Synthetic Organic Compounds in Water and Bottom Sediment From Streams, Detention Basins, and Sewage-Treatment Plant Outfalls in Las Vegas Valley, Nevada, 1997

By Kenneth J. Covay and Thomas J. Leiker

Open-File Report 98-633

Prepared in cooperation with the CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT

CONTRIBUTING U.S. GEOLOGICAL SURVEY STAFF

DATA-COLLECTION SUPPORT

Daniel J. Bright, Hydrologist Ronald P. Collins, Hydrologic Technician Craig L. Westenburg, Hydrologist

PUBLICATIONS SUPPORT

Robin L. Sweet, Technical Editor Shannon C. DeMeo, Editorial Assistant Graham A. Patterson, Scientific Illustrator

TECHNICAL SUPPORT

Hugh E. Bevans, Supervisory Hydrologist Joseph M. Fenelon, Hydrologist Ray J. Hoffman, Water-Quality Specialist Gary M. Russell, Supervisory Hydrologist

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director

Any use of trade names in this publication is for descriptive purposes only and does not constitute endorsement by the U.S. Government

For additional information contact:

District Chief U.S. Geological Survey 333 West Nye Lane, Room 203 Carson City, NV 89706-0866

email: usgsinfo_nv@usgs.gov

http://nevada.usgs.gov

Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286

CONTENTS

Abstract	1
Introduction	1
Purpose and Scope	4
Environmental Setting	4
Acknowledgments	5
Investigation Methods	5
Occurrence of Synthetic Organic Compounds	5
Surface Water	6
Bottom Sediment	6
Summary	7
References Cited	

FIGURE

1. Map showing sampling sites in Las Vegas	Valley, Nevada, 1997	2
11 1.1.p 0.1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	······································	-

TABLES

 Sampling sites and types of samples collected for synthetic organic compounds in Las Vegas Valley, Nevada, 1997. 	3
2-6. Compounds detected and not detected in semipermeable membrane devices at surface-water sampling sites in	
Las Vegas Valley, Nevada, 1997:	
2. Organochlorine pesticides, compounds, and degradation products	9
3. Polycyclic aromatic hydrocarbons	9
4. Synthetic organic compounds not quantifiable	10
5. Targeted synthetic organic compounds not detected	10
6. Summary of synthetic organic compounds and maximum concentrations	11
7-13. Compounds detected and not detected at bottom-sediment sampling sites in Las Vegas Valley, Nevada, 1997:	
7. Organic carbon, organochlorine pesticides, compounds, degradation products, and	
polychlorinated biphenyls	11
8. Polycyclic aromatic hydrocarbons	12
	13
	13
	14
12. Targeted synthetic organic compounds not detected	14
	15

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	Ву	To obtain
foot (ft)	0.3048	meter
inch (in.)	25.40	millimeter
mile (mi)	1.609	kilometer
pound (lb)	.4536	kilogram
square mile (mi ²)	2.590	square kilometer

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929, formerly called "Sea-Level Datum of 1929"), which is derived from a general adjustment of the first-order leveling networks of the United States and Canada.

Additional abbreviation:

µg/kg (microgram per kilogram)

Synthetic Organic Compounds in Water and Bottom Sediment From Streams, Detention Basins, and Sewage-Treatment Plant Outfalls in Las Vegas Valley, Nevada, 1997

By Kenneth J. Covay and Thomas J. Leiker

ABSTRACT

The occurrence of organochlorine compounds and semivolatile organic compounds was investigated at 14 sites in the Las Vegas Valley in 1997. The investigation was a cooperative effort between the U.S. Geological Survey and the Clark County Regional Flood Control District. Semipermeable membrane devices (SPMD's) were used to sample synthetic organic compounds at five surface-water sites. Bottom-sediment samples were collected at six sites in valley streams and four sites in floodwater detention basins. One of the SPMD sites also was at a bottom-sediment site.

Compounds analyzed for include organochlorine pesticides and selected degradation products, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, phthalates, and phenols. Extracts from the SPMD's were analyzed and 18 organochlorine pesticides, compounds, and selected degradation products, and 7 polycyclic aromatic hydrocarbons (PAH's) were detected and quantified. Of the 81 targeted organic compounds, 56 were not detected in extracts from the SPMD's. In bottom-sediment samples, 11 organochlorine compounds, 20 PAH's, 6 phthalates, 5 phenols, and 11 other miscellaneous semivolatile organic compounds were detected. Of the 98 targeted organic compounds, 45 were not detected in bottom-sediment samples from the sites. In washes downstream from urban areas in Las Vegas Valley, 51 synthetic organic compounds were detected in bottom sediment. In other bottom sediment from floodwater detention basins, which generally are upstream from urban areas, only 17 compounds were detected.

INTRODUCTION

The U.S. Geological Survey (USGS), in cooperation with the Clark County Regional Flood Control District (CCRFCD), investigated the occurrence of organochlorine compounds and selected degradation products, and semivolatile organic compounds (SVOC's) in the water column and bottom sediment at 14 sites in the Las Vegas Valley (fig. 1, table 1). This investigation was initiated as a result of findings by the USGS Nevada Basin and Range (NVBR) study unit of the National Water-Quality Assessment (NAWQA) Program (Bevans and others, 1996; Neal and Schuster, 1996; Kilroy and Watkins, 1997; Kilroy and others, 1997).

Results from Bevans and others (1996) indicate that organochlorine compounds (pesticides, polychlorinated biphenyls, dioxins, and furans) and semivolatile organic compounds (polycyclic aromatic hydrocarbons, phthalates, and phenols) are present in Las Vegas Wash and Las Vegas Bay of the Colorado River system. Some of these compounds were identified in the water column, bottom sediment, or fish tissue of the common carp (*Cyprinus carpio*). Some of these organochlorine compounds and SVOC's have been linked to endocrine disruption in fish (Colburn and Clement, 1992; Colburn and others, 1993; Goodbred and others, 1997) and some are known carcinogens.

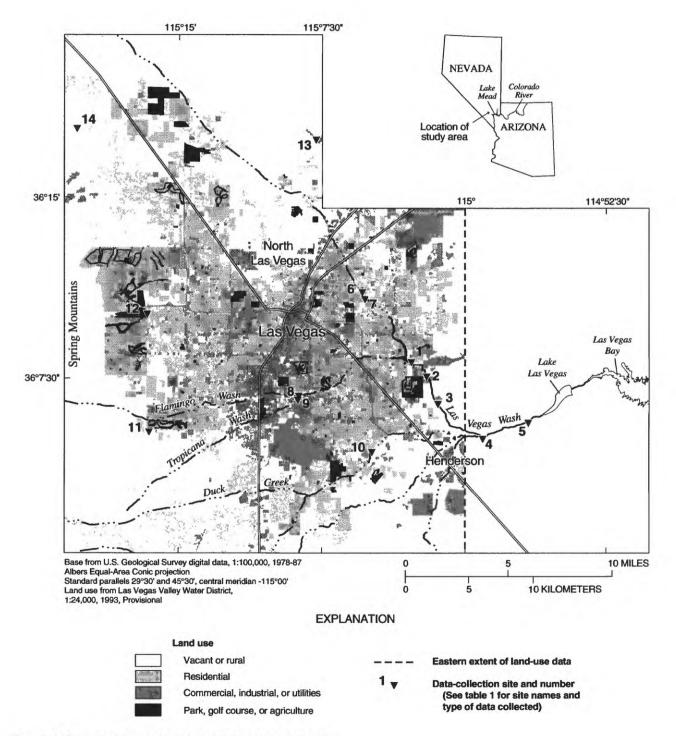


Figure 1. Sampling sites in Las Vegas Valley, Nevada, 1997.

