, P.J. Restrepo, S.L. Markstrom, M. Dixon, and L.G. Stannard

ABSTRACT

The Modular Modeling System (MMS) is an integrated system of computer software
that has been developed to provide the research and operational framework needed to
support development, testing, and evaluation of physical-process algorithms and to
facilitate integration of user-selected sets of algorithms into operational physical-process
models. MMS uses a module library that contains modules for simulating a variety of
water, energy, and biogeochemical processes. A model is created by selectively coupling
the most appropriate modules from the library to create a “suitable” model for the desired
application. Where existing modules do not provide appropriate process algorithms, new
modules can be developed. The MMS user’s manual provides installation instructions
and a detailed discussion of system concepts, module development, and model
development and application using the MMS graphical user interface.

INTRODUCTION 2

1. INTRODUCTION

1.1 Purpose of MMS

To clearly define what the Modular Modeling System (MMS) is, it may be best to begin
with a statement of what it is not. MMS is not a model. Rather, it is a framework for
modeling that can be used to develop, support, and apply any dynamic model. A major
focus of the development of MMS has been for models used in the environmental and
natural-resource management disciplines, but MMS could feasibly be used in any
number of other scientific disciplines.

Thus, MMS is an integrated system of computer software developed to (1) provide the
research and operational framework needed to enhance development, testing, and
evaluation of physical-process algorithms; (2) facilitate integration of user-selected
algorithms into operational physical-process models; and (3) provide a common
framework in which to apply historic or new models and analyze their results. MMS uses
a module library that contains modules for simulating a variety physical processes. In the
context of current development work, these are water, energy, chemical, and biological
processes. A model is created by selectively coupling appropriate modules from the
library to create a suitable model for a desired application. When existing modules do not
provide appropriate process algorithms, new modules can be developed.

The interdisciplinary nature and increasing complexity of environmental and
water-resource problems require the use of modeling approaches that can incorporate
knowledge from a broad range of scientific disciplines. Selection of a model to address
these problems is difficult given the large number of available models and the potentially
wide range of applications, data constraints, and spatial and temporal scales of
application. Coupled with these issues are the problems of study area characterization
and parameterization after a model is selected. Guidelines for parameter estimation are
sparse, and the user commonly has to make decisions based on an incomplete
understanding of the relation between parameter values and physical measures of
watershed characteristics. MMS addresses these issues by enabling the development of
models that are problem and scale specific and by providing the capability to evaluate
alternative modeling and parameter estimation approaches.

MMS provides a common framework in which to focus multidisciplinary research and
operational efforts. Researchers in a variety of disciplines can work cooperatively on
multidisciplinary problems. Each can develop and test model components in their own
areas of expertise and combine these modules with those of the other researchers to
develop a complete system model. In addition, as research provides improved model
components, these can be used to modify or enhance existing operational models by
inserting or replacing process modules.

A geographic information system (GIS) interface is provided to facilitate model
development, application, analysis, and visualization utilizing map information for a
spatially distributed system. This interface permits application of a variety of GIS tools to

INTRODUCTION 3

characterize the physical, hydrological, chemical, and biological features of a physical
system for use in a variety of lumped- and distributed-parameter modeling approaches.
The GIS currently being used is the Geographical Resources Analysis Support System
(GRASS) developed by the U.S. Army Corps of Engineers (1991). MMS display
capabilities permit visualization of the spatial distribution of model parameters and of the
spatial and temporal variation of simulated state variables during a model run. An
alternative display feature presents more comprehensive two- and three- dimensional
views at the end of a run.

Continued advances in physical and biological sciences, GIS technology, computer
technology, and data resources will expand the need for a dynamic set of tools to
incorporate these advances in a wide range of interdisciplinary research and operational
applications. MMS is being developed as a flexible framework in which to integrate
these activities.

1.2 Overview

MMS has three major components: pre-process, model, and post-process (fig. 1.1).
The pre-process component includes tools used to input, analyze, and prepare spatial
and time-series data for use in model applications. The model component includes the
tools to develop and apply models. The post-process component provides tools to
display and analyze model results, and to pass results to management models or other
types of software. A system supervisor, in the form of an X-window graphical user
interface (GUI), provides users access to all components and features of MMS. MMS
was developed for UNIX-based workstations and uses X-windows and Motif for the GUI.

1.2.1 Pre-process component

Pre-process component functions include all the data preparation, parameterization,
and analysis functions needed to run the selected model. Spatial data analysis is
accomplished using a GRASS-based GIS toolset developed for MMS or other
user-selected GIS toolsets. In the GRASS-based system, the user is provided access to
frequently used GRASS tools and other system GIS tools developed specifically for a
variety of modeling tasks. Available spatial data analyses include segmentation and
characterization of a watershed into subareas for distributed-parameter modeling. Digital
elevation model (DEM) data and selected digital databases that include information on
soils, vegetation, geology, and other pertinent physical features provide the data on
which such characterizations are developed.

Databases used to store spatial and time-series data provide the interface between
the pre-process and model components. The current (1995) time-series database
structure used to interface with MMS is an ASCII flat file.

INTRODUCTION 4

Figure 1.1. A schematic diagram of the conceptual components of the Modular Modeling
System (MMS).

1.2.2 Model component

The model component is the core of the system and includes the tools to selectively
link process modules from the module library to build a model, and to interact with this
model to perform a variety of simulation and analysis tasks. These interactions are
provided using a variety of X-window and graphical techniques.

A major feature of the model component is the module library which contains a variety
of modules for simulating water, energy, chemical, and biological processes. For a given
process, the library may contain several modules, each representing an alternative
conceptualization or approach to simulating that process. The user, through an
interactive model builder interface (xmbuild), selects and links modules to create a
specific model. Once a model has been built, it may be saved for future use without
repeating the xmbuild step. This capability allows complete versions of models to be
provided to end users.

User interaction with model preparation and execution is accomplished using an
X-windows GUI. A series of pull-down menus in the GUI provides the links to a variety of
system features. These include the ability to (1) select and edit parameter files and data

Pre-Process Model Post-Process

Data Storage

Module
Library

Xmbuild

Modular ModelGIS
Weasel

D
at

a
C

o
lle

ct
io

n

DMIDMI DMIs
DMI

Visualization

DSS
Statistics

ESP

Opt
Sens

GUI GUI GUIs

GIS Weasel

INTRODUCTION 5

files; (2) select a number of model execution options such as a standard run, a run with a
graphical and/or a spatial visualization output, a prediction run, an optimization, or a
sensitivity analysis; and (3) select a variety of statistical and graphical analyses of the
simulation output.

1.2.3 Post-process component

The post-process component provides the tools to analyze and apply model results.
These include a variety of statistical and graphical tools as well as the ability to interface
with user-developed tools. Statistical and graphical analysis procedures provide a
common basis for comparing module and model performance and can be used to aid in
making decisions regarding the most appropriate modeling approach for a given set of
study objectives, data constraints, and temporal and spatial scales.

One graphical tool enables the user to display output in up to four windows during a
model run. Any variable that has been declared in a module can be plotted. As many as
ten variables can be displayed in each window, and display results can be output, in
HPGL or PostScript formats, to a digital file or to a printer. After a model run, the user has
the option of using enhanced graphics, statistics, and three-dimensional plotting
capabilities to analyze model results. A GIS interface also provides the visualization and
analysis tools to display spatially distributed model results and to analyze results within
and among different simulation runs.

Two post-processing tools interact with the model component. Parameter-optimization
and sensitivity-analysis tools are provided to optimize selected model parameters and
evaluate the extent to which uncertainty in model parameters affects uncertainty in
simulation results. A third tool enables the user to use the assembled model in an
extended prediction mode. At the present time, this consists of a modified version of the
National Weather Service’s Extended Streamflow Prediction Program (ESP) (Day, 1985)
that provides forecasting capabilities using historic or synthesized meteorological data.

1.3 Manual structure

For the purposes of this manual, three levels of MMS use have been identified: (1) run
existing models, (2) build and run new models using existing modules, and (3) write new
modules for use in building and running models. As one moves from the first through the
third levels, an increasing amount of knowledge is required about the structure and
concepts of MMS and about the basic structure and design of modules. This more
detailed information is presented in successive chapters.

Documentation for the various components of MMS will be released later. This volume
focuses on the features of the model component (fig. 1.1). It is the basic User’s Manual
for MMS and xmbuild and includes information for all levels of use.

Future documentation will focus on the pre-process and post-process components of
MMS (fig. 1.1) and selected special features of MMS. Component features to be
documented include (1) xmdoc, an aid to users for converting existing code to modules

INTRODUCTION 6

for inclusion in the MMS modular library, (2) an enhanced graphics package that can be
implemented after an MMS run to study two- and three-dimensional aspects of the
output, (3) GIS Weasel, the GIS interface tool that uses ARC/INFO to assist in the
characterization and parameterization of spatially distributed watershed features and in
the visualization of distributed-model inputs and outputs, and (4) feedback mechanisms
that enable two or more processes to iterate, within a time step, when the solution to the
system of algorithms, which reside in more than one module, is dependent upon mutual
state variables.

1.4 Font conventions used in this manual

Helvetica italics font is used for:

UNIX pathnames, filenames, program names, user command names, and options for
user commands.
New terms where they are defined.

Courier font is used for:

Examples of source code and text on the screen.
Queries and comments provided by system programs and setup scripts.
Names of subroutines of example programs.
Names of variables in library functions.

Courier bold font is used for:

User keyboard responses to system generated queries.

Times italic bold font is used for:

Mouse button selection for user-selectable options.
To show keystrokes used to selected various system options.

INSTALLATION 7

2. INSTALLATION

2.1 Obtaining MMS

MMS is available via the MMS internet homepage at http://wwwbrr.cr.usgs.gov/mms.
MMS has been pre-compiled for a wide variety of platforms. Each platform is clearly
identified as part of the tar file name. If the desired platform tar file is not present, MMS
may be compiled from the mms-x.x.tar.gz version. All tar files contain the full source
code regardless of any additional pre-compiled files. Software and hardware require-
ments are discussed in Attachment 1.

2.2 Installation Overview

The MMS directory structure is based on the use of two distinct directory areas. One
is the MMS master directory area and the second is the MMS user workspace directory
area (fig. 2.1). The master directory area is a read-only area that contains the basic
system programs and files. This area also contains those modules of the module library,
and selected models, that have received some level of quality control as defined by the
using organization. All users share the files, libraries, modules, models, and other
executables in the master directory area. Changes or additions to this area should be
made only by persons familiar with system structure. New modules and models may be
added as they receive the required testing and approval.

Figure 2.1 MMS master and user directories for a system of three users.

MMS Master Directory

./bin

./help

./lib

./make

./man

./modules

./src

./workarea (template)

MMS User Directory 1

./models

./control

./input

./make

./modules

./output

MMS User Directory 3

./models

./control

./input

./make

./modules

./output

MMS User Directory 2

./models

./control

./input

./make

./modules

./output

INSTALLATION 8

The user workspace directory area is where a user stores and manages individual
data and parameter files, modules, models, and selected modifications to the MMS
graphical user interface. A user workspace directory can be created for each individual
using the system. The user workspace directory should not be created under the master
directory because the master directory and its subdirectories are read-only.

The installation procedures involve the creation of one master directory and as many
user workspace directories as needed. A set of scripts are provided for the installation of
each directory type to assist the user in installing MMS. The installation scripts and
procedures for each directory type are discussed in detail in the following sections.

2.3 Creating the MMS Master Directory

The MMS master directory may be created in any parent directory on the workstation
system. However, all MMS users must be able to read from that location. Put the tar file
in the desired parent directory. The tar file must be uncompressed before it can be
extracted. Tar files with the extension “.Z” need the utility uncompress, whereas those
with a “.gz” extension need gzip -d. MMS should be extracted from the tar file with the
Unix command tar -xvf <mms.platform>.tar where <mms.platform> is the manufacturer
name of the workstation hardware. For example, SUN4.tar is the precompiled version of
MMS for a SUN workstation using the SUN OS4.1.x operating system. The directories
should be extracted such that all MMS users have read access.

The major directories in the master directory area and their contents are:

The bin directory:

• the model builder xmbuild
• the workspace installation script mms_workspace
• the post-processing programs XMGR, pdraw, and GISanimator
• the file conversion scripts control_update, param_update, and data_update
• the executable code for selected models that have received some level of

quality control as defined by the using organization.

The help directory:

• the MMS system documentation.

The lib directory:

• the MMS libraries libXbae.a, libUNtil.a, libmms.a, libutil.a, and libPlotW.a.

INSTALLATION 9

The make directory:

• the makelist file
• test C programs
• test FORTRAN programs
• scripts called by the setup script.

The man directory:

• Unix style man pages for the MMS library functions.

The modules directory:

• all modules that are selected to be read-only. A subdirectory is defined for
each process type.:

The src directory:

• subdirectories with the source code for the components of MMS.

The workarea directory:

• a template of the directories that are copied to the user’s work area by the
mms_workspace script.

The src directory contains all the source code subdirectories for MMS. Each subdirec-
tory has a makefile that is used to compile the source code in that directory and place the
results into either the bin or lib directories. If changes are made to the source code in one
of these subdirectories, only the makefile in that subdirectory needs to be executed to
update MMS.

Also located in the src directory is an include subdirectory that contains a number of
include files that are used by source code in one or more of the src subdirectories. If a
change is made to any of these include files, then all the src subdirectories whose source
code use the modified include files must be remade using the appropriate makefiles.

There is a makefile in the mms directory that will execute the make command in all of
the src subdirectories. Running this makefile will build the entire MMS system. Prior to
using this make option, a make clean command should be executed from the mms direc-
tory. This command removes all object code, libraries, and executables.

The modules directory is a read-only directory in order to provide a method to
distribute tested or quality assured module code that is intended to remain constant
within the system. However, if modification of one or more of these modules is desired,
this is still possible. The user can copy these modules to a user workspace, modify them
as desired, and construct a new model using any combination of modules from the
master directory and the user workspace directory.

INSTALLATION 10

2.4 The MMS Setup Script

The MMS setup script is located in the mms directory. The primary function of this
script is to create the makelist file in the mms/make directory. This file is included by
every makefile in MMS; thus, it will be referenced every time an MMS library, executable,
or model is compiled. The purpose of the makelist file is to provide a common, consis-
tent, and unambiguous set of instructions for compilation of MMS regardless of specific
hardware, operating system, or window system installations.

This setup script should be run whenever (1) MMS is initially installed, (2) the MMS
master directory is moved, (3) there is a change in the FORTRAN or C compilers, or (4)
there is an update in the X11 or Motif libraries.

The setup script is written in the Korn shell. For operating systems that do not support
the Korn shell, the script may be run under the Bourne shell by changing the first line in
the file from:

#!/bin/ksh

to

#!/bin/sh

The script will ask questions about compilers and libraries. It will verify responses and
insure that they are valid before proceeding onto the next question. Once the script is
running, it may be terminated using a control-C command at any time without any
adverse affects, if the proper response is not known or an incorrect response has been
provided. The makelist file is written (or overwritten) only after all questions are
answered satisfactorily. In addition, once all questions are answered, the script will
inquire about compiling the MMS libraries and executables. Versions of MMS with
pre-compiled libraries and executables do not need to be remade. The following is an
example application of the setup script:

(ksh) runoff.pts% setup

This is the MMS system level installation script.

Installing to MMS master directory /home1/mms.

If this is not the correct location for MMS, exit the script now using a control-C

command and move the MMS directory to the correct location. Restart the script.

You are running SunOS release 5.6

Please check your path for the placement of ‘/usr/ucb’.

This directory must come after the other important

solaris directories for proper installation of MMS.

INSTALLATION 11

ARC flag has been set to SOLARIS

The script will then determine the machine type and operating system. Environment
variables and default values for subsequent questions will be set based on the system
architecture.

C compiler to use [gcc]: cc

C compiler looks good.

A C compiler is required for MMS. The system is written in portable C code, but some
of the C library include files may vary from compiler to compiler. The compiler used to
develop MMS was the Gnu C compiler gcc. However, in the example, the compiler was
switched to the solaris C compiler to take advantage of debugging tools.

FORTRAN compiler to use [f77]: <return>

make/main.f:

 MAIN test:

FORTRAN compiler looks good.

FORTRAN is not necessarily required for MMS, but the demonstration models
included in the tar file and described in the help files all require a FORTRAN compiler.
However, modules written entirely in C may be compiled into models without the need of
a FORTRAN compiler.

Checking your compiler for ANSI compliance.

You are OK.

Found X11 include path -- /usr/openwin/share/include

X include path to use [/usr/openwin/share/include]: <return>

XINCPATH=/usr/openwin/share/include

Found Motif Include path -- /usr/dt/include

Motif Include path to use [/usr/dt/include]: <return>

XMINCPATH=/usr/dt/include

Found The X11 library -- /usr/openwin/lib

X11 library path to use [/usr/openwin/lib]: <return>

Found The Intrinsics library -- /usr/openwin/lib

INSTALLATION 12

Intrinsics library path to use [/usr/openwin/lib]: <return>

Found The Motif library -- /usr/dt/lib

Motif library path to use [/usr/dt/lib]: <return>

X11 and Motif must be installed on the system. If the system does not have these
include files, it is not possible to recompile the MMS system executables. If the system
does not have these libraries, it is not possible to make any models with MMS. If the files
are not located in the standard locations, it is necessary to supply the paths to the script.

Specify the flags to be passed to the C-compiler.

RETURN - to accept defaults.

COMPILE_FLAGS [-O -DSOLARIS -DSYSV -DUSE_DIRENT]: <return>

Change the “-O” to “-g” for a debuggable version of MMS.

I will check the compile flags now

Please watch for error messages

Check complete

Any problems? n

COMPILE_FLAGS = -O -DSOLARIS -DSYSV -DUSE_DIRENT

The script will compile a test file with the specified C flags. If there is an error, correct it
by resetting the flags to the proper values for the target system.

Specify the flags to be passed to the FORTRAN compiler.

RETURN - to accept defaults.

FORTRAN_FLAGS [-u]: <return>

I will check the FORTRAN flags now

Please watch for error messages

12522.f:

MAIN test:

Check complete

Any problems? n

COMPILE_FLAGS = -u

INSTALLATION 13

The script will compile a test file with the specified FORTRAN flags. If there is an error,
correct it by resetting the flags to the proper values for the target system.

Specify the flags to be passed to the loader (ld).

RETURN - to accept defaults.

LDFLAGS [-s]:<return>

LDFLAGS = -s

Specify the flags to be passed to the compiler that are

required specifically for X Window-based programs. Some systems

require extra compiler flags to increase the symbol table size,

when compiling for X Windows.

RETURN - to accept defaults.

XCFLAGS []: <return>

I will check the loader flags now

Please watch for error messages

Check complete

Any problems? n

XCFLAGS =

Specify the flags to be passed to the loader (ld) that are

required specifically for X Window-based programs. Some systems

require extra loader flags when compiling for X Windows.

RETURN - if no flags are to be specified.

XLDFLAGS []: <return>

XLDFLAGS =

Some system require additional libraries when compiling X Window pro-
grams.

Specify the additional libraries needed when compiling X Window pro-
grams.

INSTALLATION 14

Consult your installation guide if you are unsure of the need for these

libraries.

RETURN - if there are no extra libraries needed.

XEXTRALIBS [-lsocket -lnsl]: <return>

Checking -lsocket -lnsl. Please watch for any errors

Check complete

Any problems? n

Default values for these “extra” X Window flags and libraries will be set when the oper-
ating system type is set. Always try the default values first. If additional compiler options
are necessary, specify them here.

Specify the math library.

RETURN - to accept defaults.

MATHLIB [-lm]: <return>

MATHLIB = -lm

Some system require additional libraries when compiling FORTRAN code.

Specify the additional libraries needed when compiling FORTRAN.

Consult your FORTRAN manual for necessary libraries.

RETURN - to accept defaults.

FORTRANLIBS [-L/opt/SUNWspro/SC3.0.1/lib -lM77 -lF77 -lsunmath -lsocket
-lnsl -L/usr/local/ccs/lib -lgen -lm]: <return>

Checking -L/opt/SUNWspro/SC3.0.1/lib -lM77 -lF77 -lsunmath -lsocket
-lnsl -L/usr/local/ccs/lib -lgen -lm. Please watch for any errors

Check complete

Any problems? n

FORTRANLIBS = /usr/lang/SC2.0.1/values-Xt.o -L/usr/lang/SC2.0.1 -lM77
-lF77 -lansi

Now that you have defined everything, please name the file

to store this information in.

Makelist file [makelist]: <return>

INSTALLATION 15

HEADER = makelist

Creating makelist file

Makelist file /home/markstro/mms/make/makelist created

The makelist file is written at this point - compilation follows.

Updating the scripts...

cp mms_workspace /home/markstro/mms/bin

cp control_update /home/markstro/mms/bin

cp control.var /home/markstro/mms/bin

cp control.param /home/markstro/mms/bin

cp data_update /home/markstro/mms/bin

cp param_update /home/markstro/mms/bin

cp param.param /home/markstro/mms/bin

cd /home/markstro/mms/bin; sed -e “s#<MMSMD>#/home/markstro/mms#”
mms_workspace > tmp; mv -f tmp mms_workspace; chmod 755 mms_workspace;

cd /home/markstro/mms/bin; sed -e “s#<MMSMD>#/home/markstro/mms#”
control_update > tmp; mv -f tmp control_update; chmod 755
control_update;

cd /home/markstro/mms/bin; sed -e “s#<MMSMD>#/home/markstro/mms#”
data_update > tmp; mv -f tmp data_update; chmod 755 data_update;

cd /home/markstro/mms/bin; sed -e “s#<MMSMD>#/home/markstro/mms#”
param_update > tmp; mv -f tmp param_update; chmod 755 param_update;

The MMS libraries seem to exist.

Remake them anyway [no] -->n

Not making MMS libraries now.

You can always make them later by running make in /home/markstro/mms

The MMS executables seem to exist.

Remake them anyway [no] -->n

If the script finds that the libraries and executables already exist, the default will be not
to make them. If the mms/bin and mms/lib directories are empty, the default will be to
make them.

Not making MMS executables now.

You can always make them later by running make in /home/markstro/mms

MMS Setup completed

INSTALLATION 16

2.5 Creating the MMS User Workspace Directory

Before any user-created models can be built or run, a workspace directory must be
created. Separate directory areas for each user help to keep work organized and sepa-
rate from other users. The user workspace directory area must be in place before any of
the MMS programs can be run.

The user workspace directory area can be located in almost any user-specified direc-
tory and is set up by executing the mms_workspace script. The user directory is created
from a template directory in the master directory located in mms/workarea. A workspace
should never be created anywhere in the mms/workarea directory as this will corrupt all
workspaces created thereafter.

The directories in the user directory area and their contents are:

The models directory:

• the executable models that the user has created
• the model schematic files
• the model html file

The control directory:

• the environment file (mms.env)
• the control file(s) (mms.control)
• the resource script file (setmms)
• the app-defaults files
• the workspace.path file

The input directory:

• the data directory that contains the simulation data files
• the params directory that contains the parameter files
• the vars directory that contains variable files that were saved at the end of

user-selected model runs.

The make directory:

• the files generated by the xmbuild program

The modules directory:

• FORTRAN and C module source code;

The output directory:

INSTALLATION 17

• model output files
• variable and parameter print files
• optimization and sensitivity analysis files
• ESP output files
• statistical analysis work file statvar.dat

The mms_workspace script is located in the mms/bin directory in the master directory.
The script has two main functions. These are to copy the template workspace directories
to the user’s workspace directory and to update the paths in the workspace files. This
script should be run whenever the user wants to create a new workspace.

The mms_workspace script is written in the Korn shell. For operating system which do
not support the Korn shell, the script may be run under the Bourne shell by changing the
first line in the file from:

#!/bin/ksh

to

#!/bin/sh

The script will ask questions about a location and system type. Once the questions
are finished, the script starts copying the directories. For successful installation, it should
not be interrupted. If the need arises to start over, all contents of the workspace directory
should be removed and the mms_workspace script should be re-run. The script must be
allowed to run all the way through uninterrupted to insure that all files and directories are
present and not corrupted.

For best results, create the user workspace directory first, change to this directory,
and then run the mms_workspace script. The workspace directory may be named
anything. For the following example, it is called work:

(ksh) rose.p2% pwd

/home/markstro

(ksh) rose.p2% mkdir work

(ksh) rose.p2% cd work

From this directory, run the mms_workspace script. The script will ask several ques-
tions. The following is an annotated example run of the mms_workspace script:

(ksh) rose.p2% mms_workspace

**

* Welcome to *

* MMS Workspace installation *

**

INSTALLATION 18

Your current path is /home/markstro/work

Please type the FULL path of the user workspace directory.

RETURN - to use the current path.

<return>

Type return to use the current directory. The script will echo the location of the new
workspace. If the path is wrong, exit the script using the control-C command, correct the
path, and start over.

Installing workspace in /home/markstro/work

You are running SunOS release 5.6

Your current architecture is SOLARIS. Using SOLARIS as target architec-
ture.

/home/markstro/work found...

Workspace directories copied to /home/markstro/work...

Updating paths...

Finished with paths...

Installation completed.

If everything is properly installed, listing the workspace directory contents using the ls
command will produce the following list of subdirectories:

(ksh) rose.p2% ls

control/ make/ modules/

input/ models/ output/

The control directory contains a resource script file named setmms (or setmms.ksh)
that must be run prior to the execution of any model or xmbuild. setmms merges the
MMS app-default files with the current app-default file and sets several operating system
environmental variables. This only needs to be done once at each login. This can be
accomplished in one of two ways. One is for the user to manually execute a source
command with the full path to the setmms script each time they login. An example source
command is:

source /home/markstro/work/control/setmms

A second way is for the user to put the source command in their .cshrc or .login file so
that it is automatically initiated at every login.

One other addition to the .cshrc file that may be desirable is the
<user_workspace>/models directory path to the path environment variable. This will
enable the execution of user-created models from any place on the system.

INSTALLATION 19

2.6 Moving the User Workspace

It is generally not desirable to move a user workspace once it has been created.
There are many files with hard coded paths that are set at installation time. Thus, moving
the directory will result in many errors caused by these incorrect paths. However, if it
becomes necessary to move a workspace, there are two different strategies that can be
adopted. The first option is to create a new user workspace using the procedure
described above and then manually copy the necessary files from the old to the new
workspace. The second option is to move the old workspace to the new location and
manually edit all of the path references.

The steps for creating a new workspace using option one are as follows:

Create the new user workspace using the procedure described above.

Copy the contents of the old_work/input/data, old_work/input/params, and
old_work/input/vars to the corresponding new_work/input directories.

Copy the contents of the old_work/models directory to the new_work/models directory.
Any schematic files that contain references to modules that have moved must be
edited to reflect their new locations.

Copy the contents of the old_work/modules/src and old_work/modules/hier directories
to the corresponding new_work/modules directories.

Update the new_work/control/workspace.path file to contain the paths to the modules
specified in the model schematic files.

The steps for moving a workspace to a new location using option two are as follows:

Update the control files (mms.control) in the work/control directory. Change the paths
to the data files(s) and parameter file.

Update the work/control/mms.env file.

Update the work/control/setmms script.

Update the work/control/workspace.path file to reflect the new locations of the mod-
ules.

Update the work/make/make.template file.

Update all the schematic and html files in the work/models directory.

