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QUANTITATIVE CHARACTERIZATION of MICRO-TOPOGRAPHY

A BIBLIOGRAPHY of INDUSTRIAL SURFACE METROLOGY

Richard J. Pike, U.S. Geological Survey, Menlo Park, Calif., USA
Prof. Tom R. Thomas, Avalon Technology, Cleveland, UK

| Abstract

A comprehensive bibliography of surface metrology, the numerical description and
analysis of manufactured surfaces, improves access to research on topographic

quantification that lies outside the usual Earth-science sources.

A brief essay

accompanying the 4800 literature citations introduces the field of industrial surface
metrology to geomorphologists and other Earth scientists, describes similarities and
differences between the two realms, and raises issues to be addressed in any attempt to
unify the general practice of surface quantification. A sampling of Internet Web-site
addresses and full abstracts on surface metrology supplements the main bibliography.

Introduction

This report makes available to digital-terrain
modelers, geomorphologists, and other Earth
scientists and engineers a new resource for the
numerical description and analysis of
topography. Rather than landscapes (Pike,

1993)], the attached bibliography of surface
metrology addresses the quantification of
manufactured surfaces. Although the micro- and
nano-scale features described in the 4300
references listed here (Appendix I) include none
of the terrain familiar to geologists, geographers,
oceanographers, or civil and military engineers,
students of the Earth will find in this listing
much common ground with their industrial
counterparts. In work on the microscopic terrains
created by mechanical, physical, and chemical
processes (Thomas, 1982a, 1999), engineers and
scientists in manufacturing have long been
contributing to morphometry, the generic
discipline of shape quantification.

1 References in bold type are listed only at the
close of this essay; all other citations are in the
chronologically ordered Appendix I; those
underscored also have full abstracts in
Appendix II.

The Earth science most closely related to surface
metrology is geomorphology, particularly its sub-
specialties (for example, terrain modeling) that
treat landscapes mathematically and
statistically as continuous surfaces in the absence
of (or despite) well-defined spatial structure
(Moore and others, 1991; Pike, 1995a; Lane and
others, 1998). Some manufacturing processes do
yield spatial structure and miniature forms that
can be delineated individually (Amar and
Family, 1996; Medeiros-Ribeiro and others,
1998). Such surfaces may be more usefully
analyzed by the quantitative approaches
developed in geomorphology for drainage basins,
volcanoes, sand dunes, meteorite-impact craters,
and other landforms that are spatially discrete.
A number of geologists and geophysicists have
analyzed the random fine-scale roughness of
fractured and faulted rock faces (Tluirk and others,
1987; Ameen, 1995; Brown, 1995), but the micro-
quantification—increasingly by 3-D digital
data—of machined or etched surfaces created by
industrial procedures is unknown to most Earth
scientists. The work referenced in Appendices I
and II reveals that surface characterization by
mechanical and optical engineers, and most
recently high-technology manufacturers and
materials scientists, has many parallels to the
study of conventional landscapes.
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Surface Metrology

Metrology is the practice of measurement for
quality control in manufacturing. Its application
to surfaces, known in industry as surface
metrology or surface topography, arose from the
need to quantify the roughness of metal surfaces,
especially those in moving contact (for example,
automotive piston rings and cylinder walls;
Figures 1 and 2). The practice now embraces most
other areas of manufacturing. The statistical
morphology of micro-topography affects a great
many industrial functions and products, ranging
from paint adhesion to the performance of
cosmetics and the precision of reflecting surfaces.
The development of metrology has paralleled
that of 20th Century science and engineering
technology.

For a quick introduction to recent metrologic work
in a variety of areas, see Appendices II and IIL
Thomas (1992) is a brief general overview.
Whitehouse (1994), Stout (1994), and Thomas
(1999) are major reviews that emphasize
tribology—the study of friction, wear, and
lubrication—particularly in mechanical
engineering, metrology's earliest and best-known
application. Hahner and Spencer (1998) is a non-
technical introduction to tribology and its
evolution as a field of applied physics. For an
up-to-date review of surface roughness in
tribology and contact mechanics, see Majumdar
and Bhushan (1998). Thomas (1982a) is an older
summary of metrology, and Russ (1994) deals
specifically with fractal surface characteristics.
Bhushan (1997) reviews some of the most recent
developments of metrology and tribology,
nanoscopic applications to magnetic tape and
computer disk drives. Proceedings of an
important conference on metrology and the
properties of engineering surfaces were published
last year (Rosén and Crafoord, 1997). (The next
meeting in this series will be in the UK in April,
2000.)