Site number (fig. 1)	USGS site identification number ¹	Site name	Semi- permeable- membrane device	Deployment dates for semi- permeable- membrane devices	Bottom- sediment	Collection date for bottom sediment
1	094196783	Las Vegas Wash below Flamingo Wash				
		confluence near Las Vegas	Х	10-01-97 to 11-06-97	Х	08-06-97
2	360747115020001	City of Las Vegas sewage treatment plant				
		outfall	Х	10-02-97 to 11-06-97		
3	360640115012501	Clark County sewage treatment plant outfall	Х	10-01-97 to 11-06-97		
4	360512114590501	City of Henderson sewage treatment plant				
		outfall	х	10-01-97 to 11-06-97		
5	09419753	Las Vegas Wash above Three Kids Wash				
		below Henderson	Х	10-02-97 to 11-06-97		
6	094196551	Las Vegas Wash at Owens Avenue			х	07-24-97
7	09419656	Las Vegas Creek above Las Vegas Wash			Х	07-24-97
8	094196753	Flamingo Wash at Swenson Street			Х	07-25-97
9	09419676	Tropicana Wash at Swenson Street			Х	07-25-97
10	09419689	Duck Creek at Patrick Lane			Х	07-24-97
11	360528115163301	Upper Flamingo Wash detention basin			х	08-12-97
12	361022115164101	Angel Park detention basin			Х	08-11-97
13	361735115075001	North Las Vegas detention basin			Х	08-11-97
14		Kyle Canyon detention basin			Х	08-11-97

Table 1. Sampling sites and types of samples collected for synthetic organic compounds in Las Vegas Valley, Nevada, 1997

¹ The standard site identification is based on the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude; the next seven digits denote the degrees, minutes, and seconds of longitude; and the last two digits (assigned sequentially) identify the sites within a 1-second grid. For example, site 360747115020001 is at 36°07′47″ latitude and 115°02′00″ longitude, and it is the first site recorded in that 1-second grid. The assigned number is retained as a permanent identifier even if a more precise latitude and longitude are later determined.

An eight-digit number is used to identify each stream-gaging station. For example, station number 09419656 consists of a two-digit part number (09) followed by a six-digit downstream-order number (419656). The part number refers to a drainage area or group of areas that is generally regional in extent. Records in this report are for sites in Part 09 (the Colorado River Basin). The downstream-order number is assigned according to the geographic location.

Numbers and combined concentrations of synthetic organic compounds in the water column were greater in Las Vegas Wash and Bay than in Calville Bay, an up-reservoir reference site in Lake Mead (Bevans and others, 1996). The most toxic synthetic organic compound detected in Las Vegas Wash was 2,3,7,8-tetrachlorodibenzofuran. The distribution of these synthetic organic compounds in Las Vegas Wash and Lake Mead indicated that Las Vegas Wash is a source of these compounds in Las Vegas Bay (Bevans and others, 1996).

Concentrations of synthetic organic compounds and SVOC's also were found in bottom sediments in Las Vegas Wash and Bay. Concentrations of these compounds decreased in Las Vegas Bay as distance from the mouth of Las Vegas Wash increased (Bevans and others, 1996).

Rapid population growth and changes in land and water use in urbanized areas such as Las Vegas Valley have increased the potential for contamination of water resources by pesticides (Kilroy and Watkins, 1997). In the United States, more than 600 million pounds of pesticides are used each year in urban and agricultural settings (U.S. Geological Survey, 1995). Possibly the greatest potential for adverse effects of pesticides is through contamination of the hydrologic system, which sustains aquatic life, human life, and related food chains (U.S. Geological Survey, 1995).

Four insecticides and four herbicides were detected in samples collected for pesticide analysis from April 1993 through March 1995 from Las Vegas Wash (Kilroy and Watkins, 1997). Metabolites of the pesticide DDT were found in bottom sediments near the mouth of Las Vegas Wash in Las Vegas Bay. A comprehensive discussion of pesticides in the water resources of Las Vegas Valley during 1969-90 is presented by Kilroy and others (1997).

The NVBR NAWQA, in conjunction with the National Park Service and U.S. Fish and Wildlife Service, investigated synthetic organic compounds in Las Vegas Wash and Las Vegas Bay and the effects that these compounds had on the endocrine systems of the common carp (Bevans and others, 1998).

In the NVBR NAWQA summary report, Bevans and others (1998, p. 3) state that in water samples from Las Vegas Wash downstream from Las Vegas urban area, the most commonly detected pesticides were simazine, prometon, diuron, dacthal, diazinon, and malathion. Volatile organic compounds, such as trihalomethanes and methyl-*tert*-butyl ether, were detected also in water samples collected from Las Vegas Wash downstream from the Las Vegas urban area. PAH's, phenols, and phthalates were commonly detected in surface-water sites downstream from the Las Vegas urban area.

Classes of hydrophobic, synthetic compounds referred to in this report include organochlorine compounds (pesticides and PCB's) and SVOC's (PAH's, phthalates, and phenols). Many of these compounds are persistent in the environment, are relatively insoluble in water, and can partition into inorganic sediment that have measurable levels of total organic carbon, non-living organic material, and lipophilic material (Smith and others, 1988; Bevans and others, 1996).

Purpose and Scope

This report presents data on hydrophobic, synthetic organic compounds in water-column and bottomsediment samples collected in 1997 from the Las Vegas Valley Hydrographic Area¹. Samples were collected from the water column of streams with perennial flow, including outfall sites from three sewage-treatment plants (City of Las Vegas, Clark County, and City of Henderson) and two sites on Las Vegas Wash upstream and downstream from sewage-treatment plants and industrial areas (sites 1-5, fig. 1, table 1). Samples were collected from bottom sediments of Las Vegas Wash, tributary washes, and floodwater detention basins upstream from and within the urban drainage system of Las Vegas Wash (sites 6-14, fig. 1, table 1). Samples collected from floodwater detention basins (sites 11-14) were selected to represent outlying areas and to provide background information. Urban development is minor in the drainage areas of North Las Vegas and Kyle Canyon detention basins; however, urban development is moderate in the Angel Park and Upper Flamingo Wash areas.

Environmental Setting

The Las Vegas Valley in southeastern Nevada (fig. 1) encompasses an area of about 1,640 mi². Altitudes range from about 11,900 ft above sea level in the headwater areas of the Spring Mountains west of Las Vegas Valley, to about 1,600 ft in Las Vegas Valley and about 1,200 ft at Lake Mead on the Colorado River. Average annual precipitation in the Las Vegas Valley ranges from more than 20 in. in the mountainous headwater areas to about 4 in. on the valley floor. Natural streamflow in the Las Vegas Valley is ephemeral. Flow in Las Vegas Wash downstream from Las Vegas, however, is perennial because of urban runoff from landscape irrigation and treated sewage effluent (Covay and others, 1996). Discharge of treated sewage to lower Las Vegas Wash has steadily

¹Formal hydrographic areas in Nevada were delineated systematically by the U.S. Geological Survey and Nevada Division of Water Resources in the late 1960's (Rush, 1968; Cardinalli and others, 1968) for scientific and administrative purposes. The official hydrographic-area names, numbers, and geographic boundaries continue to be used in Geological Survey scientific reports and Division of Water Resources administrative activities.

increased since the 1940's. In 1993, about 96 percent of the annual discharge into Las Vegas Wash was effluent from sewage-treatment plants (Bevans and others, 1996). The geology, climate, soils, vegetation, urbanization, and land and water use in the Las Vegas Valley area was summarized by Covay and others (1996).

