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Abstract

The objective of this report is to describe the development of probability models for 
estimation of the number and costs of landslides during a specified time. Important 
philosophical ideas about natural processes and probability models are presented first. 
Then two probability models for the number of landslides that occur during a specified 
time are investigated: a continuous-time model (Poisson model) and a discrete-time 
model (binomial model). Estimation theory is developed for the estimation of the 
parameters of both of the models. The exceedance probability of one or more landslides 
during a specified time is formulated for both models. The estimation theory and 
probability formulation of the Poisson model are applied to the future occurrence of 
landslides in Seattle, Washington, using historical data from 1909 to 1997. Theoretical 
and numerical comparisons between the Poisson and binomial models are conducted that 
show the binomial model is an approximation to the Poisson model. An economic 
probability model is developed as an addition to the Poisson model for the estimation of 
the total damage from future landslides in terms of economic loss as costs in dollars. For 
illustrative purposes the economic probability model is applied to damaging landslides 
caused by El Nino rainstorms within the winter season 1997-98 in the San Francisco Bay 
region, California.

Philosophy of Probability Models

Natural Processes

Important philosophical ideas about natural processes:

  Determinism or the law of cause and effect is the doctrine that all events in the 
universe are deterministic: every event has a cause.

  At the scale of geologic and atmospheric hazards (e.g., landslides, earthquakes, 
floods, tsunamis, volcanoes, and storms), nature is deterministic: every hazardous 
event has a cause.

  A hazard process is a physical process involving the occurrence of point (hazardous) 
events in time.

  Beginning at some point in time, after a certain amount of time, the first hazardous 
event occurs. Then, after a certain amount of time, the second hazardous event 
occurs. And so forth. The time between hazardous events is certainly irregular.

  We cannot predict exactly when a hazard event will occur because of the limitations 
to our knowledge of nature.

  The limitations to our knowledge of nature are explained by the following:
Heisenberg Uncertainty Principle and Godel's Theorem; chaos theory and fractal



geometry; algorithmic and computational complexity; physical and financial 
constraints.

  Chaos is the apparent randomness from extremely complex behavior occurring in a 
deterministic process due to excessive sensitivity of an event to small changes in 
initial conditions.

Probability Models

Important philosophical ideas about probability models:

  Probability is a numerical measure of our uncertainty regarding nature.

  A probability model is a mathematical model that incorporates our uncertainty.

  Probability models are an approach to deal with the limitations to our knowledge of 
natural processes.

  Probability models are used for purposes of description and prediction of physical 
processes in nature.

  Randomness is an assumption of probability models, not natural processes. Hazards 
do not occur at random in nature, but they do occur at random in the models.

  It is not correct to say that a natural process follows a particular probability model. 
(This would be putting the cart before the horse.)

  We will always be uncertain of nature because of our limitations in understanding.

In summary, hazard processes are deterministic, but because of our limitations when 
studying hazards, we resort to probability models that incorporate our uncertainty.

Probability Models for Landslides

Consider the occurrence of landslides during a specified time in a particular area.

Denote

N(t): Number of landslides that occur during time tin a particular area

We are interested in deriving a formula for calculating the probability of one or more 
landslides during a specified time t. That is,



Two probability models for N(t) will be .investigated: first, a continuous-time model and 
second, a discrete-time model.

Poisson Model for Number of Landslides

The Poisson model is a continuous-time model consisting of the occurrence of random 
point-events (landslides) in ordinary time which is naturally continuous. The Poisson 
model is the most commonly used model for the occurrence of random point-events in 
time and has been used in modeling the occurrence of earthquakes.

Assumptions of the Poisson model:

  The numbers of events (landslides) which occur in disjoint time intervals are 
independent.

  The probability of an event occurring in a very short time interval is proportional to 
the length of the time interval. The probability of more than one event in such a short 
time interval is negligible.

  The probability distribution of the number of events remains the same for all time 
intervals of a fixed length.