Generally, the first procedure works better when there has not been much work done
in the workspace. As more data and model files are created, the second procedure
should be given more consideration.

INSTALLATION 20

2.7 Installing Modules

A tar file with a fixed directory structure is used to distribute the source code modules
and the module documentaton for complete models. This file can be installed in the
user’s workspace directory or in the master MMS directory. When this file is untared, the
directory <user’s workspace>/modules/src/<model_name> or <MMS master direc-
tory>/modules/src/<model_name> will be created and the source code modules will be
written here. A second directory <user’s workspace>/modules/doc/<model_name> or
<MMS master directory>/modules/doc/<model_name> will also be created and the
documetation for each module, in html format, will be written here.

In order for the documentation system to work correctly, each module source code file
must have it’s corresponding html documentation in the modules/doc directory.

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 21

3. MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS

3.1 Modular Model Concepts

3.1.1 Modules

By definition, a module is a set of computer source code used to simulate one, or
more, water, energy, chemical, and biological processes. A given process, or combina-
tion of processes, can have several modules in the library, each representing an alterna-
tive conceptualization or approach to simulating the process(es). Each module typically
needs selected inputs to drive it and computes selected outputs that could be used as
inputs to other modules.

The user, through an interactive model builder interface called xmbuild, may select
and link modules to create a specific model. Previously generated models can be
executed directly without the use of the xmbuild step. A detailed discussion on module
construction is provide in Chapter 6. A brief overview of module concepts is given below
to provide the user with a basic knowledge of MMS functionality and terminology.

The ability to link modules developed by a variety of users is provided by the use of a
unique module structure. A module is composed of a minimum of four functions: declare,
initialize, run, and main. The declare function is used to specify parameters and variables
that are being declared in this module. The initialize function is used to initialize parame-
ters and variables used in the module. The run function contains the algorithm code that
simulates the specific process(es). The main function directs system calls to the declare,
initialize, and run functions of a module. A module can be written in either the FORTRAN
or C programming language. A fifth function, cleanup, may be used by some C coded
modules to release dynamically allocated storage.

Communication among modules and between a module and MMS features is accom-
plished by using specific MMS library functions that a module developer uses in the
module code (see Chapter 6 for details on MMS library functions). Parameters and vari-
ables are the primary elements communicated among modules. In MMS a parameter is
defined as any value that is held constant during a model run. A variable is defined as a
value that can change each time step and may be computed or read from an input data
file.

Parameter and variable data structures are created by the declparam and declvar
library functions respectively. The declparam function is used to declare each parameter
used in the module. The declvar function is used to declare only those variables that are
generated by the process(es) in the module and have a potential use by other process
modules. These are termed “public variables.” Local working variables are not normally
declared using the declvar function unless there is a desire to display or analyze these
variables using the system tools.

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 22

Arguments in the declparam and declvar functions include a definition of the param-
eter or variable and the units in which it is expressed. The definition is made available to
the model user through a help feature during MMS execution. The definition can
describe the parameter or variable, provide guidance on the estimation of its initial value,
and any other pertinent information. This provides a mechanism for module developers
to imbed their knowledge and expertise in a module and have this information available
to all users. The units in which the parameter or variable is expressed is used in the
xmbuild process to insure the compatible linkage of module parameters and variables.

Modules read parameter and data values from the MMS parameter and variable data
structures using the MMS library functions getparam and getvar. In the xmbuild proce-
dure, a comparison is made among selected modules to insure that all getparam and
getvar functions are satisfied by a declparam or declvar function for the specified param-
eter or variable. A declparam function must be present for all parameters used in each
module. A declvar function is used only in the module where the variable is computed.

When MMS is executed, the declare function of all modules is executed first to obtain
the needed information from the declparam and declvar functions to build the MMS
parameter and variable databases. During the execution of the initialize and run func-
tions of a module, MMS functions getparam and getvar are used to read current values
of parameters and variables from these databases. Values are written to the variables
database automatically by the declaring module.

Successful communication between modules requires the use of consistent param-
eter and variable names. A dictionary of currently used terms and their definition is
included in MMS to provide information to system users as well as to maintain consis-
tency among module developers. Improved communication within the modeling commu-
nity and the establishment of some consistency in process parameter and variable
definitions are seen as major needs in being able to compare modeling approaches.

While there is a requirement for consistency in the external variable and parameter
naming convention, there is no need to modify variable names in existing source code
when converting to a module. The external and existing internal variable and parameter
names can be equivalenced in the declparam and declvar functions. The MMS variable
and parameter databases keep the external names as character strings and provide a
reference to the locally declared name.

3.1.2 A Model

A model is created from user-selected modules using the MMS program xmbuild. A
model can be composed of a combination of FORTRAN and C coded modules. During
module compilation and linking, the MMS X-windows graphical user interface (GUI) is
linked to the model to provide the MMS support functions. A series of pull-down menus in
the GUI provide the links to a variety of system features. These menus and features are
described in detail in Chapter 4.

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 23

Modules are executed sequentially in a time-based loop whose time step is defined by
the input data stream and may be variable. When a model is executed within MMS, one
pass is made through the initialize functions of all the modules to initialize all parameters
and user-specified variables. Each subsequent pass through the modules is directed to
the run function to execute the process algorithms.

3.2 The MMS Internal Databases

MMS uses an internal database for inter-module communication. Individual modules
declare values, update values, and may read the values set by other modules. From the
point of view of the module programmer, there are three memory-based databases.
These are:

• the parameters database
• the public variables database
• the dimensions database

A fourth database is the control database which is built by the system and stores the
current status of all the options in the MMS interface.

3.2.1 The Parameters Database

Parameters are declared in each module with the declparam function. When a model
is initiated, MMS makes one pass through all the modules and reads all the declparam
functions. The parameters database is constructed using the information provided in
these function statements. During model execution, when modules request parameter
values, they receive a copy of the parameter value array. Thus, integrity of the parameter
database is maintained.

The parameters database is initially populated by reading a set of parameter values
from the currently selected parameter file. A parameter file can be initialized to the
default values declared in the modules or it can be modified and saved using a set of
spreadsheet tools described in Chapter 4.

3.2.2 The Public Variables Database

The public variables database is intended to hold those variables which are made
available to all modules in the system. This database serves a variety of purposes by
making the variables available for:

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 24

• use by other modules
• reading from time series files
• display at run time
• saving after each time step for later statistical analysis
• saving at the end of a run, to use as start-up values for subsequent runs
• printing to a file for debugging

Not all the variables in a program need to be included in the public variable database.
Only those variables for which there is an interest in plotting or statistically analyzing,
making available to other modules, or using in an optimization or sensitivity analysis
need to be included in this database.

Variables are declared in each module using the declvar function and these declared
variables are used to construct the variables database. The declaring module provides
the static memory to store the values of the variable. In this way, the module has the
ability to both read and write to its own declared variables. When other modules request
variable values, they receive a copy of the variable value array. It is possible, using the
MMS function putvar, for one module to write directly into the variable space of another
module. The putvar function is typically used only for feedback types of situations and is
not normally used for standard communication of variable values among modules.

3.2.3 The Dimensions Database

A ‘dimension’ is a number that defines the size of a parameter or variable array. The
number of sub-catchments and the number of rain gages are examples of dimensions.
Rain-gage elevation is an example of a parameter that may have as its dimension the
number of rain gages. Similarly, the rainfall measured at each gage would be a variable
with the same dimension.

Dimensions are integer types, with a minimum value of zero and a maximum value
that is set when they are declared. All dimensions are declared in a special MMS func-
tion named setdims using the decldim library function (see Chapter 6 for details on
setdims and decldim). This function is compiled with the model modules and is executed
before the simulation modules declare their parameters and variables.

One argument in the decldim function is a parameter defining the maximum size of
this dimension. This parameter is defined in an include file named fmodules.inc for
FORTRAN modules and cmodules.h for C modules. These are located in the
<user_directory>/modules/include directory. An include file is included with all
FORTRAN and C modules in a model.

The user can modify the size of any dimension in the dimension database, not to
exceed the maximum size defined in the include file, using the spreadsheet editing tools
described in Chapter 4. To increase the maximum dimension parameter, the user must
manually edit the include file and recompile the model. The include file for maximum

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 25

dimension size is used because array storage cannot be dynamically allocated using
FORTRAN 77.

3.2.4 The Control Database

The control database contains the status of all the features of the MMS graphical user
interface (GUI). The user can save the values in this database in a control file with any
name of choice. The control file is a system-created file that stores the status of the MMS
GUI at the time the file is created. A new control file can be saved for each specific set of
GUI conditions that the user may wish to use at some future time.

An example is the application of a given model to different basins. The user can select
the appropriate data files and parameter file for a specific basin as well as select the vari-
ables to be graphically displayed and statistically analyzed. All these values are set in
the control database using the menu options discussed in Chapter 4. Once all selections
are made, a control file for this basin can be created and saved. A different control file
can be saved for each basin. Then when this particular model is run, the user can simply
select the control file for the basin of interest and all the previously defined control
features for this basin will be loaded into the control database. This avoids the need to
change the individual features of the GUI each time a different basin is chosen.

3.3 Parameter Files

When the user initiates MMS for a selected model, the parameter database is created
by the system. Each installation of MMS has a default control file. For the first execution
of MMS with any model, the parameter file listed in the control file will be loaded. The
parameter file named in the default control file may not be associated with the selected
model. If it is not, then only those parameters in the parameter file having the same
names as parameters in the database will be loaded into the database. Database param-
eters not contained in the parameter file will contain the values present in the database
when it was constructed. To change the default control file, see section 3.5 Control Files
below.

To create a new parameter file for the model being run, the user must save the current
file to a new file. The system will create the new file and save it in the
<user_directory>/input/params directory by default or in a directory of the users choice.
This new file can be reset to contain the default values declared in the model modules or
it can be edited to include parameter values determined by the user. The initializing,
editing, and saving of parameter files is discussed in detail in Chapter 4.

The system generated parameter file has three sections. These are: (1) the header,
(2) the dimension data, and (3) the parameter data. An example of the header informa-
tion from the demonstration parameter file is:

East Fork Carson River, CA
Version: 1.7

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 26

The first line is a description of the parameter file. It has a limit of 80 characters. The
second line is the version line. This number refers to the version of the function in the
MMS library which reads the file. If this line is not present, the file is version 1.0.

After the header information, the dimensions and their sizes follow:

** Dimensions **
####
nac
1
####
nchan
1
####
ndepl
1
####
ndeplval
11

The first line signifies to the model that the dimension definitions are beginning. The
next three lines are repeated for every dimension definition. First comes a separator,
then the dimension name as declared in the setdims function, and finally, the size of the
dimension used. This size must be smaller than or equal to the size declared in the
module include files fmodules.inc or cmodules.h.

The parameter values come after the dimension values:

** Parameters **
####
basin_area 4
1
one
1
2
1.851000000000e+05
####
hru_area 0
1
nhru
17
2
1.277000000000e+04
8.590000000000e+03
1.460000000000e+04
1.169000000000e+04
8.040000000000e+03
8.170000000000e+03
1.077000000000e+04
9.110000000000e+03
1.087000000000e+04
1.047000000000e+04

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 27

8.320000000000e+03
6.220000000000e+03
8.120000000000e+03
1.433000000000e+04
2.231000000000e+04
9.770000000000e+03
1.095000000000e+04

The first line signifies the beginning of the parameter definitions. The next series of
lines are repeated for every parameter definition. First comes a separator. The next line
specifies the parameter name and column width in the spreadsheet editor. A zero
column width indicates the default width. The next line indicates the number of dimen-
sions of the parameter (i.e. 1-dimensional, 2-dimensional,...). The dimension name(s)
which the parameter is declared over is specified on the next line(s). The dimension
name is specified as one if the parameter is a scaler. Next comes the number of values.
This should match the dimension size declared in the dimension section of this file. The
next line determines the type of the parameter values. The codes are:

• 1 for long integer
• 2 for float or real
• 3 for double precision float or real
• 4 for character string.

Finally, the parameter values follow, one per line.

3.4 Data Files

Data files have an ASCII flat-file format and are created by the user. The input vari-
ables in these data files are read by a model module written by the model developer for
that purpose. The input variables are declared in this module and the values of the input
variables are copied to the public variables database at each time step using the readvar
library function. The time-series data files used for model runs are typically placed in the
<user_directory>/input/data directory but may be placed in any directory of the user’s
choosing.

The following is an example data file:

MMS test data file - Carson Basin
runoff 1
rainfall 5
tminf 2
tmaxf 2
solrad 0
pan_evap 0
form_data 1
###
1980 10 1 24 0 0 84 0 0 0 0 0 44 51 78 86
1980 10 2 24 0 0 82 0 0 0 1.5 0 51 48 78 84
1980 10 3 24 0 0 80 0 0 0 0 0 44 52 77 86

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 28

1980 10 4 24 0 0 80 0 0 0 0 0 42 50 74 84
1980 10 5 24 0 0 80 0 0 0 0 0 45 46 73 80
1980 10 6 24 0 0 79 0 0 0 0 0 42 46 74 79
1980 10 7 24 0 0 78 0 0 0 0 0 42 49 74 81
1980 10 8 24 0 0 77 0 0 0 0 0 41 47 72 83
1980 10 9 24 0 0 92 0 0.1 0 0 0 39 45 70 81
1980 10 10 24 0 0 95 0 0 0 0 0 41 47 69 76

There is a short multi-line header, a separator line, and then the data. The first line of
the header contains a description of the data file. This description has a limit of 80 char-
acters. The remainder of the header describes the data fields in each row. Each line
contains the variable name and the number of values for that variable in each row. The
number of values must match the current dimension of that variable. The order of the
variables reflects the order of occurrence in each row.

A separator line indicates the end of the header information and the beginning of the
data. This line must consist of at least four pound symbols (####).

The data lines start after the separator line. Fields in the data line are separated by
white space. The first six fields of the data line are reserved for the time stamp. The fields
are year, month, day, hour, minute, and second respectively (yyyy-mm-dd hh:mm:ss).
The remaining columns must correspond to the order and number of values specified in
the header section of the file.

In the above data-file example, one value is read for the runoff variable, five for rain-
fall, two for tminf, two for tmaxf, and none for solrad for each time step. An error is
reported if the data requested by the modules do not match the header. Extra values on
the line will be ignored.

3.4.1 Time Steps

MMS makes the distinction between two different time step modes. These are a daily
mode having a 24 h time step and an incremental mode whose time step is less than 24
h. Use of either or both of these modes is a function of the modules that comprise a
model. For models that can use both modes, MMS will switch between these modes
automatically as dictated by the data file.

By convention, daily mode values have zeros in the hour, minute, and second fields of
the time stamp (yyyy-mm-dd 00:00:00). Incremental mode times run from yyyy-mm-dd
00:00:01 to yyyy-mm-dd 24:00:00 (midnight). Time is handled on a fractional Julian day
basis. The year, month, and day fields of the time stamp are converted to an absolute
Julian day. Then the hour, minute, and second fields are converted to a decimal fraction
of a day.

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 29

3.4.2 Multiple Data Files

MMS allows specification of multiple input data files. This allows for multiple
daily-mode data files and multiple incremental-mode data files. For example, a model
could be run with one daily data file and several incremental files, each containing short
time step data for different individual storms to be simulated at the shorter time steps.
This allows users to easily change the data set without the need to edit a single large
data file.

Multiple input data files in MMS are read according to the following rules:

• The data lines within a file must be in order from earliest to latest.
• When processing multiple files, the first data line from each file is read. MMS

chooses the one with the earliest time stamp and uses it as the current data.
When MMS is ready for data for the next time step, the next line is read from
the current file and is compared with the other files, looking for the earliest
time step. This procedure repeats until there are no more data lines in any
of the specified data files.

• Incremental mode data may have a variable time step.
• Incremental mode data must cover a full day (the first time step is from

yyyy-mm-dd 00:00:00 to the hh:mm:ss of the first data value for that
yyyy-mm-dd and the last value for the day is for the time increment that ends
on yyyy-mm-dd 24:00:00).

• Incremental data take precedence over daily data. In the case where both
data types are present for the same day, the daily value will be disregarded
and the model will run in incremental mode for that day.

• An error will occur if multiple input files have the same
yyyy-mm-dd-hh:mm:ss values and non-identical data.

3.5 Environment File

All models built in MMS reference a special environment file. This file specifies direc-
tory paths, system files, and MMS related utilities. The most important of these specifica-
tions is the control file, text editor, and HTML viewer. The default environment file is
mms.env and is located in the control directory of the user workspace directory. The
default environment file is specified by setting the mms_env_file environment variable to
the full path to this file. This is done automatically by the setmms script in the control
directory of the user workspace directory. The user can select another environment file to
be used as the default file by including the -E option at the time the MMS model is initi-
ated. An example of the -E option is:

xprms -E<user_directory>/control/mms.env

When the model xprms is executed, the control file mms.env will be substituted for the
default control file. All environment files are located in the <user_directory>/control direc-
tory.

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 30

An example of the first few lines of an environment file are:

#environment file for MMS
#
#These variables are added to the environment by the routine ‘append_env’
#unix path delimiter
mms_path_delim=/
mms_editor=vi
mms_html_viewer=mosaic

#directories

mms_work_dir=/home/markstro/mms_work
mms_control_dir=/home/markstro/mms_work/control
mms_data_dir=/home/markstro/mms_work/input/data
mms_inc_dir=/home/markstro/mms/src/include
mms_make_dir=/home/markstro/mms_work/make
mms_sys_make_dir=/home/markstro/mms/make
mms_sys_modules_dir=/home/markstro/mms/modules
mms_modules_dir=/home/markstro/mms_work/modules
mms_files_dir=/home/markstro/mms/modules/files
mms_output_dir=/home/markstro/mms_work/output
mms_param_dir=/home/markstro/mms_work/input/params
mms_setdims_dir=/home/markstro/mms_work/modules/setdims
mms_var_dir=/home/markstro/mms_work/input/vars
mms_user_out_dir/home/markstro/mms_work/output
mms_bin_dir=/home/markstro/mms_work/models
mms_object_dir=/home/markstro/mms_work/make/obj
mms_mlib_dir=/home/markstro/mms/lib
mms_help_dir=/home/markstro/mms/help/mms
mms_hier_dir=/home/markstro/mms_work/modules/hier

#files

mms_control_file=cane.control
mms_make_template=make.template
mms_sens_file=sens.dat
mms_opt_file=opt.dat

This file is created automatically by the mms_workspace installation script. Generally,
users should not have to make any modifications except to specify a different text editor
than vi or a different HTML viewer than mosaic. Also, the paths must be changed if either
the master MMS directory or the current workspace directory is moved.

3.6 Control Files

When a selected model is run, the default control file will be loaded into the control
database. The default control file is mms.control and is located in the control directory of
the user workspace directory. The user can select another control file to be used as the
default file by including the -C option at the time the MMS model is initiated. An example
of the -C option is:

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 31

xprms -Cprms.control

When the model xprms is executed, the control file prms.control will be substituted for
the default control file. All control files are located in the <user_directory>/control direc-
tory.

An example of the first few lines of a control file are:

####
data_file
1
4
/models/mms_work/input/data/carson.test
####
param_file
1
4
/models/mms_work/input/params/efcarson.params
####
var_save_file
1
4
vars.save1
####

The file is similar in structure and format to the parameter file described above. The
file begins with a delimiter followed by the tag name of an item in the GUI. The first tag
name is data_file which represents the path name to the data file currently being used.
The next line shows that there is one data file and the next line shows that the data type
that is used to name the file is type 4 or a character data type. Type specifications are 1-
4 and are the same as those listed above for parameter files (Section 3.3). The next line
is the actual character string for the data file.

The next sets of items between the delimiters (####) specify the path to the parameter
file and the file name for the file that will be used to save all declared variables at the end
of a model run. The control file continues on in this manner for all tag names of the GUI
features.

3.7 Model Execution

Executable models that have been developed from the module library typically reside
in one of two places. Models that have received some form of testing and approval by
the agency using MMS will be located in the bin directory of the master directory. Models
developed by the user will be located in the model directory of the user workspace direc-
tory. Other MMS executable programs also reside in the bin directory of the master direc-

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 32

tory. Putting the paths to this bin directory and the model directory of the user workspace
directory in the PATH environmental variable will permit model execution from any direc-
tory on the system.

Each model name begins with the letter x and is followed by the remaining letters
used to name the model. A specific model is executed by typing its full name at the oper-
ating system prompt. Upon execution, a GUI, based on the Motif X-windows toolkit, is
initiated and provides the user access to all model initialization, run, and analysis tools in
the system. The functions of the GUI are described in Chapter 4.

MMS GRAPHICAL USER INTERFACE 33

4. MMS GRAPHICAL USER INTERFACE

4.1 Interface Conventions

The interface is mouse driven. The user moves the mouse pointer over a desired
option and clicks the left mouse button to execute. The other buttons have special
functions which are explained below.

Some of the options require the user to choose between a number of sub-options.
When the user clicks on one of those, a small square or diamond next to the choice will
take on a different appearance than those next to the items not selected. Some of the
options are mutually exclusive (called “radio buttons”), while other options can be
simultaneously selected.

4.1.1 Menus

MMS menu choices in the main system window appear on the upper part of the
window. All menus are of the “pull down” type. Sub-menus are displayed beside the
parent menu, so that the user is aware of the current menu hierarchy. However, “action”
windows are placed over their parent menu to indicate to the user that they require action
before any other function may be selected. When traversing the menu hierarchy, those
options higher in the hierarchy will be disabled. This is indicated by a “graying” of the
color of the labels in the menu choices.

To pull down a menu, position the mouse pointer over the menu, and press the left
button. The user may find that it is easier to release the mouse button immediately. While
the pulled-down menu is displayed, move the mouse pointer to the desired menu option,
again press the left mouse button, and release it immediately. Some menu options
produce “cascading” menus. These options are identified by small triangular arrows on
the right hand side of the option. Although it is possible to traverse the cascading menus
with a left mouse button pressed, it is easier to release the button after the choice is
made.

In many cases a menu choice will cause a small window to “pop-up.” This window
may contain input fields, action buttons, or choice buttons.

4.1.2 Input Fields

Some of the interface options require editing of displayed text. This may be done with
the keyboard, or with both the mouse and the keyboard.

The mouse is used to position the text cursor, which looks like a tall ‘I’, in the text. The
arrow keys may then be used to move the cursor to the left or right. Typing will add
characters to the right of the cursor. The backspace key will delete the character to the
left, and the delete key will delete the character to the right. Some keyboards do not have

MMS GRAPHICAL USER INTERFACE 34

a backspace key, so move the cursor to the left of the character to be deleted and use the
delete key.

Highlight text by clicking the left button at one point in the text, and then drag the
cursor across the text while holding the left button down. Releasing the button completes
the operation. Typing after highlighting will replace the highlighted text with what is typed.
Pressing the delete key after highlighting text will delete that text. Select an entire word by
“double clicking.” Select the entire text field by “triple clicking.”

4.1.3 Slide Bars

Slide bars appear either on the right hand side or at the bottom of some pop-up
windows. Slide bars on the right hand side of the window are used to scroll the window
up and down, while slide bars on the bottom are used to scroll the window right or left.
Slide bars have three components: two triangular arrows at either end of the slide bar,
and a rectangular ‘slider.’ Clicking the left mouse button on either arrow causes a slow
scroll in the respective direction. Clicking on the rectangular bar and dragging the bar
causes a fast scroll. The relative location of the slider on the scroll is an indicator of the
relative location of the visual portion of the window with respect to the complete window.
Also, the size of the slider relative to the size of the slide bar gives an indication of the
size of the visual portion of the window with respect to the complete window.

4.1.4 Action Buttons

Some pop up windows have ‘action buttons.’ These buttons are similar in function to
menu choices, in the sense that they allow the user to select a particular option.
Examples of these action buttons are the Quit, Cancel, and Yes buttons and the
spreadsheet option buttons.

4.1.5 Standard Motif File Selection Dialog

File selection for some components of the system is accomplished using the standard
Motif file selection dialog (fig. 4.1). The Directories and Files scrollable lists show the
currently selected directory and the files contained in that directory. To select a file from
this list, one can click on the file name using the left mouse button. The full path of the
selected file also appears on the Selection text entry window. Alternatively, one can
simply enter the full path of the desired file in the Selection text entry window.

The Directory list contains a list of the subdirectories of the current directory and the
directory immediately above the current directory. To change to a subdirectory, click on
the subdirectory name using the left mouse button. The names of the files in the newly
selected subdirectory will appear in the Files list. To move to next higher directory, click
on its name which ends in the characters “/..” From this directory one can move to any
other directory in the system by repeating the directory selection procedure using the left
mouse button.

MMS GRAPHICAL USER INTERFACE 35

The Filter text entry window provides a way to selectively list files in the Files list. The
path to the current directory ending with the characters “/*” will list all files in the
directory. A path ending in the characters “/*.dat” would only list those files ending with a
“.dat” extension.

The selector buttons located at the bottom of the window are executed using the left
mouse button. The OK button is used to identify the file listed in the Selection text entry
window as the desired file. After clicking on OK, control returns to the previous menu.
The Filter button executes the filter in the Filter text entry window. The Cancel button
cancels this window and returns to the previous menu. The Help button provides
information on the use of this window.

4.2 Main MMS Interface Window

The main MMS interface window (fig. 4.2) provides information on the current model
being run and the associated data, parameter, and control files being used with the
model. A schematic representation showing the modules that have been linked to create
the model and the information flow among the modules is presented on the right half of
the window. Clicking on one of the module icons with the left mouse button opens a help
window with detailed information about the parameters and variables associated with the

Figure 4.1 Motif File Selector window.

MMS GRAPHICAL USER INTERFACE 36

module as well as a detailed description of the equations and assumptions used to
simulate processes in the module.

Across the top of the interface window is a menu bar that provides a number of
pull-down menu options to select data and parameter files, edit parameter files, and
select and execute various system options. The menu bar options are:

• File
• Edit
• Run
• Graph
• Print
• Help

These menu options are discussed in detail in the following sections.

4.3 File Menu

The File function allows the user to change data, control, or parameter files, to save
new control and parameter files, to specify the names of output files, and to exit MMS. All
options under the File menu are selected using the left mouse button unless otherwise

Figure 4.2 MMS Main Interface window.

MMS GRAPHICAL USER INTERFACE 37

noted in the text description of the function. The file pull-down menu contains the
following options.

4.3.1 Load Data Files

Clicking on this option produces a Data Files window (fig. 4.3) containing the names of
the data files currently selected for application with this model. To remove a data file from
the list, click on the name. To add a file, click on the add button. This opens a Load Data
File window that is presented as a standard Motif file selection dialog (fig. 4.1). The
default directory that appears in the dialog is < user_workspace>/input/data. A data file
can be selected from this directory or another directory of the user’s choice. The path for
the selected data file is added to the Current Data File list in the Data Files window.

The number of data files that can be selected is a function of the model being run.
Models using two or more data files are normally those that support variable time step
applications. In these cases, typically one data file contains data having a fixed time
step, for example a daily time step. The additional data file(s) would contain data for
selected periods of time within the time period of the first data file but for shorter time
steps than the daily time step. An example of such an application would be a model that
simulated streamflow in a daily time step but could also simulate shorter time step
stormflow hydrographs. The model starts by reading all data files and uses the data file

Figure 4.3 Data Files window.