In 1990, Nevada was the State with the greatest population growth, in percent, and had the fourth greatest percentage of total population residing in urban areas; about 710,000 people lived in the Las Vegas Valley (Nevada State Demographer, Bureau of Business and Economic Research, written commun., 1991).

Acknowledgments

The authors acknowledge the individuals and agencies who helped in this investigation. Kevin L. Eubanks, CCRFCD, provided cooperative and technical support. James R. Smitherman, Nevada Department of Environmental Protection, provided technical support and consultation. The Clark County Sanitation District, City of Las Vegas Department of Public Works, and the City of Henderson Utility Services Division granted permission to sample the outfall from their sewage-treatment plants.

INVESTIGATION METHODS

Two types of samples were collected and analyzed for this investigation—SPMD's and bottom sediment. SPMD's are low-density polyethylene tubes containing triolein, a fish lipid. SPMD's are an effective device for partitioning organochlorine compounds and SVOC's from water to assess the bioavailability of the compounds (Huckins and others, 1990, 1993; Ellis and others, 1995). The concentration of compounds partitioned into the SPMD's is controlled by the diffusion across the low-density polyethylene membrane. The diffusion is affected by the concentration of the compound in the water, the amount of time the SPMD has been deployed, properties of the compound, water temperature, and algal growth on the membrane. SPMD's were submerged in surface water at five locations in Las Vegas Valley (table 1) by attaching them to upright metal posts in the channel bottom. They were deployed for 5 weeks, from early October to mid-November 1997.

Organochlorine compounds and SVOC's were extracted from the SPMD's by dialysis using an organic solvent and then further purified by gel permeation chromatography at Environmental Sampling Technologies (Bevans and others, 1996). Extracts from SPMD's were concentrated with nitrogen at ambient temperature conditions. Two methods—gas chromatography with electron-capture, negative-ion mass spectrometry, and gas chromatography with electron-ionization mass spectrometry—were used to analyze the extracts at the USGS National Water Quality Laboratory (Arvada, Colo.). Concentrations of compounds from SPMD's are used to indicate the presence of these compounds and their relative concentrations at the different sampling sites.

Bottom-sediment samples were collected and field processed in accordance with NAWQA protocols (Shelton and Capel, 1994). Compounds in samples were analyzed in the clay-, silt-, and sand-size particles smaller than 2.0 millimeters. The samples were analyzed for dry-weight concentrations of organochlorines (Foreman and others, 1995) and SVOC's (Furlong and others, 1996) at the USGS National Water Quality Laboratory.

OCCURRENCE OF SYNTHETIC ORGANIC COMPOUNDS

Organochlorine compounds include chlorinated pesticides and selected degradation products, and PCB's. PCB's have been used as plasticizers and hydraulic lubricants, in heat-transfer systems, and in electrical capacitors and transformers (Smith and others, 1988). SVOC's include PAH's, phthalates, and phenols. PAH's originate from anthropogenic and natural sources. Mainly, PAH's are produced by high-temperature reactions such as incineration or fires; however, some are produced commercially for use in pesticides, resins, dyes, cutting fluids, solvents, and lubricants (Smith and others, 1988). Phthalates are used as plasticizers to manufacture products from polymers of vinyl chloride, propylene, styrene, and ethylene (Smith and others, 1988). Phenols are used to manufacture phenolic resins, herbicides, pharmaceuticals, dyes, plastics, and explosives (Smith and others, 1988).

Surface Water

SPMD's were deployed to sample the water column at two sites on Las Vegas Wash and at three treatedsewage sites tributary to Las Vegas Wash (sites 1-5, table 1). A total of 18 different organochlorine compounds were detected at these five sites (table 2). Organochlorine compounds detected at all five sites (table 2) were *cis*chlordane, *cis*-nonachlor, dieldrin, endosulfan-I, *gamma*-HCH, heptachlor epoxide, hexachlorobenzene, pentachloroanisole, *trans*-chlordane, and *trans*-nonachlor. The greatest number of organochlorine compounds and degradation products detected (17) occurred at sites 2 and 3. The other sites had similar number of detections also—16 at site 4, 13 at site 5, and 11 at site 1. The organochlorine compound with the greatest concentration, *p*,*p*'-DDE (380 μ g/kg), was detected in the sample from site 5 (table 2).

Seven different PAH's were detected in the SPMD's at the five sites (table 3). The seven PAH's were 1,2dimethylnaphthalene, 1,6-dimethylnaphthalene, 2,6-dimethylnaphthalene, 2-ethylnaphthalene, fluoranthene, 9H-fluorene, and pyrene. All seven PAH's were detected at site 2, five at sites 1 and 3, four at site 4, and one at site 5 (table 3). The PAH with the greatest concentration, 2-ethylnaphthalene (160 μ g/kg), was detected in the sample from site 3 (table 3).

An additional 57 synthetic organic compounds (table 4) were detected in the SPMD extracts, but could not be quantified due to the lack of authentic standards. Of the 81 targeted synthetic organic compounds, 56 were not detected in the SPMD extracts (table 5).

Organochlorine compounds and PAH's detected in SPMD's at sites 1-5 are summarized in table 6 by the total number of quantified compounds detected, the compound with the maximum concentration, and the corresponding maximum concentration. A total of 25 targeted organic compounds were detected and quantified in extracts from the SPMD's (table 6). The maximum number of quantified compounds detected in a SPMD extract was 24, at site 2. The minimum number was 14, at site 5.

Bottom Sediment

Bottom-sediment samples were collected from Las Vegas Wash (sites 1 and 6), other surface-water sites (sites 7-10), and outlying floodwater detention basins (sites 11-14; table 1). Compounds detected in bottom sediments from stream and detention-basin sites included organochlorine compounds and SVOC's (tables 7-11). A total of 53 synthetic organic compounds were detected in bottom-sediment samples from these sites. In washes downstream from urban areas in Las Vegas Valley, 51 synthetic organic compounds were detected in bottom sediment. In other bottom sediment from floodwater detention basins, which generally are upstream from urban areas, only 17 compounds were detected. In the following discussion, concentrations of these compounds in bottom sediment are expressed as dry weight.

Eleven organochlorine compounds (pesticides, pesticide degradation products, and polychlorinated biphenyls) were detected in bottom-sediment samples (table 7). The greatest number of organochlorine compounds (10) was detected in samples from sites 6 and 7. The greatest concentration was total PCB's, which was estimated at 49 μ g/kg in the sample from site 8 (table 7).

Twenty PAH's were detected in bottom-sediment samples (table 8). The greatest concentrations of most PAH's (table 8) were detected in the sample from site 8. These included benzo[*b*]fluoranthene (1,900 μ g/kg), benzo[*a*]pyrene (1,100 μ g/kg), chrysene (1,500 μ g/kg), flouranthene (6,000 μ g/kg), and pyrene (4,700 μ g/kg).

