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1. INTRODUCTION
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THE CHALLENGE
• Most geological phenomena are extraordinarily 

complex in their interrelationships and vast in their 
geographical extension.

• Ordinarily, engineers and geoscientists are faced with 
corporate or scientific requirements to properly 
prepare geological models with measurements 
involving a minute fraction of the entire area or volume 
of interest.

• Exact description of a system such as an oil reservoir 
is neither feasible nor economically possible.

• The results are necessarily uncertain.

Note that the uncertainty is not an intrinsic property of 
the systems; it is the result of incomplete knowledge by 
the observer.
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THE AIM OF GEOSTATISTICS
• The main objective of geostatistics 

is the characterization of spatial 
systems that are incompletely 
known, systems that are common 
in geology.

• A key difference from classical 
statistics is that geostatistics uses 
the sampling location of every 
measurement.

Unless the measurements show spatial correlation, the 
application of geostatistics is pointless.

Ordinarily the need for additional knowledge goes 
beyond a few points, which explains the display of results 
graphically as fishnet plots, block diagrams, and maps.
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GEOSTATISTICAL METHODS

Geostatistics is a collection of numerical techniques 
for the characterization of spatial attributes using 
primarily two tools: 

• probabilistic models, which are used for spatial data 
in a manner similar to the way in which time-series 
analysis characterizes temporal data, or 

• pattern recognition techniques.

The probabilistic models are used as a way to 
handle uncertainty in results away from sampling 
locations, making a radical departure from alternative 
approaches like inverse distance estimation methods.
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DIFFERENCES WITH TIME SERIES

On dealing with time-series 
analysis, users frequently 
concentrate their attention 
on extrapolations for 
making forecasts.

Although users of 
geostatistics may be 
interested in extrapolation, 
the methods work at their 
best interpolating.
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HISTORICAL REMARKS

• As a discipline, geostatistics was firmly established 
in the 1960s by the French engineer Georges 
Matheron, who was interested in the appraisal of ore 
reserves in mining.

• Geostatistics did not develop overnight.  Like other 
disciplines, it has built on previous results, many of 
which were formulated with different objectives in 
various fields.
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PIONEERS

Seminal ideas conceptually related to what today we 
call geostatistics or spatial statistics are found in the 
work of several pioneers, including:

• 1940s: A.N. Kolmogorov in turbulent flow and N. 
Wiener in stochastic processing

• 1950s: D. Krige in mining
• 1960s: B. Mathern in forestry and L.S. Gandin in 

meteorology
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CALCULATIONS

Serious applications of geostatistics require the use of 
digital computers.

Although for most geostatistical techniques 
rudimentary implementation from scratch is fairly 
straightforward, coding programs from scratch is 
recommended only as part of a practice that may help 
users to gain a better grasp of the formulations.
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SOFTWARE
For professional work, the reader should employ 
software packages that have been thoroughly tested to 
handle any sampling scheme, that run as efficiently as 
possible, and that offer graphic capabilities for the 
analysis and display of results.

This primer employs primarily the package Stanford 
Geomodeling Software (SGeMS)—recently developed at 
the Energy Resources Engineering Department at 
Stanford University—as a way to show how to obtain 
results practically.

This applied side of the primer should not be 
interpreted as the notes being a manual for the use of 
SGeMS.  The main objective of the primer is to help the 
reader gain an understanding of the fundamental 
concepts and tools in geostatistics.
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ORGANIZATION OF THE PRIMER
The chapters of greatest importance are those 
covering kriging and simulation.  All other materials 
are peripheral and are included for better 
comprehension of these main geostatistical 
modeling tools.

The choice of kriging versus simulation is often a 
big puzzle to the uninitiated, let alone the different 
variants of both of them.  Chapters 14, 18, and 19 
are intended to shed light on those subjects.

The critical aspect of assessing and modeling 
spatial correlation is covered in chapter 7.

Chapters 2 and 3 review relevant concepts in 
classical statistics.
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COURSE OBJECTIVES

This course offers stochastic solutions to common 
problems in the characterization of complex geological 
systems.

At the end of the course, participants should have:
• an understanding of the theoretical foundations of 

geostatistics;
• a good grasp of its possibilities and limitations; and
• reasonable familiarity with the SGeMS software, 

thus opening the possibility of practically applying 
geostatistics.
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2.  UNIVARIATE 
STATISTICS
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EVERYTHING AND A PIECE
In statistics, a population is the collection of all possible 
outcomes or individuals comprising the complete system 
of interest; for example, all people in the Unites States.

Populations may be hard or impossible to analyze 
exhaustively.  In statistics, a limited collection of 
measurements is called a sample; for example, a Gallup 
Poll.

Unfortunately, the term “sample” is employed with 
different meanings in geology and statistics.

The statistical usage of the term sample is observed in 
what follows.

Geology Statistics 
collection sample 
sample observation 
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RANDOM VARIABLE

A random variable or 
variate is a quantity that 
may take any of the values 
within a given set with 
specified relative 
frequencies.

Variate
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The concept is used in geostatistics extensively to 
characterize a population or convey the unknown value 
that an attribute may take at any spatiotemporal 
location.
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DESCRIPTIVE ANALYSIS

• A sample of an attribute ordinarily comprises several 
measurements, which are best understood when 
organized in some way.  This is an important aspect 
of statistics.

• The number of measurements in a sample is the 
sample size.

• There are multiple options to make the data more 
intelligible.  Some of these are more convenient than 
others, depending on factors such as the sample size 
and the ultimate objectives of the study.
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SAMPLE VISUALIZATION
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FREQUENCY TABLE

Given some numerical information, if the interval 
of variation of the data is divided into class 
intervals— customarily of the same lengths—and 
all observations are assigned to their 
corresponding classes, the result is a count of 
relative frequency of the classes.
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UNCF EXAMPLE FREQUENCY TABLE

This example from a major oil company relates to depth in 
feet to an unconformity (UNCF) in an undisclosed area.

It will be used as a common reference to graphically 
illustrate other definitions in this chapter.

Class Count Frequency, %
1 7,680-7,710 1 1.43 
2 7,710-7,740 1 1.43 
3 7,740-7,770 1 1.43 
4 7,770-7,800 2 2.86 
5 7,800-7,830 5 7.14 
6 7,830-7,860 6 8.57 
7 7,860-7,890 10 14.29 
8 7,890-7,920 11 15.71 
9 7,920-7,950 13 18.57 

10 7,950-7,980 7 10.00 
11 7,980-8,010 7 10.00 
12 8,010-8,040 4 5.71 
13 8,040-8,070 2 1.43 
Total 70 100.00 
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HISTOGRAM

A histogram is a graphical representation of a 
frequency table.
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CUMULATIVE FREQUENCY
Summaries based on frequency tables depend on the 
selection of the class interval and origin.

Given a sample of size n, this 
drawback is eliminated by 
displaying each observation zi
versus the proportion of the 
sample that is not larger than zi.

Each proportion is a multiple of 
100/n.  The vertical axis is 
divided in n intervals and the 
data are displayed at the center 
of the corresponding interval.

Customarily, the vertical axis is scaled so that data from 
a normal distribution (page 49) display as a straight line.
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SUMMARY STATISTICS
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SUMMARY STATISTIC
Summary statistics are complementary or alternative 
descriptors to histograms and cumulative 
distributions.  

A statistic is a synoptic value that is calculated from 
a sample of observations, which is usually, but not 
necessarily, an estimator of some population 
parameter.

Generally, summary statistics are subdivided into 
three categories:
• Measures of location or centrality
• Measures of spread or dispersion
• Measures of shape
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MEASURES OF LOCATION

Measures of location give an idea about the central 
tendency of the data.  They are: 
• mean
• median
• mode
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MEAN

The arithmetic mean or 
simply the mean,    , of a 
sample of size n is the 
additive average of all 
the observations, zi: 

The mean of the UNCF 
sample is 7,912.2 ft. 
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MEDIAN
The median, Q2,  of a 
sample is the value that 
evenly splits the number 
of observations zi into a 
lower half of smaller 
observations and an 
upper half of larger 
measurements. 

If zi is sorted by 
increasing values, then
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The median of the UNCF sample is 7,918 ft.

Median
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MODE

The mode of a sample is 
the most probable or 
frequent value, or, 
equivalently, the center 
point of the class containing 
the most observations.

For the UNCF sample, 
the center of the class with 
the most observations is 
7,935 ft.
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ROBUSTNESS

Robustness denotes the ability of statistical methods 
to work well not only under ideal conditions but also in 
the presence of data problems, mild to moderate 
departures from assumptions, or both.

For example, in the presence of large errors, the 
median is a more robust statistic than the mean.
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MEASURES OF SPREAD

Measures of spread provide an idea of the 
dispersion of the data.  The most common measures 
are:
• variance
• standard deviation
• extreme values
• quantiles
• interquartile range
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VARIANCE

The variance,     , is the average squared dispersion 
around the mean:

expressions that are commonly restricted to estimate 
variances of finite populations.

When dealing with samples, the denominator is 
often changed to n - 1.

Because this is a quadratic measure, it is less 
robust than most other measures of spread.  

The variance of the UNCF sample is 5,474 sq ft.
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STANDARD DEVIATION 
The standard deviation is 

 

f 

 

σ̂σ̂σ̂ σ̂

the positive square root 
of the variance.

It has the advantage o
being in the same units 
as the attribute.

The standard deviation
of the UNCF sample is 
74.5 ft.

theorem, for any sample and       , the proportion of data 
that deviates from the mean     at least        is at most     :

1>t

( ) 2
1ˆˆProp
t

tmX ≤⋅≥− σ

σ̂⋅tm̂

According to Chebyshev’s

2−t
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EXTREME VALUES

The extreme values 
are the minimum and 
the maximum. 

For the UNCF 
sample, the minimum 
value is 7,696 ft and 
the maximum value is 
8,059 ft.
This measure is not 
particularly robust, 
especially for small samples.
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QUANTILES

The idea of the median splitting the ranked sample 
into two equal-size halves can be generalized to any 
number of partitions with equal numbers of 
observations.  The partition boundaries are called 
quantiles or fractiles.  The names for the most 
common quantiles are:
• Median, for 2 partitions
• Quartiles, for 4 partitions
• Deciles, for 10 partitions
• Percentiles, for 100 partitions
The number of boundaries is always one less than 
the number of partitions.
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UNCF QUARTILES

Q1 = 7,871.75 ft

Q2 = 7,918 ft

Q3 = 7,965.75 ft Q1

Q2

Q3

Q2 coincides with the median.
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INTERQUARTILE RANGE
The interquartile range, 
iqr, is the difference 
between the upper and 
the lower quartiles

thus measuring the 
central spread of the 
data.

For the UNCF sample, 
the interquartile range is 
94 ft.

,13 QQiqr −=

The  interquantile range is more robust than the variance 
but insensitive to values in the lower and upper tails.

iqr

Q1 Q3



OUTLIER

A practical rule of thumb is to 
regard any value deviating 
more than 1.5 times the 
interquartile range, iqr, from the 
median as a mild outlier and a 
value departing more than 3 
times iqr as an extreme outlier.

Outliers are values so markedly different from the rest of the 
sample that they rise the suspicion that they may be from a 
different population or that they may be in error, doubts that 
frequently are hard to clarify.  In any sample, outliers are 
always few, if any.