MMS GRAPHICAL USER INTERFACE 38

with the earliest year, month, and day for each time step until a match is obtained for the
year, month, and day in a second data file. At this point, data are read from the second
data file until the year, month, and day are no longer equal for both data files. Data input
then returns to the first data file until another date match is obtained.

4.3.2 Load Parameters

Clicking on this option produces a Load Parameter File window that is presented as a
standard Motif file selection dialog (fig. 4.1). The default directory that appears in the
dialog is < user_workspace>/input/params. A parameter file can be selected from this
directory or another directory of the users choice.

4.3.3 Load Control File

Clicking on this option produces a Load Control File window that is presented as a
standard Motif file selection dialog (fig. 4.1). The default directory that appears in the
dialog is < user_workspace>/control. A control file can be selected from this directory or
another directory of the user’s choice.

4.3.4 Save Parameters

Clicking on this option produces a Save Parameters File window that is presented as
a standard Motif file selection dialog (fig. 4.1). The default directory that appears in the
dialog is < user_workspace>/input/params. A parameter file can be saved to this
directory or another directory of the user’s choice. A parameter file can be saved using
an existing file name by double clicking on the name in the Files list.

4.3.5 Save Control

Clicking on this option produces a Save Control File window that is presented as a
standard Motif file selection dialog (fig. 4.1). The default directory that appears in the
dialog is < user_workspace>/control. The current control variables can be saved as a
control file in this directory or another directory of the users choice. A control file can be
saved using an existing file name by double clicking on the name in the Files list.

4.3.6 Set File Names

Clicking on this option produces a Set File Names window (fig. 4.4) This window
allows specification of output file names where the results of model simulations are
written. The directories where these files are written are specified in the MMS
“environment file” (mms.env) which is created when the user workspace is created and is
located in the < user_workspace>/control directory.

Output file names to be set are:

MMS GRAPHICAL USER INTERFACE 39

• model output - output generated by any modules during a model run
• optimization - summary of the results of an optimization run (see Run Menu)
• sensitivity - summary of the results of a sensitivity analysis (see Run Menu)
• statistics - summary statistics for user-selected variables (see Run Menu)
• statvar - intermediate file for storing user-selected variables to be used in

the statistical analysis and for post processing graphical analysis
• parameter print - summary of the parameters (see Print Menu)
• variable print - summary of the variables (see Print Menu)
• variable save - save variables file

4.3.7 Exit

This option is used to exit MMS. A window will appear to verify the exit command. If
parameters have been modified and not saved, a warning window will appear. When this
window is dismissed, the user may save the modified parameter file or exit without
saving.

4.4 Edit Menu

The Edit function allows the user to edit the dimensions database, the index names
database or the model parameter file. Values in the parameter and dimension files may
be edited individually or within a spreadsheet. The edit pull-down menu contains the
following options.

Figure 4.4 Set File Names window.

MMS GRAPHICAL USER INTERFACE 40

4.4.1 Dimension Size

Clicking on the Edit Dimension Size option will produce a menu (fig. 4.5) containing
the names of all of the dimension variables used in the model and the current value
assigned to each of these variables. Any of the values may be changed by modifying or
overwriting the current value. After changes have been made, they are applied by
clicking on the OK button. If no changes are desired or changes are to be ignored, then
exit by clicking on the Cancel button. Clicking on any dimension name with the right
mouse button produces a window containing the definition of the dimension name and
the maximum size permitted for this dimension.

Because FORTRAN 77 does not support dynamic storage allocation, the maximum
sizes of dimensions are specified in an include file which is fmodules.inc for FORTRAN
or cmodules.h for C. Values entered using the Edit Dimension Size option cannot exceed
the maximum size specified in these include files. However, a user can modify these

Figure 4.5 Edit Dimension Size window.

MMS GRAPHICAL USER INTERFACE 41

maximum size values as needed. The fmodules.inc and cmodules.h include files are
discussed in more detail in Chapter 6.

4.4.2 Dimension Index Names

This option allows the user to assign names and a text description to the indexes
defined by the dimension variables. Clicking on this option will produce a menu
containing the names of all of the dimension variables used in the model. Clicking on a
dimension variable and then clicking on the Select button or simply double clicking on
the dimension variable will produce a Dimension Index Names Editor window (fig. 4.6).
In this window, up to a ten character name and a text description can be entered for each
index value. For example, if nmonths is a dimension variable with index values of 1 to 12,
the values 1 to 12 can be given the names of their associated months and these names
rather than the numbers will appear in all spreadsheet and tabular presentations that use
the nmonths dimension. Clicking on the index value name in one of these presentations
using the right mouse button will provide the user with the text description entered for
that value.

4.4.3 Parameters

This option enables the editing of model parameters using a number of approaches.
Clicking on the Parameters option will produce a menu that enables the editing of
parameters by Module and by Dimensions, or the resetting of the Default Values
specified in the modules of the model.

Figure 4.6 Dimension Index Names Editor window.

MMS GRAPHICAL USER INTERFACE 42

by Module

Clicking on this option will produce a window listing all of the modules within the
selected model. Clicking on one of the modules will produce a window containing a list of
all the parameters declared within that module. Then, clicking on the parameter of
interest will produce a Parameter Editing by Module window which lists the current
value(s) of this parameter and allows all the values of this parameters to be edited (fig.
4.7). Values can be entered or changed by modifying or overwriting the current value.
This window also has a Help button, which when pushed will display more detailed
information about the parameter, including the maximum, minimum and default values,
parameter units, a parameter definition, and possibly information regarding selection or
estimation of parameter values.

by Dimension

Selecting this option produces a window for selecting the options of editing Scalar,
Single Dimension, or Multiple Dimension parameters. These are based on the type of
dimension used to define the parameter.

Figure 4.7 Parameter Editing by Module window.

MMS GRAPHICAL USER INTERFACE 43

For each of these options, editing by dimension is accomplished using a Spreadsheet
window. The Spreadsheet window offers the user the ability to enter or change individual
values or groups of values for any of the model parameters. Individual cells are selected
by clicking on the cell using the left mouse button. A group of cells in one or more rows
and columns are selected by pressing and holding the middle mouse button and then
dragging the pointer across the desired group of cells. The selected cells are highlighted.
When all desired cells are selected, release the middle button. Extended editing
functions are available within each spreadsheet for operating on a selected cell or group
of cells. Functions are selected using the left mouse button unless specified otherwise.
The editing functions are listed and described in table 1.

Clicking on any of the parameter names using the left mouse button opens a help
window that provides detailed information about the parameter. This includes the
maximum, minimum and default values, parameter units, a parameter definition, and
possibly information regarding selection or estimation of parameter values.

Scalar - Clicking on the Scalar option opens the Scalar Spreadsheet Editor window
(fig. 4.8) which contains the single-value model parameters. Values can be entered or
changed by modifying or overwriting the current value.

Figure 4.8 Scalar Spreadsheet Editor window.

MMS GRAPHICAL USER INTERFACE 44

Single Dimension - Clicking on the Single Dimension option opens a window
containing a list of all of the one-dimensional indexes defined in the model. Selecting a
dimension index and clicking on the Select button opens a spreadsheet whose columns
are the parameters and whose rows are the dimension index values. For example, the
monthly values for all of the parameters dimensioned by month are displayed in the
spreadsheet shown in figure 4.9. In this example, the Dimension Index Names option
has been applied to change the numeric values of the months (1-12), which would
appear by default on the left margin of the spreadsheet, to alphabetic names.

Multiple Dimension - Choosing this option will produce another menu whose options
define the types of 2-D array spreadsheets available. They are:

Whole
This option will produce a menu which includes all of the 2-D parameters defined
within the model. Choosing a parameter will produce a spreadsheet where the first
dimension defines the columns of the spreadsheet and the second dimension defines
the rows. The example in figure 4.10 shows monthly precipitation correction factors

Figure 4.9 Single-Dimension Spreadsheet Editor window.

MMS GRAPHICAL USER INTERFACE 45

by months (columns) for each hydrologic response unit defined within the basin
(rows).

by Column
This option produces a menu of the various 2-D index pairs that have been created in
the modules. Choosing an index pair produces a columnar listing of all of the
parameters defined by the chosen index combination. An example in figure 4.11
shows the parameters with the 2-D index pair of months and hydrologic response
units. The parameters having this index combination are the precipitation adjustment
factors rain_adj and snow_adj. They are displayed one month at a time. The Index
Name “jan” and the Index Value “1” shown at the top of the window indicate that the
values shown are for the index nmonth which is January and has the value of 1.
Values for other months are displayed by clicking on the left and right arrows at the
top of the window using the left mouse button. Each row has nhru or the number of
hydrologic response units as its index and these values are shown on the left side of
the columns.

Figure 4.10 Two-Dimensional - Whole Spreadsheet Editor window.

MMS GRAPHICAL USER INTERFACE 46

4.4.4 Default Values

Selecting this option enables the user to reset all parameter values to their default
values as defined in the modules of the model being used. When this option is selected,
a Warning window is produced with the message “Do you want to set all parameters to
default values?”. Pressing the OK button will overwrite all parameter values in the current
parameter work file. Pressing the Cancel button will exit this option without resetting any
parameter values. The user must save the parameter work file after exercising this
option in order to retain these parameter changes for future use. It is important to
remember to save the current parameter work file before selecting this option if
the user wants to retain the current parameter values for future use.

4.4.5 Parameter Information

Selecting this option opens a text entry window in which the Description field of the
Parameter Information area in the MMS Main Interface window (fig. 4.2) can be entered.

Figure 4.11 Two-Dimensional by Column Spreadsheet window.

MMS GRAPHICAL USER INTERFACE 47

4.4.6 Control Information

Selecting this option opens a text entry window in which the Description field of the
Control Information area in the MMS Main Interface window (fig. 4.2) can be entered.

4.4.7 File

Selecting this option opens a File window that is presented as a standard Motif file
selection dialog (fig. 4.1). The user is free to move to any directory on their system and to
view and edit any ASCII file on their system. Any file selected using the dialog will be
displayed using the default editor defined by the MMS environment file (mms.env)
located in the < user_workspace>/control directory.

4.5 Run Menu

The Run function enables the user to run a model in a number of different modes. The
options available in the run pull-down menu are:

• Single Run
• Sensitivity
• Optimization
• ESP

4.5.1 Single Run

This option enables the user to run the model for a selected period of time using the
parameter and data files shown in the MMS Main Interface menu (fig. 4.2). The Single
Run Control window (fig. 4.12) contains a number of features that can be used to define
the period of the run, select a variety of analyses to be conducted on the run output, and
specify file names where output is to be written.

Time Info

The upper left quadrant of the window contains the Time Info entry box. Here one can
set the start and end times (year, month, day, hour, minute, and second) and the initial
time step, in hours, for this run.

File Info

In the lower left quadrant is the File Info entry box. The option to write model output to
a file is selected by pressing the Model Output toggle button “on” and entering a file
name in the text entry window. If an output file was named using the Set File Names
window (fig. 4.4), that file name will automatically be placed in the text entry window.
Changing the output file name here will also change it in the Set File Names file. The
output file will be written to the < user_workspace>/output directory.

MMS GRAPHICAL USER INTERFACE 48

When a model is run, there are two options available for the initialization of declared
model variables. One is that all declared variables are initialized according to the
‘Initialize’ sections of the program modules. The second is that all declared variables can
be initialized from a set of variables saved at the end of a previous run. The option to
save all the declared model variables at the end of a run is selected by pressing the
Variables Save toggle button “on” and entering a file name in the text entry window. The
file will be written to < user_workspace>/input/vars directory. To use a previously saved
variables file, press the Variables Init toggle button “on” and enter the name of the
variables file in the text entry window. The file must be located in the
<user_workspace>/input/vars directory.

Graphing Program

In the upper right quadrant of the window three Graphing Program options are
available and are selected by pressing the desired toggle button “on.” Each option can
provide up to four graphical display windows. Only one option can be selected at a time.
Run TIme Plots are displayed as the model is running. Post Run Plots and Post Run 3-D
Plots are displayed at the end of the model run.

Figure 4.12 Single Run Control window.

MMS GRAPHICAL USER INTERFACE 49

The Post Run Plot option will display user-selected time series of model output
variables as X-Y plots and provides a variety of interactive display and analysis
capabilities. The Post Run Plot window (fig. 4.13) has a menu bar across the top with a
number of pull-down menus to provide access to all the program features. The Help
button at the far right side of the menu bar provides access to on-line documentation for
use of all the Post Run Plot features.

The Run TIme Plot option has only X-Y plot display capabilities. The Run TIme Plot
window (fig. 4.14) has three buttons available. The Options button allows access to the
Options window (fig 4.15) which allows the user to select a variety of scaling and printing
options. Either axis can be toggled to a logarithmic scale and the legend can be toggled
on or off. There are also numerous zooming options. Finally, there is a hardcopy option.
The output device or file is Postscript format. The Close button exits the Run TIme Plot
window. The Help button displays help for the Run TIme Plot window.

Figure 4.13 Post Run Plot window.

MMS GRAPHICAL USER INTERFACE 50

Figure 4.14 Run TIme Plot window.

Figure 4.15 Run Time Plot Options window.

MMS GRAPHICAL USER INTERFACE 51

The Post Run 3-D Plot is a tool that provides 3-dimensional plotting capabilities. The
Post Run 3-D Plot window (fig. 4.16) provides a 3-dimensional view of a selected
variable in time and space. The time step is plotted on the x-axis, the dimension of
variable is plotted on the y-axis, and the values of the variable for each dimension and
time step are plotted on the z-axis. The plot can be rotated left, right, up, and down by
clicking these buttons located in the second row of options. The Theta value in the top
row of options is the degrees of rotation in the x-y plane and the Phi value is the degrees
of rotation in the y-z plane. The upper right button allows the user to toggle between a
Wire Frame or Hidden Lines display. The lower right button can be used to print the plot
on the system Postscript printer. Press the Quit button to exit the window.

Output Options

Options to enable the selection of the variables to be displayed with the graphing tools
and to turn selected graphs on and off are provided in the Output Options section in the
lower right quadrant of the Single Run Control window (fig. 4.12).

Edit Options for Graphs - The toggle buttons for the four possible graphs must be
pressed “on” to display the selected graph. The variables to be displayed in each graph

Figure 4.16 Post Run 3-D Plot window.

MMS GRAPHICAL USER INTERFACE 52

are selected using the Edit Options for Graph button. Clicking on the button opens a set
of buttons with the numbers 1,2,3, and 4. Click on the number of the graph to be edited.
For the Post Run Plot and Run TIme Plot options, the Set Display Variables window (fig.
4.17) will appear. In this window the variables of the selected graph and the graph titles
and axes labels and dimensions are specified. The selection and editing procedure can
be repeated for each of the four graphs.

In this edit window the Available Variables list is a list of all the declared variables in
the model. Clicking on a variable name with the right mouse button opens a help window
that provides the definition, units, and dimensions of the variable. Clicking on a variable
with the left mouse button will add the variable to the Current Variables list. Clicking on a
variable in the Current Variables list with the left mouse button will remove it from the list.

For single- or multi-dimensioned variables, the Variable Index box may be used to
specify the dimension index number of the array location of the desired variable value
before it is selected. For multi-dimension variables the “i,j” dimension is entered in the
Variables Index box. Any combination of up to 10 single or multiple dimension variables
can be displayed in one graph. Changes to a selected graph are saved by pressing the
OK button. Pressing the Cancel button will exit the window without saving changes.

The physical specifications of each graph may be entered in the Graph Parameters
section of the window. The graph title, titles for the X and Y axes, and the minimum and
maximum for the X and Y axes may be specified in the appropriate boxes. For all time
increments, the X axis maximum will default to the time period of the run.

For the Post Run 3-dimensional graphic option the Set Display Variables window (fig.
4.18) is slightly different. The Available Displays list is a list of all the single dimensioned

Figure 4.17 Set Display Variables window for Post Run and Run TIme Plots.

MMS GRAPHICAL USER INTERFACE 53

variables and their associated dimension names. Selecting a variable places the variable
name in the Z-Axis field and the dimension name in the Y-Axis field. The time step is
selected from the available button options in the X-Axis field. The graph title and the axis
titles are entered in their associated entry fields.

GIS Animation Options - This option enables a user to view the change in a selected
spatially distributed variable overlaid on a GIS developed map of a watershed (fig. 4.19).
The changes are displayed on the map for each time step as the model is running, thus
providing an animated view of the changes.

Figure 4.18 Set Display Variables window for Post Run 3-D Plot.

MMS GRAPHICAL USER INTERFACE 54

When the Edit GIS Animation Options button on the Single Run Control window (fig.
4.12) is pushed, the Set Animation Variable window (fig. 4.20) will appear. The user must
specify the path and name of a valid raster map in the Map Directory and Map Name
fields. This is typically the map that has the basin subareas delineated on it. Next, select
a variable from the Available Variables list which corresponds to the specified map. Set
the variable display range in the min and max fields. These are the minimum and
maximum values over which this variable may occur. Enter the number of divisions into
which the range from min to max is to be divided in the # Divisions field. Finally, the
format of the raster map file should be specified. These formats include Arc raster ASCII,
Grass Raster, and BIL.

Animation output at specific time steps can be saved as GRASS raster maps by
specifying the time information and map name in the Save Map Options window. Click on
the Add Save item to construct the Current maps to save list. Maps for the dates
selected will be saved when the model runs.

When the GIS Animation toggle button is activated on the Single Run Control window
(fig. 4.12), and the Start button is pushed, an additional run controller will appear. Users
can control the speed of the animation as well as step forward in single time increments.

Edit Statistics Options - Pushing the Edit Statistics Variables button on the Single Run
Control window (fig. 4.12) will activate the Statistics Variable Options window (fig. 4.21).
The Available Variables list is a list of all the declared variables in the model. Clicking on
a variable name with the right mouse button opens a help window that provides the
definition, units, and dimensions of the variable. Clicking on a variable with the left
mouse button will add the variable to the Current Variables list. Clicking on a variable in
the Current Variables list with the left mouse button will remove it from the list. For
dimensioned variables, the Variable Index box may be used to specify the dimension

Figure 4.19 GIS Animation window.

MMS GRAPHICAL USER INTERFACE 55

index number of the variable before it is selected. Variables in the Current Variables list
will have statistics computed for them. Up to twenty variables can be selected for
statistical analysis.

The statistics produced for each variable are the mean, standard deviation, skewness,
minimum, maximum, and a histogram. These statistics are automatically saved in a file
in the < user_workspace>/output directory. The name for this file is specified in the
Statistics box above the Edit Statistics Variables button (fig. 4.12). A file called
statvar.dat is also created in the output directory and contains the values of the variables
listed in the Current Variables box (fig. 4.21) for each time step.

Edit GIS Output Variables Option - Pushing the Edit GIS Output Variables button on
the Single Run Control window (fig. 4.12) will activate the GIS Output Options window.
The Available Variables list is a list of all the declared variables in the model. Clicking on
a variable name with the right mouse button opens a help window that provides the
definition, units, and dimensions of the variable. Clicking on a variable with the left
mouse button will add the variable to the Current Variables list. Clicking on a variable in
the Current Variables list with the left mouse button will remove it from the list. Variables
in the Current Variables list will be output in Arc View file format in the output directory.
There will be one output file for each dimension and all variables of the same dimension
will be written to the same file.

Figure 4.20 Set Animation Variables window.

MMS GRAPHICAL USER INTERFACE 56

Start Button

Clicking on the Start button (fig. 4.12) will begin the model run.

Stop Button

The model run may be stopped by the user prior to run completion by clicking on the
Stop button (fig. 4.12).

4.5.2 Sensitivity

The sensitivity-analysis option allows the user to determine the extent to which
uncertainty in selected parameters results in uncertainty in the predicted variable.
Discussions of sensitivity analysis and its interpretation are presented by Mein and
Brown (1978) and Beck and Arnold (1977).

Two methods of sensitivity analysis are available. One is the method developed for
use with the USGS Precipitation-Runoff Modeling System (PRMS) and is described in
the PRMS User’s Manual (Leavesley and others, 1983). This method allows the
evaluation of up to 10 parameters at one time. The second method evaluates the
sensitivity of a single parameter or any pair of parameters and develops the objective
function surface for a selected range of these two parameters.

PRMS Sensitivity

Figure 4.21 Statistics Variables Options window.

MMS GRAPHICAL USER INTERFACE 57

Selecting the PRMS Sensitivity menu item will activate the PRMS Sensitivity window
(fig. 4.22). The initialization period and the sensitivity analysis period can be set in the
Time Info field of the window. The initialization period is a user-defined period the
purpose of which is to allow the model to cycle a number of times in an attempt to
minimize the effects of the user’s estimate of initial values of state variables at model
start up. The model will execute once for the initialization period and then be run
iteratively for the sensitivity analysis period using the computed state variable values at
the end of the initialization period as the initial conditions for the full sensitivity analysis.
Setting the initialization period to all zeros eliminates the use of an initialization period.

A model can be run for one time period but have the objective function computed for a
subset of that time period. An example might be for a snowmelt runoff model where one
may be interested in the sensitivity of selected runoff parameters during the melt period
of April through July. However, to evaluate this period, the model needs to be run from
October to July to accumulate and melt the snowpack. The beginning and ending month
for the computation of the objective function used in the sensitivity analysis are set in the
Obj Func Begin Month and Obj Func End Month boxes.

The Optimization Options field of the window provides access to tools for defining the
objective function and parameters to be used. The objective function is computed as a
function of the difference between selected Observed (O) and Predicted (P) variables.
The form of the objective function is determined by the settings of the Obj Fun
Transformation and the Obj Fun Sum buttons in this field.

MMS GRAPHICAL USER INTERFACE 58

The Obj Fun Transformation options are “none” or “log.” The Obj Fun Sum options are
“Absolute Error” and “Squared Error.” These provide the following four possible objective
functions for use in the analysis where n is the number of time steps over which the
objective function is computed:

Obj Fun Transformation = none
Obj Fun Sum = Absolute Error

 (1)

Obj Fun Transformation = none
Obj Fun Sum = Squared Error

Figure 4.22 PRMS Sensitivity window.

O P–()

1

n

∑

MMS GRAPHICAL USER INTERFACE 59

 (2)

Obj Fun Transformation = log
Obj Fun Sum = Absolute Error

 (3)

Obj Fun Transformation = log
Obj Fun Sum =Squared Error

 (4)

The Set Objective Function Variables button (fig. 4.22) opens the Sensitivity Objective
Function Variables window (fig. 4.23). This window allows the user to set the observed
and predicted variables to be used in the objective function equation. Pressing the Set
button (fig. 4.23) opens the Sensitivity Analysis Objective Function Variables Selection
window (fig. 4.24). All variables declared in the model are displayed in each of two
columns, Observed and Predicted. The observed and predicted variables to be used in
the objective function are selected by clicking on the desired variable in each column
using the left mouse button. Clicking on any variable name with the right mouse button
will provide a definition of the variable and its dimension and units. Pressing OK copies
these variable names into the Sensitivity Objective Function Variables window (fig. 4.23).
If the selected variables are dimensioned, the user can specify the index for the variable
by clicking on the Ind box following the variable name and entering the value. The
variables are then accepted by pressing the OK button in this window.

O P–() 2

1

n

∑

ln O 1+() ln P 1+()–()

1

n

∑

ln O 1+() ln P 1+()–() 2

1

n

∑

MMS GRAPHICAL USER INTERFACE 60

Parameters to be evaluated are selected by pushing the Set Sensitivity Parameters
button (fig. 4.22) which opens the Sensitivity Analysis Parameters window (fig. 4.25). All
parameters declared in the model are listed in the Available Parameters window. Up to
10 parameters can be selected for analysis. Clicking on a parameter name with the left
mouse button opens an Indices window (not shown) which is a list of sequential numbers
from one to the dimension size of the parameter. All index values can be selected by
pressing the Select All button in the Indices window or a subset of all values can be

Figure 4.23 Sensitivity Analysis Objective Function Variables window.

Figure 4.24 Sensitivity Analysis Objective Function Variables Selection window.

MMS GRAPHICAL USER INTERFACE 61

selected by individually clicking on the desired values with the left mouse button. All
selected values are highlighted. For distributed parameters, the sensitivity of the
selected parameter is evaluated only for the set of indices selected. Clicking OK moves
the parameter name and selected indices to the Selected Parameters table (fig. 4.25).

To deselect a parameter, click on the parameter name in the Parameter column of the
Selected Parameters table (fig. 4.25) using the left mouse button. This will open the
Indices window (not shown) where clicking on the Cancel button with the left mouse
button will remove the selected parameter.

In the analysis of a distributed parameter, all values, or the subset of selected values,
of the parameter are treated collectively. The values are increased or decreased at the
same time and are not treated individually. Thus, the change in objective function
associated with a given increase or decrease in a parameter value reflects the aggregate
response of that parameter or subset of parameter values. A major assumption in this
approach is that the initial estimates of the values of a given distributed parameter are
correct with regard to their relative differences in space or time. Two or more subsets of a
distributed parameter may be evaluated by selecting the parameter multiple times, each
with a different subset of values.

The user also has the option to define the manner in which changes in distributed
parameter values are made. One option is to change all selected values by the same
magnitude. For example, increase or decrease the selected values of a parameter by 0.5

FIgure 4.25 Sensitivity Analysis Parameters window.

MMS GRAPHICAL USER INTERFACE 62

units. The second option is to change all values of the parameter by a percentage of their
current values, for example, increase or decrease all selected values of a parameter by
10 percent. These options are selected for each parameter using the Mod Method
column of the Selected Parameters table (fig. 4.25). A zero “0” in this column is used for
the “same magnitude” option and a one “1” is used for the “percentage of current value”
option.

This sensitivity analysis will produce two output files. The names of these files can be
set in the FIle Info field of the PRMS Sensitivity window (fig. 4.22). The Model Output file
is the standard MMS output file where model results will be written. The Sens Summary
file contains a PRMS style sensitivity summary which includes (1) a table of the relative
sensitivities of each parameter for each time step, (2) an error propagation table which
examines the effects of a 5, 10, 20, and 50 percent error in the estimate of each
parameter on the objective function, (3) a measure of the standard error of the
parameters, and (4) the diagonal elements of a HAT matrix which provide an indication of
the relative influence of each individual time step on an optimization.

Two-Parameter Sensitivity

The two-parameter sensitivity option allows the user to create a map of the objective
function (z axis) against each of the chosen parameters (x and y axis). The purpose of
this sensitivity is to provide a visualization of the objective function in the region delimited
by user-defined maximum and minimum values for each of the two parameters. An
example of this type of sensitivity analysis is presented by Eagleson (1978). The
objective function used is equation 2 in the PRMS Sensitivity analysis section above.

An special case of this option can be selected to evaluate the sensitivity of a single
parameter. This produces the response function for a range of values of a single
parameter varying between a user-specified minimum and maximum. The description
below applies to the two-parameter sensitivity. However, selecting all settings for the
one-parameter sensitivity are identical to selecting the settings for the two-parameter
sensitivity, except that only one parameter is selected.

Clicking on the Two-Parameter Sensitivity option opens the Two Parameter Sensitivity
window (fig. 4.26). Most features are similar to those described in the PRMS sensitivity
section above. These include the Time Info and File Info fields and the Set Objective
Function Variables option in the Sensitivity Analysis Options field.

