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Modeling Approaches for Assessing the Risk of 
Nonpoint-Source Contamination of Ground Water
By Bernard T. Nolan

Abstract

A review of modeling approaches to assess 
the risk of ground-water contamination indicated 
that stochastic solute-transport models can be 
effectively used to analyze uncertainty associated 
with the wide spatial variability of soil-hydraulic 
properties. Whereas deterministic models predict 
a unique outcome for a given set of conditions, 
stochastic models yield many outcomes based on 
the statistical distributions of model-input param­ 
eters. The resulting output probability distribution 
indicates the likelihood of contamination of 
ground water. Deterministic models can be used 
in a stochastic context if input parameters are 
sampled repeatedly. Additional uncertainty anal­ 
ysis involves evaluation of model, data, and 
parameter errors. Compared with more theoretical 
mechanistic models, functional deterministic 
models involve simplified treatments of water and 
solute transport, require less data, and can provide 
comparable results. Geostatistics can be used to 
predict values of model-input parameters at 
unsampled locations, to evaluate parameter uncer­ 
tainty, to analyze solute-transport model resid­ 
uals, and to create maps of model output. 
Geographic information systems (GIS's) can be 
used to organize soils and land-use data prior to 
contaminant-transport modeling. GIS-based 
comparison of contamination risk for different 
land uses and soil types can help identify areas for 
implementation of best management practices. A 
GIS map of model output can readily communi­ 
cate to lay persons the risk of ground-water 
contamination by nonpoint-source pollutants.

INTRODUCTION

Ground water provides drinking water for more 
than half the Nation's population (Solley and others, 
1993) and is the sole source of drinking water for 
many rural communities and some large cities. In 
1990, ground water accounted for 39 percent of water 
withdrawn for public supply for cities and towns and 
96 percent of water withdrawn by self-supplied 
systems for domestic use (Solley and others, 1993). 
Nonpoint-source contamination is considered the 
single greatest threat to the quality of ground water 
and surface water (Corwin and others, 1997). 
Knowing where the risk of ground-water contamina­ 
tion is greatest will alert water-resources managers and 
users of the need to protect water supplies.

The unsaturated zone is the "conduit" through 
which nonpoint-source contaminants must travel to 
reach ground water (Corwin and others, 1997). Char­ 
acterization of soil properties permits use of unsatur- 
ated-zone solute-transport models to simulate leaching 
of nonpoint-source contaminants to ground water. 
Mapping model output in a geographic information 
system (GIS) can effectively convey the risk of 
ground-water contamination to policy makers, 
managers, and the general public. The spatial vari­ 
ability of physical soil properties that influence solute 
transport, however, profoundly affects the amount and 
timing of solute travel and, hence, the accuracy of 
model predictions. (Soil texture, volumetric water 
content, and soil hydraulic conductivity are examples 
of soil properties commonly used as model inputs.) 
Soil-coring studies have shown that up to 40 percent 
of pesticides were found twice as deep as predicted 
by a deterministic model (Jury, 1996). The variability 
of physical soil properties can cause extreme flow 
variations within an agricultural field, so that large
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amounts of chemicals can quickly flow through rela­ 
tively small areas. Preferential flow paths can develop 
from macropores in the root zone created by animal 
burrows, plant roots, dessication, freezing, and/or 
tillage (Michael J. Friedel, USGS, unpub. data, 1997). 
These pathways "short circuit" the infiltration process, 
causing water and solute to move through soil much 
faster than would be explained by the hydraulic 
conductivity of the soil matrix alone. The amount and 
timing of solute travel also are affected locally by vari­ 
ations in the hydraulic conductivity of the soil matrix 
and by focused recharge caused by topographic 
depressions.

Deterministic solute-transport models 
commonly predict that travel by chemicals through the 
unsaturated zone will take years. Field experiments, 
however, indicate that preferential flow paths dramati­ 
cally reduce chemical travel time. In one experiment, 
water was applied to a field continuously until the 
water ponded at the land surface. A chloride tracer in 
the infiltrating water required only 5 minutes to arrive 
at a drain 0.4 meters below land surface (Jury, 1996). 
A dye tracer indicated that flow took place through 
root and worm channels and, in some instances, along 
fracture planes. Thus, preferential flow profoundly 
affects the "lag time" between chemical loading at the 
land surface and solute arrival at depth.

Better understanding of transient time in the 
unsaturated zone would help scientists in the National 
Water-Quality Assessment (NAWQA) Program to 
correlate changing land-use patterns with observed 
contaminant concentrations in ground water. The 
NAWQA Program is designed to enhance under­ 
standing of natural and human factors that affect water 
quality. NAWQA ground-water "land-use studies" 
evaluate the quality of recently recharged ground 
water for regionally extensive combinations of land 
use and hydrogeologic conditions (Gilliom and others, 
1995). Wells are randomly sampled within the land- 
use study area, which represents the intersection of a 
targeted land use and an aquifer of interest. Land-use 
data must be compiled for a timeframe that is compat­ 
ible with ground-water travel time, however, to 
produce a meaningful correlation between land use 
and ground-water quality. For example, if the lag time 
required for agricultural chemicals applied to the 
land surface to reach the water table in a given area is 
20 years, as might be predicted with a deterministic 
model, Anderson land-use data collected in the 1970's 
(Anderson and others, 1976) are relevant to current

concentrations of contaminants in ground water; but if 
preferential flow results in a lag time of 1-2 years, 
then more recent land-use data are needed. Physically 
based modeling approaches that address preferential 
flow are needed to derive realistic lag times, which can 
be used as a basis for selecting land-use data sets for 
interpretation of ground-water-quality data by 
NAWQA.

Purely deterministic models cannot incorporate 
the spatial variability existing at the field scale and 
larger. Jury (1996) wrote that stochastic modeling

"is virtually the only viable option to pursue 
in making large-scale simulations of chemical 
movement. A fully deterministic model would 
require soil property data for every point in three- 
dimensional space over which the simulation is to 
be run. Since no one is now or ever will be using 
such an approach...everyone in the business of 
representing water and solute transport at a larger 
scale than a small plot is using a stochastic 
approach of one kind or another."

Stochastic models, which include a random 
component to address the spatial variability of soil 
properties, can predict a wide range of solute-leaching 
outcomes for a given area. Additionally, coupling of 
stochastic models with a GIS permits organization of 
model-input parameters and mapping of model results 
at large spatial scales typical of NAWQA ground- 
water studies.