It is important to acknowledge that these assumptions may not completely hold for the 
occurrence of landslides, especially the independence assumption. However, given a 
certain lack of understanding of the physical processes that control landslides, the 
Poisson model represents the best first-approximation model in attempting to model their 
occurrence. A first-approximation model is often applied in mathematical modeling when 
the assumptions are not completely satisfied by the physical process. Usually the first- 
approximation model is relatively easy to work with and is mathematically tractable. A 
more accurate model might be extremely complex and not mathematically tractable.

Poisson Distribution - Probability of n landslides during time t:

P{N(t) = n} = e~^   - n = 0,1,2,... 
n\

where

\: Rate of occurrence of landslides

Note that time t is specified, whereas rate A, is estimated.

Definition of recurrence intervals {7), i - 1, 2, ..., n}:

T\: Time until the first landslide



Ti\ Time between the (i - l)st and the /th landslide for i > 1 

Note that n landslides will have n recurrence intervals.

Theorem - Recurrence intervals { T,-, / = 1 , 2, . . . , n } are independent identically 
distributed exponential random variables having mean recurrence interval (ji) equal to the 
reciprocal of the rate of occurrence, i.e., \JL = 1 A.

For landslides, the mean recurrence interval (ji) is the average time interval between 
landslides.

Note

Variance of 7) is

V[Ti\ = 1 A2 = |r

Probability of a recurrence interval being greater than time t

P{T.t >t} = P{N(t) = 0} = e'** = e-"»

Probability of one or more landslides during time t (exceedance probability)

P{N(t) > 1} = l-P(N(t) = 0} = l-e'** = l-e~"^

Note

If t is fixed and |i -> oo, then P[N(t) > 1 } -> 0.

If jj, is fixed and t   > «>, then P{N(f) >!}->!.

Mean or expected value of N(t) is

Note that the smaller the |i, the larger the E[N(t}]. 

Variance of N(t) is 

V[N(f)] = Xf = f/|i



Estimation of the Parameters A, and ji in the Poisson Model

A Poisson model having an unknown rate A, is to be observed for a fixed time t*. 

We want to determine a statistic that is a good estimator of the parameter A,.

It can be shown (Ross, 1972) that the maximum likelihood estimator of A,, denoted by R, 
is given by

 R =

Mean or expected value of R is

E[R] = E[N(r*)/f *] = \t*/t* = X

(R is an unbiased estimator of A,)

Variance of R is

V[K] = V[N(f *)/f *] = kt*/(t*)2 = Mt*

Theorem - The statistic R is the unique minimum variance unbiased estimator of A,.

Since }i = 1 A,, a statistic that is a good estimator of the parameter }i is

M=\IR = -^-

Consider another statistic as an estimator of the parameter }i

where

TI'. The zth observed recurrence interval (i - 1,2, ..., N(t*))

Because

T < t*
=1



The estimator Af will tend to be biased low and underestimate (I. 

Example

Suppose a record of the occurrence of landslides for the past 100 years (r*) showed that 5 
landslides (n) occurred.

An estimate of A, would be

r = n/t* = 5/100= 1/20 = 0.05

Hence, we expect landslides at a rate of 0.05 per year.

An estimate of (I would be

m= \/r=t*/n= 100/5 = 20

Therefore, we expect the mean recurrence interval to be 20 years.

From either of these estimates of the parameters A, and (i, we could calculate the 
probability of one or more landslides during a future time t

Using m = 20 and specifying t = 50, we get 

P{W(50) > 1} = 1 - <T50/2° = 0.918

There is a 91.8% chance of one or more landslides occur during the next 50 years. 

Application

Seattle, Washington, has kept records of landslide occurrence from 1909 to present. 
Records from 1909 to 1997 (t* = 88.4 years) were analyzed to determine landslide 
density using a moving count circle approach (Coe and others, 2000). This analysis 
showed that n landslides occurred within each count circle, where n ranged from 0 to 30. 
The Poisson model was applied to these data, and the results are given in table 1 .