MMS GRAPHICAL USER INTERFACE 63

Clicking the Set Sensitivity Parameters button (fig. 4.26) opens the Set Sensitivity
Parameters window (fig. 4.27). In this window the Available Parameters list is a list of all
the declared parameters in the model. Clicking on a parameter name with the right
mouse button opens a help window that provides the definition, units, and dimensions of
the parameter. Clicking on a parameter with the left mouse button will add the parameter
to the Current Parameters list. Clicking on a parameter in the Selected Parameters list
with the left mouse button will remove it from the list. For distributed parameters, the
Parameter Index box may be used to specify the index number of the parameter before it
is selected. For multiple dimension parameters the “i,j” dimension is entered in the
Parameters Index box.

Figure 4.26 Two-Parameter Sensitivity Analysis window.

MMS GRAPHICAL USER INTERFACE 64

Pressing the OK button copies the two selected parameters and indices to input fields
of the Sensitivity Analysis Parameter Summary window (fig. 4.28). This window is
accessed by clicking on the Other Sensitivity Options button in the Two Parameter
Sensitivity Analysis window (fig. 4.26). The Sensitivity Analysis Parameter Summary
window is used for entering computational limits on the sensitivity analysis. The text
entry window options for each parameter are parameter index, where the previously
selected index may be revised; the minimum and maximum parameter values to be used
in the analysis; and the number of intervals between the minimum and maximum
parameter values to be evaluated.

FIgure 4.27 Set Sensitivity Parameters window.

MMS GRAPHICAL USER INTERFACE 65

For example, if the user selects 10 intervals for the first parameter, and 15 for the
second, MMS will carry out 10 x 15 =150 runs of the model for the time period specified.
The first parameter will be varied over 10 equal increments between the specified
bounds and the second parameter will be varied over 15 equal increments. The objective
function results for each pair of parameters will appear on a grid dimensioned 10 x 15.

Sensitivity results are stored in the < user_workspace>/output directory. The file name
is specified in the Model Output box in the File Info field of the Two Parameter Sensitivity
Analysis window (fig. 4.26). Output can be viewed graphically using the Sensitivity
Analysis option of the Graph menu in the MMS Main Interface window (fig. 4.2). The
graphical options are described below in the Graph section of this chapter.

4.5.3 Optimization

Optimization components control the automatic adjustment of model parameters to
obtain better agreement between observed and predicted values. A model parameter is
broadly defined as a value that is used to represent a characteristic of a process and is
held constant during a simulation run. Using this definition can produce a large number
of parameters; however, the availability of a large number of parameters is not meant to
encourage optimization of all of them. Two optimization procedures are available to fit
user-selected parameters. One is the Rosenbrock technique (Rosenbrock, 1960) as it is
implemented in the USGS Precipitation-Runoff Modeling System (PRMS) (Leavesley
and others, 1983). The second is a hyper-tunnel method (Restrepo and Bras, 1982).

Rosenbrock Optimization

Selecting the Rosenbrock menu item from the optimization choices in the Run menu
will activate the Rosenbrock Optimization window (fig. 4.29). This window is similar in
functionality to the PRMS Sensitivity window (fig. 4.22) described above. The
initialization period and the optimization period can be set in the Time Info field. The
initialization period is a user-defined period the purpose of which is to allow the model to
cycle a number of times in an attempt to minimize the effects of the user’s estimate of

Figure 4.28 Two-Parameter Sensitivity Analysis Parameter Summary window.

MMS GRAPHICAL USER INTERFACE 66

initial values of state variables at model start up. The model will execute once for the
initialization period and then be run iteratively for the optimization period using the
computed state variable values at the end of the initialization period as the initial
conditions for the full optimization. Setting the initialization period to all zeros eliminates
the use of an initialization period.

As described in the sensitivity analysis section, the model can be run for one time
period but have the objective function computed for a subset of that time period. The
beginning and ending month for the computation of the objective function used in the
optimization can also be set in the Obj Func Begin Month and Obj Func End Month
boxes.

The Optimization Options field provides access to defining the objective function and
parameters to be used. The objective function is computed as a function of the difference
between selected observed and predicted variables. The form of the objective function is
determined by the settings of the Obj Fun Transformation and the Obj Fun Sum buttons
in this window. The Obj Fun Transformation options are “none” or “log” and the Obj Fun
Sum options are “Absolute Error” and “Squared Error”. The objective function equations

Figure 4.29 Rosenbrock Optimization window.

MMS GRAPHICAL USER INTERFACE 67

resulting from the available combinations of these options are shown in equations 1-4 in
the PRMS Sensitivity Analysis discussed above.

The Set Objective Function Variables button opens the Rosenbrock Objective
Function Variables window (fig. 4.30). This window allows the user to set the observed
(O) and predicted (P) variables to be used in the objective function equation. Pressing
the Set button opens the Rosenbrock Objective Function Variables Selection window
(fig. 4.31). All variables declared in the model are displayed in two columns, Observed
and Predicted.

Figure 4.30 Rosenbrock Objective Function Variables window.

Figure 4.31 Rosenbrock Objective Function Variables Selection window.

MMS GRAPHICAL USER INTERFACE 68

The observed and predicted variables to be used in the objective function are selected
by clicking on the desired variable in each column using the left mouse button. Clicking
on any variable name with the right mouse button will provide a definition of the variable
and its dimension and units. Pressing OK copies these variable names into the
Rosenbrock Objective Function Variables window (fig. 4.30). If the selected variables are
dimensioned, the user can specify the dimension index for the variable by clicking on the
Ind box following the variable name and entering the value. The variables are then
accepted by pressing the OK button in this window.

Parameters to be optimized are selected by pushing the Set Optimization Parameters
button (fig. 4.29) which opens the Rosenbrock Optimization Parameters window (fig.
4.32). All parameters declared in the model are listed in the Available Parameters
window. Up to 10 parameters can be selected for optimization at any one time. Clicking
on a parameter name with the left mouse button opens an Indices window (not shown)
which is a list of sequential numbers from one to the dimension size of the parameter. All
index values can be selected by pressing the Select All button on the Indices window or
a subset of all values can be selected by individually clicking on the desired values with
the left mouse button. All selected values are highlighted. For distributed parameters,
optimization of a selected parameter is evaluated only for the set of indices selected.
Clicking OK moves the parameter name and the selected indices to the Selected
Parameters table (fig. 4.32).

To deselect a parameter, click on the parameter name in the Parameter column of the
Selected Parameters table using the left mouse button. This will open the Indices

Figure 4.32 Rosenbrock Optimization Parameters window.

MMS GRAPHICAL USER INTERFACE 69

window (not shown) where clicking on the Cancel button with the left mouse button will
remove the selected parameter.

Additional items to be filled in the Selected Parameters table are the Initial Step Size
for parameter adjustment and the Lower Constraint and Upper Constraint for the
parameter. The Initial Step Size is expressed as a decimal fraction of parameter
magnitude. A value of 0.1 would cause the selected parameter to be increased by 10
percent in the first iteration of the fitting process. The Lower and Upper Constraints are
expressed in the units of the parameter and define the region over which the parameter
will be fitted.

As with the PRMS Sensitivity Analysis described above, in the optimization of a
distributed parameter, all values, or the subset of selected values, of the parameter are
treated collectively. The values are increased or decreased at the same time and are not
treated individually. The user has the same options to define the manner in which
changes in distributed parameter values are made. One option is to change all selected
values by the same magnitude. These options are selected for each parameter using the
Mod Method column of the Selected Parameters table. A zero (“0”) in this column is used
for the “same magnitude” option and a one (“1”) is used for the “percentage of current
value” option.

The Max Trials input option (fig. 4.29) is used to set the number of iterations over
which the optimization is to be run. One pass is made through all the selected
parameters for each iteration.

The optimization will produce two output files. The names of these files can be set in
the FIle Info window. The Model Output file is the standard MMS output file where model
results will be written. The Opt Summary file contains a PRMS style optimization
summary which includes initial and final parameter values and the objective function
value for each iteration of the optimization procedure.

The optimized parameter values reside in the parameter database at the end of the
optimization run. To keep these optimized values, the parameter file must be saved using
the Save Parameters option of the File pull-down menu in the MMS Main Interface
window (fig. 4.2) before making any changes to the file or before exiting MMS.

Hyper-tunnel Optimization

The Hyper-tunnel optimization (Restrepo and Bras, 1982) is a variation on the
Davidon Fletcher Powell (DFP) optimization procedure (Davidon, 1959; Fletcher and
Powell, 1963). Two modifications were made to the DFP method. The first is in the use of
constraints for enforcing maximum and minimum parameter values. The second
selectively excludes those parameters to which the objective function is less sensitive.
The rest of the algorithm is identical to the DFP algorithm.

The calculation of the Hessian is re-started after a number of major iterations. The
search direction is computed based on the current gradient and Hessian matrix, and a

MMS GRAPHICAL USER INTERFACE 70

minor iteration is conducted along this direction. At this point the Hessian is recalculated
and a new direction of search is determined. The set of parameters is revised to exclude
those parameters having no sensitivity and to include those with high sensitivity. Then a
new major iteration is performed.

The objective function used is equation 2 in the PRMS Sensitivity Analysis section
above. The algorithm finds the minimum value of the objective function by performing a
quadratic interpolation between the best three values of the objective function. The
convergence criterion is based on the change in the value of the objective function
between major iterations.

Clicking on the Hyper-tunnel option opens the Hyper-tunnel Optimization window (fig.
4.33) which is similar to the Rosenbrock Optimization window. All features are similar to
those described in the Rosenbrock Optimization section above. These include the Time
Info and File Info fields and the Set Objective Function Variables option in the
Optimization Options field.

Clicking on the Set Optimization Parameters button opens the Hyper-tunnel
Optimization Parameter Selection window (fig. 4.34). In this window the Available
Parameters list is a list of all the declared parameters in the model. Clicking on a
parameter name with the right mouse button opens a help window that provides the

Figure 4.33 Hyper-tunnel Optimization window.

MMS GRAPHICAL USER INTERFACE 71

definition, units, and dimensions of the parameter. Clicking on a parameter with the left
mouse button will add the variable to the Selected Parameters list. Clicking on a
parameter in the Selected Parameters list with the left mouse button will remove it from
the list. For distributed parameters, the Parameter Index box may be used to specify the
index number of the parameter before it is selected. For multiple dimension parameters,
the “i,j” dimension is entered in the Parameters Index box.

Up to ten parameters can be selected for optimization. Pressing the OK button
accepts the selected parameters and indices. Pressing Start in the Hyper-tunnel
Optimization window (fig. 4.33) initiates the optimization. The optimized parameter
values reside in the parameter database at the end of the optimization run. To keep
these optimized values, the parameter file must be saved using the Save Parameters
option of the File pull-down menu in the MMS Main Interface window (fig. 4.2) before
making any changes to the file or before exiting MMS.

Figure 4.34 Hyper-tunnel Optimization Parameter Selection window.

MMS GRAPHICAL USER INTERFACE 72

4.5.4 ESP

A modified version of the U.S. Weather Service's Extended Streamflow Prediction
(ESP) program (Day, 1985) has been coupled to MMS to provide forecasting capabilities
which include short-term and seasonal forecasting for floods and water supply and
evaluation of the effects of land-use and climate changes on hydrologic response. The
ESP procedure uses historic or synthesized meteorologic data to forecast future
streamflow, given the simulated hydrologic conditions for a watershed at a specified
point in time. When historic data are used, the procedure assumes that past
meteorological events are representative of future meteorological events. Alternative
assumptions about future meteorological conditions can be made with the use of
synthesized meteorological data.

The current implementation of ESP is directed to forecasting streamflow. The user
defines a forecast period, which can vary from a few days to an entire year. Typically, a
model is run up to the start of the forecast period and all the model state variables are
saved. A streamflow hydrograph is then simulated for a user-defined forecast period for
each year in the meteorological database. The model is reinitialized at the start of each
iteration of the forecast period using the saved set of state variables that are assumed to
be representative of the conditions on the first day of the forecast period. The simulation
results obtained from this iterative procedure are termed the conditional simulation.

Streamflow variables of interest are extracted from each forecast hydrograph and
stored in an ESP file. The variables that can be extracted are the maximum daily flow,
flow volume, and the dates that the flow decreases to less than as many as three
selected threshold values. One variable, or any combination of variables, can be
selected for a given model run.

The ESP procedure is implemented by selecting the ESP option in the Run menu (fig.
4.2) which opens the ESP window (fig. 4.35). The Time Info part of the window is where
the forecast period is defined. The forecast period can vary from a few days to an entire
water year.

Two options are available to set the initial values of the state variables for the first day
of the forecast period. One is to use the initial conditions that are defined by the model at
start up and assume that these conditions are representative of the first day of the
forecast period.

A second option is to run the model, in the Single Run mode, up to the day prior to the
first day of the forecast period using historic data. The Save Variables option described
in the Single Run mode discussion above is selected to save the variables to a file. This
saved file can be specified in the Variable Init field of the File Info part of the ESP
window. Turning this option on will cause the file specified to be read into the variables
database prior to model execution. The Model Output option of File Info specifies the
standard MMS output file where model results will be written.

MMS GRAPHICAL USER INTERFACE 73

Selecting the Set ESP Variables button opens the Set ESP Variables window (fig.
4.36). In this window the Variables list is a list of all the declared variables in the model.
Clicking on a variable name with the right mouse button opens a help window that
provides the definition, units, and dimensions of the variable. Clicking on a variable with
the left mouse button will place the variable in the Selection box. Clicking on another
variable in the Variables list with the left mouse button will overwrite the Selection box.
For distributed variables, the Variable Index box may be used to specify the index
number of the variable before it is selected. For the current implementation, this variable
must be a streamflow variable.

The other Selection options are used to define a variety of measures of streamflow
that will be used in the frequency analysis. Flows is used to select cubic feet per second
(cfs) or cubic meters per second (cms) for the measure of peak flow. Volumes is used to
select cubic feet per second per day (cfsd), acre-feet (acft), or cubic meters (m3) for the
measure of flow volume over the forecast period. Thresholds permit the selection of up
to three different flow values for frequency analysis computation of the date that the flow
drops below the selected threshold values.

Figure 4.35 ESP window.

MMS GRAPHICAL USER INTERFACE 74

Selecting the Set ESP Series button (fig. 4.35) opens the Set ESP Series window (fig.
4.37). This window allows the user to select an additional set of variables whose values
will be written to the file named in the Output file name field of the window. An output time
series for each variable and for each forecast period is written to this file. In the Available
Variables column of this window is a list of all the declared variables in the model.
Clicking on a variable name with the right mouse button opens a help window that
provides the definition, units, and dimensions of the variable. Clicking on a variable with
the left mouse button will place the variable in the Selected Variables column. Clicking on
a variable in the Selected Variables column with the left mouse button will remove it from
the list. For dimensioned variables, the Variable Index box may be used to specify the
dimension index number of the variable before it is selected.

The ESP program reads the file generated for the ESP variable, performs a frequency
analysis on each of the selected measures of the ESP variable, and produces a
probabilistic forecast for each of the variables in the file. These may include:

* Probability distribution of peak flow
* Probability distribution of total volume

Figure 4.36 Set ESP Variables window.

MMS GRAPHICAL USER INTERFACE 75

* Probability distribution of time to peak flow
* Probability distribution of time to each of the three low flows

The Log-Pearson Type III probability distribution is currently (1996) supported, but
other distributions could be added. Frequency analysis results for the conditional
simulation are presented in tabular form and as a graphical plot. The graphical plot
options are discussed in the Graph Menu section below.

The ESP time series selected in the Set ESP Series window (fig. 4.37) are saved to
provide these values for use in a variety of external user applications. One example is
the selection and use of a specific flow hydrograph for a user-defined probability of
occurrence for application in a management model to assess the probable impacts of the
selected flow on management options.

Figure 4.37 Set ESP Series window.

MMS GRAPHICAL USER INTERFACE 76

4.6 Graph Menu

The Graph pull-down menu (fig. 4.2) allows the user to obtain plots of sensitivity and
ESP variables output. The graph pull-down menu contains the following options:

• Sensitivity Analysis
• ESP

4.6.1 Sensitivity Analysis

This option produces a menu of sensitivity analysis plots that were generated using
the Two-Parameter sensitivity analysis procedure described above. Five different types
of plots are available. These are:

• Display Contours in xgcontour- Simple contour plot in which the maxi-
mum and minimum values of the objective function are highlighted.

• Display plots of families, variable 1- Graph of the objective function val-
ues for all values of one variable, while considering the values of the other
variable constant along each curve.

• Display plots of families, variable 2- Same as above for second variable
• Display contours - Alternative- Contour plot of the objective function. By

pressing the left mouse button and dragging the cursor along the contours,
the system displays the values of the objective function, and of each of the
parameters.

• Display Objective function in 3-D- Plot of the objective function in a simple
3D view.

4.6.2 ESP

This option produces a menu of the four plots that are available for the ESP Variable
selected for output. These are:

• Maximum Flow Probability Distribution Curve- Plot of the probability dis-
tribution of the maximum values of the ESP Variable.

• Volume Probability Distribution Curve- Plot of the probability distribution
of the computed volume of the ESP Variable.

• Time to Max. Probability Distribution Curve- Plot of the probability distri-
bution of the time to the maximum value of the ESP Variable.

• Time to Threshold Probability Distribution Curves- Plots of the probabil-
ity distribution of the time for the ESP Variable to fall below each of the three

MMS GRAPHICAL USER INTERFACE 77

user-defined thresholds.

4.7 Print Menu

The Print pull-down menu (fig. 4.2) allows the user to create a print file of either the
parameters file or the variables file. The options available are:

• Parameters
• Variables

4.7.1 Parameters

Selecting the Parameters option allows the user to create a print file listing the current
parameter values. The parameters are saved in the file name that is specified in the
parameter print field of the Set File Names window (fig. 4.4) which is accessed from the
File menu of the MMS Main Interface window (fig. 4.2).

4.7.2 Variables

Selecting the Variables option allows the user to create a print file listing the state
variables at the end of a model run. The variables are saved in the file that is specified in
the variable print field of the Set File Names window (fig. 4.4) that is accessed from the
File menu of the MMS Main Interface window (fig. 4.2).

4.8 Help Menu

The Help pull-down menu (fig. 4.2) allows users to get information on various aspects
of the MMS interface, modules, and models. Installation of a Hypertext Markup
Language (HTML) viewer, such as Mosaic (fig. 4.38), is required for use of the MMS
help system. Specification of this viewer must be made when MMS is installed.
Consequently, the appearance and functionality of the help system will depend on the
selected viewer.

All on-line documentation is either written in or converted to HTML. Help menu items
and Help buttons in MMS are referenced by hypertext links to the appropriate sections of
these documents. After a Help selection is made, the Help system loads the appropriate
section of the on-line documentation. As with any hypertext document, there may be
links to other related documents.

A model specific HTML file is written by xmbuild to the user’s models directory. This
contains information about model construction and links to the model specific modules.
This file is used anytime help is requested for model or modules.

MMS GRAPHICAL USER INTERFACE 78

Figure 4.38 MMS system documentation in HTML viewer.

MODEL BUILDING: XMBUILD 79

5. MODEL BUILDING: XMBUILD

xmbuild provides a GUI (fig. 5.1) to assist users in building executable models by linking
together MMS modules selected from the module library. The conventions used in the
xmbuild GUI for selecting and manipulating information are the same as those described
in section 4.1 of Chapter 4, MMS Graphical User Interface.

5.1 Module Library

The module library is composed of modules located in a number of directories. By
default, these directories are all the subdirectories in the mms/modules directory of the
MMS master directory and all subdirectories in the <user_workspace>/modules/src and
<user_workspace>/modules/hier directories of the user’s workspace. xmbuild will consider
any file with a “.c” or “.f” extension in these directories to be module source code.

The list of directories that compose the library is maintained in the file
<user_workspace>/control/workspace.path. Additional directories, located on the user’s
workstation or another workstation, may be added to the library by adding their full path
name to this file. Care should be taken to correctly specify the paths, especially when
working on systems with auto-mounting file systems.

It is also possible to remove module directories from the modular library by editing the
<user_workspace>/control/workspace.path file and removing the desired directory paths
from the list. However, removing directories may cause problems if the user attempts to
rebuild an existing model that uses a deleted directory.

5.2 Representations of Models Within xmbuild

There are three methods that xmbuild uses to store models. These are: (1) schematic
files, (2) HTML documentation files, and (3) executable files. A single model will have all
representations once it has been built. These files are stored in the
<user_workspace>/models directory.

5.2.1 Schematic Model File

As the user selects the desired modules from the module libraries, a graphical repre-
sentation of the model and the links between the modules appears on the Current Model
field of the xmbuild GUI (fig. 5.1). The schematic file is used to store this graphical repre-
sentation of the model. This file may be saved and reloaded later. Schematic model files
are distinguishable by their “.schem” extension. A schematic file may be loaded, edited,
renamed, and then saved to create a variation of the original model. Once this graphic
corresponds to the desired model, the source code of the associated modules is then
compiled into an executable version.

MODEL BUILDING: XMBUILD 80

5.2.2 HTML Model Documentation File

When the user builds a model, an HTML documentation file is written. The file contains
information about the compilation process, links to the module documentation, and any
text associated with the model. HTML model files are distinguishable by their “.html” exten-
sion. This file is displayed in a web browser any time the user requests information about
this model.

5.2.3 Executable Model File

After the executable model has been built, it may be run by the user. This file has the
same name as the schematic file, but it has no extension on the file name. xmbuild creates
this by compiling the selected modules and linking them with the MMS libraries. These
libraries provide the graphical user interface and utilities which are common to all models
built in MMS.

5.3 Main xmbuild Interface Window

Executing xmbuild produces the main xmbuild window (fig. 5.1). This window is divided
into three fields; the Module Locations, Available Modules, and Current Model fields.

MODEL BUILDING: XMBUILD 81

5.3.1 Module Locations Field

The Module Locations field is in the upper left of the main window and lists the directo-
ries comprising the module library. Each directory typically corresponds to a class of
module available for simulation. For example, one module directory may be “evapotranspi-
ration.” All evapotranspiration modules can be located in this directory. Users are then able
to select the evapotranspiration module best suited to their needs. To see the modules
located in a directory, select the directory name from the list by double clicking on the
name with the left mouse button. The available modules will then appear in the Available
Modules field.

5.3.2 Available Modules Field

The Available Modules field is located in the lower left corner of the main window and
contains icons which represent the modules available from the selected module directory.
To select a particular module, move the cursor on top of the desired module icon and click

Figure 5.1 xmbuild Graphical User Interface window.

MODEL BUILDING: XMBUILD 82

on it with the left mouse button. The module icon will then appear on the Current Model
field. xmbuild will not allow selection of a specific module more than once.

5.3.3 Current Model Field

This field displays the status of the model being constructed. Specifically, the window
shows the selected module icons and the data connections between them. The input vari-
ables, (or input “slots”) in a receiving module need to be connected to the output variables,
(or output “slots”) in another module. Connections between input and output slots are
performed automatically by xmbuild when a new module is added to Current Model field.
Red lines indicate the unidirectional flow of information from one module to another
module, yellow lines indicate bidirectional data flow between two modules.

If there is more than one possible link, the first one found will be made. However, it is
possible to manually override any of these automatic links through standard model editing
functions. If the default link is not the link desired, it may be modified using one of three
methods.

One method is to double click the left mouse button on a module icon. This opens a
window displaying the module Input and Output Slots (fig. 5.2). Clicking on one of the Input
Slot buttons with the left mouse button opens a Links window displaying a list of modules
that provide the selected variable as an output. The names of modules which are not on
the Current Model field but are in the modular library appear with an asterisk in front of
their names. Clicking with the left mouse button on a module name that has no asterisk
assigns the link for the selected variable to the selected module. If the desired module is
not on the Current Model field, then the user must first select it by choosing the appropriate
module directory in the Module Locations field and then clicking on the appropriate icon in
the Available Modules field.

MODEL BUILDING: XMBUILD 83

A second method of modifying the links between two modules is to place the cursor on
a module, click and hold the right mouse button, move the cursor to the other module and
release the mouse button. This will open a window displaying the possible links between
these two modules. Selecting the desired variables to link is done by clicking on each one
with the left mouse button. After all desired variables are selected, pressing the OK button
will make the selected links.

The third method is accomplished by clicking on a specific link between modules with
the left mouse button. When a link is selected, a window opens displaying all the possible
variable connections between the two modules. The variable names that are highlighted
are currently linked. This list can be modified to change the status of selected variables by
clicking on the variable name using the left mouse button. Pressing the OK button will link
only those variables whose names have been highlighted. Highlighted variables that were
previously linked to other modules will have their links changed to the selected module
pair.

Module icons can be moved to any user-desired location on the Current Model field. To
move an icon, place the cursor on top of the icon, push and hold the left mouse button,

Figure 5.2 Slot window.

MODEL BUILDING: XMBUILD 84

drag the icon to a new position, and release the mouse button. All module connections will
be redisplayed at the new location.

The Current Model field also shows the status of model completion. Modules repre-
sented with red icon buttons require additional links to input variables, while module icons
that are displayed in green have all inputs satisfied. When all icons are green the
displayed schematic is ready for saving and the model is ready to be built. The save and
build options are discussed in detail in the Model Menu section below.

5.3.4 Menu Bar

Across the top of the main interface window (fig. 5.1) is a menu bar that provides a
number of pull-down menu options to load, build, and save models and select and execute
various system options. The menu bar options are:

• Model
• Module
• Hierarchical

These options are discussed in detail in the next sections.

5.4 Model Menu

The functions available in the Model menu allow the user to load, build, and save
models and to exit MMS. All options under the Model menu are selected using the left
mouse button unless otherwise noted in the text description of the function. The file
pull-down menu contains the following options.

5.4.1 Load

Clicking on this option produces a Load a File window that is presented as a standard
Motif file selection dialog (fig. 4.1). The default directory that appears in the dialog is
<user_workspace>/models and the file names are filtered to display only those ending with
an extension of “.schem”. These are the schematic figures that were created and stored
during a previous execution of xmbuild. A schematic file can be selected from this directory
or another directory of the user’s choice. A schematic file can be selected by double click-
ing on the name in the Files list or by entering the full path name in the Selection window
and clicking on the OK button. Selecting a schematic file will load it into the Current Model
field of the main window (fig. 5.1).

5.4.2 Save

Clicking on this option produces a Save a File window that is presented as a standard
Motif file selection dialog (fig. 4.1). The default directory that appears in the dialog is

MODEL BUILDING: XMBUILD 85

<user_workspace>/models and the file names are filtered to display only those ending with
an extension of “.schem”. Double clicking on a name in the Files list of this window will
save the model schematic currently displayed in the Current Model field of the main
window (fig. 5.1) using the selected file name. A schematic file can also be saved using
another name in this or in another directory of the user’s choice by entering the full path
name in the Selection window and clicking on the OK button.

5.4.3 Build

This option is used to build the model displayed in the Current Model field of the main
window. Clicking on this option opens a XMBUILD Model Information window (fig. 5.3).
The desired name for this model is entered in the Model Name field. When compilation is
complete, the name entered will have the prefix “x” added to it so that a model named
“mymodel’ would become “xmymodel” and would be executed by using this name.