The purpose of this literature review is to iden­ 
tify risk-assessment methods that are transferable to 
NAWQA ground-water studies and to national 
synthesis. Emphasis is placed on methods that employ 
GIS and that apply to large spatial scales. Modeling 
approaches that can be applied at regional and national 
scales are relevant from a national-synthesis perspec­ 
tive, whereas the watershed scale seems appropriate 
for NAWQA study units. Stochastic modeling at large 
spatial scales, however, might dampen the variability 
of predictions thereby reducing the effectiveness of 
the risk assessment because of "averaging" of local 
environmental factors used as model inputs (such as 
soil texture data in the USDA's State Soil Geographic 
database). On the other hand, a contaminant-transport 
model developed for an extremely small area (such as 
a single agricultural field) would be so tightly cali­ 
brated to a specific set of soil and land-use conditions 
that it would lack transferability to watershed or 
regional scales. Modeling approaches used in
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NAWQA study units and in national synthesis activi­ 
ties should be versatile and appropriate for the scale 
of the study. Statistical approaches such as logistic 
regression might have greater applicability at the 
national scale, and stochastic models might better 
reflect local variability in environmental and anthropo­ 
genic conditions such as soil type, land use, and 
climate.

Stochastic transport modeling in NAWQA 
would involve multiple simulations (called "realiza­ 
tions") of the subsurface environment; each realization 
is generated from a common statistical distribution, 
based on observations of the physical system. Thus, 
effective risk assessment uses a statistical framework, 
rather than trial-and-error or deterministic approaches 
commonly used in solute-transport modeling. (For the 
purpose of this literature review, "stochastic" refers to 
model simulations involving multiple sets of input 
conditions, as shown in figure 1.)

The most useful aspect of stochastic transport 
modeling within NAWQA might be to evaluate 
different management scenarios (while acknowledging 
the spatial variability of model-input parameters) 
rather than attempting to explicitly model preferential 
flow through macropores. Modeling flow through 
macropores remains problematic even for highly theo­ 
retical models. For example, Richard's equation 
(which describes changes in water flow in time and 
space) "does not apply directly to flow in nonhomoge- 
neous soils, which are characterized by nonmatrix 
water flows.. .Many field soils are characterized by 
large voids, or macropores, that provide the opportu­ 
nity for flow to bypass the small pores of the bulk 
soil matrix. This short-circuiting of the matrix 
microporosity is difficult to describe quantitatively" 
(Wagenet, 1993). A more common approach, recom­ 
mended here, is to use a contaminant-transport model 
in a stochastic context to simulate a wide range of 
water and chemical fluxes in the soil matrix.

Recent literature on evaluating ground-water 
vulnerability to nonpoint-source contamination favors 
risk assessment using a stochastic framework. 
NAWQA should consider using such a framework 
with the following components: 
1. Organization of model-input data and mapping of 

aquifer vulnerability in a GIS that is compatible 
with recommended modeling approaches;

2. Use of physically based models to enhance under­ 
standing of the processes controlling water and 
solute transport in the unsaturated zone, with 
emphasis on preferential flow;

3. A stochastic component that reflects the wide
spatial variability (uncertainty) of soil properties 
and contaminant distributions in real-world, field 
environments;

4. Additional uncertainty analysis to evaluate errors 
associated with source data, model-input parame­ 
ters, and the transport models themselves; and

5. Validation of vulnerability predictions with inde­ 
pendent data sets describing actual ground-water 
quality conditions.
In particular, NAWQA provides a unique oppor­ 

tunity to achieve step (5), model validation. In most of 
the risk-assessment studies reviewed, no ground 
water-contaminant data existed for comparison with 
model output.

LITERATURE REVIEW

The following is an overview of the current 
status of modeling the transport of nonpoint-source 
contaminants in the unsaturated zone. Case studies 
will be reviewed after discussion of concepts, which 
include model types, data variability, prediction uncer­ 
tainty, model validation, and geostatistics.

Concepts

Model Types and Scale Considerations

Modeling approaches for assessing the risk of 
nonpoint-source contamination of ground water 
include GIS overlays, index methods, statistical 
models, and deterministic and stochastic solute-trans­ 
port models (table 1). (Modeling approaches in table 1 
are shown in generally increasing order of 
complexity.) Solute-transport models are emphasized 
in this "Concepts" section because extensive informa­ 
tion on the other, more familiar methods is available 
from other sources.

Solute-transport models can be classified as 
deterministic or stochastic. Deterministic models 
assume that, given a set of conditions, a solute- 
transport process yields a uniquely definable outcome 
(Wagenet, 1993). In contrast, stochastic models
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Figure 1. Monte Carlo simulation involves random generation of soil variables to yield multiple 
realizations of hydrodynamic properties for input to a solute-transport model (modified from Soutter 
and Pannatier, 1996).
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Table 1 . Model types and examples for risk assessment of nonpoint-source contamination of ground water

Model type Example Reference

GIS overlay 

Index

Statistical

Functional solute-transport

Mechanistic solute-transport

Functional solute-transport 

Mechanistic solute-transport

Nitrate risk map 

DRASTIC

Deterministic 

Logistic regression 

CMLS 

UNSATCHEM

Stochastic application of deterministic type 

Monte Carlo application of GLEAMS 

Monte Carlo application of LEACH-P

Nolan and others, 1997. 

Zhang and others, 1996.

Eckhardt and Stackelberg, 1995. 

Wilson and others, 1996. 

Vaughan and others, 1996.

Wu and others, 1996. 

Soutter and Pannatier, 1996.

presuppose that the outcome of a process is uncertain. 
Because deterministic models commonly use a single 
set of conditions, the resulting prediction might be of 
little value if the parameters describing the system are 
ill-defined or if they vary significantly in time and 
space. Deterministic models can be used in a 
stochastic mode, however, if input parameters are 
sampled randomly many times. For example, Monte 
Carlo simulation involves multiple modeling trials 
with randomly selected model-input parameters 
(fig. 1). Thus, stochastic models use multiple sets of 
conditions that reflect the randomness (as described 
by the statistical distributions) of model-input parame­ 
ters. Each set of input conditions (realization) is 
equally likely to occur and generates a corresponding 
model output. The collection (ensemble) of outputs 
commonly is expressed as a cumulative probability 
distribution. In a typical application, the probability 
distribution indicates the likelihood that a contaminant 
will exceed a given concentration at a given depth.