For the UNCF sample, all mild outliers seem to be legitimate 
values, while the extreme outlier of 8,240 ft is an error.
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BOX-AND-WHISKER PLOT
The box-and whisker plot is a 
simple graphical way to summarize 
several of the statistics:
• Minimum
• Quartiles
• Maximum
• Mean

Variations in this presentation 
style abound.  Extremes may 
exclude outliers, in which case 
the outliers are individually posted 
as open circles.  Extremes 
sometimes are replaced by the 5 
and 95 percentiles.
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MEASURES OF SHAPE

The most commonly used measures of shape in 
the distribution of values are:
• Coefficient of skewness
• Quartile skew coefficient
• Coefficient of kurtosis
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COEFFICIENT OF SKEWNESS

If :          , the left tail is 
longer;

, the distribution is 
symmetric;

, the right tail is 
longer.
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The coefficient of skewness is a measure of asymmetry 
of the histogram.  It is given by:

The UNCF coefficient of skewness is -0.38.
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QUARTILE SKEW COEFFICIENT
The quartile skew coefficient serves the same purpose as 
the coefficient of skewness, but it is more robust, yet only 
sensitive to the central part of the distribution.  Its 
definition is:
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If :           , the left tail is longer;
, the distribution is 
symmetric;

, the right tail is longer.
The UNCF quartile skew coefficient is 0.02.
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COEFFICIENT OF KURTOSIS
This statistic measures the concentration of values around 
the mean.  Its definition is:
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MODELS
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PROBABILITY

• The probability of an impossible event is zero, Pr[A] = 0.  
It is the lowest possible probability.

• The maximum probability is Pr[A] = 1, which denotes 
certainty.

• When two events A and B cannot take place 
simultaneously, Pr[A or B] = Pr[A] + Pr[B].

• Frequentists claim that Pr[A] = NA/N, where N is total 
number of outcomes and NA the number of outcomes of 
A. The outcomes can be counted theoretically or 
experimentally.

• For others, a probability is a degree of belief in A, even 
if no random process is involved nor a count is possible.

Probability is a measure of the likelihood that an event, A, 
may occur.  It is commonly denoted by Pr[A].
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CONDITIONAL PROBABILITY

Let A and B be two random events.  The conditional 
probability of A given B,              , is the probability of A
for the special case when B has occurred.  If

then the result of one affects the probability of the other.  
Such type of outcomes are said to be statistically 
dependent. Otherwise, they are statistically independent.  
For example:
• Head and tail in successive flips of a fair coin are 

independent events.
• Being dealt a king from a deck of cards and having 

two kings on the table are dependent events.

]|Pr[ BA

[ ],Pr]|Pr[ ABA ≠



46

Number of balls 
Box Blue Red Total
#1 20 5 25 
#2 12 18 30 

 32 23 55 

BAYES’S THEOREM
This is one of the most widely used probability relationships 
for the calculation of conditional probabilities.  Given 
outcomes A and B:

[ ] [ ]
[ ] [ ]A
B

ABBA Pr
Pr

|Pr|Pr =

• If one only knows that there are 2 boxes, Pr[A] = ½ = 0.5.
• Now, if the table is available, Pr[B|A] = 20/25 = 0.8. 
• Pr[B] = 32/55 = 0.59.

[ ] 69.05.0
59.0
8.0|Pr ==BA

Example
Suppose there are two boxes. 
A blue ball is drawn (event B).  
What is the probability the ball 
came from box #1 (event A)?

Hence:
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PROBABILITY FUNCTIONS
Analytical functions approximating experimental 
fluctuations are the alternative to numerical descriptors 
and measures.  They provide approximations of 
general conditions.  Their drawback is the loss of fine 
detail in favor of simpler models.

Models approximating histograms are called 
probability density functions.

Variations in the parameters of a probability density 
function allow the generation of a family of distributions, 
sometimes with radically different shapes.

The main subdivision is into discrete and continuous 
distributions, of which the binomial and normal 
distribution, respectively, are typical and common 
examples.
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BINOMIAL DISTRIBUTION

This is the discrete 
probability density function, 

f (x ; 0.1, 12)
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. , of the number of 
successes in a series of 
independent (Bernoulli) 
trials, such as head or tails 
in coin flipping.  If the 
probability of success at 
every trial is p, the 
probability of x successes 
in n independent trials is
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NORMAL DISTRIBUTION

The most versatile of all 
continuous models is the normal 
distribution, also known as the 
Gaussian distribution.  Its 
parameters are μ and σ, which 
coincide with the mean and the 
standard deviation.
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If X = log(Y) is normally distributed, Y is said to follow 
a lognormal distribution.  Lognormal distributions are 
positively defined and positively skewed.
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PROBABILITY FROM MODELS
[ ] ( )dxxfxX

x

∫
∞−

=≤
1

1Prob

[ ] ( )
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EXPECTED VALUE               
Let X be a random variable having a probability distribution       
. and let         be a function of x.  The expected value of         
. is denoted by the operator            and it is the 
probability weighted average value of

If X is continuous, such as temperature:

and if it is discrete, like in coin flipping:

In the latter case, for the trivial example of               if all 
values are equally probable, the expected value turns into

which is exactly the definition of the mean.

( )xu
( )xf ( )xu

( )[ ]xuE

( )[ ] ( ) ( ) ,E ∫
∞

∞−
= dxxfxuxu

( )[ ] ( ) ( ).E ∑=
x

xfxuxu
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x
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x
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MOMENT

Moment is the name given to the expected value 
when the function of the random variable, if it exists, 
takes the form             , where k is an integer larger 
than zero, called the order.

If a is the mean, then the moment is a central 
moment.

The central moment of order 2 is the variance. For 
an equally probable discrete case,

( )kax −
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3. BIVARIATE STATISTICS
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TOOLS

Frequently there is interest in comparing two or more 
measurements made for the same object or site.  
Among the most common classical alternatives, we 
have:
• Scatterplot
• Correlation coefficient
• Regression
• Quantile-quantile plot
• Probability-probability plot

Some of these concepts can be generalized to deal 
with more than two variables.
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Mecklenburg Bay sea floor, Germany

SCATTERPLOT
A bivariate scatterplot is 
a Cartesian posting in 
which the abscissa and 
the ordinate are any two 
variables consistently 
measured for a series of 
objects.

Scatterplots are 
prepared for exploring 
or revealing form, 
direction, and strength 
of association between 
two attributes.
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COVARIANCE

The covariance is a measure of joint variation.
Given two random variables X and Y with means      and     

. , their covariance is the expected value:

The covariance estimator when using a sample of point 
measurements is:

xμ
Yμ
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CORRELATION COEFFICIENT
This coefficient is the number most 
commonly used to summarize bivariate 
comparisons.  If       and      are the standard 
deviations for two variables, their correlation 
coefficient, ρ, is given by:

ρ

YX

YX

σσ
ρ

⋅
= ,Cov

• It only makes sense to employ ρ for 
assessing linear associations.

• varies continuously from -1 to 1:
1,  perfect direct linear correlation 
0,  no linear correlation
-1, perfectly inverse correlation

YσXσ

-1

-0.5

0

1
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REGRESSION
Regression is a method for establishing analytical 
dependency of one or more variables on another 
mainly to determine the degree of their dependency, 
to estimate values not included in the sample, or to 
summarize the sample.
• The variable in the abscissa is called the 

regressor, independent, or explanatory variable.
• The variable in the ordinate is the regressed, 

dependent, or response variable.
• In many studies, which variable goes into which 

axis is an arbitrary decision, but the result is 
different.  Causality or the physics of the process 
may help in resolving the indetermination.
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REGRESSION MODEL
• The model is:

• is any continuous 
function of x that is judiciously 
selected by the user.    are 
unknown parameters.

• Term    is a random variable 
accounting for the error.

• Having selected            , 
parameters    are calculated by 
minimizing total error, for which 
there are several methods.

( ) iii xfy ε+= θ;
( )θ;ixf

( )θ;ixf
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( )θ;ixf

θ

θ
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Avoid applying the model outside the extreme values 
of the explanatory variable.
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LINEAR REGRESSION
The simplest regression 
case is one in which the 
parameters are estimated 
by minimizing the mean 
square error,   , associated 
with a linear model,           

In this special situation,  
accounts for the proportion 
of variation accounted for by 
the regression.

In the example, ρ = 0.94. 
Hence, in this case, the

∑
=

=
n

i
in

r
1

22 1 ε

linear regression explains 88%               of the variation.

Mecklenburg Bay seafloor, Germany

ρ = 0.94

( )2100 ρ⋅

2ρ

2r
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NONLINEAR REGRESSION

• In theory, the 
higher the 
polynomial degree, 
the better the fit.

• In practice, the 
higher the 
polynomial, the less 
robust the solution.

• Overfitting may 
capture noise and 
not systematic 
variation.

Linear

47.252 =r

Quadratic polynomial

56.202 =r

Cubic polynomial

33.202 =r

Sixth degree polynomial

98.192 =r
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IMPLICATIONS

• allows prediction of one 
variable when only the other 
is known, but the inference 
may be inaccurate, 
particularly if the correlation 
coefficient is low;

• means the variables are 
related, but the association 
may be caused by a 
common link to a third 
lurking variable, making the 
relationship meaningless;

• does not necessarily imply 
cause and effect.

High to good correlation:Countries with a population of 
more than 20 million in 1990
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QUANTILE-QUANTILE PLOT
• A quantile-quantile or Q-Q plot is a 

scatterplot based on ranked data.
• The pairing is independent of the 

object or site where the 
observations were taken.  The first 
pair of coordinates has the minimum 
value for each attribute, the second 
pair is made of the second smallest 
readings, and so on until finishing 
with the two maximum values.  
Interpolations are necessary for 
different size samples.

• Q-Q plots are sensitive to a shift and 
scaling of the distributions.
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STANDARDIZED VARIATE

If X is a random variable 
with mean μ and 
standard deviation σ, the 
standardized variate, Z, 
is the transformation:

σ
μ−

=
XZ

A standardized variate always has a mean of zero and 
variance of one.

A standardized Gaussian distribution is called a 
standard normal distribution. It is often denoted by ( ).1,0N

σ
μ−

=
XZ
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PROBABILITY-PROBABILITY (P-P) PLOT

A P-P plot is another scatterplot prepared by extracting 
information from the cumulative distributions of two variates.
• If the variates are in different units, preliminary 

standardization is necessary.
• For given thresholds, the axes show the cumulative 

probabilities for the two distributions being compared.

Density
Velocity
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Q-Q AND P-P PLOTS
Main use of the Q-Q and P-P plots is 
as a quick way to decide the degree of 
similarity between two distributions.
• If the distributions are the same, the 

points align along the main diagonal.
• There is no statistic or level of 

significance for evaluating the results.
• P-P plots are insensitive to shifting 

and scaling, and the vertical scale is in 
probability units.

• The Q-Q plot in the example illustrates 
its potential for calling the user’s 
attention to the fact that normal 
distribution with the same parameters 
can take negative values.

P-P

Q-Q

West Lyons field, Kansas
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4. SGeMS SOFTWARE
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GENERAL DESCRIPTION
The Stanford Geostatistical Modeling Software (SGeMS) 
is a general purpose, user friendly, state-of-the-art 
geostatistical software package.  

The software code is in the public domain, 
downloadable from http://sgems.sourceforge.net
(accessed in February 2009).

The code is in C++ and runs interactively under 
Windows.

A manual about to be released by Cambridge 
University Press is listed in the selected bibliography.

SGeMS is an outgrowth of the Stanford Geostatistical 
Library (GSLIB), with which it shares several features.  
For details about GSLIB, please consult the book listed 
in the bibliography.
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MAIN MENU
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OBJECTS

A. Data, when each record specifies location.
B. Grid, when locations are in a regular rectangular or 

parallelepipedal pattern.  Location is implicit and 
specified in a separate file.  A grid file contains 
attribute values only.  Typically they are the result of 
some calculation, but they can be used as input for 
subsequent processing.