The setdims.f and fmodules.inc fields are system specific files that are used with
FORTRAN coded modules. MMS requires that all dimension names be declared in a
special-purpose module setdims.f that is located in the
<user_workspace>/modules/setdims directory. Its primary function is to declare the dimen-
sion names and bind them to the sizes of the array declarations. The setdims.f module is
discussed in more detail in Chapter 6.

The maximum sizes of the dimensions are specified in an include file which is fmod-
ules.inc for FORTRAN or cmodules.h for C. This file should be referenced in all module

Figure 5.3 XMBUILD - Model Information window.

MODEL BUILDING: XMBUILD 86

source files to insure a common declaration for all arrays. The maximum size declarations
are required for FORTRAN modules because dynamic storage allocation is not available
in FORTRAN 77. The fmodules.inc file is also discussed in more detail in Chapter 6.

The paths to the setdims.f and fmodules.inc files are entered in their respective entry
fields in the window. Selecting the Edit button at the end of each entry field will open the
file in the given path and present it in the default system editor.

Selecting the OK button in the XMBUILD Model Information window initiates the compi-
lation and linking stage of model building. If the name selected for this model already
exists, a dialog window will open to inquire if the user wants to overwrite the existing file or
rename this model. Selecting the rename option returns the user to the XMBUILD Model
Information window where a new name can be entered.

With the correct name selected, the system begins to link the modules in an order of
operation that is dependent on the input and output variable dependencies of the selected
modules. If a situation occurs where there is no clear dependency order the system will
open a Loop Resolver window (fig. 5.4) which presents the names of the two modules
whose order of operation cannot be determined with the current algorithms. The module
that should run first is identified by clicking on the module name and then OK using the left
mouse button. The system may require user intervention on more than one pair of
modules and a Loop Resolver window will open for each decision pair.

After any Loop Resolver intervention and prior to the actual compilation a Check
Module Order window (fig. 5.5) will open and present the list of modules comprising the
selected model in the order of computation that has been determined. At this point the
user can accept the module order by pressing the Done button or the order can be
adjusted. The instruction at the top of the window says “Select the module to move.”
Select the desired module by clicking on it with the left mouse button which will highlight

Figure 5.4 Loop Resolver window.

MODEL BUILDING: XMBUILD 87

the name. The instruction then changes to “Select the insertion point.” The insertion point
is the nth point in the current series. For example, if one desires to move the first module to
become the fifth module, select the first module and then select the fifth module in the
current series as the insertion point. This will move the first module to position five and the
modules that were previously two through five will move up to one through four.

When the modules are in the desired order, pressing the Done button initiates the
model building process. When compilation and linking are complete, a window with the
message “Compilation Complete” is displayed. This window is removed by pressing the
Cancel button.

Figure 5.5 Check Module Order window.

MODEL BUILDING: XMBUILD 88

5.4.4 Exit

Clicking on the Exit option of the Model menu (fig. 5.1) will terminate xmbuild. A window
will appear to verify the Exit command.

5.5 Module Menu

The functions available in the Module menu allow the user to remove one or more
modules from the Current Model field of the main window (fig. 5.1). All options under the
Module menu are selected using the left mouse button unless otherwise noted in the text
description of the function. The file pull-down menu contains the following options.

• Clear
• Remove Module

5.5.1 Clear

This option will clear the Current Model field. It will remove all modules and connections
from the screen. It cannot be undone. A window will appear to verify the Clear command.

5.5.2 Remove Module

This option will remove user-selected modules from the Current Model window. It will
also delete the connections to the removed modules. It cannot be undone. To select a
module, place the cursor on the module and click the left mouse button. This module will
then be shaded in either a highlighted green or red color to indicate it has been selected.
To select more than one module, hold the shift key down when clicking the left mouse
button on additional modules to be selected. To un-select all modules, click on a blank
canvas area of the Current Model field with the right mouse button.

5.6 Hierarchical Menu

The functions available in the Hierarchical menu allow the user to group two or more
modules to form an aggregate or higher-level module in the Current Model field of the
main window (fig. 5.1) and to disaggregate these groups. These groups of modules are
called “Hierarchical Modules.” In contrast with a “model,” a hierarchical module does not
have all its input slots fully connected. In a hierarchical module, the non-connected input
slots of any of its component modules become the input slots of the hierarchical module.
All the output slots from the component modules become output slots of the hierarchical
module. Hierarchical modules can be used in the construction of more complex models.

MODEL BUILDING: XMBUILD 89

5.6.1 Save Hierarchical

To make a hierarchical module, select all the modules that will comprise the single hier-
archical module. To select more than one module, press and hold the Shift key while
clicking on the module with the left mouse button. Once all the modules are selected,
choose the Save Hierarchical option.

Clicking on this option produces a Make Hier window that is presented as a standard
Motif file selection dialog (fig. 4.1). The default directory that appears in the dialog is
<user_workspace>/modules/hier. Double clicking on a name in the Files list of this window
will save the hierarchical module using the selected file name. A hierarchical module can
also be saved using another name in this or in another directory of the user’s choice by
entering the full path name in the Selection window and clicking on the OK button.

5.6.2 Expand Hierarchical

This option enables a user to expand a hierarchical module into its component modules.
To use this option select the hierarchical module by clicking on the module with the left
mouse button. Then select the Expand Hierarchical option from the menu.

5.7 Building the PRMS Example

An example application of xmbuild can be run to build an executable version of the daily
mode components of the USGS Precipitation Runoff Modeling System (PRMS) (Leavesley
and others, 1983). The modules for this model are located in the Master Directory region
of MMS. To build this model, the user must have created a user workspace as described in
Chapter 2. Once the user workspace is created, change directory to the
<user_workspace>/control directory and execute the command source setmms.

Next execute the command xmbuild (xmbuild is located in the mms/bin directory).
Select Load from the File menu. A file selector window (fig. 5.6) will appear. Select the file
xprms.schem from the right hand list and press the OK button. A schematic of the PRMS
model will be loaded in the Current Model window (fig. 5.7). Next, select Build from the File
menu. The Model Information window (fig. 5.3) will appear. It will have default values filled
in for the Model Name, the setdims.f file, and the fmodules.inc file.

Use the default values by selecting the OK button. If xmbuild is unable to determine the
calling order of the modules (as with the PRMS model), it will display the Loop Resolver
window (fig. 5.6). Select the module which should be called first in the run loop. In the case
of PRMS, intcp.f comes before snowcomp.f, and srunoff_smidx.f comes before smbal.f. A
window will open to display the module sequence and the user can change the order at
this point or accept the order as shown. When the module order has been resolved,
xmbuild will write the makefile necessary to compile the modules into a model and start

MODEL BUILDING: XMBUILD 90

compiling. This makefile is named Makefile and is written to the <user_workspace>/make
directory. Upon completion, a window will open informing the user that the compilation
process is finished. The name of the executable model is xprms and it is located in the
<user_workspace>/models directory.

Figure 5.6 Selecting the PRMS Model.

MODEL BUILDING: XMBUILD 91

Figure 5.7 PRMS Model in the Current Model window.

MODULE DEVELOPMENT 92

6. MODULE DEVELOPMENT

6.1 Introduction

A module is the basic building block of MMS. To insure that modules interface properly
in MMS, a module structure and a few associated coding rules have been defined. Each
module is self-contained, both conceptually (it may call no other module directly) and
physically (it must be contained in a single file). Communication between modules is
accomplished by using the MMS internal databases and a library of MMS standard func-
tions that can be included in module source code. Modules can be written in either
FORTRAN or C.

This sections describes the structure of a module and the coding conventions and
system functions used in writing a module. Discussions include details of internal module
structure, FORTRAN and C module examples, and a description of the MMS program-
ming functions. The information in this section is provided for users who wish to write
their own modules. While not necessary for other users, a review of the material in this
chapter may provide additional insight to system operations and capabilities.

6.2 Module Structure

A module is composed of up to five basic submodules that are written as functions.
These functions are main, declare, initialize, run, and cleanup. Each of the five functions
must return an integer error code. A return value of zero indicates no errors were
detected. The relations among these functions are shown in figure 6.1 and discussed in
detail below.

6.2.1 Main Function

The main function is the interface from the MMS run controller to the module and
simply directs all system calls to the appropriate module function. All calls from MMS to a
module go to the main function with a single string argument of “declare”, “initialize”,
“run”, or “cleanup”. Main checks for these strings and then calls the appropriate function.
All modules must have a main function.

6.2.2 Declare Function

The declare function sets up the internal parameter and public variable databases. All
parameters and public variables must be declared to MMS in the declare function. The
MMS library functions declparam and declvar, discussed below, are used to declare
these parameters and variables respectively. The declare function is called when MMS is
started and is called only once during an MMS session. All modules must have a declare
function.

MODULE DEVELOPMENT 93

6.2.3 Initialize Function

The initialize function is used to initialize user-specified variables at run time and to
read the current parameter values from the parameter database. Because the user may
edit the parameter database between runs, the initialize function is used to update the
parameter values in the module before the run function is called. C modules may also
use this function to allocate memory space for variable arrays. The initialize function is
executed only once at the beginning of each model run and before the simulation starts.
The initialize function may not be required in all modules.

6.2.4 Run Function

The run function contains the algorithms used to simulate the process(es) repre-
sented by the module and it is called at every timestep in the simulation. The run function
may be composed of one or more functions for C code or subroutines for FORTRAN
code (for example, fig. 6.1). Additional functions or subroutines are typically used to

M
ai

n
Su

bm
od

ul
e

Declare

Initialize

Run

Cleanup

Subroutine A

Subroutine B

Subroutine N

M
M

S

Figure 6.1. Relations among MMS module functions.

MODULE DEVELOPMENT 94

further modularize the code within a module. The run function may not be required in all
modules. Some modules may be used only to initialize selected physical system charac-
teristics.

6.2.5 Cleanup Function

The cleanup function is issued at the conclusion of a simulation run, typically to free
dynamically allocated storage. C modules may use cleanup to free allocated memory,
while FORTRAN modules may not need a cleanup submodule.

6.3 Converting Existing Code Into MMS Modules

MMS modules may be written as new code or may be created from existing programs.
There are several issues which determine the ease with which existing programs can be
converted to MMS modules. One issue is the structure of the original code. If the existing
model is written in a modular structure with subroutines performing well defined tasks,
the job will be much easier. A second issue is use of global variables. Heavy use of
global variables and common blocks complicates the conversion procedure because in
MMS all parameters, variables, and data must be passed between modules using the
MMS library functions. A third issue is the degree to which control and simulation are
intertwined in the model. Module conversion will be much more difficult if time loops,
space loops, and other conditions are interspersed within the simulation algorithms.

In general, programs that are well structured using functions or subroutines to break
the code into component processes or functionality are typically easier to convert to
modules. Also, code that uses few global variables is also easier to port than code that
makes extensive use of global variables.

The “modularizing” of an existing model should begin with a breakdown of the
processes simulated by the model. A clear picture of what these processes are and how
they affect each other should be ascertained before any recoding begins. Once the
process algorithms have been identified, the corresponding pieces of source code
should be isolated. All references to global variables should be removed, resulting in
subroutines with well defined input and output parameters variables. The resulting func-
tions or subroutines can then be used as the basis for the run function in each module.
Once the run function is coded, the declare, initialize, main, and cleanup functions can
be added.

A number of MMS library functions are provided for use in module code development
to facilitate access to system capabilities and communication among modules. The
library functions can be grouped into the three general categories. These are (1) data-
base access, (2) system information, and (3) file I/O. Database access functions allow
the system to build the internal databases and the modules to access these databases
and to transfer information between modules. System information functions provide the
modules with MMS status information. File I/O functions are for access to input and

MODULE DEVELOPMENT 95

output system tools. These functions are summarized in figure 6.2 and are described in

more detail in section 6.8.

Type Function

Database Access

Functions

decldim declare resizable array dimension
declfix declare fixed size array dimension

declparam declare parameter
declvar declare public varaible
dimstr get a dimension as a text string

getdatainfo get data file description string
getdim get a dimension size as an integer

getdimdesc get a dimensions description text
getdimname get the name of a dimension index text
getoutname get full path of output file as a string

getparam get a copy of a parameter array
getvar get a copy of a public variable array
putvar update a public variable array

readvar update a public variable array from data file
unitparam get parameter unit string

unitvar get public variable unit string

System Information

Functions

dattim get the date and time information
deltim get the delta time for the current timestep
djulian get julian day with fractional part

getstep get the current timestep count
julian get the julian day
units get a unit conversion factor

cpdble print a double precision array to standard output
cpint4 print an integer array to standard output
cpreal print a real array to standard output
cpstr print a string to standard output

dpdble print a debug double precision array
dpfloat print a debug float array
dpint4 print a debug integer array

dplong print a debug long integer array
dpstr print a debug string

File I/O Functions dpreal print a debug real array
opdble print a double precision array to the output file
opfloat print a float array to the output file
opint4 print an integer array to the output file

oplong print a long integer array to the output file
opstr print a string to the output file

opreal print a real array to the output file
updble print a double precision array to a file
upfloat print a float array to a file
upint4 print an integer array to a file

uplong print a long integer array to a file
upstr print a string to a file

upreal print a real array to a file

Figure 6.2. MMS library functions.

MODULE DEVELOPMENT 96

The current time-space structure supported by MMS can be visualized as nested
loops. The outer loop is time, the next loop is modules, and the inner loop is space. The
length of a timestep in the time loop is computed from the input data. For each timestep,
one loop is made through all the modules, executing the run function. Each module then
loops through the applicable spaces. Thus, the space loop is inside the module.

The following FORTRAN and C modules are presented as examples of the structure
and coding conventions used in the development of a module.

6.4 FORTRAN Module Example

The module in this example uses a simplified algorithm to compute an evapotranspira-
tion loss value and then subtract this loss value from measured rainfall at all rainfall
gauges to obtain an estimate of a public variable called netprecip.

6.4.1 Main Function

The main function of this module is named etrans and is declared as an integer*4 type
function. Following the function name is an include statement for the file fmodules.inc.
This file contains the declarations of the maximum sizes for all array dimensions used in
the model. The dimension size MAXRAIN is located in this file. See section 6.6.2 for a
detailed discussion of fmodules.inc.

The next code segment contains the standard FORTRAN declarations for arrays or
variables. These will be used as storage for public variables or as local copies of dimen-
sions or parameters values obtained from the databases. Those variable and parameter
values that must always occupy a fixed area in memory, and therefore hold their values
between successive calls to the module, must be declared as save in FORTRAN code.

The variable retval is the return variable and its value is passed back to the calling
MMS function. retval is initially set equal to zero for a no error status.

The string argument arg, passed to etrans, is tested to see if its value is “declare”,
“initialize”, or “run”. The appropriate function is then called. A return a value of zero from
the function indicates there was no error. If the function terminates abnormally, a nonzero
error code is returned. At the end of main, the value of the function etrans is set equal to
retval and returned to the run controller in MMS. If the returned value is nonzero, an
error condition is indicated and the MMS session will be terminated.

c***
c
c main etrans routine
c***

 integer*4 function etrans(arg)

 include ‘fmodules.inc’

MODULE DEVELOPMENT 97

 character*(*) arg
 integer*4 retval, etrun, etinit, etdecl
 integer*4 nrain, ntemp
 real loss(MAXRAIN), netprecip(MAXRAIN)
 real tzero, tall

 save loss, netprecip, tzero, tall, nrain, ntemp

 retval = 0

 if (arg.eq.’declare’) then
 retval = etdecl(loss, netprecip)

 else if (arg.eq.’initialize’) then
 retval = etinit(tzero, tall, nrain, ntemp)

 else if (arg.eq.’run’) then
 retval = etrun(loss, netprecip, tzero, tall, nrain, ntemp)

 end if

 etrans = retval

 return
 end

6.4.2 Declare Function

The function etdecl is an integer*4 type function and is called from etrans, the
module’s main function. The addresses of the module’s declared variables are passed
into etdecl via the argument list of the function call. As in main, the file fmodules.inc must
also be included and all variables are declared by type. The value of etdecl is set to “1”,
indicating an abnormal termination if it is returned to main. If there are no problems, the
value of etdecl is reset to “0” just prior to executing the return statement for this function.

The library function declvar is used to declare all the public variables and the library
function declparam is used to declare all the parameters used in the module. When
using declvar, the address of the public variable is registered with the internal variables
database. However, with declparam, the parameter database allocates memory for the
values and keeps track of these memory locations. Thus, no reference to parameter
addresses are made.

Both functions are applied in an “if statement” format. A nonzero return value indicates
an error condition and will cause the return statement to be executed. Since the value of
etdecl is still “1” this will cause the MMS session to terminate. The system functions
declparam and declvar are discussed in detail in sections 6.8.3 and 6.8.4 respectively.

c **
c etdecl - declare parameters and public variables for
c the etrans module

MODULE DEVELOPMENT 98

c***
 integer*4 function etdecl(loss, netprecip)

 include ‘fmodules.inc’

 real loss(MAXRAIN)
 real netprecip(MAXRAIN)
 integer*4 retval

 etdecl = 1

 if(declvar(‘etrans’,’loss’, ‘nrain’, MAXRAIN,
 + ‘real’, ‘inches’, loss).ne.0) return

 if(declvar(‘etrans’,’netprecip’, ‘nrain’, MAXRAIN,
 + ‘real’, ‘inches’, netprecip).ne.0) return

 if(declparam(‘etrans’, ‘tzero’, ‘one’, ‘real’, ‘10.0’,
 +’-10.0’, ‘20.0’, ‘Temp for zero ET’,
 +’The temperature below which the evapotranspiration is ‘ //
 +’assumed to be zero.’, ‘degrees’).ne.0) return

 if(retval.ne.0) return

 if(declparam(‘etrans’, ‘tall’, ‘one’, ‘real’, ‘120.0’,
 +’90.0’, ‘140.0’, ‘Temp for complete ET’,
 +’The temperature above which the evapotranspiration is ‘ //
 +’assumed to be equal to precipitation.’, ‘degrees’)
 +.ne.0) return

 etdecl = 0

 return
 end

6.4.3 Initialize Function

The function etinit is an integer*4 type function and is called from the main function
etrans. The addresses of the variables and parameters being initialized by this function
are passed in the argument list of the call. Variables and parameters initialized by this
function must be declared in the main function using the save statement.

As in main, the file fmodules.inc must also be included and all variables and parame-
ters are declared by type. The value of etinit is set to “1”, indicating an abnormal termina-
tion if it is returned to main. If there are no problems, the value of etinit is reset to “0” just
prior to executing the return statement for this function.

The MMS library function getparam is used to get the value of the parameters tzero
and tall. Note that the getparam function makes a copy of the values in the parameter
database and stores the copy in the module’s local memory.

MODULE DEVELOPMENT 99

The MMS library function getdim is used to obtain the size of the dimensions nrain
and ntemp. Since parameter and dimension values will not change during the run, the
queries to the database need to be made only once here in the initialize function.

c **
c etinit - initializes the etrans module
c
c***

 integer*4 function etinit(tzero, tall, nrain, ntemp)

 include ‘fmodules.inc’

 real tzero, tall
 integer*4 nrain, ntemp

 etinit = 1

 if(getparam(‘etrans’, ‘tzero’, 1, ‘real’, tzero).ne.0) return
 if(getparam(‘etrans’, ‘tall’, 1, ‘real’, tall).ne.0) return

 nrain = getdim(‘nrain’)
 if(nrain.eq.-1) return

 ntemp = getdim(‘ntemp’)
 if(ntemp.eq.-1) return

 etinit = 0

 return
 end

6.4.4 Run Function

The function etrun is an integer*4 type and is called from the module’s main function
etrans. The addresses of the variables and parameters used in this function are passed
in the argument list of the call. As in main, the file fmodules.inc must also be included
and all variables and parameters used are declared by type. The run function may also
declare its own local variables.

The value of etdecl is set to “1”, indicating an abnormal termination if it is returned to
main. If there are no problems, the value of etdecl is reset to “0” just prior to executing
the return statement for this function.

The MMS library function getvar is used to obtain the current values of the public vari-
ables rainfall, tminf, and tmaxf which were declared and assigned values by
another module. Never use getvar to reference a public variable declared in the current
module.The reference to the memory occupied by that variable is already available to the
module.

MODULE DEVELOPMENT 100

If one or more of the variables needed were in the input data file then the readvar
library function could be used to read the variables from the time series data file buffer
and put them in the public variable database. In this example all the input variables were
read in a separate observations module. This approach is typically used when a variety
of pre-processing steps are needed to adjust or distribute the raw input data for use by
more than one module. These pre-processing steps can be done in a single module or in
separate modules for each input variable.

The next code segment computes the current timestep values for the variables loss
and netprecip which are dimensioned by nrain. Because these variables are
declared in this module, they are available to all other modules using the getvar library
function.

In the last code segment, the dpreal library functions print the values of tmean,
rainfall, loss, and netprecip to the system output file when the debug level is
set to a value of 2. The debug level is set in the command line with the -debug option.

c **
c
c etrun - etrans run module
c
c***

 integer*4 function etrun(loss, netprecip, tzero, tall,
 + nrain, ntemp)

 include ‘fmodules.inc’

 real loss(MAXRAIN), netprecip(MAXRAIN)
 real tzero, tall

 real rainfall(MAXRAIN)
 real tminf(MAXTEMP), tmaxf(MAXTEMP)
 real tmean, ttot, stationtmean, lossfraction
 integer*4 nrain, ntemp, i

 etrun = 1
c
c read in the rain and temp arrays
c

 if(getvar(‘obs’,’rainfall’, MAXRAIN,
 + ‘real’, rainfall).ne.0) return

 if(getvar(‘obs’,’tminf’, MAXTEMP, ‘real’, tminf).ne.0) return
 if(getvar(‘obs’,’tmaxf’, MAXTEMP, ‘real’, tmaxf).ne.0) return

c
c compute the mean temps
c
 ttot = 0.0

MODULE DEVELOPMENT 101

 do 100 i = 1, ntemp
 stationtmean = 0.5 * (tmaxf(i) + tminf(i))
 ttot = ttot + stationtmean
 100 continue

 tmean = ttot / ntemp
c
c estimate the evapotranspiration loss fraction, assuming no loss
c at tzero, total loss at tall
c
 lossfraction = (tmean - tzero) / (tall - tzero)
 if (lossfraction.gt.1.0) lossfraction = 1.0
 if (lossfraction.lt.0.0) lossfraction = 0.0
c
c compute the loss and netprecip
c
 do 200 i = 1, nrain
 loss(i) = rainfall(i) * lossfraction
 netprecip(i) = rainfall(i) - loss(i)
 200 continue

c
c print av temp, loss and net precip
c
 call dpreal(‘Mean temp :’, tmean, 1,2)
 call dpreal(‘Total precip :’, rainfall, nrain, 2)
 call dpreal(‘Loss :’, loss, nrain, 2)
 call dpreal(‘Net precip :’, netprecip, nrain, 2)

 etrun = 0

 return
 end

6.4.5 Cleanup Function

There is no cleanup function needed for this module because there was no dynami-
cally allocated storage.

6.5 C Module Example

This is the C version of the same evapotranspiration module used in the FORTRAN
example.

6.5.1 Main Function

The main function of this module is named etrans_c and is declared as a long type.
Preceding the function name is an include statement for the file cmodules.h. This header
file contains the declarations of the maximum sizes for all array dimensions used in the
model that are modifiable prior to a model run and are also used in one or more

MODULE DEVELOPMENT 102

FORTRAN modules in the model. Those dimensions that are modifiable but are used
only in C modules for arrays that are dynamically allocated do not have a maximum size
limit constraint. The dimension size MAXRAIN is located in this file.

The next code segment contains the standard C declarations for arrays or variables.
These will be used as storage for public variables or as local copies of dimensions or
parameters values obtained from the databases. Those variable and parameter values
that must always occupy a fixed area in memory, and therefore hold their values between
successive calls to the module, must be declared as static in C code.

The variable retval is the return variable and its value is passed back to the calling
MMS function. retval is initially set equal to zero for a no error status.

The string argument arg, passed to etrans_c, is tested to see if its value is “declare”,
“initialize”, “run”, or “cleanup”. The appropriate function is then called. A return value of
zero from the function indicates there was no error. If the function terminates abnormally,
a nonzero error code is returned. At the end of main, the value of retval returned to the
run controller in MMS. If the returned value is nonzero, an error condition is indicated and
the MMS session will be terminated.

/**
 *
 * main etrans routine
 *
**/
#include cmodules.h

long etrans_c(arg)
 char *arg;

{
 long retval = 0;
 static float loss[MAXRAIN], netprecip[MAXRAIN];
 static float tzero, tall;
 static long nrain, ntemp;
 static float *rainfall, *tminf, *tmaxf;

 if (!strcmp(arg,”declare”))
retval = etdecl(loss, netprecip);

 else if (!strcmp(arg, “initialize”))
retval = etinit(&tzero, &tall, &nrain, &ntemp,
 &rainfall, &tminf, &tmaxf);

 else if (!strcmp(arg, “run”))
retval = etrun(loss, netprecip, &tzero, &tall,

 &nrain,&ntemp, rainfall, tminf, tmaxf);

 else if (!strcmp(arg, “cleanup”))
retval = etclean(rainfall, tminf, tmaxf);

MODULE DEVELOPMENT 103

 return retval;
}

6.5.2 Declare Function

The function etdecl is a long type and is called from etrans_c, the module’s main func-
tion. The addresses of the module’s declared variables are passed into etdecl via the
argument list of the function call.

The library function declvar is used to declare all the public variables, and the library
function declparam is used to declare all the parameters used in the module. When
using declvar, the address of the public variable is registered with the internal variables
database. However, with declparam, the parameter database allocates memory for the
values and keeps track of these memory locations. Thus, no reference to parameter
addresses are made.

Both functions are applied in an “if statement” format. A nonzero return value indicates
an error condition and will cause the return statement to be executed. This returns a
value of 1 to main which when passed back to the calling MMS control function will
cause the MMS session to terminate. If there are no errors, a value of 0 is returned.

c ***
 * etdecl - declare parameters and public variables for the
 * etrans module
 *
c***/

long etdecl(loss, netprecip);
 float *loss, *netprecip;

{
 if(declvar(“etrans”,”loss”, “nrain”, MAXRAIN, “float”, “inches”, loss))
 return(1);

 if(declvar(“etrans”,”netprecip”, “nrain”, MAXRAIN, “float”, “inches”,
 netprecip)) return(1);

 if(declparam(“etrans”, “tzero”, “one”, “float”, “10.0”, “-10.0”,
 “20.0”, “Temp for zero ET”, “The temperature below
 which the evapotranspiration is assumed to be zero.”,
 “degrees”)) return(1);

 if(declparam(“etrans”, “tall”, “one”, “float”, “120.0”, “90.0”,
 “140.0”, “Temp for complete ET”, “The temperature above
 which the evapotranspiration is assumed to be equal to
 precipitation.”, “degrees”)) return(1);

MODULE DEVELOPMENT 104

 return(0);

}

6.5.3 Initialize Function

The function etinit is a long type function and is called from the main function
etrans_c. The addresses of the variables and parameters being initialized by this func-
tion are passed in the argument list of the call. Variables and parameters initialized by
this function must be declared in the main function using the static statement.

The MMS library function getparam is used to get the value of the parameters tzero
and tall. Note that the getparam function makes a copy of the values in the parameter
database and stores the copy in the module’s local memory.