Surface metrology is applied and practical. It
arose well before World War II (Abbott and

Firestone, 1933)2 from the demands upon

2 Appendix I does not record the origins of surface
metrology. An extensive German literature on
surface finish, including descriptions of some of

mechanical engineers (together with
development of the necessary precision
instrumentation) to improve product quality by
narrowing the tolerances of manufactured
components. To do this it became necessary to
quantify the wear on such moving parts as
crankshafts and metal bearings and correlate
measurements of surface roughness with the
properties of lubricants, the composition of
bearing alloys, and methods of surface finish
(Thomas and Charlton, 1981). Metrology has
long contributed to the development of national
and international standards that employ surface
measurements to control metal-finishing (ISO,
1996a, b). More recently, surface measurements
have been correlated with manufacturing
processes in which thin films of various elements
and compounds are deposited on smooth
substrates, and other applications in materials
science and the semiconductor industry (Amar and
Family, 1996; R K. Singh and others, 1996).
Maintaining reliable performance of magnetic
storage devices and other hardware essential to
the Information Age would be impossible without
metrology (Bhushan, 1990, 1997).

Much of the work on surface metrology appears in
Wear, Industrial Metrology, Precision
Engineering, the Journal of Computer-Assisted
Microscopy, and other specialized publications in
engineering, as well as those in applied physics
and chemistry. The optics literature is a
particularly good example. Because unwarranted
roughness on lenses and mirrors can degrade the
performance of lasers and optical imaging
systems, surface metrology has long been an
essential practice in optical engineering (Bennett
and Mattsson, 1989). The Society of Photo-
optical Instrumentation Engineers (SPIE) and the
American Society for Precision Engineering
(ASPE) from time to time hold meetings partly or
entirely devoted to surface metrology.
Quantification of micro-surface roughness is
increasingly encountered in biology and medicine.
For instance, fine-scale measurement in chemical
engineering is important in maintaining
cleanliness and consequent biological sterility of
fermentation vessels. In medicine, surface
roughness affects the assimilation to the human
body of surgical implants and prostheses of

the earliest instruments, was reviewed by
Schmaltz (1936).
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various kinds. Wennerberg's (1996) review of the
effects of roughness on the performance of
implants, for example, contains over 200

references (see also Wennerberg and others, 1996).

The sophistication of industrial practice in
measuring the fine-scale roughness of surfaces has
increased steadily with improvements in
instrumentation. Metrologic techniques since
World War II have advanced from central-
tendency and dispersion statistics of surface-
topographic profiles of metal bearings (Posey,
1946; Myers, 1962), through the modeling of these
two-dimensional samples as random, isotropic
Gaussian fields using autocorrelation and spectral
analysis (Sayles and Thomas, 1978b, c;
Whitehouse and Phillips, 1978), to a major shift
now underway. This latest change, the advent of
digital 3-D imaging and micro-topographic
mapping (Russ, 1994; Stout, 1994) of metal,
semiconductor, and even organic surfaces
(Mechaber and others, 1996), is revolutionizing
metrology. Before this breakthrough, industrial
surfaces were characterized by tracing a linear
profile across a sample area with a micro-stylus
instrument (Thomas, 1992). A long-standing
disadvantage was the unidirectional character of
the resulting sample, which could not capture
surface anisotropy without resorting to multiple
passes of the instrument. Also, resolution of such
instruments was insufficient to address many
industrial problems (Rosén and others, 1996).

Methodological limitations of the sampling
profile (El-Soudani, 1978; Nowicki, 1985;
Sherrington and Smith, 1987), to say nothing of
inadequate resolving power, have been overcome
by such precision devices as the scanning
tunneling and atomic force microscopes (AFM) and
optical interferometers (Wickramasinghe, 1989;
Robinson and others, 1991). These instruments
image and measure industrial surfaces at very
fine resolution (Amato, 1997) and enable accurate
topographic maps to be created down to the
atomic scale (Appendix III). With the profile
thus giving way to the surface as the preferred
sampling design (Stout, 1994), all the powerful
techniques of spatial analysis—many well known
in the Earth sciences—have become available to
micro- and nano-morphometry. Metrology has
not hesitated to develop these techniques,
independently of other fields, from work by such
applied mathematicians as Matheron (1965),
Mandelbrot (1967, 1975), and Daubechies (1990).