Objects are files with numerical information that can 
be of two types:

Evidently, no process is possible without prior 
loading of an object, which is done by: 

• clicking on <Objects> in the upper left corner of 
main menu, or

• dragging the file icon into the Object area of the 
main menu.
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A. DATA FILES

• The first record is intended to be a header to identify 
the data.  It is often automatically used to label the 
output.

• The second record must be the number of fields per 
data entry.

• Starting with the third record, there should be one 
record per attribute containing a short description.  A 
logical choice is to provide attribute type and unit of 
measurement, if any.

Data may be up to three-dimensional and have to be 
coded into plain ASCII files.  No special formatting is 
necessary, yet they must observe the following 
structure:
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DATA FILES

o The entries must be strictly numeric.  No letters or 
special symbols are allowed.

o There must be exactly as many columns as 
indicated in the second record.  A special code 
chosen by the user, such as -999, should be used 
if there are missing values.

o It is required to provide at least two Cartesian 
coordinates specifying location.

• If the file has v attributes, the numerical values for the 
sample start at record v + 3, one for each site, under 
the following restrictions:

• The number of records is unlimited.
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EXAMPLE OF DATA FILE

UNCF unconformity 
4 
Identification 
Easting, m 
Northing, m 
Depth, ft 

1 32000 87015 7888 
2 38600 87030 8020 
3 44000 86400 7949 

 M   
6200 85050 87000 8003 
6202 49400 84000 8032 
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DATA LOADING

• Click on <Objects>.
• Click on <Load Object> at new menu.
• Search for the file of interest.
• Highlight file name and click on <OK>.  

Simply:

• Choosing <Point Type> at <Select object type>.
• Clicking on <Next>.

The top of the file will be displayed.  Finish by:

• Drag the file icon into the object area of the main 
menu

or:
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COMPLETING DATA LOADING

• Type an object name at 
<Pointset name>.

• Indicate columns for 
easting and northing 
and also depth in three- 
dimensional studies.

• Specify missing data 
code, if any.

• Click on <Finish>.

The loading has been 
completed and the data file 
will show in the object 
panel of the main menu.
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B. GRID LAYOUT

1 2

134 135

Results from modeling of 
spatial attributes come in 
the form of arrays of 
values at regular 
intervals.
Coordinates for the nodes 
are not printed;  they are 
implicit in the regular 
arrangement.
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IMPLICIT ARRANGEMENT

• In three-dimensional modeling, layer values go from 
the lowermost to uppermost layer.

• Within a layer, the first value to go into the file is the 
one in the lower left corner.

• Then come the rest of the values for the lowermost 
row, from left to right.

• Within a layer, last value to enter the file is the one 
in the extreme upper right corner.

• Specification of grid geometry goes into a separate 
file.
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GRID SPECIFICATION FILE

Remember that grids 
must be specified 
before attempting 
any processing that 
will result in the 
generation of a grid, 
such as estimation 
or simulation.
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EXAMPLE OF GRID

To minimize storage space, SGeMS stores grid values in 
binary form.  Grids can only be displayed in graphical form.

Numerical display of a grid requires saving it in ASCII 
format and further viewing it with a text editor.  To do such 
saving:
• Click on <Object>.
• Select <Save Object>.
• Name the file.
• Select place for storage 

at <Look in>.
• Make sure to select 

GSLIB as the format.
• Click on <Save>.
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VIEW OF GRID WITH TEXT EDITOR
UNCFgrid (211x281x1)
2
OK
OK_krig_var
7773.04   2075.6 
7766.52   1902.38 
7763.12   1745.86 
7759.76   1595.19 
7756.46   1450.97 . . .
8017.93   2229.09 
8018.47   2313.04 
8018.98   2404.05 
8019.46   2501.91 
8019.92   2606.35 

SGeMS automatically 
creates the first record, 
which includes the 
number of columns, 
rows, and layers.
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OBJECT SAVE

In SGeMS, all objects in a 
session make up a project.

The user can save all 
objects in a project for 
archiving or further use.  
To do that:
• Click on <File> at the upper right corner of the 

SGeMS screen;
• Click on <Save Project>.  This is all that it is 

necessary to do for an existing project.
• If the project is new, navigate directories to locate a 

storage folder, select name for the project file, and 
click on <Save>.
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HISTOGRAM PREPARATION

• Click on <Data Analysis> at main menu.
• In the new menu, click on <Histogram>.
• Select the object.
• Choose the property.
• Set the number of classes.
• If there is need to change the axis extreme values, 

click on <Display Option> and do the settings.

As a first practical application of SGeMS, let us prepare 
a histogram of the object previously loaded.  For that:
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HISTOGRAM DISPLAY
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SAVING IMAGE
• Click on <Save as 

Image>.
• Select a folder.
• Give a name to the 

file.
• Select type.
• Decide on grid and 

summary statistics.
• Click on <Save>.
The histogram graphical file is now at the specified folder.
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5. SPATIAL STATISTICS
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RANDOM FUNCTIONS

A random function is a collection of random variables, 
one per site of interest in the sampling space.

A realization is the set of values that arises after 
obtaining one outcome for every distribution.

Geostatistics relies heavily on random functions to 
model uncertainty.
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MAIN DIFFERENCES BETWEEN CLASSICAL 
GEOSTATISTIC AND CLASSICAL STATISTICS 
• Geographical location is an integral part of any sample.
• Measurements have an associated support.  For example, in 

the case of density, the support is the specimen volume.
• Geostatistics does not assume that the variables are 

independent and identically distributed.
• A spatial sample is regarded as a single realization of a 

random function, instead of multiple outcomes of a single 
random variable.

• Most geostatistical formulations do not require any particular 
probability distribution, although some work better under 
normality conditions.

• The most adequate forms of spatial sampling are those 
following a regular pattern—cubic or hexagonal, for example.
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ERGODIC ASSUMPTION

We have seen that stochastic methods regard data as 
one of an infinite number of possible realizations.

Ordinarily, one needs multiple realizations to infer 
properties of the complete ensemble.

The ergodic assumption basically states that just one 
realization is indeed sufficient to make reliable 
assessments about ensemble properties.

It is an assumption because it is not possible to test it.
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STATIONARITY

This is another fundamental assumption, presuming 
invariance through space of properties of the random 
function.

The most general case assumes that the joint 
probability distribution of any number of random 
variables is the same.

Most geostatistical formulations require 
independence of location only for moments and just 
up to order two.
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BIAS

Bias in sampling denotes preference in taking the 
measurements.

Bias in an estimator implies that the calculations are 
preferentially loaded relative to the true value, either 
systematically too high or too low.
• When undetected or not compensated, bias induces 

erroneous results.
• The opposite of the quality of being biased is to be 

unbiased.
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PREFERENTIAL SAMPLING

Although estimation and simulation methods are 
robust to clustered preferential sampling, parameters 
that need to be inferred from the same sample prior 
to estimation or simulation can be seriously distorted, 
especially for small samples.

The solution to preferential sampling is preparation 
of a compensated sample to eliminate the clustering, 
for which there are several methods.

Declustering is important for the inference of global 
parameters, such as any of those associated with the 
histogram.
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EXAMPLE OF SAMPLE WITH 
PREFERENTIAL CLUSTERING
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DECLUSTERING (1)

Detect presence of clusters by preparing a cumulative 
distribution of distance to nearest neighbor.
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DECLUSTERING (2)

Decompose the clustering.
1S 2S
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DECLUSTERING (3)

Preferential sampling shows as poor overlapping 
between the two histograms.

Histograms of the attribute by distance class
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DECLUSTERING (4)

a few observations (S3 ) from the 
clustered subset (S2 ).

• Transfer observations from (S2 ) 
by decreasing distance to 
nearest neighbor in S4 . 

• Stop transferring points when 
the distribution of distances for 
the original subset S1 is about 
the same as that for the 
transferred observations (S3 ) 
within S4 .

S
1

S3

One possibility is to obtain the declustered subset (S4 ) by 
expanding the subset without clusters (S1 ) by transferring
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POSTING OF THE 
DECLUSTERED SAMPLE (S4)

(S3)

(S1)

(S1)

(S3)

(S1)
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6. TRANSFORMATIONS
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COMPARING DISTRIBUTIONS

A simple way to compare a 
sample distribution,         ,         
to an hypothesized  
distribution,        , is to 
superimpose their 
cumulative distributions and 
calculate the maximum 
discrepancy, D.

By transforming the data, 
one can force the data to 
follow almost any other 
distribution.

( )xF

( )xFn

The distribution followed by some data and the one that may 
be required by a method may be two different distributions.

If a method requires a particular distribution, such 
distribution becomes mandatory. 
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KOLMOGOROV-SMIRNOV TEST
The Kolmogorov-Smirnov test evaluates the significance of 
the maximum discrepancy, D.

The significance of the discrepancy depends on the sample 
size and on whether the parameters of the hypothesized 
distribution are known.  A statistic called p-value, commonly 
read from tables, is used to decide the significance of the 
discrepancy. Customarily, if the p-value is above 0.1 or 0.05, 
the equality of the distributions is accepted.

Standard tables available to run the significance of the 
discrepancy are not valid in geostatistics because the tables 
do not take into account spatial dependence.

It has been found, however, that the standard tables may be 
a limiting case for the situation considering spatial correlation.  
In that case, each time two distributions pass the Kolmogorov- 
Smirnov test without considering spatial correlation, they also 
pass it considering that correlation.  The same is not true in 
case of rejection.
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WEST LYONS FIELD, KANSAS
Remember that the cumulative 
probability of any normal 
distribution follows a straight 
line in normal probability scale.

At 10 ft, the thickness 
distribution of Lyons field 
reaches a maximum 
discrepancy of 0.09 against a 
normal distribution with the

Because the pu-value is already above the threshold of 
0.1–0.05, it is not necessary to go into the complications of 
considering spatial correlation.  Without further ado, it can 
be accepted that thickness is normally distributed.

same mean and standard deviation as the sample.  The     
p-value without considering spatial correlation, pu, is 0.14.

D = 0.090
pu = 0.14
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NORMAL SCORES
In geostatistics, as in classical statistics, the most 
versatile distribution is the normal distribution.

If the sample strongly deviates from normality, it may 
be convenient or required to transform the data to follow 
a normal distribution, so as to properly apply a specific 
method.

The transformation is fairly straightforward.  It is 
performed by assigning to the cumulative probability of 
every observation the value of the standard normal 
distribution for the same cumulative probability.
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NORMAL SCORES

For the value zi of 
the attribute, the 
normal score is 1.45.

The transformation 
also can be used 
backwards to bring 
calculated values in 
the normal score 
space to the original 
attribute space.
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LOGNORMAL TRANSFORMATION

• This is a special case of normal score transformation.  
The transformed value is simply the logarithm of the 
original observation.

• If the original distribution is exactly lognormal, the 
distribution of the transformed values will be exactly 
normal.  Because this is never the case, the 
distribution for a transformed variable is only 
approximately normal.

• Most minerals and chemical elements have 
distributions of concentration close to lognormal, 
which explains the great attention paid to this 
distribution since the early days of geostatistics.
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INDICATORS

Given a continuous random function         , its 
indicator            is the binary transformation:

The potential of indicators lies in the possibility to 
handle imprecise data and the fact that the expected 
value of an indicator is equal to the cumulative 
probability for the threshold value.
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INDICATOR CODING FOR DIFFERENT 
TYPES OF CONTINUOUS DATA

Courtesy of A
. Journel, Stanford U

niversity
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DISCRETE INDICATORS

The indicator of a categorical attribute is:

In this case, the indicator is now equal to the 
probability of belonging to class k.