Table 1. Poisson model for percent chance of one or more landslides in Seattle, Washington, during a specified 
time

3oisson Model for Number of Landslides in Seattle ' R.A. Crovelli
Percent Chance of One or More Landslides During a Specified Time

Past (years): 88.4
Number of
.andslides

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Mean Recurrence
nterval (years)

88.4
44.2

29.46666667
22.1

17.68
14.73333333
12.62857143

11.05
9.822222222

8.84
8.036363636
7.366666667

6.8
6.314285714
5.893333333

5.525
5.2

4.911111111
4.652631579

4.42
4.20952381

4.018181818
3.843478261
3.683333333

' 3.536
3.4

3.274074074
3.157142857
3.048275862
2.946666667

Time (years)
1

1.124847
2.237042
3.336726
4.424041
5.499124
6.562115
7.613149
8.65236
9.679882
10.69585
1 1 .70038
12.69362
13.67568
14.6467

15.60679
16.55609
17.4947

18.42276
19.34038
20.24768
21.14477
22.03177
22.9088

23.77595
24.63336
25.48112
26.31934
27.14814
27.96761
28.77786

5
5.499124
10.69585
15.60679
20.24768
24.63336
28.77786
32.69446
36.39567
39.89335
43.19869
46.32227
49.27407
52.06356
54.69964
57.19076
59.5449

61 .76957
63.87191
65.85864
67.73612
69.51035
71.18701
72.77147
74.2688

75.68379
77.02097
78.28462
79.47877
80.60726
81 .67369

10 1 25
10.69585
20.24768
28.77786
36.39567
43.19869
49.27407
54.69964
59.5449

63.87191
67.73612
71.18701
74.2688

77.02097
79.47877
81.67369
83.63385
85.38434
86.94761
88.34368
89.59042
90.70381
91.69812
92.58607
93.37906
94.08722
94.71964
95.28442
95.78879
96.23922
96.64146

24.63336
43.19869
57.19076
67.73612
75.68379
81 .67369
86.18808
89.59042
92.15465
94.08722
95.54374
96.64146
97.46878
98.09231
98.56224
98.91641
99.18333
99.3845

99.53612
99.65039
99.73651
99.80142
99.85033
99.8872

99.91499
99.93593
99.95171
99.96361
99.97257
99.97933

50 100
43.19869
67.73612
81 .67369
89.59042
94.08722
96.64146
98.09231
98.91641

67.73612
89.59042
96.64146
98.91641
99.65039
99.8872

99.96361
99.98826

99.3845J 99.99621
99.65039 99.99878
99.80142
99.8872

99.93593
99.96361
99.97933
99.98826
99.99333
99.99621
99.99785
99.99878
99.99931
99.99961
99.99978
99.99987
99.99993
99.99996
99.99998
99.99999
99.99999

100

99.99961
99.99987
99.99996
99.99999

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100



Binomial Model for Number of Landslides

Costa and Baker (1981) give a probability model that they used in flood hazard analyses 
for modeling the occurrence of floods. The Costa-Baker model was also used by Keaton 
and others (1988) and Lips and Wieczorek (1990) in modeling the occurrence of debris 
flows. The Costa-Baker model was given without any derivation as follows, written in 
the notation of this paper:

with the mean recurrence interval p. = \lp and t is number of years

where

p: Probability of a flood in any one year

The Costa-Baker model is a crude model in that it divides time into fixed discrete 
increments (one-year increments). It is designed for large values of t and (i.

The Costa-Baker model is actually an example of the binomial model.

The binomial model is a discrete-time model consisting of the occurrence of random 
point-events (landslides) in discrete time; that is, time is partitioned into a series of 
discrete increments of the same length and within each increment a single point-event 
(landslide) may or may not occur.

Assumptions of the binomial model:

  There are t independent "trials" (relatively small time-increments of fixed length).

  Each trial results in a "success" (landslide) or a "failure" (no landslide).

  The probability of success, p, remains the same from trial to trial. 

Binomial Distribution   Probability of n landslides during discrete time t:

P{N(t) = n} = Cn p n (1 - Py- n n = 0, 1,2,... 

where

C' =
n\(t-n)\

Note that time t is specified, whereas probability p is estimated. 