Deterministic models include mechanistic and 
functional types (table 1). Mechanistic models incor­ 
porate the mathematics of fundamental solute-trans­ 
port processes and commonly use equations to 
describe solute flow as a function of convection and 
diffusion-dispersion (Wagenet, 1993). Mechanistic 
models also are called rate models because they use 
parameters having rate dimensions (length or mass per 
time), such as hydraulic conductivity, to calculate 
changes in water content. Although mechanistic 
models are more amenable to simulating complex 
processes such as preferential flow through the unsat- 
urated zone, data requirements are intense because 
model-input parameters must be adequately character­

ized throughout a study area. Mechanistic models 
commonly are used for research conducted at small 
spatial scales, such as a portion of a single agricultural 
field.

Functional models use simplified treatments of 
water flow and solute transport and require less data 
and expertise than mechanistic models (Wagenet, 
1993). Functional models also are called capacity 
models because they emphasize capacity factors 
(e.g., volumetric water content at field capacity) in 
calculations of water and solute transport.

Functional models can provide results similar to 
those obtained with more rigorous mechanistic models 
and might be better suited to regional-scale assess­ 
ments of solute transport. Hutson and Wagenet (1993) 
discussed the need for pragmatic, yet accurate, 
descriptions of water and solute flow for water- 
resource management. They compared functional 
(LEACHA) and mechanistic (LEACHP) pesticide- 
transport models and also compared model predictions 
to measured bromide and atrazine leaching profiles. 
The overall leaching pattern for the bromide tracer was 
similar for both models over a simulated 10-year 
period. Compared with measured bromide data, 
LEACHA predicted more retention at the land surface, 
until matric potential (used by the model to divide 
water between mobile and immobile phases) was 
reduced to -1000 kPa. In comparisons involving 
measured atrazine data, differences between the two 
models were less pronounced. The authors concluded 
that the need for multiple, long-term simulations in 
large-scale assessments using GIS makes functional 
models such as LEACHA a viable alternative to more 
theoretical models.
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Gorres and Gold (1996) used a fast, capacity- 
based model (LEACHA/N) to simulate nitrate trans­ 
port in the recharge area of a production well. During 
extended periods, the capacity-based version 
compared favorably with the rate-based version of the 
model that uses Richard's equation. Additionally, the 
capacity-based version was ten times faster than the 
mechanistic version.

Jury (1996) described a stochastic-convective 
stream tube (SCST) model that simulates numerous 
one-dimensional soil columns in the area of interest. 
Soil properties are assumed locally homogeneous but 
vary from column to column. Taken together, the 
group of stream tubes represents the field, watershed, 
or region of interest. The collection of model predic­ 
tions yields a probability distribution function that 
indicates the average loading for a given spatial scale. 
Model output, however, is not spatially registered. 
Although the column with the fastest flow has the 
earliest contaminant breakthrough, the column's loca­ 
tion on the field is unknown. Linkage of the SCST 
model to a GIS requires more information than that 
provided by the output probability density function 
alone.

As spatial scale increases, processes controlling 
solute transport at the local scale become less impor­ 
tant, and macroscale characteristics predominate. 
Whereas mechanistic models are commonly used at 
molecular, soil aggregate, ped, and soil-horizon scales, 
functional models commonly are used at scales 
ranging from a single field to global (Corwin and 
others, 1997). Stochastic models are used at the field 
and watershed scales, whereas statistical models 
(another type of deterministic model) are used at state, 
regional, national, and global scales. Functional 
models are used at larger spatial scales because 
sampling requirements are less intense for capacity 
parameters than for rate parameters. Fewer samples 
are required to determine representative values for 
capacity parameters, which have lower coefficients of 
variation (CV's) than rate parameters. Stochastic 
models based solely on capacity parameters, however, 
might inadequately simulate extreme events resulting 
from the wide spatial variability of water-transport 
parameters.

Data Variability and Sources

Solute-transport models can rely solely on bulk- 
soil (capacity) model parameters (e.g., bulk density,

percent sand, soil-water content) or can include water- 
transport (rate) parameters (e.g., infiltration rate; 
unsaturated hydraulic conductivity) (Corwin and 
others, 1997). The spatial variability of both types of 
model-input parameters results in prediction uncer­ 
tainty. (Spatial data gaps in a study area also cause 
prediction uncertainty see section entitled "Predic­ 
tion uncertainty and sources of error.") Water-transport 
properties, however, vary considerably more than 
bulk-soil properties. Corwin and others (1997) 
reported that water-transport properties had CV's as 
high as 194 percent (ponded solute velocity), whereas 
the highest CV for a bulk-soil property was 45 percent 
(15-bar soil-water content). Additionally, soil proper­ 
ties vary significantly within even small portions of an 
agricultural field. Fifty percent of the variation of 
many properties can occur within 1-2 m (Corwin and 
others, 1997). Given the extreme variability of water- 
transport properties, the range of outcomes from 
stochastic models based solely on bulk-soil properties 
might be unrealistically narrow. Further, stochastic 
models based on measured water-transport properties, 
as opposed to water-transport properties calculated 
from bulk properties such as soil texture, should better 
simulate extreme events such as water and solute 
transport through preferential flow paths.

Sources of soil data commonly used in 
nonpoint-source contamination studies include the 
USDA's State Soil Geographic (STATSGO) and Soil 
Survey Geographic (SSURGO) databases. STATSGO 
is 1:250,000 scale and applies to state and regional 
studies of large watersheds (Corwin and others, 1997). 
SSURGO data are 1:12,000-1:63,360-scale duplicates 
of soil survey maps and apply to smaller areas such as 
private property, townships, and counties. Although 
SSURGO data are more detailed, related GIS cover­ 
ages are unavailable for many areas of the Nation, 
limiting its use in NAWQA.