In this case the indicator transformation offers the 
possibility of digital processing for information that is 
commonly qualitative.
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7. SEMIVARIOGRAM
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THE OBJECTIVE

The objective of structural 
analysis is to capture the 
style of the fluctuations 
through an analytical 
function.
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CONTINUITY

Spatial continuity involves the concept that small 
values of an attribute are in geographical proximity 
to other small values, while high values are close to 
other high values.  Transitions are gradual.

Assessment of covariance or its close equivalent, 
the semivariogram, has been the classical way in 
geostatistics to measure spatial correlation.
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RELEVANCE

• The semivariogram or the covariance are 
necessary in the formulation and application of 
most estimation and simulation methods.

• Semivariogram analysis leads to some stand-
alone applications, such as sampling design.
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DEFINITIONS
Given a spatial distance h involving magnitude and 
direction, the semivariogram is:

and the spatial covariance is:

both with a constant mean 

Differently from the classical covariance (page 56), the 
spatial covariance is grouped by distance and applies to 
the same attribute.  Therefore a more descriptive yet 
seldom used term for the covariance is autocovariance.

( ) ( ) ( )[ ]hssh +−= ZZVar
2
1γ

( )hγ

( )[ ] ( )[ ].EE hss +== ZZm

( ) ( )( ) ( )( )[ ],ECov mZmZ −+−= hssh
m
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EQUIVALENCE
If the mean is constant and 
the covariance is 
independent of location, 
then always

which makes it immaterial 
which one to use.   

In general, what is 
estimated is the 
semivariogram because its 
estimation does not require 
knowledge of the mean.  

( ) ( ) ( ),Cov0Cov hh −=γ

Lag a is the range and the semivariogram asymptote 
is called the sill, which is equal to the variance Cov(0).
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SEMIVARIOGRAM ESTIMATOR

: estimated or experimental semivariogram;
: lag;

: number of pairs    units apart;
: observation at site     .  

Always remember that for the estimator to be valid, the 
mean must be constant; hence, there must be no trend.

For any direction, it is recommended that                 and 
the estimation be restricted to h no more than half the 
extension of the sampling domain in such direction.
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TRIVIAL EXAMPLE

0

1

2

3

4

5

0 1 2 3 4

Lag

Se
m

iv
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gr

am

5

5.0Δ 0.1Δ 5.1Δ

is  ( )iz s  2
0Δ  2

5.0Δ  2
0.1Δ  2

5.1Δ  2
0.2Δ  2

5.2Δ  2
0.3Δ  2

5.3Δ  2
0.4Δ  2

5.4Δ  
7.0 3.2 0.0 1.21 3.24 10.89 22.09 24.01 18.49 16.81 12.25 3.76 
7.5 4.3 0.0 0.49 4.84 12.96 14.44 10.24 9.00 5.76 2.25  
8.0 5.0 0.0 2.25 8.41 9.61 6.25 5.29 2.89 0.64   
8.5 6.5 0.0 1.96 2.36 1.0 0.64 0.04 0.49    
9.0 7.9 0.0 0.04 0.16 0.36 1.44 4.41     
9.5 8.1 0.0 0.36 0.64 1.96 5.29      

10.0 7.5 0.0 0.04 0.64 2.89       
10.5 7.3 0.0 0.36 2.25        
11.0 6.7 0.0 0.81         
11.5 5.8 0.0          

 ∑Δ2
h  0.0 7.52 22.74 38.97 50.15 43.99 30.87 23.21 14.50 6.76 

 ( )hn  10 9 8 7 6 5 4 3 2 1 
 ( )hλ  0.0 0.42 1.42 2.78 4.18 4.40 3.85 3.86 3.62 3.38 

 



CASE OF IRREGULAR PATTERNS
If the observations,          are not regularly spaced, they are
grouped into distance classes of equal radial thickness, 
which customarily is set equal to twice 
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Each class contributes one value to the experimental 
semivariogram,

Commonly used 
parameters are:

:  lag tolerance  
:  angular tolerance
:  bandwidth
only operates when the 

cone is wider than twice        
Otherwise,     prevails. 
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MOST COMMON PERMISSIBLE MODELS

Spherical

Exponential

Gaussian
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A sum of permissible models is also permissible.                

Permissible semivariogram models are a class of models 
guaranteeing unique solution to an estimation system of 
equations and a nonnegative estimation variance.
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ASSESSMENT OF SPATIAL 
CORRELATION

Spatially correlated attributes have 
gradually increasing semivariograms that 
reach the range at a distance clearly 
greater than zero. 

If the semivariogram does not seem to  
be zero for a lag close to zero, the value 
of convergence is called nugget effect.  
Yet,  

Lack of spatial correlation is revealed by 
a semivariogram that remains constant, 
following what is called a pure nugget-
effect model, which is permissible.

Mere assessment of spatial correlation does not require 
semivariogram modeling.
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ESTIMATION BASIC STEPS
A. Make sure that the data are error free.
B. Correct preferential clustering, if any.
C. Perform transformations if required or desired.
D. Estimate semivariograms along at least 3 different 

directions.
E. Detect trend. In the presence of trend, the 

experimental semivariogram is an artifact that 
increases monotonically, reaching values orders of 
magnitude higher than the sample variance.

F. If necessary, model semivariogram along the trend-
free direction.  

When the attribute is isotropic, parameters do not change 
with h.  A semivariogram model prepared disregarding 
azimuthal variation is said to be omnidirectional.
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A. DATA LOADING

If data have not yet been loaded into SGeMS, load 
them as explained in chapter 4 (page 74).
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B. MODELING WITH SGeMS

First click on <Data Analysis> and then on <Variogram>.
See page 187 for more information about this dataset.
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C. SELECT FOLDER AND ATTRIBUTE

• Select <Head Property> equal to <Tail Property>.
• After making selections, click on <Next>.
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D. DIRECTIONS AND LAGS
For grids, the azimuth is specified by directional cosines.  
For example, north in a horizontal place is (0, 1, 0).

For datasets, azimuth is specified as clockwise degrees 
from the north; so, for example, NE is 45o.

Upon 
specifying 
lags and 
directions, 
click on 
<Next>.
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E – F. TREND DETECTION AND MODELING 
• Hide the main 

menu screen;
• expand sideways 

semivariogram 
menu;

• click on 
<Window>, and 
then click on 
<Tile>;

• pick best fitting 
model parameters 
by trial and error.
Here there is no trend because the semivariogram tends 

to stabilize at a value close to the sample variance.  See 
pages 202–203 for modeling of a nonstationary dataset.
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SAVING SEMIVARIOGRAMS
• Click on the <File> option of semivariogram modeling.
• Pick an option, for example, <Export Plot as Images>.
• Check <Show Grid> if it is desired to display it.
• Click on the three dots <…>.
• Select storage folder.
• Give generic name to semivariograms.
• Click on <Save> in both menus.
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OTHER DIRECT APPLICATIONS
Direct applications of the semivariogram, not necessarily 
requiring to go through modeling, include:
• Detection of anisotropy by 

finding out if the 
semivariogram is different 
along different directions.

• Comparative studies of 
origins in the processes 
behind attributes based on 
the premise that different 
geneses lead to different 
semivariograms.

Lag
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Direction 1

Direction 2

Direction 3

Direction 4

• Sampling design.  In any direction, sampling interval 
should not exceed half the range.



127

8. SIMPLE KRIGING
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KRIGING
Kriging is a form of generalized 
linear regression for the 
formulation of an optimal spatial 
estimator in a minimum mean-
square-error sense.

Given some observations at 
locations si, kriging provides an 
estimate and a standard error at 
locations, such as s0, typically 
not considered in the sampling.

In contrast to classical linear regression, kriging takes 
into account observation volume and stochastic 
dependence among data.

The method works best inside the convex hull determined 
by the peripheral data.

s1

s3

s4

s2

s6

s5

s0

s7

s8
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VARIANTS

There are several forms of kriging, each making different 
assumptions to adjust to different styles of attribute 
fluctuations.
• Simple kriging
• Ordinary kriging
• Universal kriging
• Lognormal kriging
• Indicator kriging

The last two types are simply any of the first three 
forms of kriging applied to transformed data as 
explained in chapter 6.
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SIMPLE KRIGING

Simple kriging is the estimation of
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NORMAL EQUATIONS

The originality of kriging is the use of weights,      such 
that they minimize the estimation error variance.  Such 
weights turn out to be the solution of the following system 
of equations, called the normal system of equations:
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DERIVATION OF NORMAL EQUATIONS

The steps are:
A. Make necessary assumptions.
B. Calculate error variance.
C. Express error variance in terms of covariances.
D. Find the weights that minimize the error variance.
E. Calculate the minimum error variance.
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A.  ASSUMPTIONS
1. The sample is a partial realization of a random 

function         , where    denotes spatial location.
2.          is second order stationary, which implies:

where       denotes expected value,     is a scalar 
constant, and    is a vectorial distance.

3. Unique to simple kriging is the assumption that the 
mean is not only constant but known.

( )sZ s

( )[ ] mZ =sE
( )( ) ( )( )[ ] ( ),E hhss CovmZmZ =−+−

[ ]⋅E
h

m

( )sZ

These assumptions make simple kriging the most 
restricted form of kriging.

The weakness of this simplicity is the same as with any 
simple model:  limitation in its applicability or suboptimal 
results if its use is forced.
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B. ESTIMATION VARIANCE

By definition, the estimation variance is:

We know neither the random function            nor the 
estimator               , so we cannot directly calculate the 
variance of the difference.

The way to solve this conundrum is to transform the 
expression for the variance to have it in terms of 
quantities that we know.
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C.  ALGEBRAIC MANIPULATIONS (1)

The residual of a random function is the difference 
between the random function and its expected value.  In 
this case:

Expressing this estimation variance in terms of the 
residuals, we have:

if one defines          .
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ALGEBRAIC MANIPULATIONS (2)

From the properties of the variance (pages 31 and 52):

Expanding the squares and introducing the expectations 
inside the summations:
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ALGEBRAIC MANIPULATIONS (3)

Grouping the terms by coefficients:

Backtransforming to the random function and expanding: 

Because of the cancelation of terms,
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ALGEBRAIC MANIPULATIONS (4)

which is the same as:

Finally, remembering that          

which is an expression in terms of covariance, a 
measurable property, hence a useful expression.
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D. OPTIMAL WEIGHTS (1)
The expression for             is valid for any weights.  Among 
the infinite weight combinations, we are interested in those 
that minimize the estimation variance associated with the 
estimator

The expression for             is quadratic in the unknowns, 
the weights.  Under these circumstances, according to an 
operations research theorem, the necessary and sufficient 
condition to have a unique global nonnegative minimum is 
that the quadratic term must be larger than or equal to zero.  
This implies that the covariance function must be such that 
any combination, like the one in the general expression for     
. cannot be negative.  In mathematics, such is the 
property of being positive definite.  This is the condition a 
covariance model has to satisfy to be permissible.
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OPTIMAL WEIGHTS (2)
The optimal weights are those that make zero all partial 
derivatives of              with respect to the weights:

for all locations                      .
Cancellation of factor 2 and rearrangement give:
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E. OPTIMAL ESTIMATION VARIANCE

Multiplying each optimality condition by     and adding 
them together, we have a new optimality relationship:

Introducing     under the second summation and 
replacing the resulting double summation in the general 
expression for            :
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SUMMARY
Simple kriging normal equations for optimal weights     :   

Simple kriging estimation:

Simple kriging mean-square-error variance:
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MATRICES
A matrix is a rectangular 
array of numbers, such as A. 
When n = m, A is a square 
matrix of order n.
Transposing all rows and 

columns in A is denoted as
Matrices are a convenient 

notation heavily used in 
dealing with large systems of 
linear equations, which 
notably reduce in size to just 
A X = B or X = A-1B, where
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The main diagonal of a square matrix is the sequence 
of elements a11, a22, …, ann from upper left to lower right.