Arguably, methods of 3-D analysis in surface
metrology, among the first disciplines to apply
fractal concepts (Berry, 1979; Pfeifer, 1984;
Thomas and Thomas, 1986b) and wavelets
(Mallat, 1989; Wolf and Husson, 1993; Shibutani
and Kitagawa, 1995; Lee and others, 1997) to
surface characterization, now rival those of
Earth scientists in their sophistication (Russ,
1993, 1994; Dong and others, 1994a, b; Amar and
Family, 1996).

The Thomas Bibliography

The 4800 literature citations presented here
(Appendix I) trace the evolution of surface
metrology over some 70 years. (The technical
disciplines employing metrology date back much
further; Hahner and Spencer, 1998). All but a
hundred or so of these references were compiled
by the second author, a senior engineer in
industrial surface metrology in the U.K., who
may be best known to Earth scientists for a 1978
Nature article, "Surface topography as a
nonstationary random process”, co-authored with
Richard Sayles. His 1982 book Rough Surfaces
the second edition of which is scheduled for
release in early 1999

(http:/ /www.wspc.com.sg/books/engineering / p0
86.html), has been a standard reference in the
field. (A list of 650 references appeared earlier;
Thomas and King, 1977). A bibliography of
surface metrology by Thomas that is current
through 1995 and contains full abstracts is
available commercially on CD-ROM from the
Swedish firm Toponova AB,
(toponova@algonet.se).

Appendix I, which samples but a fraction of the
published work in metrology, is the largest
bibliography on surface roughness available in
the open literature. The listing comprises all of
the Thomas CD-ROM citations (less their
abstracts), a partial 1996 update by Thomas,
some 1997-98 entries added by Pike, and a number
of older citations (also added by Pike) not in the
original Thomas lists. The bibliography is not
cast in standard USGS style and the entries differ
in format and completeness (for example, in the
use of abbreviations), reflecting the listing's long
evolution and non-USGS origin. Random changes
during conversion of the computer file from its
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original format altered some references, and
occasional missing or added text characters and
spaces will be encountered, along with a number
of misspelled author names. Many more of these
irregularities were repaired in editing the list for
this report, and some 500 duplicate entries were
removed. Appendix Il is a 1996 subset of the
Thomas bibliography. It contains 36 complete
abstracts that offer details of recent work in
surface metrology, much of which deals
explicitly with fractals and other surface
measures of current interest to Earth scientists.
Appendix III, a dozen Internet Web sites devoted
to metrologic topics, supplements the print
citations with instant, if still-rudimentary,
access to the field.

Appendix I differs from bibliographies compiled
originally by the second author in one important
respect. We have recast it chronologically,
retaining alphabetical order only within one-
year brackets. One reason for this change is
historical. Earth scientists and others
unfamiliar with industrial surface metrology can
trace its conceptual and technical development

from the 1930's> and compare this evolution with
that of surface quantification in their own
specialties. Students of metrology will find this
helpful as well. Second, the rapid increase in
research activity is made more evident. Entries
for 1995, the last year that approaches
completeness, alone comprise 20% of the listing.
Also, industrial morphometry is diversifying
from mechanical engineering, once the dominant
application of surface-roughness measurement,
into semiconductors and other high-technology
materials. The chronological order not only
documents this change but also helps group
information on the newest specialties apart from
earlier, more traditional, work in metrology
without our having to rearrange the entire
bibliography topically—an undertaking not
possible at this time. Finally, up-to-date work in
various subfields of surface metrology (through,
say, 1996) can be found fairly rapidly by browsing
only the most recent years, and without having to
know the name of an author.