Definition of recurrence intervals (7), i = 1, 2, ...,«}:



TI\ Number of time increments until the first landslide

T,: Number of time increments between the (i - l)st and until the ith landslide for i > 1

Note that n landslides will have n recurrence intervals.

Theorem - Recurrence intervals {T,, i= 1, 2, ...,/?} are independent identically 
distributed geometric random variables having mean recurrence interval (jj,) equal to the 
reciprocal of the probability of success, i.e., (I = \lp.

For landslides, the mean recurrence interval QJ,) is the average time interval between 
landslides.

Since

P = 1/M-

the larger the mean recurrence interval (jj,), the smaller the probability of a landslide in 
any one year (p). Also, if jj, < 1, then p > 1 which is not allowed. Therefore, the binomial 
model has the restriction jj, > 1 .

Variance of T, is

Probability of a recurrence interval being greater than time t

Probability of one or more landslides during time t (exceedance probability)

where the last expression is the Costa-Baker model.

Note that 1 - p is raised to the t power under the assumption of independence.

Mean or expected value of N(t) is

E(N(t)] = tp = f/ji

Variance of N(t) is



Estimation of the Parameters p and ji in the Binomial Model

A binomial model having an unknown probability p is to be observed for a fixed time t*. 

We want to determine a statistic that is a good estimator of the parameter p.

It can be shown that the maximum likelihood estimator of/?, denoted by F, is given by 
the relative frequency of occurrence

t*

Recall

t*: Number of one-year increments

N(t*): Number of one-year increments in which a landslide occurred 

Mean or expected value of F is 

E[F] = E[N(t*yt*\ = t*p/t* = p 

(F is an unbiased estimator of/?)

Theorem - The statistic F is the unique minimum variance unbiased estimator of/?. 

Since ji = I//?, a statistic that is a good estimator of the parameter [i is

* 
M =

Example

Suppose a record of the occurrence of landslides for the past 100 years (t*) showed that 5 
landslides (n) occurred. Assume that the 5 landslides occur in 5 individual one-year 
increments.

An estimate of/? would be

/= nit* = 5/100 = 1/20 = 0.05

Hence, we expect the probability of a landslide in any one-year increment to be 0.05.

An estimate of ji would be

10



m *= l//=f*/w = 100/5 = 20

Therefore, we expect the mean recurrence interval to be 20 years.

From either of these estimates of the parameters p and ji, we could calculate the 
probability of one or more landslides during a future time t

Using ra = 20 and specifying t - 50, we get

P{N(50)>1} = 1-(1-1/20) 50 = 0.923

There is a 92.3% chance of one or more landslides during the next 50 years.

The Binomial Model is an Approximation to the Poisson Model

Poisson model

Binomial model

Now compare e' U[i and 1 - 1/jJ, 

Recall the exponential series

* 2 * 3 * 4 , n e =\ + x +   +   +   +     (x real)
2! 3! 4! 

Then

e x =l + x (-l<;c<l) 

Let 

x - - 

Thus

1 - 1/ji is equal to the first two terms of the exponential series for 

Hence

11



<?-""= 1-1/Ai 

Therefore

For a numerical comparison between the Poisson model and the binomial model see 
tables 2 (Poisson model) and 3 (binomial model) which give the results from the 
application of each model to a generic data set. The binomial model significantly over 
estimates the exceedance probabilities for relatively short mean recurrence intervals (a 
few years) and short periods of time. For example, when the mean recurrence interval is 
two years and the specified time is one year, the exceedance probability is equal to 50% 
using the binomial model, whereas it is equal to 39.3% using the Poisson model. The 
difference between the two models becomes negligible for longer mean recurrence 
intervals and longer time periods. This obviously is significant to hazards because events 
with short mean recurrence intervals and short time periods (less than 25 years) play a 
major role in determining the degree of hazard.