A-1 denotes the inverse of matrix A.
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SIMPLE KRIGING MATRIX FORMULATION     
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EXERCISE
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EXERCISE

For the previous configuration, using simple kriging:
A. Discuss the weight values.
B. Find the estimate.
C. Compute the estimation variance.
D. Calculate the estimation weights.
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A. CALCULATION OF WEIGHTS (1)

Distance matrix among observations:

Distance from estimation location to each observation:
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CALCULATION OF WEIGHTS (2)

Weights:
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B.  REMARKS
• Weight 4 is almost zero 

despite being closer to 
the estimation location 
than weight 1.  This 
reduction known as 
screen effect is caused 
by the intermediate 
location of weight 3.

• Weight 4 is negative.
• Negative weights open 

the possibility to have 
estimates outside the 
extreme values of the 
data (nonconvexity).
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C. ESTIMATE

( )

( ) 7.86120,180

001.0
646.0
128.0
185.0

110160
11090
110130
11040

110120,180

*

*

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

+=

SK

T

SK

z

z

( )
( )

( ) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
+=

k

T

k

SK

mZ

mZ
mz

λ

λ
MM
11

0
*

s

s
s



151

D. ESTIMATION VARIANCE
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PROPERTIES OF SIMPLE KRIGING

• Nonconvexity
• Screen effect
• Declustering
• Global unbiasedness
• Minimum mean-square-error optimality
• Exact interpolator
• When interpolation is exact, the error variance is 0
• Intolerance to duplicated sites
• The estimate is orthogonal to its error
• Independence to translation of Cartesian system
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PROPERTIES OF SIMPLE KRIGING

• Independence of estimator to covariance scaling
• Scaling of covariance changes the estimation 

variance by same factor
• Estimation variance depends on data configuration
• Estimation variance does not depend directly on 

individual sample values
• If the weights sum up to 1, the estimator is 

independent of the value of the mean
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MULTIGAUSSIAN KRIGING
• This is kriging of normal scores.
• The univariate marginal distribution of a multivariate 

normal distribution is normal, yet the converse is not true.
• Under multivariate normality, simple kriging is the best of 

all possible estimators, linear or nonlinear, biased or 
unbiased.

• Multivariate normality cannot be verified; at most, it 
cannot be rejected.

• Considering that the mean of normal scores is zero, if 
they are second order stationary, they provide a rare 
opportunity to apply simple kriging.

• Backtransformation of estimated normal scores outside 
the interval of variation for the normal scores of the data 
is highly uncertain.
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9. ORDINARY KRIGING
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BRILLIANT TRICK
One can rewrite the simple kriging estimator as

If the weights sum up to 1, then the estimator is 
independent of m, thus resulting in a more general 
formulation applicable to samples with constant, but 
unknown mean (no trend).

It can be proved than the constraint has the additional 
benefit of making the estimator unbiased.

Ordinary kriging was a first formulation of improved 
simple kriging.  Simple kriging roots predate 
geostatistics.  We will see that one can still find weights 
minimizing the mean square estimation error.
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ORDINARY KRIGING
The ordinary kriging estimator is:

where:
denotes estimation at geographic location

is the location of measurement   ;
denotes the number of observations to consider;
is the mean of          and
is a real weight.
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DERIVATION OF EQUATIONS

A. Make necessary assumptions;
B. Find expression for estimation error variance;
C. Modify estimation error variance equation to have 

it in terms of covariances;
D. Out of all possible weights, find those that 

minimize the error variance.
E. Replace the optimal weights in the expression for 

error variance.  This is the kriging variance.

The whole purpose of ordinary kriging is to find 
optimal weights that minimize the mean square 
estimation error.  The steps are the same as those 
required to formulate simple kriging:
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A.  STRONGER ASSUMPTIONS

1. The sample is a partial realization of a random 
function         , where    denotes spatial location.

2.          is second order stationary, that is:

where       denotes expected value,     is a scalar 
constant, and    is a vectorial distance.
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As in simple kriging, the mean is still constant, but 
now it can be unknown.
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WEAKER ASSUMPTIONS

1. The sample is a partial realization of a random 
function         , where    denotes spatial location.

2.          honors the intrinsic hypothesis, meaning that:
( )sZ s

( )[ ] mZ =sE
( ) ( )[ ] ( ),2Var hhss γ=+− ZZ

( )sZ

The following is a set of slightly weaker assumptions, 
in the sense that they do not require that the variance 
be finite.  

where         is the semivariogram.( )hγ

The mean must be constant, but because it will 
not enter into the calculations, it can be unknown.
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B. ESTIMATION VARIANCE

The estimation variance is the error variance:

where           is the random function at the estimation 
location      and              is the ordinary kriging estimator.

We know neither of these, thus it is not possible to 
calculate            .  The way out is to transform the 
expression for the variance to have it in terms of 
quantities that we can calculate.  This will require even 
more laborious algebraic manipulations than for simple 
kriging.  Nothing comes for free!
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LEMMA 1 (1)

Let            be a random variable of a continuous random  
function.  Then for any coefficient     :

Proof:
One can regard        as a new constant and 

as a new variable.
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LEMMA 1 (2)

Then, by the distributive and commutative properties of 
the expectation:

and the proof follows by condensing the expression 
using a second summation index.
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LEMMA 2 (1)

Let            be a random variable of a continuous random  
function.  Then for any coefficient     :

Proof:
By the definition of variance (pages 31 and 52):
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LEMMA 2 (2)
By Lemma 1:

Factoring,

The fact that the difference is equal to the covariance 
of             and             proves the lemma.
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LEMMA 3 (1)
Let           be an intrinsic random function.  Then:

Proof:
By the stationarity assumption:

which does not change by adding and subtracting a third 
variate
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LEMMA 3 (2)

Expanding:

and again, by the stationary assumption:

The proof follows from the definition of the covariance 
because of the special fact that the mean of the differences 
is zero because the mean is constant.
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C.  NEW ERROR VARIANCE EXPRESSION (1)

Replacing the estimator by its definition in the expression 
for the error variance:

because                 From Lemma 2,

which, by Lemma 3, is:

( ) ( ) ( )[ ] ( ) ( )( )⎥
⎦

⎤
⎢
⎣

⎡
−=−= ∑

=

k

i
iiOK ZZZZ

1
000

*
0

2 VarVar sssss λσ

( ) ( ),,Cov
1 1

000
2 ∑∑

= =

−−=
k

i

k

j
jiji sssss λλσ

( ) ( ) ( ) ( ){ }.
1 1

000
2 ∑∑

= =

−−−+−=
k

i

k

j
jijiji sssssss γγγλλσ

.1
1

=∑
=

k

i
iλ



169

NEW ERROR VARIANCE EXPRESSION (2)

Expanding, because of the constraint                :

The first two terms in the right-hand side of the equation 
are the same, thus:

1
1

=∑
=

k

i
iλ

( ) ( ) ( )

( ).
1 1

1
0

1
00

2

∑∑

∑∑

= =

==

−−

−+−=

k

i

k

j
jiji

k

j
jj

k

i
ii

ss

sssss

γλλ

γλγλσ

( ) ( ) ( ).2
1 1 1

00
2 ∑ ∑∑

= = =

−−−=
k

i

k

i

k

j
jijiii sssss γλλγλσ



170

D. OPTIMAL WEIGHTS 

The expression for             is quadratic in the unknowns, 
the weights.  In such case, the necessary and sufficient 
condition to have a unique global minimum is that the 
quadratic term must be equal to or larger than zero, which 
implies that the semivariogram must be negative definite.  
Thus we need to employ only permissible models.

The expression for            is valid for any weights.  
Among the infinite weight combinations, we are interested  
in those minimizing the estimation variance associated 
with the estimator              .  This is a constrained 
operations research problem, best solved by the Lagrange 
method of multipliers.
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LAGRANGE METHOD 

The Lagrange method of multipliers is a procedure for the 
optimization of a function of several variables

constrained by                    .
The solution is found by equating to 0 the    partial 

derivatives of an unconstrained auxiliary function

with respect to all     , regarding the Lagrange multipliers,
, as constants.

The resulting     equations plus the original     constraints
provide a system of equations from which the unknown      
and the auxiliary variables,     , can be calculated.
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TRIVIAL LAGRANGE EXAMPLE 

To find the maximum area of a rectangle whose perimeter 
is the given value    , it is necessary to find the maximum 
value of the product of the sides       , subject to the 
constraint                       .

The auxiliary function is in this case

which after differentiation with respect to the unknowns    
and     gives

whose solution is 

p
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NORMAL EQUATIONS
The Lagrange auxiliary function in this case is:

The derivatives with respect to the unknowns are:

Thus
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E. OPTIMAL ESTIMATION VARIANCE
Multiplying each optimality condition by     and adding them 
together, we have the new optimality relationship:

Because the weights sum up to 1, introducing     under the 
second summation and replacing the resulting double 
summation in the general expression for the estimation 
variance, one obtains:
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SUMMARY
Ordinary kriging normal equations for optimal weights     :   

Ordinary kriging estimate

Ordinary kriging mean-square-error variance:
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INTRINSIC MATRIX FORMULATION
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STATIONARY MATRIX FORMULATION
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EXERCISE
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SAMPLE 

Index Easting Northing Attribute 
1 10 20 40 
2 30 280 130 
3 250 130 90 
4 360 120 160 
? 180 120  

 
 

( ) 250/2000Cov hh −= e



179

EXERCISE

A. Find the estimation weights.
B. Note any interesting peculiarities in the weight 

values.
C. Use the data and weights to evaluate the estimate.
D. Calculate the estimation variance.

Apply ordinary kriging to the previous sample to do 
the following:

Compare to the results obtained using simple 
kriging.
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A. ORDINARY KRIGING WEIGHTS
Distance matrices:

Weights and Lagrange multiplier:
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B. WEIGHT COMPARISON

Weight SK OK 
1 0.185 0.198 
2 0.128 0.141 
3 0.646 0.650 
4 -0.001 0.011 

Sum 0.958 1.000 
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C. ESTIMATES
Using the subscripts OK to denote ordinary kriging and 
SK for simple kriging,
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D. ESTIMATION VARIANCE
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PROPERTIES

Ordinary kriging shares the same properties with simple 
kriging.  In addition,

• .

• For the trivial case of considering only one observation 
in the calculation of the estimate,

where      is the distance from the observation,         , 
to the estimation location,     .
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SEARCH NEIGHBORHOOD
• Because of the screen 

effect and numerical 
instabilities, it is  
recommended that only 
the closest observations to 
the estimation location be 
used.

• Three observations are a 
reasonable bare minimum 
and 25 are more than 
adequate.

• Use octant search to  
further ensure good radial 
distribution.
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SUBSAMPLE SIZE SENSITIVITY FOR THE 
CASE OF THE UNCF DATASET

         
5 0.351 0.311 0.043 0.157 0.137 --- 0.766 0.159 
5 0.358 0.328 0.047 0.157 0.137 -0.047 0.750 0.159 
5 0.356 0.325 0.050 0.178 0.165 -0.074 0.767 0.158 

10 0.355 0.324 0.050 0.178 0.170 -0.077 0.756 0.158 
15 0.355 0.324 0.051 0.178 0.169 -0.077 0.753 0.158 
20 0.355 0.324 0.052 0.178 0.169 -0.078 0.754 0.158 
25 0.355 0.324 0.052 0.178 0.169 -0.078 0.758 0.158 
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The sampling is perfectly regular on a 286 by 286 grid, 
making 81,796 observations with a Gaussian anisotropic 
semivariogram (p. 124):  

The exhaustive sample will be used solely for comparisons.  
All calculations will be done employing the same subset of 
size 40.  Based partly on crossvalidation, its semivariogram is

THE ELY WEST SAMPLE

( ) ( ).35,80E,15NGaussian131.0 ⋅+=hγ

This is a semi-artificial, exhaustive 
dataset that will be used extensively to 
illustrate and compare several methods.