Prediction Uncertainty and Sources of Error

Prediction uncertainty is caused by (1) model 
error, (2) input error, and (3) parameter error (Loague 
and others, 1996). Model error results when an inap­ 
propriate model incorrectly simulates a process (even 
though data input and parameter estimates are 
correct), or when a model is not properly calibrated. 
Input errors, which include measurement error, are 
errors in source terms such as soil-water recharge and 
chemical application rates. Parameter error occurs
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when model parameters are highly interdependent, or 
when areal distributions of parameters have been inad­ 
equately characterized by a small number of point 
measurements. For example, the inability to charac­ 
terize soil and solute-transport properties everywhere 
in a study area (e.g., for a mechanistic model) causes 
uncertainty in predictions of solute travel time and 
concentration. In an extreme case, inadequate charac­ 
terization of the subsurface environment can create 
more uncertainty than that caused by the spatial vari­ 
ability of the subsurface properties themselves (Lynn 
J. Torak, USGS, unpub. data, 1998). Uncertainty asso­ 
ciated with mechanistic solute-transport models, 
which require thorough characterization of the subsur­ 
face environment, arises from the need to fill data gaps 
by interpolating measured values of model inputs. The 
sum of model, input, and parameter errors is called the 
total or simulation error (Loague and others, 1996).

Loague and others (1996) used first-order 
uncertainty analysis (FOUA) to evaluate errors associ­ 
ated with simple models used to screen pesticides in 
ground waters of the Pearl Harbor Basin in Oahu, 
Hawaii. FOUA is a "method of evaluating error propa­ 
gation when mathematical operations are performed to 
calculate values of some variable of interest..." 
(National Research Council, 1993). The objective is to 
estimate the uncertainty (e.g., variance) in the depen­ 
dent variable, given the error associated with the inde­ 
pendent variable. The pesticide screening models in 
the Oahu study were based on attenuation factors (AF) 
and retardation factors (RF), and yielded five risk 
classes (Loague and others, 1996). FOUA yielded a 
standard deviation ("total uncertainty") for each 
screening method. Data uncertainty was sufficiently 
high that changes in risk class occurred more than 
50 percent of the time when a single standard devia­ 
tion was added or subtracted from each risk index 
value.

AF model error was preliminarily assessed by 
comparing AF rankings of pesticide mobility with 
output from PRZM, a functional pesticide-transport 
model (Loague and others, 1996). AF compared well 
with PRZM, but PRZM uses an empirical fluid-trans­ 
port algorithm, and transient pesticide concentration 
profiles at sites in the Pearl Harbor Basin were inade­ 
quately represented. Therefore, AF model error was 
inadequately addressed by comparison with PRZM 
alone.

Model Validation

Model "validation is the complement of calibra­ 
tion; model predictions are compared to field observa­ 
tions that were not used in model development or 
calibration.. .validation is an independent test of how 
well the model (with its calibrated parameters) is 
representing the important processes occurring in the 
natural system" (National Research Council, 1993). 
Validation of nonpoint-source contamination models 
is hampered by large uncertainties that arise from 
simulation errors associated with large spatial scales 
(Corwin and others, 1997). Preliminary validation 
can include (1) comparison of summary statistics 
(mean, variance) for model output and observed 
values, (2) calculating differences between observed 
and predicted values, and (3) qualitative assessment of 
compared results (Poiani and Bedford, 1995). These 
comparisons require observed concentrations of 
ground-water contaminants.

Validation comparisons also can include 
hypothesis testing of simulated and observed data 
groups, and statistical analysis of residual errors calcu­ 
lated in step (2) to characterize possible systematic 
over- or under-prediction by the model (Loague and 
others, 1996). Comparisons can be enhanced by 
graphical displays of, for example, ranges and 
medians of predicted and observed values.

Role of Geostatistics and Other Interpolation 
Methods

Geostatistics has a potentially broad role in risk 
assessment for nonpoint-source contamination of 
ground water. Geostatistics can be used to (1) analyze 
the spatial variability of model-input parameters, 
(2) predict values of model-input parameters at 
unsampled locations, (3) evaluate the adequacy of the 
data-collection network, (4) evaluate parameter uncer­ 
tainty using standard deviation maps of model inputs, 
(5) evaluate model calibration and prediction uncer­ 
tainty, and (6) map model output for presentation to 
lay audiences. In geostatistical theory, the experi­ 
mental semivariogram relates sample spacing to 
spatial variability (Corwin and others, 1997). The 
semivariogram is used to evaluate the spatial correla­ 
tion structure of a variable, a preliminary step to 
applying geostatistical methods such as kriging or 
conditional simulation (see descriptions below). Semi- 
variograms of some variables reveal nested structures 
that indicate scale effects on spatial variability
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(Lynn J. Torak, unpub. data, 1998). For example, 
"microscale" variation is manifested as a "nugget 
effect" purely random variation within the smallest 
sampling interval in some semivariograms; and 
larger variations at larger sample spacings sometimes 
are superimposed on the nugget semivariance. For 
more information on geostatistics, see Clark (1987), 
Delhomme (1978), and Journel and Huijbregts (1978).

Kriging, a weighted local interpolator, can be 
used to predict the values of model-input parameters at 
unsampled locations within an area. Advantages of 
kriging over other interpolation methods are that 
(1) it provides a variance of the kriged prediction 
(Collins, 1996), and (2) it is an "exact" interpo­ 
lator it returns the observed value at sampled 
locations. Kriging also can be incorporated into two- 
dimensional stochastic simulations to develop multiple 
realizations of random variables used as inputs to a 
solute-transport model. The randomly selected 
(unconditionally simulated) values are combined 
(conditioned) with kriged estimates using a method 
called conditional simulation (Delhomme, 1978; 
Varljen and Shafer, 1991).

Geostatistics also can be used to test data- 
collection adequacy, evaluate parameter uncertainty, 
and to ascertain model performance. For example, 
maps of kriging standard deviations associated with 
model-input parameters and predicted solute concen­ 
trations can indicate areas of uncertainty. Semivario- 
gram analysis can be used to evaluate scale effects on 
model uncertainty by analyzing the spatial correlation 
structure of solute transport-model residuals. Spatially 
correlated residuals indicate that the solute-transport 
model has been poorly calibrated (Lynn J. Torak, 
unpub. data, 1998). In contrast, uncorrelated residuals 
(indicated by a "pure-nugget" semivariogram) indicate 
proper model calibration.

Finally, output from solute-transport models 
applied at discrete locations can be interpolated by 
kriging to produce a grid for mapmaking in a GIS. The 
resulting map can be used to communicate to lay audi­ 
ences the areas at risk of nonpoint-source contamina­ 
tion of ground water.