Theorem - The binomial distribution is an approximation to the Poisson distribution. 
Given

Poisson distribution with parameters
t: Specified time (number of years)
A,: Rate of occurrence of events (landslides)

Binomial distribution with parameters
v: Number of "trials" (number of time increments)
p: Probability of occurrence of a "success" (landslide) in any trial

When v tends to infinity, and p tends to zero, but means A,r = vp remain constant, 

then the binomial distribution approaches the Poisson distribution. 

For a proof of this theorem see Walpole and Myers (1989).

12



Table 2. Poisson model for percent chance of .one or more landslides during a specified time based on a generic 
data set.

D oisson Model for Number of Landslides I IR.A. Crovelli
Percent Chance of One or More Landslides During a Specified Time

Mean Recurrence
Interval (years)

1
2
5

10
20
50

100
200
500

1000
2000
5000

10000

Time (years)
11 5

63.21206
39.34693
18.12692
9.516258
4.877058
1.980133
0.995017
0.498752

0.1998
0.09995

0.049988
0.019998

0.01

99.32621
91.7915

63.21206
39.34693
22.11992
9.516258
4.877058
2.469009
0.995017
0.498752
0.249688

0.09995
0.049988

10
99.99546
99.32621
86.46647
63.21206
39.34693
18.12692
9.516258
4.877058
1.980133
0.995017
0.498752

0.1998
0.09995

25 1 50 | 100
100

99.99963
99.32621

91.7915
71.34952
39.34693
22.11992
11.75031
4.877058
2.469009

1 .24222

100
100

99.99546
99.32621

91.7915
63.21206
39.34693
22.11992
9.516258
4.877058
2.469009

0.498752I 0.995017
0.249688 0.498752

100
100
100

99.99546
99.32621
86.46647
63.21206
39.34693
18.12692
9.516258
4.877058
1.980133
0.995017

Table 3. Binomial model for percent chance of one or more landslides during a specified time based on a generic 
data set.

Binomial Model for Number of Landslides R.A. Crovelli
Percent Chance of One or More Landslides During a Specified Time

Mean Recurrence
Interval (years) .

1
2
5

10
20
50

100
200
500

1000
2000
5000

10000

Time (years)
1

100
50
20
10

5
2
1

0.5
0.2
0.1

0.05
0.02
0.01

5
100

96.875
67.232
40.951

22.62191
9.60792

4.900995
2.475125
0.996008
0.499001

0.24975
0.09996
0.04999

10
100

99.90234
89.26258
65.13216
40.12631
18.29272
9.561792
4.888987
1.982096
0.995512
0.498876

0.19982
0.099955

25
100
100

99.62221
92.82102
72.26104
39.65353
22.21786
1 1 .77798
4.88182

2.470229
1 .242529
0.498802

0.2497

50
100
100

99.99857
99.48462

92.3055
63.58303
39.49939
22.16874
9.525318
4.879437
2.469619
0.995116
0.498777

100
100
100
100

99.99734
99.40795
86.73804
63.39677
39.42296
18.14332
9.520785
4.878247
1.980329
0.995066
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Probability Model for Costs of Landslides

Damage due to landslides will be taken in the form of economic loss as costs in dollars. 
However, the theory below would also apply to other types of damage as in the case of 
human loss in deaths.

Given

N(t)

where

N(t): Number of landslides that occur during time t in a particular area

N(t) has a Poisson distribution with rate \.

X,-: The amount of damage (cost) from the /th landslide

The X,- (/ = 1,2, ...) are independent and identically distributed random variables which 
are also independent of N(t\

Y(t): The total amount of damage (costs) from all of the landslides during time t

Then

Mean or expected value of Y(f) is

HY = E[Y(f)] =

Variance of Y(f) is

From an observed number of landslides n, the sample mean cost MX is an estimator of 
E[X] where

n

IX
M   ' =1 x ~    

n

rj

The sample variance Sx~ is an estimator of V[X] where

14



In the case that only observed estimates of the minimum value of X, MinfX), and 
maximum value of X, Max(X), are available, then an estimator of the standard deviation 
of X would be

_Max(X)-Min(X)

The divisor of 6 is based on plus and minus three standard deviations from the mean for a 
range of 6 standard deviations.