The subject matter of the attached listing is quite
diverse, and we do not review it here. Nor did we
cull it to include just those works most likely to

3 See footnote 2.

appeal to Earth scientists, at best a dubious
exercise in subjectivity. Rather, we believe all
4800 citations make an important statement: that
Earth science is not the only field in which
surface-form representation is of such central
importance—in volume and variety industrial
surface metrology now dwarfs the practice of
morphometry in geomorphology. Much material
in Appendix I will seem exotic to
geomorphologists and their colleagues in geology
and physical geography. The bulk of the
references, particularly those to atomic-scale
surfaces in such serials as Surface Science, do not
relate directly to the DEM-based 3-D
measurement of topography. However, amid
such unfamiliar terms as "molecular-beam
epitaxy" and "photobleaching in side chain
NLO-polymers," terrain modelers will glean
information and concepts that touch upon their
own work. This exchange works in both
directions. The increasingly common references in
Appendix I to Earth-science topics, mostly
engineering applications in hydrology and remote
sensing, emphasizing terrain roughness show that
industrial metrologists, too, are venturing outside
their field for new ideas to solve problems in
surface characterization (Schloss, 1966;
Manninen, 1992; Govindaraju and Kavvas, 1994;
Claussen, 1995; Premus and Alexandrou, 1995).

Discussion—a Convergence of
Disciplines

The need for terrain modelers and metrologists
alike to analyze surface form links the Earth
sciences with industry in a common endeavor that
exemplifies the growing integration of much
modern science and technology (Mandelbrot, 1975;
Bak, 1996; Wilson, 1998a). Here, in publishing a
bibliography of surface metrology, we examine a
few implications of this convergence and the
prognosis for a unified practice of surface
quantification.

What makes the convergence possible is an
operational definition by which both Earth
science and industry find it convenient to define
most surfaces: within a specified scale of
interest, a surface is broadly planar but irregular
in detail. By this convention, all surfaces
regardless of scale have a similar gross geometry
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comprising two long (spatial) dimensions and one
short one (relief). Consequently all surface
irregularities can be measured in Cartesian
coordinates, (X,Y) in the spatial domain defined
by the overall-planar trend of the surface and (Z)
in the relief domain normal to that trend. This
simple convention is important, because it
distinguishes nominally two-dimensional,
continuous surfaces from those of three-
dimensional objects—plants and animals,
sedimentary particles, and mineral grains—
which are better quantified by such
morphometric approaches as landmark analysis
(Bookstein, 1995; Marcus and others, 1996).
Formally, the characterization of any continuous
surface as defined here is grounded in the
unifying concept of the spatial random field,
which in turn is based on mathematical set-
theory and probability (Adler, 1981; Christakos,
1992).

We restrict the discussion here to single-valued
surfaces, those for which all values of (X,Y) have
only one value of (Z). This condition does not
hold for convoluted surfaces, where contour lines
depicting such re-entrant features as overhangs
and cavities "disappear" beneath contours at
higher elevations. Examples include much karst
topography (landscape scale), a gravel river-bed
or beach (finer scale), and soils (very fine scale).
On a molecular scale, some industrial surfaces
also are multi-valued; evidence from surface
chemistry indicates that the area of absorption
of a machined surface is many times its geometric
area. However, the measurable surface—the
response surface (Agullo and Pages-Fita, 1974)
rather than the true surface—is necessarily
single-valued with respect to height because the
techniques of measurement and data reduction in
metrology (and most Earth sciences) do not cope
effectively with multiple values of height. It is
because of this restriction that a fractal response-
surface is self-affine rather than self-similar.
Soil scientists, who must measure porosity and
other internal characteristics of soil structure,
have devised techniques—some of them adapted
from stereology—to quantify multi-valued
surfaces (Droogers and others, 1998; Horgan,
1998). Such complex surfaces, where X, Y, and Z
all may assume values of equal magnitude, differ
qualitatively from "surface" as defined here.

The task of characterizing single-valued surfaces
in three dimensions reduces to a problem in

descriptive geometry and topology, referenced to
a relief datum, Zg. The Zgp-datum convention—
mean sea level for Earth, arbitrarily determined
elevations or levels on both other planets and on
surfaces formed by industrial processes—can be
applied to the relief forms on any surface,
whatever its scale or the processes that formed
it. The peaks, depressions, valleys, ridges, and
other surface features thus observed in 3-D space
are characterized numerically by various
measures in profile (Z) and plan (X,Y). These
measures are equally germane to solving practical
problems on the shop floor and in the Earth
sciences. The cross-hatched topography of honed
scratches on a machined cylinder-wall, for
example, is as rich in relief content, and as
capable of measurement and analysis, to a
mechanical engineer as the terrain defining the
drainage pattern of a fluvial system is to a
geomorphologist.