The data are transformed digital 
elevations in an area in Nevada with 
extreme cases of continuity: flat dry 
lakes surrounded by rugged sierras 
running roughly north-south.

( ) ( ).34,80E,10NGaussian111.0 ⋅+=hEγ
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ORDINARY KRIGING WITH SGeMS
A. LOAD SAMPLE

Load data according to instructions in 
chapter 4.

If data previously loaded and saved:
• click on <File>;
• click on <Open Project>;
• select folder and click <OK>.

Loading is complete.
To post data, operate on 

<Object> and <Preferences>.
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B. CREATE GRID FOR STORING RESULTS

• Click on <Objects>;
• click on <New 

Cartesian Grid>;
• fill in options;
• click on <Create 

Grid>.
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C. SET PARAMETERS
• Click on 

<Estimation> and 
then on <kriging>.

• Complete the form. 
To be able to do 
that, it is required to 
previously have 
modeled the 
semivariogram.

• Click on <Run 
Algorithm> when 
ready.

You may want to click on <Save> to store all parameters 
as *.par file for further reference. 
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D.  RESULTS

*
OKz 2

OKσ

Click on camera icon (     ) at lower right corner of screen 
to save maps as electronic files.
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10. UNIVERSAL KRIGING
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INTRODUCTORY REMARKS
There are several instances of attributes—water depth 
near the shore, temperature in the upper part of the 
earth’s crust—that have a clear, systematic variation.  
Hence, models that presume constancy of the mean are 
inadequate for the characterization of such attributes.

Universal kriging is a full generalization of simple 
kriging that takes to the limit the ordinary kriging 
improvement.  Universal kriging removes both the 
requirement that the attribute must have a constant mean 
and that the user must know such constant mean.

As the model complexity goes up, unfortunately so does 
uncertainty.  Thus universal kriging should not be used 
indiscriminately.

Universal kriging is also known as kriging with trend.
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ESTIMATOR

The universal kriging estimator has the same form as that 
for ordinary kriging:

where
denotes spatial location,
are real weights,
is the number of observations to consider, and

is a variate at site     .
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ASSUMPTIONS
1. The residuals         are a partial realization of a 

random function                               , where           is 
the trend or drift of the random function         .

2. As in ordinary kriging, one can select second order 
stationarity or intrinsic hypothesis, depending on 
whether the derivations will be done on terms of 
covariances or semivariograms of the residuals.

3. The mean is now neither known nor constant.
4. The trend in the mean is considered a deterministic 

component amenable to analytical modeling.  The 
most common practice, yet not the only alternative, is 
to employ polynomials of the geographical 
coordinates.  The coefficients become additional 
unknowns in the trend expression. 
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TREND (DRIFT)
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NORMAL EQUATIONS
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• the covariance 

is that of the 
residuals;

• constant 
coefficients ai in 
the expression 
for the drift have 
been filtered 
out.

Note that:
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ESTIMATION ERROR VARIANCE
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SOME MATRIX DEFINITIONS
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MATRIX FORMULATIONS

kKx =

( ) xZs T
UKZ =0
*

( ) xkT
YUK Cov −= 02σ

Normal equations

Estimator

Estimation variance
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NUMERICAL EXERCISE
Elevation of water table in northwestern Kansas is a 
clear example of an attribute with a linear trend.  Use 
the sample to:
A. Apply the semivariogram estimator on page 114 along 

different directions.
B. Obtain the semivariogram for the residuals by fitting a 

model to the experimental semivariogram along the 
trend-free direction—in this case, the only 
experimental semivariogram that is not an artifact.

C.Use the closest observations to estimate the weights 
and Lagrange multipliers at location (60, 193).

D.Find the estimate and its kriging variance.
E. Produce a map of water table elevations using 

SGeMS.
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A. EXPERIMENTAL SEMIVARIOGRAM 
FOR THE ATTRIBUTE
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B. SEMIVARIOGRAM MODEL ALONG 
TREND-FREE DIRECTION

( ) ( )8.29range,3948sillGaussian119 ==+=hγ
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C. WEIGHTS

 
Well 

Easting 
mi 

Northing 
mi 

Elevation 
ft 

993 61.56 197.85 3065.0 
1002 62.94 194.81 3099.4 
1003 55.68 193.56 3200.0 
1502 64.96 189.77 3114.9 
1504 54.80 190.60 3217.1 
1505 59.12 189.47 3189.7 

 60.0 193.0 ? 
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DISTANCES
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COVARIANCES AND UNKNOWNS
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D. ESTIMATE AND VARIANCE
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WEIGHTS, ESTIMATES, AND VARIANCES
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E. WATER TABLE ELEVATION WITH SGeMS 
• Click on 

<Estimation and 
<kriging>;

• Fill in form and 
modify default 
values.  Trend 
model is:

where:
trend

a, b, c: coefficients
X: easting
Y: northing

• Click on <Run 
Algorithm>.

( ) YcXbam ⋅+⋅+=s

( ) :sm
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MAPS

2
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11. BLOCK KRIGING
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MOTIVATION
• Block kriging is the generic name given to any form of 

kriging in which one is interested in estimates of the 
linear average of an attribute inside supports that are 
intermediate in size between the support of the 
observations and the sampling domain.

• This formulation was originally the most widely used 
form of kriging in mining applications.

• Any form of point kriging is a limiting form of an 
equivalent formulation of block kriging.

• Ordinary block kriging under second order stationarity 
is the most common form of block kriging.
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LINEAR AVERAGE

Let         be a point support random function in     and 
let           be a support of finite size    centered around    
.   .  The true block average             at location     is:

( ) ( )
( )

.1

0

0 sss
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dZ
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Z
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( )sZ D
( )0sS S

0s ( )0sSZ 0s



214

ESTIMATOR

The purpose of block kriging is to produce direct block 
averages from point or quasi-point measurements, not 
by averaging point estimates.

Let           be    variates of a random function and let    
.                 be the support for the estimator             at 
site      .  Then the ordinary block kriging estimator is:
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POINT TO BLOCK COVARIANCE

The main peculiarity of block kriging is the use of 
supports of two different sizes for the observations and 
the estimator, and hence covariances between two 
different volume sizes.

Let                  be covariances between the variate      
and all the variates         inside the block    .  Then the 
covariance                 between the site and the block is:

( )ss ,Cov 0 ( )0sZ
S

( ) ( ) .,Cov1,Cv 00 ∫=
S

d
S

S ssss

( )sZ
( )S,Cv 0s
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BLOCK TO BLOCK COVARIANCE

Let                 be covariances between a variate            
in block      and variates          inside the block     .   Then 
the block covariance                    between two blocks is:

( )us,Cov
( )uZiS

( ) ( ) .,Cov1,CV ∫ ∫=
i jS Sji

ji dd
SS

SS usus

( )sZ

( )ji SS ,CV
jS
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ASSUMPTIONS

1. The sample is a partial realization of a random 
function,        , where    denotes spatial location.

2. is second order stationary, which implies:

3.  The mean is constant, but unknown.

s( )sZ

( )[ ] mZ =sE

( )( ) ( )( )[ ] ( ) ,CovE hhss =−+− mZmZ

( )sZ

where       denotes expected value,      is a scalar, 
unknown constant, and    is a vectorial distance.

The minimum set of assumptions required to formulate 
ordinary block kriging are the same as those for ordinary 
kriging.

[ ]⋅E
h

m
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NORMAL EQUATIONS

In an entirely similar way to the derivation of the normal 
equations for point ordinary kriging, one can obtain the 
following system of equations that provides the ordinary 
block kriging weights    :
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ESTIMATION VARIANCE

The minimum mean square error for ordinary block 
kriging,           is:

The form of the expression remains the same as the one 
for point ordinary kriging, but all point covariances have 
been replaced by block-to-block or point-block 
covariances.

( ) ( ) ( ) μλσ −−= ∑
=

k

i
iiOBK SSS
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2 ,Cv,CV ss
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POINT COVARIANCE MODELING

As in other forms of kriging, performance of block kriging 
presumes knowledge of some covariance terms, which in 
this case, however, are of different types.

The solution to this requirement is not different from what 
we have seen before:  model the covariances and ignore 
the effects that the use of models instead of the true 
covariances have in the normal equations.  The common 
practice is to first model the semivariogram and then use

to obtain the point-point covariance model.  The block-
block and point-block covariances are derived from the 
point-point covariance.

( ) ( ) ( )hh γ−= 0CovCov
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NON-POINT COVARIANCE MODELING
In early days of geostatistics there was great effort 
devoted to solve exactly the integrals for point-block and 
block-block covariances for multiples shapes of blocks.

Today the simplest and prevailing practice is to calculate 
the integrals by numerical approximation.  The block is 
tessellated into smaller units that are treated as points and 
then the block covariance is calculated as the average 
between all possible point-point covariances.  The 
following table gives the recommended minimum number 
of subdivisions.

Dimension Subdivisions 
1 10 
2 6 by 6 
3 4 by 4 by 4 
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EXAMPLE OF NUMERICAL 
CALCULATION

The values show the point covariance between the point on 
the left and the center of the 0.05 mile squares of the 
subdivision.  Averaging the 25 numbers gives a value of 
0.682 for Cv(0.3).
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AVERAGE POROSITY
WEST LYONS FIELD, KANSAS

Ordinary kriging Block kriging
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STANDARD ERROR OF
NORMAL SCORES OF POROSITY

Ordinary kriging Block kriging
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12. COKRIGING
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INTRODUCTION
• Simple, ordinary, and universal kriging are not 

multivariate models in the usual statistical sense of the 
term.  Despite the fact that they employ random function 
models comprising infinite numbers of random variables, 
they are employed in the modeling of one attribute at a 
time. 

• The main purpose of cokriging is to work as a true 
multivariate estimation method able to deal 
simultaneously with two or more attributes defined over 
the same domain, which is called a coregionalization.

• Not all attributes must be measured at all locations, but a 
bare minimum of collocated measurements per pair of 
attributes is necessary for structural analysis.
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VECTORIAL NOTATION
Like in spatial univariate geostatistics, geographical 
location is the vectorial term:

Cokriging makes heavy use of vectorial and matrix 
notation for conciseness in the notation and similarity with 
the univariate formulations.  Let us start with the definition 
of a vectorial random function.

If                                                   is a set of    random 
functions defined over the same domain, then the vectorial 
random function         is the vectorial matrix:  

( ) ( ) ( ) ( )ssss pk ZZZZ ,,,,, 21 KK

( )[ ] .,, T
iiii elevationnorthingeasting=s

p

( )sZ

( ) ( ) ( ) ( ) ( )[ ] .21
T

pk ZZZZ sssssZ LL=
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COEFFICIENT MATRIX

The coefficient matrix,     , is the square matrix:

where       are real numbers and    is the number of 
attributes to model.
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ORDINARY COKRIGING ESTIMATOR
The objective of cokriging is to find the minimum mean-
square-error weights for the linear estimator,           :

or

both subject to
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VECTORIAL MOMENTS

For the purpose of listing the assumptions, we need to 
define the vector of means, :

and the matrix covariance

m
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ORDINARY COKRIGING ASSUMPTIONS

1. The sample is a partial realization of a vectorial 
random function,        .

2. is second order stationary, which implies:

3. Each term in m is unknown, but constant.
4. None of the variables is a linear combination of the 

others:

( )[ ] msZ =E
( )( ) ( )( )[ ] ( ) .E hCovmhsZmsZ =−+−

( ) ( ) .,,2,1,0 pkforZaaZ
kj

jjk K=+≠ ∑
≠

ss

( )sZ
( )sZ

The minimum set of assumptions required to formulate 
ordinary cokriging under second order stationarity are:
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NORMAL EQUATIONS

where     is a square matrix of Lagrange multipliers of the 
same order p as the number of attributes in the 
coregionalization.
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ESTIMATION VARIANCE

If 

then the estimation variance for ordinary cokriging             
is:

[ ]Tn μW ''
2

'
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STRUCTURAL ANALYSIS

• Besides the     covariances, the user must model 
additional                   cross covariances.