Six phthalates were detected in bottom-sediment samples (table 9). Bis(2-ethylhexyl) phthalate had a detected concentration of 93,000 μ g/kg at site 8 and 8,600 μ g/kg at site 7.

Five phenols were detected in bottom-sediment samples (table 10). The phenolic compound *p*-cresol was detected at 1,000 μ g/kg in the sample from site 8.

Eleven miscellaneous SVOC's were detected in bottom-sediment samples (table 11). At site 1 these compounds were all below detection levels. The greatest number of these compounds (6) occurred at site 7. The compound 9,10-anthraquinone was detected at $200 \mu g/kg$ and carbazole was detected at $130 \mu g/kg$ in the sample from site 8.

Concentrations of organochlorine compounds and SVOC's detected in bottom-sediment samples from the four floodwater detention basins (sites 11-14, table 1) are listed in tables 7-11 also. The greatest number of synthetic organic compounds detected (11) was at site 12. The only organochlorine compounds detected in bottom-sediment samples from the detention basins were hexachlorobenzene (site 13) and p,p'-DDE (sites 12 and 14, table 7). Six PAH's, six phthalates, two phenols, and 2,6-dinitrotoluene were detected in bottom-sediment samples from the detention basins. Bis(2-ethylhexyl) phthalate, at site 12, had a concentration of 200 µg/kg (table 9). Pentachlorophenol was present at an estimated concentration of 220 µg/kg at site 11 and 200 µg/kg at site 14 (table 10). At site 13, only 2,6-dinitrotoluene was present at 260 µg/kg (table 11).

Of the 98 targeted synthetic organic compounds, 45 were not detected in bottom-sediment sampling sites in the Las Vegas Valley (table 12).

The number of synthetic organic compounds detected in bottom-sediment samples at sites 1 and 6-14 are summarized in table 13 by the total number of compounds detected, the compound with the maximum concentration, and the corresponding maximum concentration. The maximum number of synthetic organic compounds detected in bottom-sediment samples was 36 from site 7. The minimum number detected was five from site 10. Bis(2-ethylhexyl) phthalate was the phthalate with the maximum concentration at all bottom-sediment sites.

SUMMARY

The occurrence of synthetic organochlorine compounds and SVOC's was investigated in the Las Vegas Valley at 14 sites in 1997 as a cooperative effort between the U.S. Geological Survey and the Clark County Regional Flood Control District. Hydrophobic synthetic organic compounds were sampled at five surface-water sites using SPMD's. Three sites were at the three sewage-treatment plant outfalls to Las Vegas Wash, and two sites were on Las Vegas Wash itself. Bottom sediment was sampled at 10 sites in Las Vegas Valley. Six of these were stream sites and four were floodwater detention basins in outlying areas. One of the SPMD sites also was at a bottom-sediment site.

The compounds analyzed for at stream sites were organochlorine compounds (pesticides, selected pesticide degradation products, and PCB's) and SVOC's (PAH's, phthales, and phenols). A total of 18 organochlorine pesticides, compounds, and degradation products and 7 PAH's were detected and quantified in extracts from the SPMD's. The organochlorine pesticide p,p'-DDE was present at 380 µg/kg at site 5. The PAH 2-ethylnaphthalene was present at 160 µg/kg at site 3. An additional 57 synthetic organic compounds were detected but could not be quantified due to the lack of authentic standards. Of the 81 targeted organic compounds, 56 were not detected in extracts from the SPMD's. In washes downstream from urban areas in Las Vegas Valley, 51 synthetic organic compounds were detected in bottom sediment. In other bottom sediment from floodwater detention basins, which generally are upstream from urban areas, only 17 compounds were detected.

In bottom-sediment samples, 11 organochlorine compounds, 20 PAH's, 6 phthalates, 5 phenols, and 11 other miscellaneous SVOC's were detected. Total PCB's were detected at an estimated concentration of 49 μ g/kg at site 8. At site 8, fluoranthene was present at 6,000 μ g/kg, bis(2-ethylhexyl) phthalate was present at 93,000 μ g/kg, and *p*-cresol was present at 1,000 μ g/kg. The compound 2,6-dinitrotoluene was present at 260 μ g/kg at site 13. Of the 98 targeted organic compounds, 45 were not detected in bottom-sediment samples from the sites.

REFERENCES CITED

- Bevans, H.E., Goodbred, S.L., Miesner, J.F., Watkins, S.A., Gross, T.S., Denslow, N.D., and Schoeb, T., 1996, Synthetic organic compounds and carp endocrinology and histology in Las Vegas Wash and Las Vegas and Callville Bays of Lake Mead, Nevada, 1992 and 1995: U.S. Geological Survey Water-Resources Investigation Report 96-4266, 12 p.
- Bevans, H.E., and Kilroy, K.C., 1991, National Water-Quality Assessment Program—Nevada Basin and Range: U.S. Geological Survey Open-File Report 91-154, 2 p. (Water Fact Sheet).
- Bevans, H.E., Lico M.S., and Lawrence, S.J., 1998, Water quality in the Las Vegas Valley area and the Carson and Truckee River Basins, Nevada and California, 1992-96: U. S. Geological Survey Circular 1170, 47 p.