Some Similarities

In practice, terrain modeling and surface
metrology have much in common. Above all,
understanding the links between a surface and the
process(es) shaping it is equally important in
industry and the Earth sciences. That the
specific processes themselves and the
motivations for understanding them may differ in
scale or kind do not diminish this similarity. As
in geomorphology, moreover, the two overarching
agents that shape the irregularities on all
industrial surfaces are erosion (Rosén and others
1996) and deposition (Medeiros-Ribeiro and
others, 1998) acting on broader surfaces formed by
other means—for example, a tectonic event in the
case of geology, a metal casting or laboratory-
grown silicon wafer in industry. Material is
removed from or added to a surface, or otherwise
redistributed, in various ways. Erosion or
deposition may figure in the shaping and
finishing of a manufactured surface as well as in
changes that take place throughout its service
life as a component of a more complex device.
Erosion of industrial surfaces occurs by processes
that have coarser-scale counterparts in the Earth
sciences. Among these are brittle and ductile
failure of materials under directed stress,
chemical etching (Boland and Weaver, 1998) and
decomposition, change of state (melting), and
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various types of abrasion—commonly in the
presence of a lubricant or other fluid. Certain
industrial finishing processes, such as peening
and roller burnishing, neither remove nor add to
existing material. Instead they redistribute it by
plastically deforming higher regions of the
surface so that material flows into lower
regions—a rearrangement of mass that has
parallels in both geophysics and geomorphology.
Surfaces formed by some processes in both fields
are thought to exhibit such recently identified
characteristics as fractal geometry, chaos, and
self-organized criticality (Mandelbrot, 1975;
Bak, 1996).

Many of the operational issues that arise in
assessing form:process links in the two realms are
identical. First, all surface descriptions save
that of a perfect plane (the only scale-
independent surface) are inexact and incomplete.
Because no amount of information can capture all
attributes of a surface, the abstraction of its form
is always a compromise. The usual practice is to
take a sampling of measurements over some
representative area. To do this both Earth
science and industry rely increasingly on square-
grid arrays (now supplanting linear traverses or
profiles) of surface heights, or digital elevation
models (DEMs; also DTMs, digital terrain
models). Resolution of the gridded data, the
(X,Y) distance between heights—commonly
constrained by prevailing technology, determines
the precision of results from subsequent analysis.
In analyzing these measurements, similar
approaches to capturing the many attributes of
surface form—together with the computer
algorithms to express them, are employed by
both disciplines. The specific techniques are
grounded in descriptive geometry, statistics, and
topology. They include such basic tools of
morphometry as elevation-frequency, analysis of
peak elevations and closed depressions,
expression in plan and profile of the angles of
slope and slope curvature, the distribution of
slope aspect or azimuth, spatial autocorrelation
and power-spectral-density analysis, division of
a surface into areas of similar form, calculation of
fractal dimensions, and assessing relief:distance
properties by geostatistical (semi-variogram or
structure-function; Wald, 1989) modeling.

Similar technical problems in surface analysis
are common to both Earth science and industry.
These include improving data quality through

new instrumentation and more precise techniques
of measurement, characterizing nonstationary
(anisotropic, or spatially inhomogeneous)
surfaces, an irksome "parameter rash” of untested
or incompatible measures (compare the criticism
by geomorphologist Evans, 1972, with those of
engineers Thomas, 1981, and Whitehouse, 1982a),
parameter correlation and redundancy (Gorlenko,
1981; Nowicki, 1985), quantifying surface texture
by spatial (topologic) descriptors
[geomorphologists who only recently
rediscovered Maxwell's 1870 paper "On hills and
dales” (Mark and Warntz, 1982) will enjoy
reading of engineer Paul Scott's (1997) similar
epiphany], evaluating the scale-dependence of
surface form, devising numerical "signatures” or
"fingerprints" to characterize surfaces created by
known processes (Pike, 1995a), equifinality—the
vexing problem of similarly shaped surfaces
formed by different processes, and developing
more effective ways to visualize surface
complexity.