• * must be positive definite to properly solve the 
normal equations.  Individual selection of permissible 
models for all covariances and cross covariances is 
not sufficient to produce a positive definite

p
( ) 2/1−pp

( )⋅Cov

( ).⋅Cov

The structural analysis required by cokriging is much 
more demanding than the one for kriging because:

The common way to conduct structural analysis is 
through the application of the so-called linear 
coregionalization model.
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LINEAR COREGIONALIZATION MODELING

Linear coregionalization modeling is a solution based on 
the decomposition of all structural functions in terms of a 
basic set of permissible models, first done in terms of 
semivariograms and cross semivariograms and then 
converted to covariances and cross covariances.

For all structural functions to be permissible, all coefficient 
matrices      of order     must be positive semidefinite.  If a 
matrix is positive semidefinite, its determinant, all its 
principal minor determinants, and all its eigenvalues are 
nonnegative.  A cross semivariogram,         , is the moment:
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EXAMPLE OF LINEAR 
COREGIONALIZATION MODEL

The following would be an example of isotropic linear 
coregionalization for the case of two attributes considering 
nugget effect, one exponential model with a range of 200, 
and one spherical model with a range of 150:

This notation implies, for example, that the cross 
semivariogram between attributes 1 and 2 is:
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EFFECTIVE APPLICATION OF COKRIGING

• The secondary variables must be significantly 
correlated to the primary variable.

• A significant proportion of secondary measurements 
must be at locations other than those of the primary 
variable.    

A corollary is that when all attributes are measured at 
the same sites without missing values, cokriging provides 
similar results to kriging of individual attributes. 

Abundant information on additional variables is not a 
guarantee of superior results of multivariate cokriging 
over just kriging for the variable of interest.  The 
following are two prerequisites:
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POROSITY OF SEA FLOOR,
MECKLENBURG BAY, GERMANY

Sample Kriging estimation
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COKRIGING FOR SEA-FLOOR POROSITY 
MECKLENBURG BAY, GERMANY

Cokriging porosity map using porosity 
and grain size median dataSample for grain size median
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13. CROSSVALIDATION
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ACCOUNTABILITY
• Upon selecting any estimator plus its parameters and 

producing estimations for a given spatial attribute, 
crossvalidation addresses the curiosity and need to know 
about the quality of the job done.

• The ultimate approach would be to run an exhaustive 
sampling and then assess the quality of the estimation by 
comparing the new data with the collocated estimates 
produced with the original data.  Unquestionably, the 
best estimator would be the one with the best statistic on 
the basis of a previously agreed criterion.

• As conclusive as this approach may be, its 
implementation ordinarily is impossible to prohibitively 
expensive and defeats the purpose of the estimation in 
practical situations.
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ALTERNATIVE EVALUATION METHOD

• Given a sample of size   , crossvalidation is based on the 
dropping of each observation with replacement.  For 
each ignored observation, an estimate is computed at 
the location of the discarded observation by using at 
most the remaining         measurements.

• By pretending that a drawn observation was never taken, 
one can genuinely attempt to produce an estimate, and 
by comparing it to the deleted measurement, one can 
have an instant and cost free error measurement.

• The discarded observation is replaced in the sample 
before continuing with the analysis.

n

1−n

Crossvalidation is an ingenious alternative to exhaustive 
sampling.
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WORD OF CAUTION

• Crossvalidation does not indicate whether an 
observation, estimate, parameter, or assumption is 
inadequate.

• Complex interdependencies among the errors have 
precluded finding their distribution, thus hindering a 
rigorous analysis or testing of the results.

• Nonetheless, crossvalidation remains a useful tool 
primarily to dispel blunders and assist in drawing 
honest conclusions by comparison, instead of making 
arbitrary decisions or assumptions.

Crossvalidation is a fast and inexpensive way for 
indirectly testing anything about kriging or the data. 
However, one must apply crossvalidation with caution.

Crossvalidation is not part of SGeMS, but it can be 
found in GSLIB.
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UNFAVORABLE CIRCUMSTANCES

Special circumstances deserving extra caution are:
• In the case of kriging, the estimate is insensitive to 

scaling of the semivariogram, thus making the 
estimates insensitive to proportional changes in both 
sill and nugget.

• Irregular sampling patterns may lead to 
unrepresentative errors.  A typical situation is the 
sampling in clusters, which results in abnormally low 
errors at all locations making the clusters.  For better 
results, decluster first, then crossvalidate.
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DIAGNOSTIC STATISTICS
Comparisons or remedial actions based on crossvalidation 
are more straightforward and conclusive if the collection of 
errors is reduced to some key statistics such as:

There is plenty of redundancy in the statistics.  In addition, 
all statistics do not always point in the same direction.

• Some quantiles of the error distribution, such as the 5th

percentile, the median, and the 95th percentile.
• The mean and standard deviation for the square of the 

errors.
• The slope and intercept of the regression line between 

the measured and estimated values.
• The correlation coefficient between the measured and 

estimated values.
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CRITERIA
Guidelines to follow based on the statistics include:
• The ideal estimation method should result in no errors 

and a correlation coefficient between measurements and 
estimates of 1.

• Large individual errors may be the effect of blunders or 
outliers.  Data preparation and coding, including 
geographical location, should be checked carefully.

• A slope different from 45o in the regression line between 
measurement and estimates denotes conditional bias.

• Ideally, errors should be spatially uncorrelated, resulting 
in a pure nugget effect semivariogram.

• If the z-scores—the ratio of the error over the standard 
error—follow a standard normal distribution, one cannot 
discard the possibility that the errors are multinormally 
distributed.
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PRACTICAL EXAMPLE: UNCF
A. For an 8-km search radius,  

employ crossvalidation for 
finding the optimal number 
of estimation points.

B. The sample size is too 
small for a directional study 
of the semivariogram. 
Employ crossvalidation for  
investigating anisotropy.

C. Utilize optimal parameters 
to run ordinary kriging.

D. Analyze crossvalidation 
errors.
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A. OPTIMAL NUMBER ESTIMATION 
POINTS

For an 8-km search radius, the mean square error of 
ordinary kriging is minimum when the maximum 

  number of estimation points is 11.
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B. INVESTIGATION OF ANISOTROPY
For anisotropic semivariograms, the practice is to vary 
the range as the length of a cord from the center to the 
perimeter of an ellipse.  Below are the results of an 
analysis keeping the average of the axes equal to the 
isotropic range.
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  8107  8107              N 361.2 
  8500  7714              N 302.8 
  9000  7214              N 257.7 
  9300  6914              N 247.0 
  9400  6810              N 246.0 
  9500  6714              N 246.2 
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C. OPTIMAL ORDINARY KRIGING 
PARAMETERS

• Minimum number of observations:  3
• Maximum number of observations:  11
• Search neighborhood radius:     8,000 m
• Best semivariogram model

Type:             Gaussian
Nugget:                10 sq ft
Sill:                  5,640 sq ft
Major range:    9,400 m

Direction:     N10E
Minor range:    6,814 m



251

C. ORDINARY KRIGING MAPS

Estimated depth

m

m

Kriging standard deviation

m

m
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D. CROSSVALIADATION ERRORS (1)

• Errors are slightly positive.
• Distributions for estimated 

and true values are 
extraordinarily similar.

• Crossvalidation errors are 
spatially correlated.
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D. CROSSVALIDATION ERRORS (2)

• The Kolmogorov-Smirnov pu -value is 0.59, which is 
significantly larger than 0.1.  Thus, one cannot reject 
the normality of errors.

• The larger the standard error, the larger the error 
dispersion, but without being correlated.

D = 0.09
pu = 0.59
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14. CRITICAL REVIEW
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SAMPLING

• Minimum mean square error methods—kriging 
included—produce realistic estimations when the 
average sampling interval is one order of magnitude 
smaller than the minor axis of the semivariogram 
range.

• As the sampling becomes sparser, maps based on 
kriging show increasing smoothing, which can be 
appreciated in various ways.
We explore here the weak sides of kriging as a 

motivation to go into stochastic simulation.
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EVALUATION OF ORDINARY KRIGING 
THROUGH THE  EXHAUSTIVE SAMPLE 

AT ELY WEST

Exhaustive sample
81,796 measurements

Ordinary kriging map
40 measurements



257

CROSSVALIDATION

Estimated values 
are close to being 
pure noise, with 
estimates for low 
measurements 
above the main 
diagonal and 
conversely for the 
highest data values.

This a form of 
smoothing.
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SEMIVARIOGRAMS OF 
ORDINARY KRIGING MAP

There is wide disagreement between the actual 
semivariogram and that of the ordinary kriging map.  
This is a consequence of smoothing.
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HISTOGRAMS

The ordinary kriging histogram is not bimodal like the 
histogram of the exhaustive sample, which is also a 
consequence of smoothing.
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CUMULATIVE DISTRIBUTIONS

Discrepancy in the proportion of zeros results in 
clearly different distributions.
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ERRORS ACCORDING TO 
EXHAUSTIVE SAMPLE

In agreement with the global unbiasedness of kriging, the 
errors are symmetric around a value approximately equal 
to zero.



262

SEMIVARIOGRAM OF ERRORS 
ACCORDING TO EXHAUSTIVE SAMPLE

Errors are spatially correlated, with a range remarkably 
similar to that of the sample, but with a significantly 
smaller sill.
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A VIEW AT ERRORS AND 
KRIGING STANDARD DEVIATIONS 

Kriging standard deviationErrors

4

3 2 2 3

4

Most kriging standard deviations are no 
more than twice the error, but there is 
no correlation, nor the type of assurance 
provided by the Chebyshev’s theorem.
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REMEDIAL ALTERNATIVES
There have been efforts along two different lines to 
eliminate smoothing:
• Compensation procedures
• Simulation

Success of compensation procedures has been 
limited.

By far the bulk of the effort and results have been in 
the generation of equiprobable realizations using 
simulation.

When simulation is used, uncertainty is modeled by 
generating several realizations.  The wider the 
discrepancies, the larger the uncertainty.
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SIMULATION METHODS

The most common methods are:
• Turning bands method
• Lower-upper triangular method
• Truncated plurigaussian methods
• Object oriented methods
• Sequential Gaussian simulation
• Simulated annealing
• Filter simulation

When a realization by any method reproduces the 
value and location of all observations, the procedure is 
said to be a conditional simulation. Otherwise, it is an 
unconditional simulation.
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15. SEQUENTIAL GAUSSIAN 
SIMULATION
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BACKGROUND

Sequential Gaussian simulation is a stochastic method that 
is basically multigaussian kriging with feedback.

Let          be a subset of     variates of a random function
and let         be a sample of size    .  As a consequence of 
Bayes’s theorem, one can break a bivariate cumulative 
frequency distribution function into the product of two 
univariate cumulative frequency distribution functions:

where                        is the probability                 
conditional to the original sample plus a value          drawn 
from the distribution                 
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EXTENSION OF THE 
DECOMPOSITION 

By extension, the decomposition of a bivariate distribution 
can be generalized to any number of variates.