- Cardinalli, J.L., Roach, L.M., Rush, F.E., and Vasey, B.J., comps., 1968, State of Nevada hydrographic areas: Nevada Division of Water Resources map, scale 1:500,000.
- Colburn, Theo, and Clement, Coralie, eds., 1992, Chemically induced alterations in sexual and functional development—The wildlife/human connection: Princeton, N.J., Princeton Scientific Publishing Co., Advances in Mödern Environmental Toxicology, v. 21, 7 p.
- Colburn, Theo, Von Saal, F.S., and Soto, A.M., 1993, Developmental effects of endocrine disrupting chemicals on wildlife and humans: Environmental Health Perspectives, v. 101, no. 5, p. 378-384.
- Conner, B.F., Rose, D.L., Noriega, M.C., Murtagh, L.K., and Abney, S.R., 1998, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of 86 volatile organic compounds in water by gas chromatography/mass spectrometry, including detections less than reporting limit: U.S. Geological Survey Open-File Report 97-829, 76 p.
- Covay, K.J., Banks, J.M., Bevans, H.E., and Watkins, S.A., 1996, Environmental and hydrologic settings of the Las Vegas Valley area and the Carson and Truckee River Basins, Nevada and California: U. S. Geological Survey Water-Resources Investigations Report 96-4087, 72 p.
- Ellis, G.S., Huckins, J.N., Rostad, C.E., Schmitt, C.J., Petty, J.D., and MacCarthy, Patrick, 1995, Evaluation of lipid-containing semipermeable membrane devices for monitoring organochlorine contaminants in the upper Mississippi River: Environmental Toxicology and Chemistry, v. 14, no. 11, p. 1875-1884.
- Foreman, W.T., Conner, B.F., Furlong, E.T., Vaught, D.G., and Merten, L.M., 1995, Methods on analysis by the U. S. Geological Survey National Water Quality Laboratory—Determination of organochlorine pesticides and polychlorinated biphenyls in bottom sediment by duel capillary-column gas chromatography with electron-capture detection: U.S. Geological Survey Open-File Report 95-140, 78 p.
- Furlong, E.T., Vaught, D.G., Merten, L.M., Foreman, W.T., and Gates, P.M., 1996, Methods of analysis by the U. S. Geological Survey National Water Quality Laboratory—Determination of semivolatile organic compounds in bottom sediment by solvent extraction, gel permeation chromatographic fractionation, and capillary-column gas chromatography-mass spectrometry: U. S. Geological Survey Open-File Report 95-719, 67 p.
- Goodbred, S.L., Gilliom, R.J., Gross, T.S., Denslow, N.P., Bryant, W.L., and Schoeb, T.R., 1997, Reconnaissance of 17βestradiol, 11-ketotestosterone, vitellogenin, and gonad histopathology in common carp of United States streams—Potential for contaminant-induced endocrine disruption: U. S. Geological Survey Open-File Report 96-627, 47 p.
- Huckins, J.N., Manuweera, G.K., Petty, J.D., Mackey, D., and Lebo, J.A., 1993, Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water: Environmental Science and Technology, v. 27, no. 12, p. 2489-2496.
- Huckins, J. N., Tubergen, M. W., and Manuweera, G. K.,1990, Semipermeable membrane devices containing model lipid— A new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential: Chemosphere, v. 20, no. 5, p. 533-552.
- Kilroy, K.C., Lawrence, S.J., Lico, M.S., Bevans, H.E., and Watkins, S.A., 1997, Water-quality assessment of the Las Vegas Valley area and the Carson and Truckee River Basins, Nevada and California—Nutrients, pesticides, and suspended sediment, October 1969-April 1990: U. S. Geological Survey Water-Resources Investigations Report 97-4106, 144 p.
- Kilroy, K.C., and Watkins, S.A., 1997, Pesticides in surface water, bottom sediment, crayfish, and shallow ground water in Las Vegas Valley area, Carson River Basin, and Truckee River Basin, Nevada and California, 1992-95: U.S. Geological Survey Fact Sheet FS-075-97, 6 p.
- Neal, E.G., and Schuster, P.F., 1996, Data on quality of shallow ground water, Las Vegas urban area, Nevada, 1993: U.S. Geological Survey Open-File Report 96-552, 1 sheet.
- Rush, F.E., 1968, Index of hydrographic areas in Nevada: Nevada Division of Water Resources, Information Report 6, 38 p.
- Shelton, L.R., and Capel, P.D., 1994, Guidelines for collecting and processing samples of streambed sediment for analysis of trace elements and organic contaminants for the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 94-458, 20 p.
- Smith, J.A., Witkowski, P.J., and Fusillo, T.V., 1988, Manmade organic compounds in the surface water of the United States— A review of current understanding: U.S. Geological Survey Circular 1007, 92 p.
- U.S. Geological Survey, 1995, Pesticides in the atmosphere—Current understanding of distribution and major influences: U.S. Geological Survey Fact Sheet FS-152-95, 6 p.
- 8 Synthetic Organic Compounds in Water and Bottom Sediment in Las Vegas Valley, Nevada, 1997

Table 2. Organochlorine pesticides, compounds, and degradation products detected in semipermeable membrane devices at surface-water sampling sites in Las Vegas-Valley, Nevada, 1997

Site no. (fig. 1, table 1)	<i>alpha</i> - HCH	<i>cis</i> - Chlordane	<i>trans</i> - Chiordane	Dacthal	<i>p,p'</i> -DDE	<i>p,p'-</i> DDT
1	ND	19	16	0.4	ND	ND
2	3	72	71	9.1	97	24
3	3	77	84	0.9	19	34
4	1.7	18	19	1.7	210	ND
5	100	110	2.2	ND	380	ND
Site no. (fig. 1, table 1)	Dleldrin	Endo- sulfan-l	Endo- sulfan-ll	Endo- sulfan-sulfate	Endrin	<i>gamma-</i> HCH
1	58	0.9	ND	ND	ND	6.9
2	60	4.7	2.6	4.3	2.6	120
3	80	4.7	1.3	0.9	ND	240
4	30	1.7	0.9	0.9	ND	99
5	72	0.4	0.9	ND	ND	100
Site no. (fig. 1, table 1)	Heptachlor	Heptachlor epoxide	Hexa- chlorobenzene	<i>cis</i> - Nonachlor	<i>trans</i> - Nonachlor	Penta- chloroanisole
1	ND	6.5	5.6	3.4	11	18
2	ND	15	24	6.0	35	99
3	18	16	48	5.6	21	130
4	2.2	13	260	1.3	6.9	130
5	ND	9.9	92	18	52	73

[Concentrations in micrograms per kilogram; ND, not detected]

Table 3. Polycyclic aromatic hydrocarbons detected in semipermeable membrane

 devices at surface-water sampling sites in Las Vegas Valley, Nevada, 1997

[Concentrations in micrograms per kilogram; ND, not detected]

Site no. (fig. 1, table 1)	1,2-Dimethyl- naphthalene	1,6-Dimethyl- naphthalene	2,6-Dimethyl- naphthalene	2-Ethyl- naphthalene
1	ND	14	ND	37
2	38	36	84	130
3	ND	22	ND	160
4	ND	3.3	ND	ND
5	ND	ND	ND	0.4
Site no. (fig. 1, table 1)	Fluor- anthene	9H-Fluorene	Pyrene	
1	13	5.9	37	
2	62	26	140	
3	30	25	150	
4	79	4.8	68	
5	ND	ND	ND	

Table 4. Synthetic organic compounds detected, but not quantifiable, in semipermeable membrane devices at surface-water sampling sites in Las Vegas Valley, Nevada, 1997. Number(s) in parenthesis indicate site(s) where compound was detected.

Acetylethyl tetramethyltetralin (2, 3, 4, 5)	Dimethyl phenanthrene $(1, 2, 3)$	Nonanal (1, 2)
Adamantane (4)	Dimethyl-(phenylmethyl) benzene (3)	Nonanoic acid (1)
Amino pteridinone (4)	cis, cis-Dimethylspirodecane (2)	Octadecanoic acid (5)
Bromo tetramethyl benzene (4)	cis, trans-Dimethylspirodecane (3)	Octahydrodimethyl naphthalene (1)
Butenylbenzene (2)	Dimethyltrichloroanisole (2, 4)	Octahydro tetramethyl methanoazulen (2)
Butenyl cycloheptadiene (1)	Diphenylmethyl pentene (3)	Octanoic acid (1, 5)
Chlorpyrifos (2)	Dodecamethyl cyclohexasiloxane (1, 3)	Octyl cyclopropane (2)
(Chloromethyl)-trimethyl benzene (4)	Dodecane $(1, 2)$	Pentadecane (1, 2)
Decamethyl cyclopentasiloxane (1, 2, 5)	Dodecanoic acid (1, 3, 4, 5)	Tetradecane (1)
Decahydrodimethyl naphthalene (2, 3, 4)	Ethyl biphenyl (3)	Tetradecanoic acid (1)
Decahydromethyl naphthalene (1, 2, 3, 4)	Ethyldimethyl azulene (2)	Tetrahydrodimethyl napthalene (2)
Decahydronaphthalene (4)	Hexadecane (1)	Tetrahydrotrimethyl naphthalene (2, 3)
Decahydropentamethylnapthalene (4)	Hexadecanoic acid (1, 5)	Tetramethylacenaphthylene (2, 3)
N,N-Dibutyl formamide (1)	Hyroxymethyl-1,4-naphthalenedione (3)	Tetramethyl benzene (2)
Diethylmethyl cyclohexanae (4)	Indenothienothiopyran (2)	Trimethyl (methylpropenyl) cyclopentane (4)
Dihydrotrimethyl-1H-indene (2, 3)	Methoxy-(phenylmethoxy)-1H-indole (4)	Trimethylnaphthalene (3)
Dimethyl adamantane (4)	Methylene-bis(chloro) benzene (5)	Undecane (1, 2)
Dimethylbiphenyl (1, 2, 3)	Methyl-(methylethyl) naphthalene (2)	
Dimethylnaphthalene $(1, 2, 3)$	Methylnaphthalene (1)	
Dimethyl-9H-flourene (2, 3)	Methylpheneanthrene (3)	