The MMS library function getdim is used to obtain the size of the dimensions nrain
and ntemp. Since parameter and dimension values will not change during the run, the
queries to the database need to be made only once here in the initialize function. The
values of nrain and ntemp are then used to dynamically allocate storage for the vari-
ables rainfall, tminf, and tmaxf.

All library functions are applied in an “if statement” format. A nonzero return value indi-
cates an error condition and will cause the associated return statement to be executed.
This returns a value of 1 to main which when passed back to the calling MMS control
function will cause the MMS session to terminate. If there are no errors, a value of 0 is
returned.

/**
 *
 * etinit - initializes the etrans module
 *
**/

long etinit(tzero, tall, nrain, ntemp, rainfall, tminf, tmaxf)
 float *tzero, *tall;
 long *nrain, *ntemp;
 float **rainfall, **tminf, **tmaxf;

{

 if(getparam(“etrans”, “tzero”, 1, “float”, tzero))
 return(1);

 if(getparam(“etrans”, “tall”, 1, “float”, tall))
 return(1);

MODULE DEVELOPMENT 105

 if((*nrain = getdim(“nrain”)) == -1)
 return(1);

 if((*ntemp = getdim(“ntemp”)) == -1)
 return(1);

/*
** Allocate the local arrays.
*/
 (*rainfall) = (float *)malloc (*nrain * sizeof (float));
 (*tminf) = (float *)malloc (*ntemp * sizeof (float));
 (*tmaxf) = (float *)malloc (*ntemp * sizeof (float));

 return(0);

}

6.5.4 Run Function

The function etrun is a long type and is called from the module’s main function
etrans_c. The addresses of the variables and parameters used in this function are
passed in the argument list of the call. The run function may also declare its own local
variables.

The MMS library function getvar is used to obtain the current values of the public vari-
ables rainfall, tminf, and tmaxf which were declared and assigned values by
another module. Never use getvar to reference a public variable declared in the current
module.The reference to the memory occupied by that variable is already available to the
module.

If one or more of the variables needed were in the input data file, then the readvar
library function could be used to read the variables from the time series data file buffer
and put them in the public variable database. In this example all the input variables were
read in a separate observations module. This approach is typically used when a variety
of pre-processing steps are needed to adjust or distribute the raw input data for use by
more that one module. These pre-processing steps can be done in a single module or in
separate modules for each input variable.

The next code segment computes the current timestep values for the variables loss
and netprecip which are dimensioned by nrain. Because these variables are
declared in this module, they are available to all other modules using the getvar library
function.

In the last code segment, the dpfloat library functions print the values of tmean,
rainfall, loss, and netprecip to the system output file when the debug level is
set to a value of 2. The debug level is set in the command line with the -debug option.

MODULE DEVELOPMENT 106

/***
 *
 * etrun - etrans run function
 *
***/

long etrun(loss, netprecip, tzero, tall, nrain, ntemp, rainfall,
 tminf, tmaxf)
 float *loss, *netprecip;
 float *tzero, *tall;
 long *nrain, *ntemp;
 float *rainfall, *tminf, *tmaxf;

{
 float tmean, ttot, stationtmean, lossfraction;
 long i;

 /*
 * read in the rain and temp arrays
 */

 if(getvar(“obs”,”rainfall”, MAXRAIN, “float”, rainfall))
 return(1);

 if(getvar(“obs”,”tminf”, MAXTEMP, “float”, tminf))
 return(1);

 if(getvar(“obs”,”tmaxf”, MAXTEMP, “float”, tmaxf))
 return(1);

 /*
 * compute the mean temps
 */

 ttot = 0.0;

 for (i = 0; i < *ntemp; i++) {
 stationtmean = 0.5 * (tminf[i] + tmaxf[i]);
 ttot = ttot + stationtmean;
 }
 tmean = ttot / (*ntemp);

 /*
 * estimate the evapotranspiration loss fraction, assuming no loss
 * at tzero, total loss at tall
 */

 lossfraction = (tmean - *tzero) / (*tall - *tzero) ;
 if (lossfraction > 1.0) lossfraction = 1.0;
 if (lossfraction < 0.0) lossfraction = 0.0;

 /*
 * compute the loss and netprecip

MODULE DEVELOPMENT 107

 */

 for (i = 0; i < *nrain; i++) {
 loss[i] = rainfall[i] * lossfraction;
 netprecip[i] = rainfall[i] - loss[i];
 }

 /*
 * debug print - av temp, loss and net precip
 */

 dpfloat(“Mean temp :”, &tmean, 1, 2);
 dpfloat(“Total precip :”, rainfall, *nrain, 2);
 dpfloat(“Loss :”, loss, *nrain, 2);
 dpfloat(“Net Precip :”, netprecip, *nrain, 2);

 return(0);

}

6.5.5 Cleanup Function

The function etclean is a long type and is called from the module’s main function
etrans_c. The addresses of the variables whose storage is to be freed are passed in the
argument list of the call.

/**
 * etclean - frees the local arrays in the etrans module
 ***/

long etclean(rainfall, tminf, tmaxf)
 float *rainfall, *tminf, *tmaxf;

{

 free (rainfall);
 free (tminf);
 free (tmaxf);

 return(0);

}

6.6 The Setdims Special Function and Include Files

6.6.1 Setdims

MMS requires that all dimensions be declared in a special-purpose function. This
function is called setdims and is located in the <user_workspace>/modules/setdims
directory. Its primary function is to declare the dimensions and bind them to the sizes of

MODULE DEVELOPMENT 108

the array declarations. This is accomplished using the decldim library function. An
example of a FORTRAN version of setdims function is:

c***
c setdims.f: sets the dimensions
c***

integer*4 function setdims()

include ‘fmodules.inc’

setdims = 1

if (decldim(‘nhru’, 1, MAXHRU, ‘Number of HRUs’).ne.0) return
if (decldim(‘nobs’, 1, MAXOBS, ‘Number of stations’).ne.0) return
if (decldim(‘ngw’, 1, MAXGWR, ‘Number of GWs’).ne.0) return
if (decldim(‘nrain’, 1, MAXRAIN, ‘Rain Gauges’).ne.0) return
.
.
.
setdims = 0
return
end

The function setdims is an integer*4 type function and is called from MMS prior to
calling any of the modules with the “declare” argument. The file fmodules.inc is included
to define the maximum size of each dimension, which is one of the arguments in the
decldim function. The value of setdims is set to “1”, indicating an abnormal termination if
it is returned to the MMS calling function. If there are no problems, the value of setdims is
reset to “0” just prior to executing the return statement for this function.

A C version of setdims is shown below. The function is a long type and performs as
described in the FORTRAN version above. The file cmodules.h is the C code equivalent
of the FORTRAN fmodules.inc.

/***
** setdims.c: sets the dimensions
***/

#include “cmodules.h”

long setdims ()
{

if (decldim (“nhru”, 1, MAXHRU, “Number of HRUs”))

return (1);

if (decldim (“ngw”, 1, MAXGWR, “Number of GW reservoirs”))

return (1);

if (decldim (“nssr”, 1, MAXSSR, “Number of SS reservoirs”))

return (1);

}

MODULE DEVELOPMENT 109

6.6.2 Include Files

The maximum sizes of the dimensions in the setdims function are specified in an
include file. This is fmodules.inc for FORTRAN or cmodules.h for C. This file is refer-
enced in all module source files to insure a common declaration for all arrays. An
example of fmodules.inc is:

include ‘fsystem.inc’

 integer MAXHRU

 integer MAXGWR

 integer MAXSSR

 parameter (MAXHRU = 125)

 parameter (MAXGWR = 20)

 parameter (MAXSSR = 50)

The corresponding C version of cmodules.h is:

#include “mms.h”

#define MAXHRU 125

#define MAXGWR 20

#define MAXSSR 50

The include files fsystem.inc in fmodules.inc and mms.h in cmodules.h are system
files that specify the type for selected system functions. These two include files are
provided to the user and are installed with the system.

6.7 Module Documentation

All modules should be documented to provide all users with the information needed to
assure proper use of the module as well as providing users with a full understanding of
the functions performed and the assumptions made in the module. This documentation
should accompany the module in any distribution of the module.

The module documentation should be installed to make it available to users via the
MMS Help function. For inclusion in MMS, the module documetation must be written in,
or converted to, Hypertext Markup Language (HTML). A HTML viewer, such as Mosaic
or Netscape, can be used to view all MMS help files. To be availabe to the Help funciton,
the documentation must be installed in the mms/doc/modules directory of the MMS
master directory or the <user_workspace>/modules/doc directory.

MODULE DEVELOPMENT 110

A module document format has been designed to standardize module documentation
in MMS. An example of the documentation format is given in Attachment 2. The compo-
nent parts of the module document format are:

• Name - Name of the module.
• Module Process (or Function) - The type of process or function being

simulated.
• Definition - Brief definition of module function
• Creation Date - Date module was created.
• Parameters Declared - List of parameters declared and their definitions.
• Variables Declared - List of variables declared and their definitions.
• External Variables Used - List of variables used that are declared in other

modules.
• Description - A text description of the module function(s), the equations

used, assumptions made, suggested methods for parameter estimation,
and any other information that may be useful to the user.

• References - List of references that were cited in the Description section.
• Developer(s) Name and Address - The name and address where a user

can obtain additional information about the module. This may be a mail
address or an e-mail address. Inclusion of telephone or fax numbers is left
to the discretion of the developer(s).

6.8 MMS Function Library Reference

As noted above, MMS library functions are provided for use in module code develop-
ment to facilitate access to system capabilities and communication among modules.
These functions are summarized in figure 6.2. A detailed description of each library
function and a source code example in both FORTRAN and C are provided below.

6.8.1 decldim - declare a dimension

decldim (dname, dval, dmax, ddescr)

dname - dimension name.
dval - array size.
dmax - maximum array size.
ddescr - a string description of the dimension.

This function allocates entries in the dimension database. The function should only be
called from the special setdim function. The dimension name, dname, is the lookup key
for this dimension in the dimension database. The default array size dval is the initial

MODULE DEVELOPMENT 111

allocation size of parameter arrays of this dimension. The constant maximum array size
dmax is defined in the include file (fmodules.inc for FORTRAN or cmodules.h for C).

The sizes of the arrays used for storage of parameters and public variables are refer-
enced to these declared dimensions. Users may edit the size of a dimension during run
time, thus automatically updating all arrays of this dimension. The system may also
change the dimension sizes when loading a new parameter file, using the dimensions
specification in the new file. However, an array cannot be resized to something larger
than dmax from within the model.

An example for a setdims source file for FORTRAN is:

if (decldim (‘nhru’, 1, MAXHRU, ‘Number of HRUs’))

return

An example for a setdims source file for C is:

if (decldim (“nhru”, 1, MAXHRU, “Number of HRUs”))

return (1);

Here the dimension nhru is declared with a maximum dimension size of MAXHRU.

FORTRAN Binding

decldim (dname, dval, dmax, ddescr)

char*(*) dname

integer dval

integer dmax

char*(*) ddescr

C Binding

decldim (dname, dval, dmax, ddescr);

char *dname;

long dval;

long dmax;

char *ddescr;

Returns

 An error code: 0 = OK; 1 = error.

MODULE DEVELOPMENT 112

6.8.2 declfix - declare a fixed dimension

declfix (dname, dval, dmax, ddescr)

dname - dimension name.
dval - array size.
dmax - maximum array size.
ddescr - a string description of the dimension.

This function will declare a dimension whose size should remain fixed. It provides the
exact same functionality as decldim except that dimensions declared with this function
cannot be edited. Dimensions that should not be modified, such as number of months in
the year, should be declared with declfix.

This function allocates entries in the dimension database. The function should only be
called from the special setdim function. The dimension name string dname is used as the
lookup key for the dimension in the dimension database. The default array size dval is
the allocation size of parameter arrays of this dimension. The constant maximum array
size dmax is defined in the module include file (fmodules.inc for FORTRAN or cmod-
ules.h for C).

An example for a setdims source file for FORTRAN is:

if (declfix (‘nmonths’, 1, MAXMON, ‘Number of months’))

return

An example for a setdims source file for C is:

if (declfix (“nmonths”, 1, MAXMON, “Number of months”))

return (1);

Here the dimension nmonths is declared with a maximum dimension size of MAXMON.

FORTRAN Binding

declfix (dname, dval, dmax, ddescr)

char*(*) dname

integer dval

integer dmax

char*(*) ddescr

C Binding

declfix (dname, dval, dmax, ddescr);

MODULE DEVELOPMENT 113

char *dname;

long dval;

long dmax;

char *ddescr;

Returns

An error code: 0 = OK; 1 = error.

6.8.3 declparam - declare a parameter

declparam (module, param, dimen, type, valstr, minstr, max-
str, desc, help, unit)

module - module name.
param - parameter name.
dimen - dimension name. The string “one” signifies that the parameter is a sca-

lar.
type - parameter type. This should be ‘integer’, ‘real’ or ‘double’ in FORTRAN,

or “long”, “float” or “double” in C.
valstr - parameter default value(s).
minstr - minimum parameter value.
maxstr - maximum parameter value.
desc - A short (up to 80 characters) description for display via the interface.
help - A detailed (up to 1024 characters) description to help the user set the

parameter.
unit - units in which the parameter is expressed.

The default (valstr), minimum (minstr), and maximum (maxstr) parameter
values can be entered for scalar parameters and for multi-dimensional parameters. Two
examples are:

“100”

“1*10.0, 2*23.1, 2*23.3”

In the first example, all values are initialized to 100. In the second example, the first
value is initialized to 10.0, the second and third to 23.1, the fourth and fifth to 23.3, and
the remaining values also to 23.3. As illustrated by this example, values may be
repeated any number of times by using a “*” in the default value string. This repeat count
is optional and if not specified, defaults to 1. Delimiters between value groups are spaces
or commas or both. If there are too few entries to fill the array to the size indicated by the

MODULE DEVELOPMENT 114

dimension, the last entry will be repeated. If there are too many entries, the routine will
print an error message and exit abnormally.

Modules must declare all parameters used within them. Multiple modules may declare
the same parameter. MMS will recognize that these multiple declarations are for the
same parameter and create a common entry in the parameter database. Inconsistent
parameter declarations between modules will result in a warning message, but not
necessarily an error.

The parameter database is built and initialized when MMS is started. declparam is
used in the declare function of the module source code. It sets up the memory and fills in
default values. These defaults may be overwritten by the values which come from the
parameter input file. The values may also be modified by the user via the spreadsheet
editor.

An example for FORTRAN is:

 if (declparam(’snow’, ’snowinfil_max’, ’nhru’, ’real’,

 + ’2.’, ’0.’, ’20.’,

 + ’Maximum snow infiltration per day in inches’,

 + ’Maximum snow infiltration per day in inches’,

 + ’inches’).ne.0) return

An example for C is:

if (declparam (“snow”, “snowinfil_max”, “nhru”, “float”,

“2.0”, “0.0”, “20.0”,

“Maximum snow infiltration per day in inches”,

“Maximum snow infiltration per day in inches”,

“inches”))

return (1);

FORTRAN Binding

declparam (module, param, dimen, type, valstr, minstr, max-
str, desc, help, unit)

char*(*) module

char*(*) param

char*(*) dimen

char*(*) type

char*(*) valstr

MODULE DEVELOPMENT 115

char*(*) minstr

char*(*) maxstr

char*(*) desc

char*(*) help

char*(*) unit

C Binding

declparam (module, param, dimen, type, valstr, minstr, max-
str, desc, help, unit);

char *module;

char *param;

char *dimen;

char *type;

char *varstr;

char *minstr;

char *maxstr;

char *desc;

char *help;

char *unit;

Returns

An error code: 0 = OK; 1 = error.

6.8.4 declvar - declare a public variable

declvar (module, extname, dimen, maxsize, type, help, units,
intname)

module - module name.
extname - external variable name used by the system.
dimen - dimension. The string “one” signifies that the variable is a scalar.
maxsize - maximum array size.
type - type. This should be ‘integer’, ‘real’ or ‘double’ in FORTRAN, or “long”,

“float” or “double” in C.
help - A detailed (up to 1024 characters) description to help the user set the

parameter.
units - units.
intname - internal name used in the module source code.

MODULE DEVELOPMENT 116

This function is used to declare a varaible for inclusion in the public variables data-
base. All variables do not need to be declared. Rather, only those FORTRAN or C vari-
ables that are to be made available to other modules and/or selected system functions,
such as plotting and statistical analysis, are usually declared. declvar is used in the
declare function of the module source code. Declaration of the same variable by multiple
modules is considered an error.

The variables database is built when MMS is started. Values for declared variables
are updated as the model runs. The variable database only contains the information for
the current time step.

Variable values are available to any module at any time during the run, but generally
only the declaring module may modify the values. The values may be overwritten by
another module with the putvar function.

An example for FORTRAN is:

 if(declvar(’precip’, ’hru_ppt’, ’nhru’, MAXHRU, ’real’,

 + ’Adjusted precip on each HRU’,

 + ’inches’,

 + hru_ppt).ne.0) return

An example for C is:

if (declvar (“precip”, ”hru_ppt”, “hru”, MAXHRU, “float”

“Adjusted precip on each HRU”,

“inches”,

hru_ppt)) return (1);

FORTRAN Binding

declvar (module, name, dimen, maxsize, type, help, units,
value)

char*(*) module

char*(*) extname

char*(*) dimen

integer maxsize

char*(*) type

char*(*) help

char*(*) units

char*(*) value

MODULE DEVELOPMENT 117

C Binding

declvar (module, name, dimen, maxsize, type, help, units,
value);

char *module;

char *extname;

char *dimen;

long maxsize;

char *type;

char *help;

char *units;

char *value;

Returns

An error code: 0 = OK; 1 = error.

6.8.5 dimstr - return dimension size as a string

dimstr (dimension) C
dimstr (dimension, dim_size) FORTRAN

dimension - dimension name.
dim_size - variable name to receive returned string.

This function returns a string representing the size of the specified dimension. The
FORTRAN and C calls are slightly different.

For FORTRAN, both the dimension specifier string and the result string are passed as
arguments:

character*10 dim_size

call dimstr (‘nhru’, dim_size)

For C, the dimension name is passed and the string is returned:

char *dim_size;

dim_size = dimstr (“nhru”);

MODULE DEVELOPMENT 118

FORTRAN Binding

dimstr (dimension, dim_size)

char*(*) dimension

char*(*) dim_size

C Binding

dimstr (dimension);

char *dimension;

Returns

The size of arrays of this dimension as a character string.

6.8.6 getdatainfo - get data file description string

getdatainfo (desc)

desc - description string.

This function returns the description string from the data file. This function is typically
used when modules are writing report files.

An example for FORTRAN is:

character *80 desc

call getdatainfo(desc)

call cpstr(desc)

An example for C is:

#define STRLEN 80

char desc[STRLEN];

getdatainfo (desc, STRLEN);

printf (“Data description is %s\n”, desc);

FORTRAN Binding

getdatainfo (desc)

char*(*) desc

MODULE DEVELOPMENT 119

C Binding

getdatainfo (desc, len);

char *name;

int len;

Returns

Error code: 0 = OK; -1 = error condition.

6.8.7 getdim - get dimension size

getdim (name)

name - dimension name.

This function returns the size of the dimension of the named array. Since array dimen-
sion sizes remain constant during a single run, this function is typically used in the
initialize function of the module and the values are passed back to main for use as an
argument in the run function call.

An example for FORTRAN is:

integer*4 nhru

nhru = getdim(’nhru’)

if(nhru.eq.-1) return

An example for C is:

long nhru;

nhru = getdim (“nhru”);

if(nhru == -1) return;

FORTRAN Binding

getdim (name)

char*(*) name

C Binding

getdim (name);

MODULE DEVELOPMENT 120

char *name;

Returns

Error code: 0 = OK; -1 = error condition.

6.8.8 getdimdesc - get a dimensions description text

getdimdesc_ (char *name, long *i, char *desc, long namelen, long desclen)

getdimname (name, i, desc)

name - dimension name.
i - “ith” index specifier.
desc - returned description of the “ith” index.

This function is used for dimensions that have had their numeric indices changed to
alphabetic names with descriptions using the dimension index names option in the edit
menu of the main MMS GUI window. This function returns the description of the “ith”
index of the selected dimension.

An example for FORTRAN is:

integer*4 nhru, i

character*30 desc

nhru = getdim(’nhru’)

do 10 i = 1, nhru

 call getdimdesc (‘nhru’, i, desc)

 call upstr(‘nnode’, i, ‘ ‘//desc)

.

.

.

10 continue

An example for C is:

long nhru, i;

char desc[30];

for (i = 0; i < getdim (“nhru”); i++) {

MODULE DEVELOPMENT 121

getdimname (“nhru” , i, desc)

.

.

.

}

FORTRAN Binding

getdimname (name, i, desc)

char*(*) name

integer i

char*(*) desc

C Binding

getdimname (name, i, desc);

char *name;

int i;

char *desc;

Returns

None.

6.8.9 getdimname - get dimension index name

getdimname (name, i, index_name)

name - dimension name.
i - “ith” index specifier.
index_name - returned name of the “ith” index.

This function is used for dimensions that have had their numeric indices changed to
alphabetic names using the dimension index names option in the edit menu of the main
MMS GUI window. This function returns the name of the “ith” index of the selected
dimension.

An example for FORTRAN is:

integer*4 nhru, i

MODULE DEVELOPMENT 122

character*30 index_name

nhru = getdim(’nhru’)

do 10 i = 1, nhru

 call getdimname (‘nhru’, i, index_name)

.

.

.

10 continue

An example for C is:

long nhru, i;

char index_name[30];

for (i = 0; i < getdim (“nhru”); i++) {

getdimname (“nhru” , i, index_name)

.

.

.

}

FORTRAN Binding

getdimname (name, i, index_name)

char*(*) name

integer i

char*(*) index_name

C Binding

getdim (name, i, index_name);

char *name;

int i;

char *index_name;

Returns

None.

MODULE DEVELOPMENT 123

6.8.10 getoutname - get full path of output file as a string

getoutname (output_path, extension)

output_path - full path to output file.
extension - extension to put on end of output_path.

This function is used to obtain the name of an output file. It returns the full path to the
current output report file with the extension string on the end.

An example for FORTRAN is:

integer ret

character*135 output_path

ret = getoutname (output_path, ‘.hru’)

open (unit=81, file=output_path)

An example for C is:

char output_path[135];

FILE *fp;

if (!getoutname(output_path, “.hru”)){

 fp = open (output_path, “w”);

}

FORTRAN Binding

getoutname (output_path, extension)

char*(*) output_path

char*(*) extension

C Binding

getoutname (output_path, extension);

char *output_path;

char *extension;

Returns

Error code: 0 = OK; 1 = error condition.

MODULE DEVELOPMENT 124

6.8.11 getparam - get a copy of a parameter

getparam (module, parameter, maxsize, type, val)

module - module name.
parameter - external parameter name.
maxsize - maximum array size.
type - parameter type. This should be ‘integer’, ‘real’ or ‘double’ in FORTRAN,

or “long”, “float” or “double” in C. This must match the type when the parameter
was declared.
val - internal parameter name.

This function is used to obtain a copy of the values found in the parameter database
for the specified parameter. The function passes a pointer to an array or to a scalar
storage location in the module where the copy of the parameter values are to be stored.
In both C and FORTRAN, the array name passes the pointer to the array. The values in
the parameter database are then written to this local parameter storage. In C one must
explicitly indicate a pointer to a scalar.

An example for FORTRAN is:

 real snowinfil_max(MAXHRU)

 if(getparam(’snow’, ’snowinfil_max’, MAXHRU, ’real’,

+ snowinfil_max).ne.0) return

An example for C is:

 float *snowinfil_max;

 snowinfil_max = (float *)malloc (MAXHRU * sizeof (float));

 if (getparam (“snow”, “snowinfil_max”, MAXHRU, “float”,

snowinfil_max)) return (1);

FORTRAN Binding

getparam (module, parameter, maxsize, type, val)

char*(*) module

char*(*) parameter

integer maxsize

char*(*) type

MODULE DEVELOPMENT 125

various val(maxsize)

C Binding

getparam (module, parameter, maxsize, type, val);

char *module;

char *parameter;

integer maxsize;

char *type;

char *val;

Returns

Error code: 0 = OK; 1 = error condition.

6.8.12 getvar - get a copy of a public variable

getvar (module, variable, maxsize, type, val)

module - module name.
variable - external variable name.
maxsize - maximum array size.
type - variable type. This should be ‘integer’, ‘real’ or ‘double’ in FORTRAN, or

“long”, “float” or “double” in C. This must match the type when the variable was
declared.
val - internal variable name.

This function returns a copy of the values found in the variable database for the spec-
ified variable. The function passes the pointer to an array or to a scalar storage location
in the module where the variable values are to be stored. In both C and FORTRAN, the
array name passes the pointer to the array. The values in the variable database are then
written to this local variable storage. In C, one must explicitly indicate a pointer to a
scalar.

An example for FORTRAN is:

real rainfall(MAXRAIN)

if (getvar(‘obs’,’rainfall’, MAXRAIN, ‘real’,

+ rainfall).ne.0) return

An example for C is:

MODULE DEVELOPMENT 126

float *rainfall

if (getvar(“obs”,”rainfall”, MAXRAIN, “float”,

rainfall)) return(1);

FORTRAN Binding

getvar (module, variable, maxsize, type, val)

char*(*) module

char*(*) variable

integer maxsize

char*(*) type

various val(maxsize)

C Binding

getvar (module, variable, maxsize, type, val);

char *module;

char *variable;

integer maxsize;

char *type;

char *val;

Returns

Error code: 0 = OK; 1 = error condition.

6.8.13 putvar - update a public variable from a module that did not declare it

putvar (module, variable, maxsize, type, val)

module - module name.
variable - public variable name.
maxsize - maximum array size.
type - variable type. This should be ‘integer’, ‘real’ or ‘double’ in FORTRAN, or

“long”, “float” or “double” in C. This must match the type when the variable was
declared.
val - local variable with values to use for update.

This function enables a module to update the public variables declared by another
module. The module must pass a pointer to a local copy of the new variable values. In

MODULE DEVELOPMENT 127

both C and FORTRAN, the array name (val in the call above) indicates the pointer to
this local array. The values referenced by the variable database are overwritten with the
values in this local variable storage. In C, putvar expects the address of scalar values, so
always pass a pointer.

An example for FORTRAN is:

 if (putvar (‘srunoff’, ‘infil’, MAXHRU, ‘float’, infil)

+ ne.0) return

An example for C is:

if (putvar (“srunoff”, “infil”, MAXHRU, “float”, infil))

return (1);

FORTRAN Binding

putvar (module, variable, maxsize, type, val)

char*(*) module

char*(*) variable

integer maxsize

char*(*) type

various val(maxsize)

C Binding

putvar (module, variable, maxsize, type, val);

char *module;

char *variable;

integer maxsize;

char *type;

char *val;

Returns

Error code: 0 = OK; 1 = error condition.

6.8.14 readvar - loads a public variable from a data file

readvar (module, variable)

module - module name.

MODULE DEVELOPMENT 128

variable - variable name.

At the start of each time step, the system reads the next line from the input data file
and stores the values read in a buffer. The readvar function takes values from the buffer
and overwrites the variable in the public variables database. The system checks the
number of values read, which is specified by the current value of the dimension of the
public variable, against the number of values available in the data buffer. If the dimension
value is not equal to the number specified in the data buffer, an error is indicated by a
return value of 1.