The Pareto probability distribution is possibly a good approximate distribution for the 
random variable X.

Crovelli (1992) showed that the lognormal probability distribution is a good approximate 
distribution for the type of random variable Y(t). Hence, the fractiles of Y(t) can be 
approximated by using the lognormal distribution. As derived in Crovelli (1992), the 
characterizing parameters of the lognormal distribution, namely mu (u,*) and sigma (a*), 
can be calculated from the mean u,y and standard deviation a/ of a lognormal random 
variable Y as follows

/ \ 
^

Knowing the lognormal characterizing parameters, the lognormal fractiles can be 
calculated from the formula

0<cc<l

Where Z is a standard normal random variable and P{Z > za ] - ot. 

For example, two fractiles of interest in this report are 

and F5 = e ft'

There is a 95% chance of exceeding F95, and a 5% chance of exceeding F5. Together, 
the low value of F95 and the high value of F5 form a range of values that is a 90%

15



prediction interval for Y(t), the total costs from landslides during a specified time, (at a 
90% confidence level).

The reverse problem would be to find the probability of exceeding a specified amount in 
economic loss due to landslides in a particular area during a specified time. That is, given 
ya, find a such that

P(Y(t)>ya } = a 

Normalizing

_

Now, from za, find a such that P{Z > za } = ex.

The aggregation of the total amounts of damage (costs) from landslides in k areas:

where 7,: The total amount of damage (costs) from landslides in the ith area. 

Mean or expected value of W

Variance of W under the assumption of independence of the 7,

Variance of W under the assumption of perfect positive correlation of the F,

Also, under the assumption of perfect positive correlation, the fractiles are additive. That 
is,

16



Rough rather than rigorous mathematical definitions of independence and perfect positive 
correlation are the following:

  Two random variables are independent if they are not related in that knowing the 
value of one variable does not help in predicting the value of the other variable.

'  Two random variables are perfect positively correlated if they are positively related in 
that a large value of one variable is associated with a large value of the other variable. 
Also, a small value of one variable is associated with a small value of the other 
variable.

The normal probability distribution is a good approximate distribution for this type of 
random variable W because of the well-known Central Limit Theorem of probability 
theory.

Example

Suppose a record of the occurrence of landslides for the past year (f*) showed that 40 
landslides («) occurred.

An estimate of A, would be

r = «/f*=40/l =40

We expect landslides at a rate of 40 per year.

An estimate of ji would be

m=l/r = t*ln = 1/40 = 0.025

We expect the mean recurrence interval to be 0.025 years.

Suppose that from the 40 observed landslides, the sample mean cost mx = 0.5 million 
dollars and the sample standard deviation sx - 0.1 million dollars.

An estimate of the mean or expected value of F(f) during the specified time t = 5 years, 
that is, £|T(5)], is

my = rt(mx) = (40)(5)(0.5) = 100

Hence, a mean estimate of the total costs from landslides during the next 5 years is 100 
million dollars.

17



An estimate of the variance of 7(5), V[7(5)], is 

sY2 = rt(mx2 + 5X2) - (40)(5)[(0.5)2 + (O.I)2] = 52 

An estimate of the standard deviation of 7(5) is

Estimates of the characterizing parameters of the lognormal distribution, namely mu (p,*) 
and sigma (a*), are

m*-ln

5* -

( 2 1
/ 2 _1_ 2

^ V j

_ 1_  in
(  > A (100) 2

/dOO) 2 +(1 21) 2
= 4.60

- 0.072

Estimates of the 95 th fractile and the 5 th fractile of 7(5), namely F95 and F5, are

m*-1.645i-* 4.60-1.645(0.072)= e  e  

fC = "i*+1.645i-* _ 4.60+1.645(0.072) _ 1 I | QQ

Therefore, a low estimate of the total costs from landslides during the next 5 years is 88 
million dollars. There is a 95% chance of exceeding 88 million dollars. A high estimate 
of the total costs from landslides during the next 5 years is 1 12 million dollars. There is a 
5% chance of exceeding 1 12 million dollars.