One of the most enduring gifts of the computer
revolution, exploited alike by the Earth sciences
and industry, is machine visualization—the
calculation of synthetic surfaces (both the very
large and the very small) that are otherwise
invisible to the unaided eye. Although here we
emphasize the numerical description, or
parameterization, of surfaces, we point out that
computer visualization is the perceptual
component of morphometry: 3-D images of
natural terrain and manufactured surfaces are
computed from the same digital height data
required for descriptive statistics. The two most
common types of resulting graphics for surfaces
are the wireframe ("fish-net") plot and the
rather more aesthetic shaded-relief image.
Whereas Earth scientists commonly compute
relief-shaded topography for areas too large or
remote to be viewed in the field (Pike, 1992),
metrologists create images to better interpret
surfaces too small to be viewed with the unaided
eye. Important discoveries can result. For
example, by comparing wireframe plots from
high-resolution AFM data, Rosén and others
(1996) found that the observed height-
distribution resulting from wear in one area of an
automotive-engine cylinder differed
dramatically from what had been predicted by
the prevailing tribological model (Figure 2).
Descriptive statistics, which also revealed the
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cylinder-bore surfaces to be multifractal, agreed
with the visual results.

Industry and the Earth sciences converge most
closely via metrology and terrain modeling,
respectively, in the quantification of surface
roughness per se. Although roughness
measurement is the very point of much of
metrology, before advent of the digital computer
it was but a minor activity in geology, geography,
geophysics, and civil and military engineering
(Goldberg, 1962). With proliferation of such
computer-intensive techniques as spectral and
fractal analysis, the quantification of relief
"roughness" in continuous terrain (in
contradistinction to discrete "landforms") has
become routine. Among the earliest applications
were line-of-sight evaluation for military
operations (Wood, 1961), measurement of
aircraft-runway and highway roughness
(Houbolt, 1961), and evaluation of cross-country
trafficability by vehicles (Bekker, 1969).
Quantitative knowledge of the Moon's surface
roughness was essential to success of the Apollo
program (Schloss, 1966; Rozema, 1969). More
recently, surface roughness has been measured to
determine acoustic-scattering properties of
Earth's polar sea-ice (Rothrock and Thorndike,
1980) and seafloor (Fox and Hayes, 1985), to
model the effect of broad-scale terrain on
weather conditions (Daly and others, 1994), and,
at the micro-scale, to quantify the effect of
fracture surfaces on the flow of fluid through
rocks (Glover and others, 1998). Related work
has quantified the roughness of natural stream
channels (Nikora and others, 1998), agricultural
fields (Romkens and Wang, 1986), complex
terrain surrounding turbines (windmills) that
harvest wind energy for generating electric power
(Mortensen and Petersen, 1997), and topography
that is vulnerable to debris-flow landslides
(Ellen and others, 1997).

Some Differences

The overlap of Earth science and manufacturing
described here does not diminish differences in
their treatment of surface form. First among
these is process. Because most agents of erosion
and deposition and their resulting surface forms
contrast sharply in the two fields, the likelihood

of much "interlocking of causal explanations
across disciplines" (Wilson, 1998a) is remote at
this time. For example, the varied responses of
air masses to topography as they pass over
different mountain ranges are not governed by the
same physical principles that control, say, the
varied interactions of crankshaft journals and
their enclosing bearings in response to different
lubricants and techniques of metal finish. The
prime difference is absence of fluvial erosion and
deposition in manufacturing; no miniature rivers
are carving meanders in silicon wafers. Other
gravity-driven agents, such as slope-failure, also
are absent from industrial procedures. However,
chemical solution and etching are common to both
geomorphology and industry, as is abrasion, both
by direct contact (glacial erosion; grinding and
honing) and by wind-driven particles (eolian
erosion; grit-blasting and milling by water-jet
technology). Given the rapid progress of ongoing
research in both fields, we caution against too-
hasty dismissal of the possibility of some
convergence in the nature of fundamental surface-
forming processes.