In the following example the variable runoff is read from the data buffer for the
current time step:

An example for FORTRAN is:

 if(readvar(’obs’,’runoff’).ne.0) return

An example for C is:

if (readvar (“obs”, “runoff”))

return (1);

FORTRAN Binding

readvar (module, variable)

char*(*) module

char*(*) variable

C Binding

readvar (module, variable);

char *module;

char *variable;

Returns

Error code: 0 = OK; 1 = error condition.

6.8.15 unitparam - get the units of a parameter as a string

unitparam (parameter) C
unitparam (parameter, unit_str) FORTRAN

MODULE DEVELOPMENT 129

parameter - parameter name.
unit_str - variable name to receive returned string.

This function returns a string containing the units of the specified parameter name.
The FORTRAN and C calls are slightly different.

For FORTRAN, both the parameter name string and the result string are passed as
arguments:

character*80 unit_str

call unitparam (‘snowinfil_max’, unit_str)

For C, the dimension name is passed and the string is returned:

char *unit_str;

unit_str = unitparam (“snowinfil_max”);

FORTRAN Binding

unitparam (parameter, unit_str)

char*(*) parameter

char*(*) unit_str

C Binding

unitparam (parameter);

char *parameter;

Returns

The units of this parameter as a character string.

6.8.16 unitvar - get the units of a variable as a string

unitvar (variable) C
unitvar (variable, unit_str) FORTRAN

variable - variable name.
unit_str - variable name to receive returned string.

MODULE DEVELOPMENT 130

This function returns a string containing the units of the specified variable. The
FORTRAN and C calls are slightly different.

For FORTRAN, both the variable name string and the result string are passed as
arguments:

character*80 unit_str

call unitvar (‘runoff’, unit_str)

For the C call, the variable name is passed and the string is returned:

char *unit_str;

unit_str = unitvar (“runoff”);

FORTRAN Binding

unitvar (variable, unit_str)

char*(*) variable

char*(*) unit_str

C Binding

unitvar (variable);

char *variable;

Returns

The units of this variable as a character string.

6.8.17 dattim - get date and time information

dattim (when, time)

when - Specifies the time string. Must be either “start”, “end”, or “now”.
time - An array of 6 integers. The integer representation of year, month, day,

hour, minute, and second get filled in respectively.

This function returns time information. dattim can be called with either “start”, “end”,
or “now” as an argument to obtain information on the time the simulation started, the time
it will end, or the current time step. The function writes six integers to an array whose

MODULE DEVELOPMENT 131

values correspond to the year, month, day, hour, minute, and second for the requested
time information.

An example for FORTRAN is:

integer*4 starttime(6), year, month, day, hour, min, sec

call dattim(‘start’, starttime)

year = starttime(1)

month = starttime(2)

day = starttime(3)

hour = starttime(4)

min = starttime(5)

sec = starttime(6)

An example for C is:

int starttime[6], year, month, day, hour, min, sec;

dattim (“start”, starttime);

year = starttime[0];

month = starttime[1];

day = starttime[2];

hour = starttime[3];

min = starttime[4];

sec = starttime[5];

FORTRAN Binding

dattim (when, time)

char*(*) when

integer*4 time(6)

C Binding

dattim (when, time);

char *when;

long *time;

MODULE DEVELOPMENT 132

Returns

Six integers to an array whose values correspond to the year, month, day, hour,
minute, and second for the requested time information.

6.8.18 deltim - get delta time for the current timestep

deltim ()

Returns the length of the current timestep in hours.

An example for FORTRAN is:

real dt

dt = deltim ()

An example for C is:

float dt;

dt = deltim ();

FORTRAN Binding

deltim ()

C Binding

deltim ();

Returns

The timestep as a real or double value.

6.8.19 djulian - get julian day with fractional part

dulian (when, type)

when - This has the value “start”, “end”, or “now”, depending on whether one
wants the start, end, or current date.

MODULE DEVELOPMENT 133

type - This has the value “calendar”, “solar”, “water”, or “absolute”, depending
on the type of year referred to.

This function returns an integer corresponding to the julian date of the start, end or
current timestep, with respect to the calendar, solar or water years. The start dates for
each year type are:

• calendar - Jan 1
• solar - Dec 22
• water - Oct 1
• absolute - base date

A FORTRAN example to obtain the length of a model run in hours:

 double precision dt

 dt = djulian(‘end’, ‘absolute’) - djulian(‘start’,

+ ‘absolute’) * 24.0

A C example:

double dt;

dt = djulian(“end”, “absolute”) - djulian(“start”,

“absolute”) * 24.0;

FORTRAN Binding

djulian (when, type)

char*(*) when

char*(*) type

C Binding

djulian (when, type);

char *when;

char *type;

Returns

the julian date.

MODULE DEVELOPMENT 134

6.8.20 getstep - get timestep number

getstep ()

This function returns the current integer count of the number of timesteps the model
has run, regardless of timestep increment variability.

A FORTRAN example is:

integer*4 nstep

nstep = getstep()

A C example is:

long nstep;

nstep = getstep ();

FORTRAN Binding

getstep ()

C Binding

getstep ();

Returns

The current timestep number.

6.8.21 julian - get the julian date

julian (when, type)

when - This has the value “start”, “end” or “now”, depending on whether one
wants the start, end, or current date.
type - This has the value “calendar”, “solar” or “water”, depending on the type

of year referred to.

MODULE DEVELOPMENT 135

This function returns an integer corresponding to the julian date of the start, end or
current timestep, with respect to the calendar, solar or water years. The start dates for
each year type are:

• calendar - Jan 1
• solar - Dec 22
• water - Oct 1

A FORTRAN example to obtain the water year julian date for the current timestep is:

integer*4 jday

jday = julian (‘now’, ‘water’)

A C example to obtain the calendar year julian date for the current timestep is:

long jday;

jday = julian (“now”, “calendar”);

FORTRAN Binding

julian (when, type)

char*(*) when

char*(*) type

C Binding

julian (when, type);

char *when;

char *type;

Returns

the julian date.

6.8.22 units - get unit conversion factor

units (have, want)

MODULE DEVELOPMENT 136

have - the units being used.
want - the units desired.

This function returns the factor for converting values of one set of units into another
(for example from metric to inch pound). Units is based on the Unix utility of the same
name. It requires a character string containing the current units and another string
containing the desired units. The factor returned is multiplied times the value of the vari-
able in the “have” units to compute the value of the variable in the “want” units.

A FORTRAN example is:

 character*80 have

 double conv_fac

 conv_fact = units (have, ‘ft3/sec’)

A C example is:

char *have;

double conv_fact;

conv_fact = units (have, “ft3/sec”);

6.8.23 cprint commands - print information to standard output

cpstr - print string (C or FORTRAN) to standard output

cpint4 - print integer*4 array (FORTRAN) to standard output

cpreal - print real array (FORTRAN) to standard output

cpdble - print double precision array (FORTRAN or C) to standard output

cpstr (message)

cpint4 (message, int4_array, array_len)

cpreal (message, real_array, array_len)

cpdble (message, doub_array, array_len)

message - user message to identify output.
***_array - array to be output.
array_len - number of elements in the array

The cprint famIly of routines enable the programmer to print messages and the values
of specified parameters and variables to stdout, the standard output device, which may

MODULE DEVELOPMENT 137

be mapped to a file at runtime. These are essentially the same as the oprint routines
(see below).

A FORTRAN example for the use of cpint4 is:

integer*4 retval

call cpint4(’End of module, retval = ’, retval, 1)

This will print the current value of retval.

An example application for a C coded module is:

long retval[10];

count = 10;

cpint (“End of module, retval = “,retval, count);

FORTRAN Binding

cpstr (message)

cpint4 (message, int4_array, array_len)

cpreal (message, real_array, array_len)

cpdble (message, doub_array, array_len)

char*(*) message

integer*4 array_len

C Binding

cpstr (message);

cplong (message, long_array, array_len);

cpfloat (message, float_array, array_len);

cpdble (message, doub_array, array_len);

char *message;

long array_len;

long *long_array;

float *float_array;

double *doub_array;

Returns

None.

MODULE DEVELOPMENT 138

6.8.24 dprint commands - print debug information

dpstr - print debug string (C or FORTRAN)

dpint4 - print debug integer*4 array (FORTRAN)

dplong - print debug long array (C)

dpreal - print debug real array (FORTRAN)

dpfloat - print debug float array (C)

dpdble - print debug double precision array (FORTRAN or C)

dpstr (message, dlevel)

dpint4 (message, int4_array, array_len, dlevel)

dplong (message, long_array, array_len, dlevel);

dpreal (message, real_array, array_len, dlevel)

dpfloat (message, float_array, array_len, dlevel);

dpdble (message, doub_array, array_len, dlevel)

message - user message to identify output.
***_array - array to be output.
array_len - number of elements in the array
dlevel - debug level.

The dprint famIly of routines enable the programmer to print debugging messages and
the values of specified parameters and variables to stderr, the standard error device,
which may be mapped to a file at runtime. These are essentially the same as the oprint
routines (see below), with the addition of the dlevel argument, which sets the minimum
system debug level for which the print will be activated. The system debug level is set
using the -debug argument on the command line when MMS is started. If the dlevel
value passed in a dprint routine is equal to or less than the system level, then the print
will be performed. If the dlevel value exceeds the system debug level, no print will
occur.

A FORTRAN example for the use of dpint4 is:

integer*4 retval

call dpint4(’End of module, retval = ’, retval, 1, 2)

This will print the current value of retval, preceded by the descriptive message in
quotes, when the debug level is set to 2 or more.

An example application for a C coded module is:

MODULE DEVELOPMENT 139

long debug_level;

long retval[10];

real real_array[10];

double double_array[10];

count = 10;

dpint (“End of module, retval = “,retval, count, 2);

FORTRAN Binding

dpstr (message, dlevel)

dpint4 (message, int4_array, array_len, dlevel)

dpreal (message, real_array, array_len, dlevel)

dpdble (message, doub_array, array_len, dlevel

char*(*) message

integer*4 array_len

integer*4 dlevel

C Binding

dpstr (message, dlevel);

dplong (message, long_array, array_len, dlevel);

dpfloat (message, float_array, array_len, dlevel);

dpdble (message, doub_array, array_len, dlevel);

char *message;

long array_len;

long dlevel;

long *long_array;

float *float_array;

double *doub_array;

Returns

None.

6.8.25 oprint commands - print information to MMS output file

opstr - print string (C or FORTRAN)

opint4 - print integer*4 array (FORTRAN)

oplong - print long array (C)

MODULE DEVELOPMENT 140

opreal - print real array (FORTRAN)

opfloat - print float array (C)

opdble - print double precision array (FORTRAN or C)

opstr (message)

opint4 (message, int4_array, array_len)

oplong (message, long_array, array_len);

opreal (message, real_array, array_len)

opfloat (message, float_array, array_len);

odpdble (message, doub_array, array_len)

message - error message.
***_array - array to be output.
array_len - number of elements in the array.
dlevel - debug level.

The oprint famIly of routines enable the programmer to print specified parameter and
variable values to the MMS output file, the name of which is defined by the user at
runtime using the graphical user interface. Values of a single parameter or variable or of
multiple parameters and variables can be output in a single oprint statement. Multiple
parameters and variables are output by writing them to a buffer and then printing the
buffer with an oprint function. The write to a buffer can be formatted or unformatted.

A FORTRAN example for writing a formatted output string using a buffer is:

character*80 buffer

1002 format(2x,f5.0,2x,f3.0,2x,f3.0,f11.2,1x,f11.2)

write(buffer,1002)ryear, rmo, rday, obs_runoff(1), basin_cfs

call opstr(buffer)

A C example for writing a formatted output string is:

char buffer[80];

sprintf (buffer, ”%d %d %d %f %f ”, ryear, rmo, rday,
obs_runoff(1), basin_cfs);

MODULE DEVELOPMENT 141

opstr (buffer);

FORTRAN Binding

opstr (message)

opint4 (message, int4_array, array_len)

opreal (message, real_array, array_len)

opdble (message, doub_array, array_len)

char*(*) message

integer*4 array_len

integer*4 dlevel

C Binding

opstr (message, dlevel);

oplong (message, long_array, array_len);

opfloat (message, float_array, array_len);

opdble (message, doub_array, array_len);

char *message;

long array_len;

long dlevel;

long *long_array;

float *float_array;

double *doub_array;

Returns

None.

6.8.26 uprint - print information to output files referenced by dimension index.

upstr - print string (C or FORTRAN)

upint4 - print integer*4 array (FORTRAN)

uplong - print long array (C)

upreal - print real array (FORTRAN)

upfloat - print float array (C)

updble - print double precision array (FORTRAN or C)

MODULE DEVELOPMENT 142

upstr (dim_name, index, message)

upint4 (dim_name, index, message, int4_array, array_len)

uplong (dim_name, index, message, long_array, array_len);

upreal (dim_name, index, message, real_array, array_len)

upfloat (dim_name, index, message, float_array, array_len);

updble (dim_name, index, message, doub_array, array_len)

dim_name - name of reference dimension.
index - index element to use.
message - error message
array_len - number of elements in the array

The uprint famIly of routines enable the programmer to print output to files which
correspond to the index names of a specific dimension. Uprint will write an output file for
each of the named indices of the dimension. These files have the names of the corre-
sponding index and are created in the output directory. The index names are created by
the user using the dimension index names feature of the edit pull down menu in the main
MMS GUI window. The index elements must be named or the functions will not produce
any output.

The uprint function is used to write a separate file for each element of an array, where
each element could be, for example, a streamflow simulation node within a large water-
shed. The resulting files would have the name of the node and the resulting time series
stored in each file would be the simulated streamflow hydrograph at each node. The first
write to a file opens the file and names it using the index name. Each subsequent write is
appended to the open file.

A FORTRAN example is:

integer nnode, i, year, month, day

character*30 str

real value

do 10 i = 1, nnode

write (str, *) year, month, day, value

call upstr (‘nnode’, i, str)

10 continue

A C example is:

int nnode, i, year, month, day;

char str[30];

float value;

MODULE DEVELOPMENT 143

for (i = 0; i < nnode; i++) {

printf (str, “%d %d %d %f”, year, month, day, value);

upstr (“nnode”, i, str);

}

FORTRAN Binding

upstr (dim_name, index, message)

upint4 (dim_name, index, message, int4_array, array_len)

upreal (dim_name, index, message, real_array, array_len)

updble (dim_name, index, message, doub_array, array_len)

char*(*) dim_name

integer*4 index

char*(*) message

integer*4 array_len

integer*4 dlevel

C Binding

upstr (dim_name, index, message);

uplong (dim_name, index, message, long_array, array_len);

upfloat (dim_name, index, message, float_array, array_len);

updble (dim_name, index, message, doub_array, array_len);

char *dim_name;

long index;

char *message;

long array_len;

long dlevel;

long *long_array;

float *float_array;

double *doub_array;

Returns

None.

PLANNED ENHANCEMENTS 144

7. PLANNED ENHANCEMENTS

MMS is envisioned to be composed of seven basic components. These components are:

• A modular modeling support framework.
• A graphical user interface and expert system.
• A statistical analysis package.
• Optimization and sensitivity analysis tools.
• A GIS interface for observed and model data processing, analysis, and

visualization.
• A generic structured query language (SQL) database interface.
• Policy and risk analysis tools.

Work on each of these components is ongoing but at variable levels of effort. The
modular modeling framework and the graphical user interface components are the most
fully developed, and their current state of development is described in detail in this
manual. A few statistical analysis, optimization, and sensitivity analysis tools have been
included in the initial release of MMS, but many more of these types of tools are needed.

GIS tools are being developed for pre-processing functions that include (1) data display
and analysis and (2) the delineation and characterization of various hydrologic and
ecosystem regions using topographic, soils, vegetation, and geologic databases, and (3)
the estimation of a variety of model parameters in each of the delineated regions using
these databases. Watershed delineation and characterization tools exist in both GRASS
and ARC/INFO and can be used to pre-process spatial data. However, a GUI is being
developed to support a set of tools for watershed delineation, characterization, and
parameterization that require a less extensive knowledge of GIS systems. Initial
development of the GUI is being completed using ARC/INFO.

Additional pre-processing tools are planned for use with time-series data. These tools
include procedures to detect bad or missing data values, replace bad or missing data
using selected statistical procedures, aggregate data to longer time steps, disaggregate
data to shorter time steps, and apply transform functions to produce a new time-series.
Methods to create simulated time series from model output or from the analysis and
extrapolation of measured data to unmeasured points or grided fields are also being
developed.

MMS currently uses an ASCII flat-file format for data storage and input. However, a goal
is to enable the use of a variety of databases, including SQL databases, dependent on
user preference and prescribed needs. Work is ongoing with the U.S. Bureau of
Reclamation (USBR), Natural Resources Conservation Service, and the
Rheinisch-Wesfällische Technische Hochschule in Aachen, Germany, to develop these
generic tools.

PLANNED ENHANCEMENTS 145

The ability to couple a variety of resource-management and risk-analysis models with
user-selected process models is being developed for use in evaluating alternative
resource-management policies and in developing operational short- and long-term
resource-management plans. These efforts are ongoing jointly with the USBR in the area
or watershed and river-system management, and with the U.S. Forest Service in the
area of forest-ecosystem management. Interfaces are also being developed to import
and export data and model results from and to other external data-management and
analysis systems.

As the number and type of applications and modules are developed, system
modifications and enhancements will be identified. Initial applications at MMS beta
testing locations have identified several of these needs including (1) system procedures
to handle feedback loops for selected process module combinations and (2) flexible
system procedures to accommodate alternative ways to configure the entities of time,
space, and module process. This includes the ability to use different methods (modules)
to simulate one or more processes on different spaces delineated within a watershed or
ecosystem. The next version of MMS will provide procedures to accommodate these
needs.

The development of MMS is seen as an evolutionary process, and so the system will
continue to evolve to meet user needs and accommodate advances and improvements
in modeling methodologies, types of data available, and computer software and
hardware. This manual will be updated and re-released to include these changes. In
addition, documentation for the other components of MMS will be released as soon as
these capabilities are fully developed and tested.

146

8. REFERENCES

Beck, J.V. and Arnold, K.J., 1977, Parameter Estimation in Engineering and Science: New
York, John Wiley, 501 p.

Davidon, W. C., 1959, Variable metric method for minimization: U.S. Atomic Energy
Commission, Argonne National Laboratories, Research and Development Report ANL-
5990, ---p.

Day, G.N., 1985, Extended Streamflow forecasting using NWSRFS: American Society of
Civil Engineers, Journal of Water Resources Planning and Management, v. 111 no. 2,
p. 157-170.

Eagleson, P.S., 1978, Climate, soil, and vegetation - 6. Dynamics of the annual water
balance: Water Resources Research, v. 14 no. 5, p. 749-764.

Fletcher, R. and Powell, M.J.D., 1963, A rapidly convergent descent method for
minimization: Computer Journal, v. 6, p. 163-168.

Leavesley, G.H., Lichty, R.W., Troutman, B.M., and Saindon, L.G., 1983, Precipitation-
runoff modeling system--User's manual, U.S. Geological Survey Water Resources
Investigation Report 83-4238, 207 p.

Mein, R.G. and Brown, B.M., 1978, Sensitivity of optimized parameters in watershed
models: Water Resources Research, v.14 no. 2, p. 299-303.

Restrepo, P.J. and Bras, R.L, 1982, Automatic parameter estimation of a large conceptual
rainfall-runoff model: A maximum-likelihood approach: Massachusetts Institute of
Technology, Department of Civil Engineering, Ralph M. Parsons Laboratory Report No.
267, ---p.

Rosenbrock, H.H., 1960, An automatic method of finding the greatest or least value of a
function: Computer Journal, v. 3, p. 175-184.

U.S. Army Corps of Engineers, 1991, Geographical Resources Analysis Support System
(GRASS) version 4.0 user’s reference manual: U.S. Army Corps of Engineers Research
Laboratory, 513 p.

147

Attachment 1

Recommended System Configuration

MMS runs on a variety of Unix platforms. It has been successfully ported to the following
vendor’s machines and operating systems:

• Sun (both SunOS 4 and Solaris)
• Data General (DGUX)
• Hewlett-Packard (HP-UX)
• IBM (AIX)
• Silicon Graphics
• PC (Linux)

Installation will require approximately 50 megabytes of hard disk space. This can be
reduced by removing the source code directories (mms/src) after compilation. The final
installation size will also depend on compilation options, models built, and the size of the
data files.

Required additional software and libraries:

• X11 and Xt (Intrinsic) libraries and include files
• Motif library and include files
• C compiler (such as Gnu’s gcc)
• FORTRAN compiler (for PRMS and TOPMODEL models)
• an editor (vi, emacs, etc.)
• an HTML viewer (Mosaic, Netscape, etc.) for the help system

Optional additional software and libraries:

• GRASS 4.1.x

148

Attachment 2

Module Documentation Example

NAME: Potet_hamon.f

MODULE PROCESS (TYPE): Potential evapotranspiration

DEFINITION: Determines whether current time period is one of active transpiration and
computes the potential evapotranspiration for each HRU using the Hamon formulation.

CREATION DATE: July 1992

PARAMETERS DECLARED:

basin_area Total basin area, in acres.
epan_coef Evaporation pan coefficient.
hamon_coef Monthly air temperature coefficient used in Hamon potential

evapotranspiration computations.
hru_area HRU area in acres.
hru_radpl Index of radiation plane associated with each HRU.
temp_units Indicator for units for temperature data, 0= °F and 1=°C.
transp_beg Month to begin summing maximum temperature for each HRU; when

sum is greater than or equal to transp_tmax, transpiration begins.
transp_end Last month for transpiration computations. Transpiration is computed

through the end of the month.
transp_tmax Temperature index to determine the specific date of the start of the

transpiration period. This subroutine sums the maximum temperature for each
HRU starting with the first day of month transp_beg. When the sum exceeds this
index, transpiration begins, °F or °C, depending on units of data.

VARIABLES DECLARED:

basin_potet Weighted average potential evapotranspiration for basin.
potet Potential evapotranspiration for each HRU, in inches/day.
transp_on Indicator for whether transpiration is occurring, 0=no, 1=yes.
transp_check Indicator for whether within period to check for beginning of

transpiration, 0=no, 1=yes.

EXTERNAL VARIABLES USED

tavgc Average HRU temperature in °C.
tmaxf or tmaxc Maximum HRU temperature, °F or °C, depending on units of data.
radpl_sunhrs The hours of daylight for each day, in units of 12 hours.

149

DESCRIPTION

This module was written using FORTRAN code from the U.S. Geological Survey’s
Precipitation-Runoff Modeling System (PRMS) (Leavesley and others, 1983). The
PRMS subroutine pets.f is the source for most of the code.

The time of the year in which transpiration occurs is specified as a period of months,
starting with transp_beg and ending with transp_end. The specific date of the start of
transpiration is computed for each HRU using the temperature index parameter
transp_tmax. For each HRU, the sum of the maximum air temperatures is
accumulated, starting with the first day of the month transp_beg. When the sum for an
HRU exceeds transp_tmax, transpiration is assumed to begin on that HRU. This
permits accounting in part for warmer or colder than normal spring periods.
Transpiration ends on the last day of transp_end. Transp_on is equal to ‘1’ during the
transpiration period.

The potential evapotranspiration for each HRU (potet) for each time period is
computed as a function of daily mean air temperature and possible hours of sunshine
(Hamon, 1961) using the equation:

(1)

where

hamon_coef is the monthly air temperature coefficient used in Hamon potential
evapotranspiration computations,

radpl_sunhrs is the hours of daylight for each day, in units of 12 hours, and
vdsat is the saturated water-vapor density (absolute humidity) at the daily mean air

temperature (°C) in grams per cubic meter (g/m3) computed by (Federer and Lash,
1978):

(2)

where

tavgc is the average HRU temperature in °C, and
vpsat is the saturated vapor pressure in millibars (mb) at the daily mean air

temperature (°C) and is computed as (Murray, 1967):

(3)

potet hamon_coef radpl_sunhrs
2

vdsat××=

vdsat 216.7
vpsat

tavgc 273.3+
--------------------------------------×=

vpsat 6.108 exp 17.26939
tavgc

tavgc 237.3+
--------------------------------------××=

150

Hamon (1961) suggests a constant value of 0.0055 for hamon_coef. Other
investigators (Leaf and Brink, 1973; Federer and Lash, 1978) have noted that 0.0055
underestimated potet for some regions. Limited experience also has shown that a
constant value underestimates potet for the winter months more than for the summer
months.

 The basin weighted average potential evapotranspiration, basin_potet, is also
computed in this module.

REFERENCES

Federer, A. C., and Lash, Douglas, 1978, Brook: A hydrologic simulation model for
eastern forests: Durham, New Hampshire, University of New Hampshire, Water
Resources Research Center, Research Report No. 19, 84 p.

Hamon, W. R., 1961, Estimating potential evapotranspiration: Proceedings of the
American Society of Civil Engineers, Journal of the Hydraulic Division, v. 87, no. HY3,
p.107-120.

Leaf, C. F., and Brink, G. E., 1973, Hydrologic simulation model of Colorado subalpine
forest: U.S. Department of Agriculture, Forest Service Research Paper RM-107, 23 p.

Leavesley, G. H., Lichty, R. W., Troutman, B. M., and Saindon, L. G., 1983, Precipitation-
runoff modeling system--user’s manual: U.S. Geological Survey Water Resources
Investigations Report 83-4238, 207 p.

Murray, F. W., 1967, On the computation of saturation vapor pressure: Journal of
Applied Meteorology, v. 6, p. 203-204.

DEVELOPER NAME AND ADDRESS

George H. Leavesley
U.S. Geological Survey, WRD
Box 25046, MS 412, DFC
Denver, Colorado 80225

e-mail: george@usgs.gov

BATCH RUN CONTROL: ESPTOOL 151

Attachment 3

1. BATCH RUN CONTROL: ESPTOOL

esptool provides a GUI to assist users in making and organizing multiple MMS batch
runs. The conventions used in the esptool GUI for selecting and manipulating information
are the same as those described in section 4.1 of Chapter 4 (MMS Graphical User Inter-
face), of The Modular Modeling System (MMS): User’s Manual.

1.1 Running MMS in Batch Mode

MMS runs in batch mode when the -batch flag is set as a command line argument to the
executable model. In batch mode, the model will run without the graphical user interface
(GUI) and requires no interaction with the user. The control file automatically specifies all
aspects of the batch run. Unless a control file is specified with the -C<control_file_name>
flag, the executable model will use the control file specified as the default control file in the
control/mms.env file.

1.1.1 Executable Models

Executable MMS models are created with the xmbuild utility. A detailed explanation of
this is given in Chapter 5 (Model Building: Xmbuild), of The Modular Modeling System
(MMS): User’s Manual. These models reside in the models/ directory of the user’s work-
space.

1.1.2 Setting Up the Control Files

The MMS control file contains all of the information necessary for the model run. The
standard location of the control files is in the control/ directory of the user’s workspace.
This file is described in section 3.6 of Chapter 3 (MMS Structure, Conventions, and Defini-
tions) of The Modular Modeling System (MMS): User’s Manual.

Typically, initial versions of these files will be created by running the model in the stan-
dard GUI mode. For example, a control file is created during the calibration phase of
modeling. This file contains a record of all input and output files, types of analysis, time
period. Then, a series of additional control files can be created with the MMS GUI for the
additional runs that will be made with the esptool.