Besides kriging, other interpolation methods 
that have been evaluated in conjunction with GIS 
include inverse distance-weighted averaging, poly­ 
nomial regression, splining, and the lapse rate method 
(Collins, 1996). Weber and Englund (1992) compared 
inverse distance, inverse distance squared, kriging, and 
other interpolation methods using a large data set

consisting of 19,800 computed, local variances of land 
elevations from a digital elevation model. The eleva­ 
tion variances were sampled using random, cellular- 
stratified, and regular-grid designs. The inverse 
distance-squared and inverse-distance methods had the 
lowest linear loss score (LLS) and mean square error 
(MSE). Log kriging had the next lowest LLS and rank 
kriging had the next lowest MSE. The authors specu­ 
lated that kriging might have performed better than 
inverse-distance methods had the data exhibited strong 
anisotropy and had the samples been clustered (several 
of the data sets were randomly sampled). Anisotropy 
and sample clustering, mostly absent in the data set, 
tend to favor kriging. More importantly, solute-trans­ 
port data tend to be clustered. Kriging automatically 
declusters data through the weights that are used in the 
prediction process (Lynn J. Torak, unpublished data, 
1998).

Coupling GIS to a Solute-Transport Model

A GIS can be used to organize and analyze 
model-input data and to map model predictions. Addi­ 
tionally, solute-transport models can be loosely or 
tightly coupled to a GIS or embedded within it. Loose 
coupling refers to transfer of data from the GIS to an 
environmental model with little or no software modifi­ 
cation (Corwin and others, 1997). Usually only the 
formats of input and output files require modification. 
In contrast, tightly coupled models feature user inter­ 
faces, and the functionality of embedded models 
is incorporated into the functionality of the GIS. 
Although tightly coupled and embedded systems are 
more efficient from a user standpoint, loose coupling 
is all that is required to organize data within a GIS for 
subsequent use in a solute-transport model, and to map 
model results.

Case Studies

Case studies on the modeling of nonpoint- 
source contamination of ground water include the use 
of aquifer-vulnerability index methods such as 
DRASTIC, statistical models, and physically based, 
deterministic models with and without a stochastic 
component. These methods are discussed below in 
order of generally increasing complexity.
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GIS Overlay and Index Methods

GIS overlay and index methods (table 1) have 
been used in regional screening assessments of aquifer 
vulnerability. These methods often result in inaccurate 
predictions of local water quality, however, because 
model-input data commonly are small-scale (low-reso­ 
lution), and the modeling process is subjective.

Dubrovsky and others (1995) used a GIS to 
evaluate ancillary data, randomly select wells for 
sampling, and to stratify ground-water-quality data by 
overlying land use for statistical analysis. For 
example, potential sampling sites were identified 
based on well depth and percentage of land use within 
a 0.8 km radius around a well. This is not an aquifer 
vulnerability study per se, but is included to show a 
practical and effective way of using GIS to organize 
and analyze ground-water quality data. Vineyards and 
almond orchards in the San Joaquin-Tulare Basins 
NAWQA study unit were delineated in the GIS. 
Ground-water nitrate data stratified by these land uses 
were compared using nonparametric statistics. Nitrate 
concentration and exceedances of the U.S. Environ­ 
mental Protection Agency's maximum contaminant 
level (MCL) of 10 mg/L nitrate as nitrogen were 
greater in the almond orchards than in the vineyards. 
The rate of fertilizer application in the almond 
orchards is more than three times that in vineyards, so 
input of nitrate to the water table likely explains the 
observed difference in nitrate concentration.

Nolan and others (1997) used GIS overlays to 
map the risk of nitrate contamination of shallow 
ground water for the conterminous United States. Risk 
categories were created by GIS analysis of the 
following variables: nitrogen loading from fertilizer, 
manure, and atmospheric deposition; population 
density (surrogate for nitrogen loading in densely 
populated areas); soil drainage characteristic; and 
extent of woodland compared with cropland in agri­ 
cultural areas (surrogate for nitrate attenuation 
processes such as denitrification, dilution, and plant 
uptake in the southeastern United States). Areas with 
high nitrogen input, well-drained soils, and less exten­ 
sive woodland relative to cropland had the highest 
potential for nitrate contamination of shallow ground 
water (wells 100 feet deep or less). Statistical verifica­ 
tion of the national risk map indicated that median 
nitrate concentration was 4.8 mg/L in wells repre­ 
senting the high-risk group, and the MCL of 10 mg/L 
was exceeded in 25 percent of the wells. In contrast, 
median nitrate concentration was only 0.2 mg/L in

wells representing the low-risk group, and the MCL 
was exceeded in 3 percent of the wells.

DRASTIC and SEEPAGE were modified to 
assess aquifer vulnerability to nitrate contamination in 
Indiana (Navulur and Engel, 1996). DRASTIC and 
SEEPAGE both assign dimensionless weights and 
ratings to factors assumed to affect solute transport in 
the unsaturated zone. The weights are different for 
SEEPAGE, however, depending on whether contami­ 
nant sources are concentrated or dispersed. STATSGO 
soils data were used in the analysis, and land use and 
fertilizer loading data were combined with the rating 
schemes to develop vulnerability indices that were 
mapped in a GIS. Vulnerability indices were compared 
with nitrate data from 380 wells using the Pearson 
correlation coefficient, which was 0.67 for the modi­ 
fied DRASTIC method. Both DRASTIC and 
SEEPAGE tended to underestimate contamination 
potential by describing areas with high nitrate concen­ 
tration as low-risk.

A modified DRASTIC method was used to 
evaluate ground-water vulnerability in Goshen 
County, Wyoming (Zhang and others, 1996). A GIS 
was used to organize soil and hydrologic data, assign 
aquifer vulnerability rating values, and to create 
vulnerability maps. The authors modified DRASTIC 
by weighting all factors equally and incorporated a 
map of irrigation-related recharge to show aquifer 
vulnerability. HYDRUS, a finite-element solute-trans­ 
port model, was used to evaluate uncertainties in the 
aquifer vulnerability map. Soil hydraulic properties 
(volumetric water content and unsaturated hydraulic 
conductivity) were estimated from literature values, 
based on soil texture. Using HYDRUS, the amount of 
solute leached was computed at 130 locations within 
the study area. An interpolated map of model output 
closely matched the aquifer vulnerability map 
produced by GIS overlays. Neither map, however, was 
compared with actual ground-water quality data.