Another contrast lies in the spatial structure of
surfaces addressed by the two disciplines. Much
of the Earth's topography comprises integrated,
hierarchical networks of discrete, nested
drainage basins that are well defined.
Nonfluvial landforms that also can be delimited
areally (among them volcanoes and sand dunes)
are recognized on Earth's surface, on its seafloor,
and on surfaces of other planets. Industrial
processes and contact mechanics tend to create
continuous surfaces that have less systematic
spatial structure. Many techniques of fabrication
and mechanisms of wear do impart distinctive
surface textures, but these commonly are
repeating patterns; discrete microscopic
"landforms" (Aguilar and others, 1992¢; Amar
and Family, 1996) are rare. The rank-and-file
orderliness of atoms and molecules deposited on
silicon wafers and other substrates (Amato, 1997)
has no clear analogs in geomorphology. We
predict the contrast in surface structure will
diminish. As the techniques of high-technology
progress and further discoveries are made in the
microscopic properties of materials surfaces, more
spatial structure will be identified in industrial
applications (Lee and others, 1998).

An obvious if less fundamental difference, also
related to process, is scale: landforms are orders
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of magnitude larger than the micro- and nano-
scopic irregularities on machined surfaces or
magnetic tape. Similarity in format of the
digital height data required for analysis in both
cases pales beside the contrast in scale of the
surface features they are intended to capture.
Both disciplines now obtain matrices of surface
elevations automatically from sophisticated
equipment, but Earth scientists image km-wide
swaths of terrain from aircraft or satellites
whereas the metrologists' laboratory instruments
measure samples as small as 100 microns across.
The resolution of DEMs for geomorphic work
ranges from mm in studies of tilled fields to tens,
even hundreds, of km in tectonic modeling;
analysis of industrial surfaces requires DEM
resolutions of millionths to billionths of a
millimeter. We believe that this contrast,
however dramatic, is not very important and will
become less so as sub-visual surface forms and
processes become better understood.

The disparity in scale has at least one important
consequence—unlike Earth science, surface
metrology remains restricted to small samples. It
is not yet feasible to obtain continuous 3-D data
for a large workpiece, such as the entire top-to-
bottom extent of an automotive cylinder, in one
pass of a device that images at micro- to nano-
meter resolution. High-precison instruments are
still too limited in their range of travel. Nor is it
feasible, as it is in digital-cartographic
applications in the Earth sciences, to achieve
continuous large-area coverage by joining together
many smaller map quadrangles. The reason for
this lies in the way metrological elevations are
usually referred—not to a common datum on the
measured surface, but to an arbitrary instrument
datum that is effectively reset for each new
measurement. Scanning laser-interferometers now
can stitch smaller samples together into a larger
area using pattern-recognition algorithms.
However, until such problems as erroneous
elevations at sample-area boundaries are solved,
the technique remains experimental and the
samples small.

Metrology and the Earth sciences deal
differently with similar operational problems.
An important example is measuring the effects
through time of the surface-shaping agents.
Geomorphologists like to observe a landscape
repeatedly, over the long term, to learn how
topography evolves under the prevailing set of

processes. This is possible for sand dunes and
other ephemeral landforms (Norris, 1966). It is
also comparatively easy to reoccupy a survey site
to take new data. However, most landscapes
change so slowly that effects measurable even
over the lifetime of the observer may be minor.
To get around this difficulty, samples in space
may be substituted for those in time. Under this
assumption, the ergodic hypothesis,
measurements are taken on several coeval,
preferably neighboring, landscapes that appear
to show evolutionary, sequential, development
under the same regime (Chorley and others, 1984,
pp- 32-33, 328-330). This expedient must be
applied with caution when interpreting the
morphometry of a set of samples to formulate
models of landscape evolution.

Unlike geomorphologists, metrologists would
appear to have unrestricted access to topography
that reflects time-dependent effects of surfacing
processes, thus clearly linking form with function.
Examining "before” and "after” results from wear
tests on such parts as automotive bearings and
engine cylinders has long been common practice in
the laboratory and on the shop floor. However,
there is a problem in making quantitative 3-D,
not just visual, observations on the components—
measuring exactly the same surface before,
sometimes during, and after a test run. Because
the instrumentation required to obtain fine-scale
data is of such high resolution, it is difficult to
physically relocate the sample with the
precision required to obtain sequential data for
the identical sample space. Index marks on the
workpiece are too crude for the micro- and nano-
precision required to reposition atomic-force
microscopes and other devices. Although an
experiment can be run on several identical
components, each one being measured at a
different stage in the test—in analogy with
ergodic sampling of landscapes, strictu sensu the
same micro-surface is not being followed
throughout the course of its evolution.