Application

The direct costs assessed to landslides for each county in the 10-county San Francisco 
Bay region, California, listed in Godt (1999) will be used to illustrate the probabilistic 
methodology developed above (see table 4). The damaging landslides were caused by El 
Nino rainstorms within the winter season 1997-98. An economic landslide hazard 
assessment of each county is performed as in the case of the previous example. Then the 
ten counties are aggregated for comparison under the two assumptions: independence and 
perfect positive correlation.
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It is very important to realize that the winter season 1997-98 was an anomalous year and 
not representative of conditions in a typical year because the occurrence and costs of the 
landslides were considerably higher than normal. In actual practice a longer period of 
record of landslides covering multiple years and storms should be used to determine 
estimates of future landslide occurrence and costs. The main purpose of this application is 
to illustrate what could be done with the economic probability model that has been 
developed by using available data required by the model; the future estimates themselves 
are not meaningful. On the other hand, since scenario planning is becoming wide spread 
by various planners, it could be argued that this application might be used to represent a 
"worst-case scenario," and the future estimates themselves would be meaningful.

Summary

  The Poisson model is the most commonly used model for the occurrence of random 
point-events in time.

  The Costa-Baker model is an example of the general binomial model.

  The binomial model has the restriction |J, > 1.

  The binomial model is an approximation to the Poisson model.

  Estimation theory is developed for the estimation of the parameters of both of the 
models.

  The exceedance probability of one or more landslides during a specified time is 
formulated for both models.

  An economic probability model is developed for the estimation of the total damage 
from future landslides in terms of economic loss as costs in dollars.

  A summary of probability models for estimation of number and costs of landslides is 
given in table 5.
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Table 5. Summary of probability models for estimation of number and costs of landslides

Poisson Model for Number of Landslides (continuous-time model)
Random variables:
Probability distributions:
Parameters:
Means or expected values:
Standard deviations:
Exceedance probabilities:
Estimators of parameters:

N(ty Number of landslides
Poisscn
X: Rate of occurrence
E(N(t}} = \t

T: Recurrence interval
Exponential
ji: Mean recurrence interval
E[T] = ji = I/A.

P[N(f) >!} = !- 
R = N(t*yt*

P{T>t}=e't/[i 

M=

Binomial Model for Number of Landslides (discrete-time model)
Random variables: N(t): Number of landslides T: Recurrence interval
Probability distributions: Binomial Geometric
Parameters: p: Probability of landslide ji: Mean recurrence interval
Means or expected values: E[N(f)] = pt
Standard deviations: S[N(t)] - \p(\
Exceedance probabilities: P{N(t) > 1} = 1 - (1 -/?)' P{T> t] = (1 - l/ji) f
Estimators of parameters: F = N(t*yt* M = \IF = t*/N(t*}

1/2

Probability Model for Costs of Landslides
Random variables: X: Cost of landslide Y(t): Total costs

N(t)

Probability distributions: 
Means or expected values: 
Standard deviations:

Random variable:

Pareto
E[X]
S[X]

Lognormal 
E(Y(t}] = E[N]E[X] 

S(Y(t}] = [E(N](S[X]f

Probability distribution: 
Mean or expected value:

W: Aggregation of total costs

Normal

Standard deviation:
( k 2 T 2 

S [W ] - 5^ ($ \Yi ] )2 under independence,
J

under perfect positive correlation

21



Conclusions

  The Poisson model is preferred over the binomial model (Costa-Baker model)
because the Poisson model is a first-approximation model, and the binomial model is 
here an approximation of an approximation.

  The Poisson model has many useful properties and results that are mathematically 
tractable.

  The theory herein is applicable to many other hazard processes besides landslides, for 
example, earthquakes, floods, tsunamis, volcanoes, and storms.

  Not only are the probability models applicable for many types of natural hazards, but 
also for many types of damage in addition to economic loss, for example, human loss 
in deaths.
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