 Table 5. Targeted synthetic organic compounds not detected in semipermeable membrane devices at surface-water sampling sites in Las Vegas Valley, Nevada, 1997

Acenaphthylene	C8-Alkylphenol	1-Methyl-9H-fluorene
Acenaphthene	Dibenz $[a,h]$ anthracene	1-Methylphenanthrene
Acridine	Dibenzothiophene	1-Methylpyrene
Anthracene	2,4-Dichlorophenol	Mirex
Anthraquinone	Diethyl phthalate	Naphthalene
Benz[a]anthracene	2,4-Dinitrotoluene	Nitrobenzene
Benzo[a]pyrene	2,6-Dinitrotoluene	2-Nitrophenol
Benzo[b]fluoranthene	4,6-Dinitro-2-methylphenol	N-Nitrosodiphenylamine
Benzo[c]cinnoline	Di-n-butylphthalate	Pentachloroanisole
Benzo[g,h,i]perylene	Di-n-octylphthalate	Pentachlorophenol
Benzo[k]fluoranthene	Endrin-aldehyde	Phenthracene
2,2'-Biquinoline	bis (2-Ethylhexyl) phthalate	Phenanthridine
4-Bromophenyl-phenylether	delta-HCH	Quinoline
Butylbenzylphthalate	Hexachlorobutadiene	1,2,4-Trichlorobenzene
9H-Carbazole	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol
		2,3,6-TrimethyInaphthalene
4-Chloro-3-methylphenol	Hexachloroethane	
bis (2-Chloroethoxy) methane	Indeno[1,2,3-c,d]pyrene	
bis (2-Chloroisopropyl) ether	Isophorone	
2-Chloronaphthalene	Isoquinoline	
Chrysene	2-Methylanthracene	

	ပိုမ္မီ ပ	compounds			Com	Compound(s) with maximum concentration quantified at each site	h maximu		מווטוו איימויי	itied at eacn	site	
(fig. 1, table 1)		detected and quantified	Ö	Organochlorine	rine	Conce (µ	Concentration (μg/kg)		Polycyclic hydroc	Polycyclic aromatic hydrocarbons	0	Concentration (µg/kg)
1		16	Dieldrin			58		2-Eth	2-Ethylnaphthalene	Je		37
								Pyrene	le			37
2		24	gamma-HCH	HCH		120		Pyrene	le Ie			140
ς		22	gamma-HCH	HCH		240		2-Eth	2-Ethylnaphthalene	ne		160
4		20	Hexachle	Hexachlorobenzene		260		Fluor	Fluoranthene			79
0		<u>t</u>	300- d'd			noc		19-7	z-burymapilulatelle			t.0
Site no. (fig.1, table1)	Organic carbon	<i>cis</i> - Chlordane	tr <i>ans</i> - Chlordane	Dacthal	000-, <i>d'd</i>	p,p'-DDE p	p,p'-DDT	Dieldrin	Hexa- chloro- benzene	<i>cis</i> - Nonachlor	tr <i>ans</i> - Nonachlor	Total polychlorinated biphenyls
						Stream Sites	s					
1	6	E0.7	E0.8	Ŷ	V	E0.7	7	1.3	$\overline{\mathbf{v}}$	V	E0.8	<50
9	×	ę	3.4	Ŷ	E0.8	1.4	2.8	E0.6	E0.4	E0.6	2.4	E29
7	10	3	2.9	Ŷ	E0.8	3.3	2.2	E0.7	1	E0.7	2.1	E32
×	29	2	E0.4	Ŷ	E0.6	2	4	1.4	$\overline{\nabla}$	E0.6	1.7	E49
6	20	E0.5	E0.8	E4	7	E0.5	4	$\overline{\mathbf{v}}$	E0.6	$\overline{\nabla}$	E0.6	E18
10	16	7	7	Ŷ	7	E0.3	4	7	7	4	7	<50
					Ď	Detention Basin Sites	Sites					
11	10	7	₽	Ŷ	7	7	4	7	7	√	√	<50
12	14	$\overline{\nabla}$	₽ V	Ŷ	7	E0.9	4	7	√	$\overline{\nabla}$	▽	<50
13	6	7	v	Ŷ	7	7	4	7	2.2	4	7	<50
14	22	7	7	Ŷ	7	E0.8	4	v	√	√	₽	<50

TABLES 2-13 11

1997
Nevada,
Valley,
Vegas
n Las
sites i
npling
ent sar
sedime
ottom-
l at b
detected
pons (
drocar
ic hy
aromati
cyclic a
Polyc
le 8.
Tab

-

[Concentrations of compounds determined on clay-, silt-, and sand-size particles in less-than-2-millimeter fraction and reported in micrograms per kilogram. Abbreviations; E, estimated ¹, ND, not detected]

Py- rene		E42	6 9 `	250	4,700	160	<50		E10	EII	E6.7	<50
Phen- an- threne		E15	E43	120	630	E47	<50		<50	E7.8	<50	<50
Naph- tha- lene		<50	<50	E20	68	<50	<50		<50	<50	<50	<50
4,5- Methyl- ene- phen- anth- rene		<50	<50	<50	150	<50	≪50		<50	<50	<50	<50
1-Methyl- pyrene		<50	E8.4	<50	140	<50	<50		<50	<50	<50	<50
ln- deno- [1,2,3- <i>cd</i>] pyrene)		E32	E33	79	430	68	<50		<50	<50	<50	<50
9-H- Fluor- ene)		<50	<50	<50	E41	<50	<50		<50	<50	<50	<50
Fluor- an- thene		E41	67	240	6,000	150	<50		E14	E13	E10	<50
2,6- Di- methyl- naph- thalene		E22	≪50	E44	180	130	140	s	€0	€0	≪50	<50
1,6-DI- methyl- naph- thalene	Sites	<50	<50	<50	E48	<50	<50	asin Site	<50	<50	<50	<50
1,2-Di- methyi- naph- thalene	Stream Sites	<50	<50	E13	<50	<50	<50	Detention Basin Site	<50	<50	<50	<50
Di- benz [<i>a,h</i>] anthra- cone		€0	<50	<50	150	<50	<50	ã	<50	<50	<50	<50
Chry- sene		E30	58	150	1,500	150	<50		<50	E10	<50	<50
Benzo [<i>g,h,i</i>] pery- lene		<50	E42	91	420	LL	<50		<50	<50	<50	<50
Benzo [<i>a</i>] pyrene		E25	E46	130	1,100	110	<50		E9.1	<50	<50	<50
Benzo [k] flour- an- thene		E29	E33	92	630	70	<50		<50	<50	<50	<50
Benzo [<i>b</i>] fluor- an- thene		E32	63	180	1,900	150	<50		<50	€50	<50	<50
Benz [<i>a</i>] anthra- cene				92					≪50	≪0	<50	<50
Anthra- cene		E9.5	E22	E33	140	<50	<50			<50		<50
Ace- naph- thy- lene		<50	<50	<50	E24	<50	<50		<50	<50	<50	545
Site no. (fig. 1, tab.1)		1	9	٢	×	6	10		11	12	13	14

¹ When an "E" is reported, the compound has passed all criteria used to identify its presence, and only the concentration is estimated (Conner and others, 1998).