Statistical Models

Statistical models are a type of deterministic 
model (table 1), but are less physically based than 
models that use equations to describe water flow and 
solute transport. Thus, they are incapable of explicitly 
simulating complex processes such as preferential 
flow. Logistic regression is a multivariate method that 
yields contamination probabilities suitable for 
mapping in a GIS.
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Eckhardt and Stackelberg (1995) found that 
nitrate concentrations in ground-water samples from 
suburban and agricultural areas of Long Island, New 
York, were elevated compared with samples from 
forested areas. Nitrate was detected in water samples 
from 83 of 90 wells in the study area. Logistic-regres­ 
sion equations were developed to predict the proba­ 
bility of exceeding 3 mg/L of nitrate in ground water. 
Explanatory variables consisted of population density, 
percent medium-density residential land use, percent 
agricultural land use, and depth to the water table. The 
chi-squared statistic, Akaike Information Criterion, 
and rank correlations between predicted probabilities 
and observed responses were used to evaluate model 
performance. Rank correlation coefficients range from 
zero (no fit) to one (perfect fit). Logistic-regression 
models developed for nitrate had rank correlation 
coefficients of 0.87-0.88. The logistic-regression 
equations indicated that nitrate concentration gener­ 
ally increased as population density and percent resi­ 
dential and agricultural land use increased, and as the 
depth to the water table decreased.

Teso and others (1996) used a logistic-regres­ 
sion model to predict the probability of occurrence of 
DBCP (a nematicide) in ground water beneath land 
sections of eastern Fresno County, California. Soil 
particle-size classes (e.g., sandy, loamy) were used as 
independent variables in the stepwise development of 
the model. A nonparametric test was used to assess 
model prediction accuracy, based on the presence or 
absence of DBCP in at least one well sample from 
each section. Predicted probabilities were converted to 
a point coverage that was used to create gridded proba­ 
bility surfaces of the study area. The stepwise proce­ 
dure resulted in a significant (p = 0.017) model that 
included sandy and fine particle-size classes. Although 
the model correctly predicted the contamination status 
of contaminated sections 89.7 percent of the time, the 
overall success rate (considering both contaminated 
and uncontaminated sites) was only 53.2 percent. The 
overall success rate might have been affected by the 
number of samples used to determine the contamina­ 
tion status of a section. More than 91 percent of the 
incorrect model predictions occurred for uncontami­ 
nated sections, most of which had only a single well 
sample.

Deterministic Solute-Transport Models

A functional, Chemical Movement through 
Layered Soils (CMLS) model was used with two sets 
of soil and climatic data to evaluate the effect of 
spatial scale on predicted pesticide transport (Wilson 
and others, 1996). Soil data were obtained from 
STATSGO and SSURGO, and climate data were

^obtained from a Montana statewide database (20 km
f\

cell size) and from fine-scale surfaces (0.55 km cell 
size) interpolated with thin-plate splines. The 
SSURGO database was prepared by scanning, where 
necessary, USDA-NRCS map sheets and converting 
them to GIS coverages. The CMLS model was used to 
predict the fraction of applied chemical remaining in 
the soil profile, and the position of the solute front at 
specified times. The four sources of soils and climate 
data yielded different numbers of GIS polygons, 
which increased with increasing spatial resolution. 
The depth of the pesticide solute front was predicted 
for each polygon, then averaged over all polygons 
(weighted by area) and all years. For soils data, pesti­ 
cide mobility and spatial variability (expressed as the 
mean solute-front depth and standard deviation) 
increased when fine-scale SSURGO data were used, 
compared with STATSGO data. Differences between 
the two sources of soil data were statistically signifi­ 
cant at the 0.01 level. Use of fine-scale, interpolated 
climate data resulted in less pesticide mobility and 
spatial variability, however, compared with statewide 
data. The smoothed, interpolated climate data appar­ 
ently were more spatially uniform than the statewide 
data.

Vaughan and others (1996) coupled a mecha­ 
nistic, variably saturated flow model (UNSATCHEM) 
to a GIS to calculate unsaturated-zone carbon dioxide 
(CO2) flux in the San Joaquin Valley, California. 
UNSATCHEM calculates diffusive and convective 
chemical transport in the air and water phases. The 
GIS was used to generate "sectors" with uniform crop­ 
ping and irrigation practices. Whereas volumetric 
water content (required by the pesticide transport 
model) was calculated from the bulk density and 
gravimetric moisture content of soil samples, 
hydraulic conductivity and water retention were deter­ 
mined from literature values, based on soil texture. 
CO2 flux was simulated for 74 locations within the 
land-use sectors using UNSATCHEM, and cumulative 
daily fluxes were interpolated throughout the study 
area by kriging. The kriged map indicated that the less
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irrigated areas had the highest CO2 flux, suggesting 
that CC>2 might have been trapped in soil layers by irri­ 
gation water.

Kumar and others (1998) used the Root Zone 
Water Quality Model (RZWQM), which includes a 
macropore flow component, to predict water flow and 
atrazine transport to subsurface drains. RZWQM is 
mechanistic and assumes that macropores are cylin­ 
drical in the top soil horizon and are planar cracks in 
bottom horizons. Continuous macropores are assumed 
to be vertical to any specified depth, and dead-end 
macropores are assumed to branch off horizontally 
from the continuous macropores in each soil horizon. 
The "average volume fraction of macroporosity" 
(macroporosity as a fraction of soil volume) and size 
of the macropores must be known to permit calcula­ 
tion by the model of the flow and solute transport 
through macropores. Assuming gravity flow, 
Poiseulle's law (which relates flow to hydraulic 
gradient and water density and viscosity) is used to 
calculate the maximum flow capacity of the 
macropores. After the onset of ponding conditions, 
RZWQM allows water and solutes at the soil surface 
to flow into simulated macropores at their maximum 
flow capacity. The "average volume fraction of 
macroporosity" was determined from Poiseulle's equa­ 
tion using data from infiltration measurements made in 
experimental plots representing moldboard plow (MP) 
and modified no-tillage (NT) practices. Other soil 
properties required by the model include soil-water 
content, unsaturated hydraulic conductivity, bulk 
density, porosity, particle-size distribution, and soil 
texture.