1.1.3 Run Modes

Batch runs of MMS models may be executed in two different run modes. These corre-
spond to the Single Run and ESP sub-menu options from the Run menu on the main MMS

BATCH RUN CONTROL: ESPTOOL 152

menubar. Single Run is the default mode. Specifying the -ESP flag as a command line
argument will change the run mode to ESP.

The selected run mode will determine several things about the run. This includes input
and output file names, time periods, and output variables and options. It is important to
remember when creating the control files, that only the settings for the specified run mode
will have effect on that batch run.

1.1.4 esptool.control File

The esptool uses a simplified version of the MMS control file to record the user modifi-
able settings of its GUI. This file, always named esptool.control, must be present in the
current working directory. An example of the esptool control file that produced the GUI
settings in figure 1.1 is:

####
_model
1
4
xprms
####
_mode_switch
1
4
ESP
####
_control_files
2
4
mms.control
project.control
####
_esp_period
2
4
1972 10 1 0 0 0 - 1973 8 31 0 0 0
1972 10 15 0 0 0 - 1973 8 31 0 0 0
####
_exceedance_probabilities
4
4
0.25
0.5
0.75
0.9
####
_esp_years
14

BATCH RUN CONTROL: ESPTOOL 153

4
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

If there are several changes to be made to the GUI, such as the addition of many file
names to the control file list, the user may decide that editing the esptool.control file may
be the most efficient way.

The file structure is the same as the MMS control file. A delimiter line (####) indicates a
new data block. The first line after the delimiter line is the GUI key name. The next line is
the number of data values. The third line is the type code. A type code of 4 indicates that
the data is of type character string. All data, even if it is numeric, is stored as character
strings. The remaining lines, until the next delimiter line, are data. For instance, the GUI
name key _exceedance_probabilities with data lines 0.25, 0.5, 0.75, and 0.9 indicates
that the Exceedance Probabilities list will contain those values.

If this file is edited by hand, it is important to keep the following items in mind:

• Don’ t change the GUI key name. Esptool looks for specific names. If they are
changed in the control file, esptool will not find them and not be able to set the
GUI correctly.

• The line containing the number of data values must match the number of data
lines. Behavior of the esptool will be undetermined if these do not match.

• Keep the type code (third line of the data block) set to 4. The esptool reads all
of the data lines as character data.

• Make sure that there are no extra spaces (or any other characters) in the data
lines. Certain lines contain file names which must be exact in order to find
these files in the user’s workspace. Also, when the character strings are con-
verted to numeric values, additional characters may cause unexpected
results.

• Run esptool in the directory where esptool.control resides. Esptool looks for

BATCH RUN CONTROL: ESPTOOL 154

this file in the current working directory.

1.2 Main esptool Interface Window

Executing esptool produces the main esptool window (fig. 1.1)

This window is divided into three fields; the MMS Files, MMS Executable Model, and
ESP Information fields.

Figure 1.1 esptool Graphical User Interface window.

BATCH RUN CONTROL: ESPTOOL 155

1.2.1 MMS Files Field

The MMS Files field is located in the lower left corner of the main window and contains
information about the specified control files and their associated input files. These are the
control files that esptool will use for the batch runs. To delete a control file from the Control
File list, select it with the left mouse button. To add a control file, select the Add Control File
button. The Control Files window (fig. 1.2) will appear. To see the control files located in

the user’s workspace control/ directory, select the Control file button with the left mouse
button. The available control files will appear on a popup option menu. Move the mouse
cursor over the menu until the desired file is selected. Release the mouse button. This
control file will appear on the button. Select OK to add it to the list, or select Cancel to exit
the window without adding it to the list.

Just below the Add Control File button is information from the highlighted control file in
the Control File list. The Variable Init File filed specifies the input file which contains the
initial state of the variables. This file will be loaded in just before the model starts execu-
tion. The Parameter File field specifies the parameter file associated with the control file.
Likewise, the Data File field specifies the data file associated with the control file. The Start
and End of Times Series Data indicates the period of record in the data file.

1.2.2 MMS Executable Model Field

The MMS Executable Model field is in the upper left of the main window and has a
menu for selecting the executable model. To see the executable models located in the
user’s workspace, select the model name button with the left mouse button. The available
models will appear on a popup option menu. Move the mouse cursor over the menu until
the desired model name is selected. Release the mouse button. This model name will
appear on the Model button.

Figure 1.2 Control Files window.

BATCH RUN CONTROL: ESPTOOL 156

Also in this field is a run mode radio button. Toggle between Single Run mode and ESP
mode by selecting the corresponding diamond shaped button with the left mouse button.

1.2.3 ESP Information Field

The ESP Information field is located on the right half of the main window. This contains
three fields:

• ESP Period
• Exceedance Probabilities
• ESP Years

These fields are ESP related and only available when esptool is in ESP mode. When
esptool is in Single Run mode, the ESP Information field is “grayed out” and not active.

For a complete description of ESP refer to section 4.5.4 of Chapter 4 (MMS Graphical
User Interface) of The Modular Modeling System (MMS): User’s Manual.

1.2.4 ESP Period Field

The ESP Period list is located at the top right of the main window. The lines in this list
indicate the time period for the ESP runs. Multiple lines indicate multiple runs. For
example, the esptool GUI shown in figure 1.1 shows two ESP periods (1972 10 1 0 0 0 -
1973 8 31 0 0 0 and 1972 10 15 0 0 0 - 1973 8 31 0 0 0). This means that an ESP run will
be made for each of these two periods for both of the designated control files (mms.control
and project.control) for a total of 4 ESP runs. This is equivalent to running the MMS model
xprms in full GUI mode with settings as indicated in table 1.1.

Table 1.1 Multiple ESP runs made in ESP Period example.

Control File ESP Start Time ESP End Time

mms.control 1972 10 1 0 0 0 1973 8 31 0 0 0

mms.control 1972 10 15 0 0 0 1973 8 31 0 0 0

project.control 1972 10 1 0 0 0 1973 8 31 0 0 0

project.control 1972 10 15 0 0 0 1973 8 31 0 0 0

BATCH RUN CONTROL: ESPTOOL 157

To delete a period from the ESP Period list, select it with the left mouse button. To add a
period, select the Add ESP Period button. The ESP Period window (fig. 1.3) will appear.

Type the year, month, day, hour, minute, and second (separated by single spaces) into the
ESP Start Date text field. Set the ESP period ending month and ending day in the ESP
End Month and ESP End Day respectively. The ending year will be set automatically. If the
ending month and day are after the starting month and day, then the ending year will be
the same as the starting year. If the ending month and day are before the starting month
and day, then the ending year will be set to the next year. For example, in figure 1.3, the
ending time is before the starting time; therefore, the ending year will be 1973.

Select OK to add it to the ESP Period list, or select Cancel to exit the window without
adding it to the list.

1.2.5 Exceedance Probabilities Field

The Exceedance Probabilities list is located at the center right of the main window. The
esptool does basic ranking statistics on the results of ESP runs. The traces of each ESP
run are ranked on the basis of maximum value (peak), and sum of values (volume). The
variable used for these statistics is the ESP Variable specified in the MMS model GUI and
control file. The lines in the Exceedance Probabilities list indicate the probity levels of
interest of the peaks and volumes.

Figure 1.3 ESP Period window.

BATCH RUN CONTROL: ESPTOOL 158

To delete a period from the Exceedance Probabilities list, select it with the left mouse
button. To add a period, select the Add Exceedance Probabilities button. The ESP Period
window (fig. 1.4) will appear. Type the values into the Exceedance Probability text field.

Select OK to add it to the Exceedance Probability list, or select Cancel to exit the
window without adding it to the list.

1.2.6 ESP Years Field

The ESP Years list is located at the lower right of the main window. The after the ESP
run, the years indicated in this list are used in the exceedance probability analysis. The
others are discarded. This option is useful for generating ESP traces which reflect a
certain historical view. Examples of this could be selecting low flow, high flow, or El Nino
years.

To delete a year from the ESP Years list, select it with the left mouse button. To add a
period, select the Add Year button. The ESP Years window (fig. 1.5) will appear. Type the

year into the Years text field.

Figure 1.4 Exceedance Probability window.

Figure 1.5 ESP Years window.

BATCH RUN CONTROL: ESPTOOL 159

Select OK to add it to the ESP Years list, or select Cancel to exit the window without
adding it to the list.

1.3 Output

1.3.1 Output to the Screen

When the Run button on the esptool screen (fig. 1.1) is pushed, the batch runs begin.
Below is an annotated example of the output to the screen that would be generated.

Start the esptool running by typing esptool on the command line.

(ksh) runoff.pts/0% esptool

The first ESP run is made with the model xprms. The period (1972 10 1 0 0 0 - 1973
8 31 0 0 0) is set in the GUI. The control file mms.control has been copied into the file
temp.control. This copy is used by esptool.

Using model /home1/markstro/mms_work/models/xprms
ESP period 1: 1972 10 1 0 0 0 - 1973 8 31 0 0 0
/home1/markstro/mms_work/models/xprms -Ctemp.control -batch -esp

The following lines are output from the actual ESP run in xprms.

Not writing to RDB database
ESP trace 1972-10-1:0:0:0 to 1973-8-31:0:0:0 now running.
ESP trace 1973-10-1:0:0:0 to 1974-8-31:0:0:0 now running.
ESP trace 1974-10-1:0:0:0 to 1975-8-31:0:0:0 now running.
ESP trace 1975-10-1:0:0:0 to 1976-8-31:0:0:0 now running.
ESP trace 1976-10-1:0:0:0 to 1977-8-31:0:0:0 now running.
ESP trace 1977-10-1:0:0:0 to 1978-8-31:0:0:0 now running.
ESP trace 1978-10-1:0:0:0 to 1979-8-31:0:0:0 now running.
ESP trace 1979-10-1:0:0:0 to 1980-8-31:0:0:0 now running.
ESP trace 1980-10-1:0:0:0 to 1981-8-31:0:0:0 now running.
ESP trace 1981-10-1:0:0:0 to 1982-8-31:0:0:0 now running.
ESP trace 1982-10-1:0:0:0 to 1983-8-31:0:0:0 now running.
ESP trace 1983-10-1:0:0:0 to 1984-8-31:0:0:0 now running.
ESP trace 1984-10-1:0:0:0 to 1985-8-31:0:0:0 now running.
ESP trace 1985-10-1:0:0:0 to 1986-8-31:0:0:0 now running.
ESP trace 1986-10-1:0:0:0 to 1987-8-31:0:0:0 now running.
ESP trace 1987-10-1:0:0:0 to 1988-8-31:0:0:0 now running.
ESP trace 1988-10-1:0:0:0 to 1989-8-31:0:0:0 now running.

BATCH RUN CONTROL: ESPTOOL 160

Once the ESP run is completed for the first specified time period, esptool makes a
single run mode run to get to the next ESP period. The state variables at the end of this
run are saved into a temporary variable initialization (Var Init) file.

Single Run period 2: starts 1972 10 1 0 0 0 - 1973 8 31 0 0 0; ends 1972
10 15 0 0 0 - 1973 8 31 0 0 0.
/home1/markstro/mms_work/models/xprms -Ctemp.control -batch

Now the ESP run for the second ESP period starts.

Not writing to RDB database
ESP period 2: 1972 10 15 0 0 0 - 1973 8 31 0 0 0
/home1/markstro/mms_work/models/xprms -Ctemp.control -batch -esp

Not writing to RDB database
ESP trace 1972-10-15:0:0:0 to 1973-8-31:0:0:0 now running.
ESP trace 1973-10-15:0:0:0 to 1974-8-31:0:0:0 now running.
ESP trace 1974-10-15:0:0:0 to 1975-8-31:0:0:0 now running.
ESP trace 1975-10-15:0:0:0 to 1976-8-31:0:0:0 now running.
ESP trace 1976-10-15:0:0:0 to 1977-8-31:0:0:0 now running.
ESP trace 1977-10-15:0:0:0 to 1978-8-31:0:0:0 now running.
ESP trace 1978-10-15:0:0:0 to 1979-8-31:0:0:0 now running.
ESP trace 1979-10-15:0:0:0 to 1980-8-31:0:0:0 now running.
ESP trace 1980-10-15:0:0:0 to 1981-8-31:0:0:0 now running.
ESP trace 1981-10-15:0:0:0 to 1982-8-31:0:0:0 now running.
ESP trace 1982-10-15:0:0:0 to 1983-8-31:0:0:0 now running.
ESP trace 1983-10-15:0:0:0 to 1984-8-31:0:0:0 now running.
ESP trace 1984-10-15:0:0:0 to 1985-8-31:0:0:0 now running.
ESP trace 1985-10-15:0:0:0 to 1986-8-31:0:0:0 now running.
ESP trace 1986-10-15:0:0:0 to 1987-8-31:0:0:0 now running.
ESP trace 1987-10-15:0:0:0 to 1988-8-31:0:0:0 now running.
ESP trace 1988-10-15:0:0:0 to 1989-8-31:0:0:0 now running.

The entire process repeats for the second control file (project.control).

ESP period 1: 1972 10 1 0 0 0 - 1973 8 31 0 0 0
/home1/markstro/mms_work/models/xprms -Ctemp.control -batch -esp

Not writing to RDB database
ESP trace 1972-10-1:0:0:0 to 1973-8-31:0:0:0 now running.
ESP trace 1973-10-1:0:0:0 to 1974-8-31:0:0:0 now running.

.

.

.

BATCH RUN CONTROL: ESPTOOL 161

ESP trace 1987-10-15:0:0:0 to 1988-8-31:0:0:0 now running.
ESP trace 1988-10-15:0:0:0 to 1989-8-31:0:0:0 now running.
(ksh) runoff.pts/0%

1.3.2 esp_report.out

The output file esp_report.out.<control file name> is produced by the esptool for each
control file run. It is located in the user’s workspace output directory. The ESP run corre-
sponding to the settings in figure 1.1 produces the following esp_report.out.mms.control
file.

============== ESP Period 1972 10 1 0 0 0 - 1973 8 31 0 0 0 ==============

The volume, peak and time to peak are tabulated for each year.

 Summary of Selected Traces

Historic Year Volume Peak Time to Peak
------------- ------ ---- ------------
 1972 1.033e+10 2164.78 232
 1973 8.633e+09 1828.05 230
 1974 1.020e+10 2432.75 275
 1975 8.180e+09 1515.64 233
 1976 5.451e+09 961.20 221
 1977 1.369e+10 3340.78 255
 1978 1.088e+10 2205.03 241
 1979 1.133e+10 2293.83 255
 1980 6.279e+09 965.46 214
 1981 1.395e+10 2290.91 264
 1982 1.142e+10 2529.78 267
 1983 1.489e+10 3240.09 242
 1984 1.255e+10 1985.99 251
 1985 1.592e+10 3129.25 248

The above peaks and volumes are ranked and the following table is built using the user
specified exceedance levels.

 Exceedance Levels

0.25 0.5 0.75 0.9
---- ---- ---- ----

Peak 2432.75 (1974) 2164.78 (1972) 1596.83 (1988) 965.46 (1980)
Volume 1.3e+10 (1984) 1.0e+10 (1972) 8.6e+09 (1973) 6.3e+09 (1980)

BATCH RUN CONTROL: ESPTOOL 162

This report is repeated for each ESP time period.

1.3.3 esp_peak_traces.out

The output file esp_peak_traces.out.<control file name> is produced by the esptool for
each control file run. It is located in the user’s workspace output directory. The ESP run
corresponding to the settings in figure 1.1 produces the following
esp_peak_traces.out.mms.control file. It contains the time series data for each of the
selected exceedance levels. This file is primarily used for plotting. The first line is the ESP
time period. Also on this line is the exceedance level value. Then, the time series values
for the selected year. This repeats for each ESP time period at each exceedance level.

1972 10 1 0 0 0 - 1973 8 31 0 0 0 0.250
1974 1 1 0 0 0 71.088837
1974 1 2 0 0 0 70.375267
1974 1 3 0 0 0 69.669098
.
.
.
1974 12 29 0 0 0 89.241478
1974 12 30 0 0 0 88.330627
1974 12 31 0 0 0 87.430717
1972 10 1 0 0 0 - 1973 8 31 0 0 0 0.500
1972 10 1 0 0 0 162.861023
1972 10 2 0 0 0 159.301453
1972 10 3 0 0 0 156.497757
.
.
.
1972 12 29 0 0 0 89.584991
1972 12 30 0 0 0 88.668930
1972 12 31 0 0 0 87.764030
1972 10 1 0 0 0 - 1973 8 31 0 0 0 0.750
1988 1 1 0 0 0 98.068375
1988 1 2 0 0 0 97.054085
1988 1 3 0 0 0 96.053284
.
.
.
1988 12 29 0 0 0 78.416344
1988 12 30 0 0 0 77.619476
1988 12 31 0 0 0 76.831841
1972 10 1 0 0 0 - 1973 8 31 0 0 0 0.900
1980 1 1 0 0 0 80.831238
1980 1 2 0 0 0 80.015121
1980 1 3 0 0 0 79.207932
.
.

BATCH RUN CONTROL: ESPTOOL 163

.
1980 12 31 0 0 0 91.971199

1.3.4 esp_volume_traces.out

The output file esp_volume_traces.out.<control file name> is produced by the esptool
for each control file run. It is located in the user’s workspace output directory. The ESP run
corresponding to the settings in figure 1.1 produces the following
esp_volume_traces.out.mms.control file. The format of this file is precisely the same as for
the esp_peak_traces.out file.

BATCH RUN CONTROL: ESPTOOL 164

PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 165

Attachment 4

1. PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE

outbrowse provides a GUI to assist users in plotting time series output from multiple

MMS runs. The conventions used in the outbrowse GUI for selecting and manipulating

information are the same as those described in section 4.1 of Chapter 4 (MMS Graphical

User Interface), of The Modular Modeling System (MMS): User’s Manual.

1.1 MMS Statistic Variable Output Files

The outbrowse program uses MMS Statistic Variable (statvar) output files. These files

are created each time an MMS executable model runs.

1.1.1 Executable Models

Executable MMS models are created with the xmbuild utility. A detailed explanation of

this is given in Chapter 5 (Model Building: Xmbuild), of The Modular Modeling System

(MMS): User’s Manual. These models reside in the models/ directory of the user’s work-

space.

1.1.2 Creating Statistic Variable Files

The MMS Statistic Variable file contains the values of the selected statistic variables as

time series. These variables are set through the Edit Statistic Options on the MMS Single

Run window. This process is described in detail in section 4.5.1of Chapter 4 (MMS Graph-

ical User Interface) of The Modular Modeling System (MMS): User’s Manual. The standard

location of this output file is in the output/ directory of the user’s workspace. The name of

PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 166

the statvar file must be set before the run in the Set File Names window which is accessed

through the main MMS window File menu.

1.1.3 XMGR

XMGR is a freeware data analysis package. It is distributed with MMS or freely avail-

able from the internet. It provides a comprehensive suite of data analysis and visualization

algorithms. See the ACE/gr on-line documentation (included with the distribution) for a

detailed description of XMGR and its many features.

1.2 outbrowse Interface Window

Executing outbrowse produces the main outbrowse window (fig. 1.1)

Figure 1.1 outbrowse Graphical User Interface window.

PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 167

The main menubar provides four pulldown menus. These are File, Data, Plot, and Help.

Below the menubar, is the MMS Statistic Variable Data Sets list. This list (currently empty)

will show the selected time series which are available for plotting.

1.2.1 File Menu

The File menu provides only one function. Exit will exit the outbrowse session. Any

current XMGR sessions, however, will remain active.

1.2.2 Data Menu

The Data menu provides Add and Delete functionality for modifying the time series in

the MMS Statistic Variable Data Sets list.

PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 168

Selecting the Add submenu brings up a file selector window (fig 1.2). This window

allows the user to select the statistics variable file with the desired time series. In this

example, the file run1.statvar has been selected. Select OK to load the file. This brings up

Figure 1.2 File selector window with a file selected.

PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 169

the Select Variables window (fig 1.3). In this example, the statvar file run1.statvar contains

two time series variables: basin_cfs.sumb and runoff.obs. These are the predicted and

observed hydrographs respectively. basin_cfs.sumb has been selected. Select the Select

Figure 1.3 The Select Variable window.

PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 170

button to bring up the Name of This Variable in Graph window (fig 1.4). The name of the

variable has been set to pred - run 1. This is the label which will appear in the XMGR plot.

Figure 1.4 The Name of This Variable in Graph window.

PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 171

Figure 1.5 shows the main outbrowse window after the variable selection procedure is

repeated twice more. The additional time series variables are the predicted hydrograph

from a second run and the actual observed hydrograph. Each of the item lines in the MMS

Statistic Variable Data Sets list indicate the name of the variable as it will appear in the

plot, the name of the variable as it appears in the statistics variable file, and the name of

the statistics variable file of origin. Highlighted list items indicate the variables which will be

included in the plot. Toggle between highlighted and unhighlighted status by selecting the

item with the mouse.

Figure 1.5 outbrowse Graphical User Interface window with three time series
variables selected.

PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 172

1.2.3 Plot Menu

The Plot menu provides Plot Timeseries, Plot XY, Plot XY (Switch Axes), Plot Error and

Plot Auto-Correlation options for plotting the time series in the MMS Statistic Variable Data

Sets list.

The Plot Timeseries option plots all selected time series variables on the same graph.

Figure 1.6 shows the resulting XMGR time series plot.

Figure 1.6 XMGR Time series plot.

PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 173

The Plot XY and Plot XY (Switch Axes) options plot two selected time series variables

on the same graph. This results in a scatter-plot with the variable values for the same time

step plotted as a point. Figure 1.7 shows the resulting XMGR XY plot of observed and

predicted time series from the first model run.

Figure 1.7 XMGR XY plot.

PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 174

The Plot Error option plots the difference between two selected time series variables as

a time series. Figure 1.8 shows the resulting XMGR error plot of the observed and

predicted time series from the first model run.

The Plot Auto-Correlation option plots the predicted values versus the error associated

with those predictions. Large errors associated with large predicted values could indicate

Figure 1.8 XMGR error plot.

PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 175

systematic errors in the model or parameter estimation. Figure 1.9 shows the resulting

XMGR auto-correlation plot of observed and predicted from the first model run.

Figure 1.9 XMGR auto-correlation plot.

PREFACE 2
THE MODULAR MODELING SYSTEM (MMS): USER’S MANUAL 1
 1
ABSTRACT 1
INTRODUCTION 2

Purpose of MMS 2
Overview 3

Pre-process component 3
Model component 4
Post-process component 5

Manual structure 5
Font conventions used in this manual 6

INSTALLATION 7
Obtaining MMS 7
Installation Overview 7
Creating the MMS Master Directory 8
The MMS Setup Script 10
Creating the MMS User Workspace Directory 16
Moving the User Workspace 19
Installing Modules 20

MMS STRUCTURE, CONVENTIONS, AND DEFINITIONS 21
Modular Model Concepts 21

Modules 21
A Model 22

The MMS Internal Databases 23
The Parameters Database 23
The Public Variables Database 23
The Dimensions Database 24
The Control Database 25

Parameter Files 25
Data Files 27

Time Steps 28
Multiple Data Files 29

Environment File 29
Control Files 30
Model Execution 31

MMS GRAPHICAL USER INTERFACE 33
Interface Conventions 33

Menus 33
Input Fields 33
Slide Bars 34
Action Buttons 34
Standard Motif File Selection Dialog 34

Main MMS Interface Window 35
File Menu 36

Load Data Files 37

Load Parameters 38
Load Control File 38
Save Parameters 38
Save Control 38
Set File Names 38
Exit 39

Edit Menu 39
Dimension Size 40
Dimension Index Names 41
Parameters 41

by Module 42
by Dimension 42

Default Values 46
Parameter Information 46
Control Information 47
File 47

Run Menu 47
Single Run 47

Time Info 47
File Info 47
Graphing Program 48
Output Options 51
Start Button 56
Stop Button 56

Sensitivity 56
PRMS Sensitivity 56
Two-Parameter Sensitivity 62

Optimization 65
Rosenbrock Optimization 65
Hyper-tunnel Optimization 69

ESP 72
Graph Menu 76

Sensitivity Analysis 76
ESP 76

Print Menu 77
Parameters 77
Variables 77

Help Menu 77
MODEL BUILDING: XMBUILD 79

Module Library 79
Representations of Models Within xmbuild 79

Schematic Model File 79
HTML Model Documentation File 80
Executable Model File 80

Main xmbuild Interface Window 80
Module Locations Field 81

Available Modules Field 81
Current Model Field 82
Menu Bar 84

Model Menu 84
Load 84
Save 84
Build 85
Exit 88

Module Menu 88
Clear 88
Remove Module 88

Hierarchical Menu 88
Save Hierarchical 89
Expand Hierarchical 89

Building the PRMS Example 89
MODULE DEVELOPMENT 92

Introduction 92
Module Structure 92

Main Function 92
Declare Function 92
Initialize Function 93
Run Function 93
Cleanup Function 94

Converting Existing Code Into MMS Modules 94
FORTRAN Module Example 96

Main Function 96
Declare Function 97
Initialize Function 98
Run Function 99
Cleanup Function 101

C Module Example 101
Main Function 101
Declare Function 103
Initialize Function 104
Run Function 105
Cleanup Function 107

The Setdims Special Function and Include Files 107
Setdims 107
Include Files 109

Module Documentation 109
MMS Function Library Reference 110

decldim - declare a dimension 110
declfix - declare a fixed dimension 112
declparam - declare a parameter 113
declvar - declare a public variable 115
dimstr - return dimension size as a string 117

getdatainfo - get data file description string 118
getdim - get dimension size 119
getdimdesc - get a dimensions description text 120
getdimname - get dimension index name 121
getoutname - get full path of output file as a string 123
getparam - get a copy of a parameter 124
getvar - get a copy of a public variable 125
putvar - update a public variable from a module that did not declare it 126
readvar - loads a public variable from a data file 127
unitparam - get the units of a parameter as a string 128
unitvar - get the units of a variable as a string 129
dattim - get date and time information 130
deltim - get delta time for the current timestep 132
djulian - get julian day with fractional part 132
getstep - get timestep number 134
julian - get the julian date 134
units - get unit conversion factor 135
cprint commands - print information to standard output 136
dprint commands - print debug information 138
oprint commands - print information to MMS output file 139
uprint - print information to output files referenced by dimension index. 141

PLANNED ENHANCEMENTS 144
REFERENCES 146
Attachment 1 147
Attachment 2 148
Attachment 3 - BATCH RUN CONTROL: ESPTOOL 151

Running MMS in Batch Mode 151
Executable Models 151
Setting Up the Control Files 151
Run Modes 151
esptool.control File 152
Main esptool Interface Window 154

MMS Files Field 155
MMS Executable Model Field 155
ESP Information Field 156
ESP Period Field 156
Exceedance Probabilities Field 157
ESP Years Field 158

Output 159
Output to the Screen 159
esp_report.out 161
esp_peak_traces.out 162
esp_volume_traces.out 163

Attachment 4 - PLOTTING FROM MULTIPLE MMS RUNS: OUTBROWSE 165
MMS Statistic Variable Output Files 165
Executable Models 165

Creating Statistic Variable Files 165
XMGR 166
outbrowse Interface Window 166

File Menu 167
Data Menu 167
Plot Menu 172