A final difference, that of the objectives of
morphometric analysis, mirrors some of the basic
cultural differences between science and
engineering. Partly this reflects the commercial
goals toward which much metrologic work is
directed. Metrology is vital to the invention of
new products, the most dramatic example being
those from the semiconductor industry.
Metrologists have long measured manufactured
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objects to quantify surface irregularities that
degrade a product's function and shorten its
service life. They wish to achieve predictability
of product, improve such industrial properties as
the adhesion of paint to metal surfaces,
understand the interactions between machined
components in moving contact, and control quality
in the fabricating process by following industry

standards®. Earth scientists, particularly
geomorphologists, measure topography formed by
natural processes. They seek to mitigate natural
hazards, assess water and soil resources, probe
landscape/climate links, and understand the
sequential development of topography in space
and time. In related work, oriented less toward
interpretation of process and thus perhaps more
closely aligned with the objectives of metrology,
civil and military engineers quantify terrain to
plan transportation and communications
facilities, land and maneuver spacecraft, or
optimize weapons deployment.

Given such disparate objectives and disciplinary
cultures, scientists and engineers working with
natural topography thus far have had little
occasion to meet professionally with their
opposites in industry. Only rarely do results from
one discipline appear in publications by the
other. Recent exceptions, including the 1996
report by Cardenas-Garcia and Severson and the
1997 paper by Paul Scott, suggest that this trend
may be changing.

Conclusions

Any convergence, however tentative, of
manufacturing and Earth science through the
quantification of surface form offers an
opportunity to exploit the above similarities and
explore—perhaps to reconcile—some of the
differences in an effort to develop a more unified
discipline of surface representation. The
bibliography appended here is one step toward
this goal. Comparable references lists on terrain
modeling in the Earth sciences, now available to

4 Manufacturing tolerances have been narrowing
by a factor of three each decade for the last 30
years (Kind and Quinn, 1998).

the metrology community, constitute another such
step (Pike, 1993, 1995b, 1996°).

Topics in common that remain to be studied range
widely, from the nature of physical and chemical
surface-forming processes, through sampling
designs and parameter choices, to manipulation
and interpretation of descriptive measures.
Metrologists have much to glean from Earth
science's longer experience with surface
quantification, particularly post-World War II
work on continuous terrain by civil and military
engineers and oceanographers. Geographic
information systems (GIS) technology, with its
wealth of analytic tools for manipulating and
visualizing raster DEMs, is an underutilized
resource that deserves to become more routine in
metrology. Conversely, industry and the vast
research enterprise supporting it are actively
advancing surface morphometry in directions
that converge with the objectives of terrain
modelers. Earth scientists are not alone in trying
to understand the self-similar and multi-fractal
properties they observe in topography.
Geomorphologists and hydrologists would do
well to follow the efforts of industry engineers
and scientists who also are interpreting fractal
configurations and probing questions of self-
organization, albeit in the fine-scale landscapes
of computer storage-devices, automotive sheet-
metal, and human skin.

This report directs Earth scientists toward
industry's experience in the quantitative
representation of surfaces. We hope that the two
communities will discover in one other concepts
and methods that can be applied to advance
knowledge in their own areas. The importance of
surface form in high-technology manufacturing,
particularly in such heavily supported areas as
semiconductors and advanced materials, assures
that metrology will continue to develop fresh
ideas, some of which may adapt to
characterization of the land surface by Earth
scientists. We believe that such cross-
fertilization is worth exploring, even if the goal
of a unified field of surface-form quantification is
not immediately forthcoming. If the course of
science and technology in the 20th Century has
taught us one thing, it is to expect the unexpected:

5 The fourth report in this.series has been
prepared; it will be released early in 1999.
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particularly in today's interdisciplinary,
globalized research environment, new knowledge
can emerge from any quarter. Or, again after
Wilson (1998b), "There is no fixed way to make
and establish a scientific discovery. Throw
everything you can at the subject ..."
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