. .

-

Table 9. Phthalates detected at bottom-sediment sampling sites in Las Vegas Valley, Nevada, 1997

Site no. (fig. 1, table 1)	<i>bis</i> (2-Ethylhexyl) phthalate	Butylbenzyl- phthalate	Di- <i>n</i> -butyl- phthalate	Diethyl- phthalate	Dimethyl- phthalate	Di- <i>n</i> -octyl- phthalate
		Str	eam Sites			
1	350	E23	E28	E10	<50	E39
6	1,000	<50	61	<50	<50	60
7	8,600	120	85	<50	<50	230
8	93,000	130	200	<50	<50	460
9	1,000	82	65	<50	<50	110
10	710	<50	<50	<50	<50	<50
		Detentio	on Basin Sites			
11	E30	E26	E29	E10	<50	<50
12	200	E23	E38	E11	<50	E32
13	E36	E21	E31	E11	E6.8	<50
14	E30	E18	E29	E12	<50	<50

[Concentrations of compounds determined on clay-, silt-, and sand-size particles in less-than-2-millimeter fraction and reported in micrograms per kilogram. Abbreviations; E, estimated ¹, ND, not detected]

¹When an "E" is reported, the compound has passed all criteria used to identify its presence, and only the concentration is estimated (Conner and others, 1998).

Table 10. Phenols detected at bottom-sediment sampling sites in Las Vegas Valley, Nevada, 1997

[Concentrations of compounds determined on clay-, silt-, and sand-size particles in less-than-2-millimeter fraction and reported in micrograms per kilogram. Abbreviations; E, estimated ¹, ND, not detected]

Site no. (fig. 1, table 1)	<i>p</i> -Cresol	3,5-Dimethyl- phenol	Penta- chloro- phenol	Phenol	2,4,6-Tri- chloro- phenol
		Stream S	Sites		
1	<50	<50	ND	E25	ND
6	<50	E12	ND	E24	ND
7	E45	<50	ND	E35	ND
8	1,000	<50	ND	120	ND
9	<50	<50	ND	<50	ND
10	<50	<50	ND	<50	E17
		Detention Ba	ısin Sites		
11	<50	<50	E220	<50	ND
12	<50	<50	ND	E17	ND
13	<50	<50	ND	<50	ND
14	<50	<50	E200	E7.0	ND

¹ When an "E" is reported, the compound has passed all criteria used to identify its presence, and only the concentration is estimated (Conner and others, 1998).