Subsurface drain flow and atrazine concentra­ 
tion were predicted with and without simulated 
macropore flow for each tillage practice (Kumar and 
others, 1998). Macropore flow slightly improved the 
accuracy of predicted, subsurface drain flows in NT 
plots, based on comparison of predicted and observed 
values. Macropore flow, however, did not improve 
prediction of subsurface drain flows for MP plots. 
Lateral saturated hydraulic conductivity was the most 
sensitive model parameter affecting flow to drain lines 
and was greater for the NT system. Predicted atrazine 
concentrations in NT plots were much greater with 
simulated macropore flow than without and fitted 
observed atrazine concentrations reasonably well. In 
contrast, RZWQM underpredicted atrazine concentra­ 
tion in NT plots when the macropore component of the

model was disabled. Compared with the NT plots, 
predicted and observed atrazine concentrations for the 
MP plots were significantly lower, and atrazine 
concentrations with and without simulated macropore 
flow were similar.

Deterministic Solute-Transport Models With 
Stochastic Component

The above studies typically used single realiza­ 
tions of model-input parameters to produce simula­ 
tions with a unique outcome. This approach cannot 
characterize uncertainty associated with the wide 
spatial variability of model-input parameters. The 
following studies add a stochastic component by 
repeatedly sampling model-input parameters for use in 
multiple simulations (figure 1, table 1).

Gorres and Gold (1996) used Monte Carlo 
simulations with a rootzone nitrogen fate model to 
produce statistical distributions of nitrate leaching for 
different soil and land management combinations. A 
GIS was used to combine soil classes and agricultural 
management practices in a watershed in southern 
Rhode Island into "land strata." Percent organic 
matter, bulk density, and field capacity were measured 
for the different soil textural classes, and hydraulic 
conductivity was measured in the field using an 
inverse-auger hole method. A fast capacity-based 
leaching model (LEACHA/N) was used to predict 
solute transport. The model calculated unsaturated 
hydraulic properties with pedotransfer functions, 
based on the measured data. Using a Monte Carlo 
algorithm, model-input values were randomly selected 
from the statistical distributions of measured soil prop­ 
erties, and the LEACHA/N model was run 100 times 
for each land stratum. The Monte Carlo simulations 
generated cumulative distribution functions (CDF's) 
of nitrate concentration in leachate from the root zone. 
The CDF's indicated the degree of variability associ­ 
ated with intrinsic soil properties and agricultural 
management practices, for each stratum. CDF's also 
were calculated at a spatial scale equal to the entire 
recharge area. These had less variability than CDF's 
developed at the "point" support scale, which used a 
large number of small areas located within a given 
land use-soil type stratum. CDF's developed at the 
larger spatial scale, however, effectively identified 
land uses (e.g., conventionally managed silage corn on 
sandy soil) that had a higher probability of exceeding a 
threshold nitrate concentration in ground water. The

LITERATURE REVIEW 11



authors suggested that these CDF's could be used to 
identify sites within a recharge area for implementa­ 
tion of best management practices.

Holtschlag and Luukkonen (1997) used a 
steady-state unsaturated-zone transport model to 
compute the fraction of atrazine remaining (RM) at the 
water table. The pesticide transport model was applied 
to 5,444 wells in Kent County, Michigan, using 
county-based hydrologic and lithologic information. 
The county-based data were discretized into grid 
blocks for input to the solute-transport model. Infiltra­ 
tion and deep percolation, used to compute water flux 
in the leaching model, were estimated from precipita­ 
tion, recharge, and streamflow data. Precipitation 
varied only slightly within the county. Considering all 
5,444 wells, the computed time of travel between the 
land surface and the water table varied from 2.2 to 
118 years, with a mean of 17.7 years. RM values were 
transformed and kriged to produce a map of aquifer 
vulnerability.

Monte Carlo simulations were performed to 
address uncertainties in hydrologic, lithologic, and 
pesticide data used by the leaching model (Holtschlag 
and Luukkonen, 1997). A total of 2,500 parameter 
values was randomly generated using probability 
density functions representing model-input parame­ 
ters, and used to compute RM values for a subset of 
100 wells. The standard deviation in RM at each well 
was used as a measure of prediction uncertainty. 
Kriging standard deviations at the well points were 
used to assess uncertainty associated with spatial inter­ 
polation.

Wu and others (1996) used a GIS to organize 
data for three hydrologic environments in Pike 
County, Ohio, into 34 subenvironments with unique 
soil, topography, and farming characteristics. Each 
subenvironment was considered a statistically inde­ 
pendent "soil column." The Groundwater Loading 
Effects of Agricultural Management Systems 
(GLEAMS) model was used to predict unsaturated- 
zone nitrate transport in each soil column. GLEAMS 
considers leaching and nitrogen-transformation 
processes such as denitrification. Saturated hydraulic 
conductivity and other soil properties were determined 
in the laboratory from soil samples. Monte Carlo 
simulations were used to randomly generate 100 
values of model-input parameters for each of three 
horizons in each soil column. GLEAMS was then used 
to predict total nitrate leaching below one meter for a 
3-year period. The mean and standard deviation of

simulated total nitrate leaching were calculated for 
each soil column and mapped in the GIS to depict 
aquifer vulnerability and the uncertainty of model 
predictions. An analysis of variance indicated that 
agricultural management practice, soil type, and their 
interaction had a significant effect on predicted nitrate 
leaching (p = 0.0001).

For three of the soil columns, ground-water 
nitrate samples were collected from field plots using 
suction lysimeters (Wu and others, 1996). Statistical 
tests indicated that predicted total nitrate leaching was 
not significantly different from the observed values. 
Predicted values, however, appeared to be much less 
than observed values for one of the plots.

Petach and others (1991) used LEACHM, a 
mechanistic model, to simulate pesticide and bromide 
leaching for a 7-km by 10-km region near Albany, 
New York. LEACHM uses relations between water 
content, matric potential, and hydraulic conductivity to 
describe water movement in soil. Although the model 
cannot explicitly simulate water movement through 
macropores, the authors were able to simulate a wide 
range of water fluxes. Data from soil surveys, land-use 
databases, and pesticide handbooks were integrated in 
a GIS to identify agricultural areas and related soil 
types. Land use, soil type, and related particle-size 
fractions in the study area were obtained from state 
databases. Soils with similar hydraulic properties 
throughout the soil profile were grouped, yielding six 
"hydrologic groups." The mean and standard deviation 
of saturated hydraulic conductivity and related soil 
properties were calculated for each of three soil layers 
(50-150 cm deep) in each hydrologic group using 
pedotransfer functions, based on the mean soil-texture 
properties of each group. The statistical distributions 
of soil-hydraulic properties in each hydrologic group 
were used to generate values of saturated hydraulic 
conductivity and related soil properties for input to 
LEACHM, resulting in 25 1-year simulations for each 
hydrologic group and 150 total simulations. Mean 
annual total precipitation and 90 percentile values 
were used to evaluate both average and high precipita­ 
tion inputs.

Mean year-end cumulative fluxes of water and 
chemicals were calculated for each layer of each soils 
hydrologic group for the two different precipitation 
scenarios (Petach and others, 1991). In general, 
substantial differences in chemical flux occurred as the 
chemicals moved through the soil profile. For 
example, EPCT flux varied by one order of magnitude
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at 50 cm, but varied by 16 orders of magnitude at 
150 cm, for the mean precipitation scenario. Variations 
in bromide flux at depth were significantly less, 
however. Chemical breakthrough curves (BTC's) of 
mean solute mass were influenced by soil and chem­ 
ical properties. Whereas atrazine BTC's indicated loss 
of mass from degradation, losses of bromide mass in 
each soil layer were attributed solely to leaching. 
Coefficients of variation (CV's) of solute flux were 
20-40 percent for both water and chemicals (less than 
reported in field studies in the literature), possibly 
because only variations in soil properties were 
included in the model. The authors speculated that 
allowing other model-input parameters to vary, such as 
sorption coefficients and soil organic matter content, 
would yield CV's closer to field values. The high and 
low extremes of atrazine and EPTC fluxes occurred in 
small areas of the region, which were readily identified 
in a GIS.

Soutter and Pannatier (1996) used LEACH-P, a 
mechanistic model, to predict pesticide transport for a
2-km by 10-km area in the upper Rhone Valley, Swit­ 
zerland. Soil properties (e.g., soil texture and organic 
matter content) were determined at 196 locations from 
laboratory analysis of samples, and water-table fluctu­ 
ations were measured using a network of 312 piezom­ 
eters. Minimum and maximum water-table height 
was predicted at soil-sampling sites using co-kriging, 
after removing trend in the water-level data. The 
Monte Carlo method was used to repeatedly simulate 
(100 trials) pesticide transport to the water table for a
3-year period at each of the 196 soil profiles. Model- 
input parameters were obtained from randomly gener­ 
ated soil property data using pedotransfer functions 
(figure 1). Aquifer vulnerability was expressed as the 
ratio of cumulative pesticide flux to total applied pesti­ 
cide. Medians of the 100 simulated vulnerability 
indices were interpolated with ordinary kriging to 
produce an aquifer vulnerability map with four risk 
classes. Because map features were not well correlated 
with water-table height, the vulnerability index was 
assumed to be significantly affected by soil spatial 
variability.

Comparison of Methods to Generate Multiple 
Realizations

The above studies demonstrate that the Monte 
Carlo method can be used to effectively generate 
multiple realizations of inputs to a solute transport

model. Because the variance of the model output 
distribution is a function of the number of Monte 
Carlo realizations, large numbers (100-1,000) of real­ 
izations commonly are employed to ensure reasonable 
results. The large number of trials, however, can 
require excessive amounts of computer time. Alterna­ 
tive methods of generating multiple realizations rely 
on stratified sampling schemes that reduce the vari­ 
ance of the output distribution and, hence, require 
significantly fewer trials than the Monte Carlo tech­ 
nique.

McKay and others (1979) compared random 
sampling (e.g., Monte Carlo), stratified sampling, and 
Latin hypercube sampling (LHS) to generate multiple 
realizations for a model that simulates depressuriza- 
tion of a straight pipe filled with water. The LHS 
method divides each of the input variables Xk into N 
strata (e.g., 16) and randomly samples once from each 
stratum, to ensure that each input variable has all 
portions of its distribution represented by input values. 
The components of the various Xk input variables are 
matched at random to form N realizations (N = 16 in 
this example) of model inputs.

The sampling-modeling process was repeated 
50 times to develop comparative statistics for the three 
sampling methods (McKay and others, 1979). The 
standard deviation of the estimated mean of model 
output responses was somewhat lower for stratified 
sampling than for random sampling. The standard 
deviation of the estimated mean was significantly 
lower for the LHS method, however, being about one- 
fourth that of the random-sampling estimator. Addi­ 
tionally, the standard deviation of the estimated vari­ 
ance of model output responses was significantly 
lower for the LHS method than for random-sampling 
and stratified-sampling estimators. The variance 
reduction associated with LHS means that fewer real­ 
izations are necessary to achieve the same precision 
obtained with random sampling methods such as 
Monte Carlo simulation.

CONCLUSIONS

Various modeling approaches for assessing the 
risk of nonpoint-source contamination of ground water 
are described in recent scientific literature. Compared 
with GIS-overlay methods and statistical models, 
deterministic models are more physically based 
because they commonly use equations describing
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solute flow as a function of convection and dispersion- 
diffusion. Only one of the models reviewed here (Root 
Zone Water Quality Model) can explicitly simulate 
solute transport through macropores, but many deter­ 
ministic models can be used in a stochastic context to 
simulate a wide range of solute fluxes. Stochastic 
models use multiple sets of conditions that reflect the 
uncertainty of model-input parameters. Deterministic 
models can be used in a stochastic mode if input 
parameters are sampled randomly many times by, for 
example, Monte Carlo simulation. Latin hypercube 
sampling, however, can achieve the same precision as 
random sampling with significantly fewer realizations. 
Functional deterministic models involve simplified 
treatments of water and solute transport, require less 
data, and can provide results similar to more theoret­ 
ical models. Geostatistics can be used to predict values 
of model-input parameters at unsampled locations, to 
evaluate parameter uncertainty, to analyze residual 
errors during model validation, and to prepare model 
output for mapping. Geographic information systems 
(GIS's) can be used to delineate areas with unique soil 
and land-use characteristics prior to contaminant- 
transport modeling. GIS-based comparison of contam­ 
ination risk for different land uses and soil types can 
help identify areas for implementation of best manage­ 
ment practices. A GIS map of model output can 
readily communicate to lay persons the risk of ground- 
water contamination by nonpoint-source pollutants.
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