Image Stream Sites 1 < 0 ND < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 $<$	Site no. (fig. 1, tabie 1)	9,10-Anthra- quinone	bis (2- Chloro- isopropyl) ether	Carbazole	1,3- Dichloro- benzene	1,4- Dichloro- benzene	Hexa- chloro- ethane	<i>N</i> -Nitro- sodi- <i>n</i> - propy- lamine	N-Nitrosodi- phenyl- amine	Phenan- thridine	Quinoline	2,6-Dinitro- toluene
< 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>Stream</td><td>1 Sites</td><td></td><td></td><td></td><td></td><td></td></th<>						Stream	1 Sites					
< 50 < 50 ND < 50 E11 < 50 < 50 < 50 < 50 ND < 50 < 50 < 50 < 50 < 50 < 50 > 50 > 50 < 50 < 50 < 50 < 50 < 50 > 50 > 50 < 50 < 50 < 50 < 50 < 50 > 50 > 50 < 50 < 50 < 50 < 50 < 50 > 50 > 50 < 50 < 50 < 50 < 50 < 50 > 50 > 50 < 50 < 50 < 50 < 50 < 50 > 50 > 50 < 50 < 50 < 50 < 50 < 50 > 50 > 50 < 50 < 50 < 50 < 50 < 50 > 50 > 50 < 50 < 50 < 50 < 50 < 50 > 50 > 50 < 50 < 50 < 50 < 50 > 50 > 50 < 50 < 50 < 50 < 50 > 50 > 50 > 50 > 50 > 50 < 50 > 50 > 50 > 50 > 50 > 50 < 50 > 50 > 50 > 50 > 50 > 50 < 50 > 50 > 50 > 50 > 50 < 50 > 50 > 50 > 50 > 50 < 50 > 50 > 50 > 50 > 50 < 50 > 50 > 50 > 50 > 50 < 50 > 50 > 50 > 50 <td>1</td> <td><50</td> <td>QN</td> <td><50</td> <td><50</td> <td><50</td> <td></td> <td><50</td> <td><50</td> <td><50</td> <td><20</td> <td><50</td>	1	<50	QN	<50	<50	<50		<50	<50	<50	<20	<50
E27E45E11E18<5062<60	9	<50	ND	<50	<50	<50	QN	<50	E11	<50	<50	E22
	7	<50	QN	<50	E27	E45	E11	E18	<50	62	<50	E30
	œ	200	ND	130	<50	<50	QN	<50	<50	<50	<50	<50
	6	<50	QN	<50	<50	<50	QN	<50	E11	<50	E15	≪0
Detention Basin Sites < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 <t< td=""><td>10</td><td><50</td><td>E19</td><td><50</td><td><50</td><td><50</td><td>QN</td><td><50</td><td><50</td><td><50</td><td><50</td><td><50</td></t<>	10	<50	E19	<50	<50	<50	QN	<50	<50	<50	<50	<50
						Detention 1	Basin Sites					
	11	<50	QN	<50	<50	<50	QN	<50	<50	<50	<50	<50
<50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <th< td=""><td>12</td><td><20</td><td>QN</td><td><50</td><td>€0</td><td><50</td><td>ŊŊ</td><td><50</td><td><50</td><td><50</td><td><50</td><td><50</td></th<>	12	<20	QN	<50	€0	<50	ŊŊ	<50	<50	<50	<50	<50
< 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 5	13	<50	ŊŊ	<50	<50	<50	Q	<50	<50	<50	<50	260
¹ When an "E" is reported, the compound has passed all criteria used to identify its presence, and only the concentration is estimated (Conner and others, 1998). Table 12. Targeted synthetic organic compounds not detected at bottom-sediment sampling sites in Las Vegas Valley, Nevada, 1997 Accuaphthene m-Cresol Accidine m-Cresol Actidine o.p."DDE Actidine 0.p."DDE Actidine 0.p."ODE Actidine 0.p."DDE Actidine 0.p."ODE Actidine 0.p."ODE Actidine 0.p."Otherworkence Benzofc]cimoline 0.p."Otherworkence Benzofc]cimoline 0.p."Otherworkence <	14	<50	QN	<50	<50	<50	QN	<50	<50	<50	<50	<50
<i>m</i> -Cresol <i>o,p</i> '-DDD <i>o,p</i> '-DDT <i>o,p</i> '-DDT Dibenzothiophene <i>o</i> -Dichlorobenzene <i>a</i> -Dichlorobenzene <i>a</i> -Dichlorobenzene <i>a</i> -Dichlorobenzene <i>a</i> -Dichlorobenzene <i>a</i> -Dichlorobenzene <i>a</i> -Dichlorobenzene <i>a</i> -Dichlorobenzene <i>b</i> -Dichlorobenzene <i>a</i> -Dichlorobenzene <i>b</i>	Table 12. Ta	argeted synthet	ic organic cor		letected at bo	ttom-sedimen	t sampling sit	tes in Las Ve	gas Valley, Nev	'ada, 1997		
<i>m</i> -Cresol <i>o,p</i> '-DDE <i>o,p</i> '-DDE <i>o,p</i> '-DDT Dibenzothiophene <i>o</i> -Dichlorobenzene 2,4-Dinitrotoluene Endosulfan-I Endrin 9H-Fluorene Heptachlor Heptachlor Isodrin Isodrin Isodrin Isodrin												
<i>o,p</i> . ⁻ DDD <i>o,p</i> . ⁻ DDF <i>o,p</i> . ⁻ DDT Dibenzothiophene <i>o</i> -Dichlorobenzene <i>o</i> -Dichlorobenzene 2,4-Dinitrotoluene Endosulfan-I Endorin 9H-Fluorene Heptachlor Heptachlor Isodrin Isodrin Isodrin Isodrin	Acenaphthe	ene		m-Cr	esol			Lindane				
<i>o,p</i> . ² .DDE <i>o,p</i> . ² .DDT Dibenzothiophene <i>o</i> -Dichlorobenzene 2,4-Dinitrotoluene Endorin 9H-Fluorene Heptachlor Heptachlor Isodrin Isodrin Isodrin Isodrin	Acridine			-, d'o	DDD			2-Methy	lanthracene			
<i>o,p</i> . ² .DDT Dibenzothiophene <i>o</i> -Dichlorobenzene 2,4-Dinitrotoluene Endorn Endrin 9H-Fluorene Heptachlor Heptachlor Isodrin Isodrin Isodrin Isoquinoline	Aldrin			-, d'o	DDE			1-Methy	phenanthrene			
Dibenzothiophene <i>o</i> -Dichlorobenzene 2,4-Dinitrotoluene Endorin 9H-Fluorene Heptachlor Heptachlor Isodrin Isodrin Isodrin Isoquinoline	Azobenzen	ē		-, d'o	DDT			<i>o,p'-</i> Met	hoxychlor			
<i>o</i> -Dichlorobenzene 2,4-Dinitrotoluene Endosulfan-I Endrin 9H-Fluorene Heptachlor Heptachlor Isodrin Isophorone Isophorone Isoquinoline	Benzo[c]ci:	nnoline		Dibe	nzothiophene			<i>p,p</i> '-Met	hoxychlor			
2,4-Dinitrotoluene Endosulfan-I Endrin 9H-Fluorene Heptachlor Isodrin Isodrin Isophorone Isoquinoline	alpha-BHC			o-Dic	chlorobenzene			Mirex				
Endosulfan-I Endrin 9H-Fluorene Heptachlor Isodrin Isodrin Isophorone Isoquinoline	beta-BHC			2,4-L	Dinitrotoluene			Nitroben	zene			
Endrin 9H-Fluorene Heptachlor Isodrin Isodrin Isophorone Isoquinoline	4-Bromoph	tenyl-phenylethe	L	Endo	sulfan-I			Oxychlo	rdane			
9H-Fluorene Heptachlor Heptachlor epoxide Isodrin Isophorone Isoquinoline	2,2'-Biquin	noline		Endr	in			Pentachl	oroanisole			
Heptachlor Heptachlor epoxide Isodrin Isophorone Isoquinoline	C8-Alkylpl	henol		-H6	luorene			Pentachl	oronitrobenzene			
Heptachlor epoxide Isodrin Isophorone Isoquinoline	bis (2-Chlo	roethoxy) metha	ne	Hept	achlor			cis-Perm	ethrin			
Isodrin Isophorone Isoquinoline	2-Chlorona	phthalene		Hept	achlor epoxide			trans-Pei	methrin			
Isophorone Isoquinoline	Chloroneb			Isodr	in			Toxaphe	ne			•
Isoquinoline	2-Chloroph	ienol		Isopt	norone			1,2,4-Tri	chlorobenzene			
	4-Chloroph	tenyl-phenylethe	L	Isoqu	uinoline			2,3,6-Tri	methylnapthalen	e		

Table 11. Miscellaneous semivolatile organic compounds detected at bottom-sediment sampling sites in Las Vegas Valley, Nevada, 1997

14 Synthetic Organic Compounds in Water and Bottom Sediment in Las Vegas Valley, Nevada, 1997

Cito Cito	Nimber			Con	npound with	Compound with maximum concentration quantified at each site	ation quant	Iffied at each site			
olue no. (fig. 1, table 1)	of organic compounds detected	Organochlorine	Con- centration	Polycyclic aromatic hydrocarbon	Con- centration	Phthalate	Con- centration	Phenol	Con- centration	Miscellaneous semivolatile organic compound	Con- centration
					ŝ	Stream Sites				-	
1	22	Dieldren	1.3	Pyrene	E42	bis(2-Ethylhexyl) phthalate	350	Phenol	E25	e G	1
9	29	Polychlorinated biphenyls	E29	Pyrene	69	bis(2-Ethylhexyl) phthalate	1,000	Phenol	E24	2,6- Dinitrotoluene	E22
٢	36	Polychlorinated biphenyls	E32	Pyrene	250	bis(2-Ethylhexyl) phthalate	8,600	p-Cresol	E45	Phenanthridine	62
×	35	Polychlorinated biphenyls	E49	Fluoranthene	6,000	bis(2-Ethylhexyl) phthalate	93,000	p-Cresol	1,000	9,10- Anthraquinone	200
6	24	Polychlorinated biphenyls	E18	Pyrene	160	bis(2-Ethylhexyl) phthalate	1,000	ND	ł	Quinoline	E15
10	S	<i>p,p</i> '-DDE	E0.3	2,6-Dimethyl- naphthalene	140	bis(2-Ethylhexyl) phthalate	710	2,4,6-Trichloro- phenol	E17	bis(2-Chloro- isopropyl) ether	E19
					Deten	Detention Basin Sites					
11	œ	DN	;	Fluoranthene	E14	bis(2-Ethylhexyl) phthalate	E30	Pentachloro- phenol	E220	QN	I
12	11	<i>p,p</i> '-DDE	E0.9	Fluoranthene	E13	bis(2-Ethylhexyl) phthalate	200	Phenol	E17	QN	-
13	6	Hexachloro- benzene	2.2	Fluoranthene	E10	bis(2-Ethylhexyl) phthalate	E36	QN	ł	2,6- Dinitrotoluene	260
14	×	<i>p,p</i> '-DDE	0.8	Acenaphthylene	4.5	bis(2-Ethylhexyl) phthalate	E30	Pentachloro- phenol	200	ND	-1