Sequential Gaussian simulation is a practical 
implementation for the generation of numerical realizations 
when it is assumed that the form of the  joint distribution     
. is normal, in which case all 
univariate distributions are also normal.
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TEN-STEP APPROACH (1)

1. In case the sample is not univariate normal, transform 
the data into normal scores.  SGeMS can do it, going to 
<Algorithms> then <Utilities> then <transf>.

2. Using standard semivariogram modeling techniques, 
find the best semivariogram model for the transformed 
data.

3. Pick nodes at random and stack them all in a visitation 
queue.

4. For faster execution, move the data to the closest node.  
In case two or more observations land in the same 
node, implement a criterion to end up with one value 
per node, such as averaging or discarding.

To generate a partial realization of a random function at the 
nodes of a regular grid, do the following:
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TEN-STEP APPROACH (2)
5. From the node sequence queue, draw the next location      

. due for the calculation of a simulated value.  Employ 
multigaussian kriging to find the estimate            and the 
corresponding estimation variance            using an 
expanded sample comprising all    original data plus all 
values that may have been already simulated.
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TEN-STEP APPROACH (3)

9. If      is not the last node in the queue, then go back to 
Step 5.

10. In case Step 1 was necessary, backtransform all the 
values in the partial realization to the original sampling 
space.

7. Draw at random a value,          

   

x

z(
s,

x)

*z

σ

. , from                           
The number           is the 
simulated value at location    
.

8. Add            to the expanded 
sample.
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EXERCISE

A. Generate 100 realizations by sequential Gaussian 
simulation; compare the first one to the exhaustive sample.

B. Examine the semivariograms for the first realization along 
the north-south and east-west directions and compare 
them to the exhaustive semivariogram.

C. Compare the histograms for the exhaustive sample and 
the first realization.

D. Prepare a Q-Q plot to compare the same distributions.
E. Use the exhaustive sample to obtain the errors for the first 

realization.  Map them and study the semivariogram.
F. Investigate errors in the first realization and the standard 

deviation that results from all realizations at every node.

Use SGeMS and the Ely West sample of size 40 (page 188) 
to do the following:
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A. SGeMS CODE FOR GENERATING 100 
SEQUENTIAL GAUSSIAN SIMULATIONS

• Note that the 
attribute is the 
data, not the 
normal scores.

• However, the 
semivariogram 
is for the 
normal scores, 
not for the 
attribute.

• If required, the 
backtransfor- 
mation is done 
automatically.
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TWO REALIZATIONS FOR ELY WEST

These are conditional realizations honoring the same 40 
data.  Thus, although hard to note, the values of both 
realizations at those 40 nodes are the same.



275

BACK TO THE EXHAUSTIVE CASE

Exhaustive sample
81,796 measurements

First realization
40 measurements
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B. FIRST REALIZATION 
SEMIVARIOGRAMS

Agreement is not perfect but is significantly better 
than in the case of kriging.
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C. HISTOGRAMS

The realization follows the sample histogram, not that of 
the exhaustive sample.
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D. CUMULATIVE DISTRIBUTIONS

According to the Q-Q plot, agreement between distributions 
is also better than in the case of ordinary kriging. 
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E. ERRORS ACCORDING TO 
EXHAUSTIVE SAMPLE

Errors are unbiased but are larger than those for 
kriging.
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SEMIVARIOGRAM FOR ERROR IN 
FIRST REALIZATION

The error semivariogram resembles that of the 
attribute.
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F. A LOOK AT FIRST REALIZATION ERRORS 
AND NODAL STANDARD DEVIATIONS

Nodal standard deviationErrors
4

3 2 2 3

4

Given a node, the nodal standard deviation 
is the standard deviation of the values from 
all realizations at that node.

Larger standard deviations are associated 
with large errors, but there is no correlation.
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16. SIMULATED ANNEALING
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THE GENERAL IDEA
Simulated annealing was one of the first methods for the 
modeling of spatially correlated attributes that moved away 
from generating values for uninformed nodes by combining 
the sample values.

Simulated annealing started as an approach to model the 
cooling of a piece of hot metal, but it is now more widely 
used as an optimization tool instead.

In geostatistics, simulated annealing is used to move 
around node values in order to have a realization with 
some property as close as possible to a target function, 
which commonly is the semivariogram.

Its main feature is the lack of any distributional 
assumptions.
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“COOLING” A GRID

A simulation grid is populated by placing each sample 
value at the collocated or closest node.  The unsampled 
nodes are given values randomly taken from a probability 
distribution, typically that of the sample.

By so doing, the realizations honor the data and the 
selected histogram, but in a typical situation, unless the 
sample is large relative to the grid size, the grid is totally 
chaotic and lacking spatial correlation.

The aim of simulated annealing is to transform the grid 
to gain additional properties, customarily to be spatially 
correlated by following a semivariogram model.
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OBJECTIVE FUNCTION
When the target function is a semivariogram model      , the 
objective function G is:

where          is the semivariogram of the realization.
Reduction in the value of G is achieved through swapping 

pairs of values at nodes which are not sampling locations.
Key to a successful process is not to reject 100 percent of 

the exchanges of nodal values that do not result in an 
improvement of the objective function G.

The cooling schedule controls the proportion of 
unfavorable swaps as a function of total swaps attempted.
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COMPONENTS OF AN 
ANNEALING SCHEDULE

t is the temperature, starting at    ;
temperature reduction factor;
is the maximum number of all swaps for a given 
temperature, after which it is reduced by   ;
is the maximum number of accepted swaps for a given 
temperature, after which it is reduced by   ; 
is the maximum number of times for reaching     ;

is the acceptable value for the objective function.
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ANNEALING IN ACTION

G=1
Swaps=0

G=0.2
Swaps=2,640,088

G=0.0001
Swaps=10,895,372
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FEATURES
• No computational power at all is used to calculate node 

values.
• As all nodal values are drawn from the sample 

distribution, its representativity is more critical than for 
the other simulation methods.

• All efforts are devoted to moving around node values.
• Given a sample, processing time is in general the 

longest among simulation methods, which increases 
more steeply than linearly with the number of grid nodes.

• Despite its novel computational approach, simulated 
annealing continues to rely on a sample and global 
properties that can be derived from the sample, most 
commonly the semivariogram.

• The most salient property is independence from any 
distributional assumptions.
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REPETITION OF PAGE 272 EXERCISE 
NOW FOR SIMULATED ANNEALING

The method is not part of SGeMS, but it is in GSLIB.
                   Parameters for SASIM (1992) 
                   *************************** 
  
START OF PARAMETERS: 
s40.dat                                 \conditioning data (if any) 
1   2   0   4                           \columns: x,y,z,vr 
-1.0e21    1.0e21                       \data trimming limits 
0                                       \0=non parametric; 1=Gaussian 
s40.dat                                 \non parametric distribution 
4   0                                   \columns: vr,wt 
0   14.0                                \minimum and maximum data values 
1      1.0                              \lower tail option and parameter 
4      2.0                              \upper tail option and parameter 
sasim.out                               \output File for simulation 
sasim.var                               \output File for variogram 
3      500000                              \debug level, reporting interval 
sasim.dbg                               \output file for debugging 
1                                       \annealing schedule? (0=auto) 
1.0  0.12  4000000  400000  5  0.0001   \manual schedule: t0,lambda,ka,k,e,Omin 
2                                       \1 or 2 part objective function 
112063                                  \random number seed 
100                                     \number of simulations 
286 0 1                                 \nx,xmn,xsiz 
286 0 1                                 \ny,ymn,ysiz 
1    0.0    1.0                         \nz,zmn,zsiz 
150                                     \max lags for conditioning 
1   0.1   0                             \nst, nugget, (1=renormalize) 
3   45.0   13.0                         \it,aa,cc:       STRUCTURE 1 
15.0  0.0  0.0  0.45  0.0            \ang1,ang2,ang3,anis1,anis2:



290

A. TWO REALIZATIONS FOR ELY WEST
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BACK TO THE EXHAUSTIVE CASE

Exhaustive sample
81,796 measurements

First realization
40 measurements
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B. SEMIVARIOGRAMS FOR 
THE FIRST REALIZATION

Semivariogram reproduction is good.
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C. HISTOGRAMS

Exhaustive sample First realization

There is also good reproduction of the sample histogram.
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D. CUMULATIVE DISTRIBUTIONS

Agreement between the distributions of realizations 
and the population is limited only by the unbiasness 
of the empirical sample.
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E. ERRORS IN FIRST REALIZATION 
ACCORDING TO EXHAUSTIVE SAMPLE

Errors are comparable to those of sequential Gaussian 
simulation.
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ERROR SEMIVARIOGRAMS 
FOR FIRST REALIZATION

Errors have a semivariogram resembling the 
semivariogram of the attribute.
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F. TRYING TO RELATE ERRORS AND 
NODAL STANDARD DEVIATIONS

Nodal standard deviation

Errors in first 
realization

4

3 2 2 3

4

The tendency of errors to stay within 
four nodal standard deviations is still 
true, but it is less pronounced than 
for kriging and sequential Gaussian 
simulation.
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17. FILTER SIMULATION
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CLASSICAL GEOSTATISTICS

• Until recently, geostatistics had evolved to provide 
modeling tools relying on methods typical of 
stochastic processing.

• Central to past developments is the heavy use of 
moments up to order 2, particularly the 
semivariogram or its equivalent the covariance.
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MULTIPLE POINT STATISTICS

• The first attempts to expand classical geostatistics 
aimed at using the sample to calculate statistics 
involving three or more points.

• These efforts have had limited success because of 
the high demands in terms of sample size required for 
the estimation of higher order moments.
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MULTIPLE POINT RELATIONSHIPS

• However, the idea of considering relations among 
several points has stayed.

• The concept of moment has received less 
attention than techniques related more to image 
analysis and pattern recognition, such as filtering 
and cluster analysis.
Filter simulation is a member of the multipoint 

statistics family of simulation methods.  It is based on 
pattern recognition and does not require the 
semivariogram at all, even though one can still 
estimate it for purpose of evaluation or comparison.
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MULTIPOINT SOURCES
Sources of multiplepoint 
relations are:
• either images borrowed 

from sites considered 
analogous to the one of 
interest or

• synthetic models 
generated on the basis of 
first geological principles

Courtesy of A
. Journel, Stanford U

niversity

These pictures are called 
training images.  They are 
absolutely critical to the 
success of the simulation.
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FILTERING

Filters are used to extract essential pattern information, 
such as average, gradient, and curvature.  SGeMS 
employs six filters for two-dimensional patterns and nine 
in three-dimensional cases.

applied

kth filter weights pattern kth score value

to

results

in

a  scoreFilter weights a pattern

applied

to

generate

C
ourtesy of A

. Journel, 
S

tanford U
niversity
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CLUSTER ANALYSIS
The general idea is to group objects 
in attribute space into clusters as 
internally homogeneous as possible 
and as different from the other 
clusters as possible.

Different types of approaches, 
distances, and proximity criteria have 
resulted in several methods.  Filter 
simulation offers two:
• Cross partition, where classes are defined by the 

quantiles of each filter score.  Two patterns belong to the 
same cluster if they are bounded by the same quantiles 
for all filters.  Results depends on the number of quantiles.

• K-means, which operates by trial and error.  Cluster 
membership  evidently varies with the number of clusters.
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EXAMPLE OF CATEGORICAL CLUSTER
Prototype

Courtesy of A
. Journel, Stanford U

niversity

• The prototype here 
is the average of 56 
template patterns 
from a training 
image involving two 
lithologies.
• By the nature of 
cluster analysis, all 
the patterns are 
quite similar.



306

FILTER SIMULATION
Filter simulation is closer to putting together a puzzle than 
to estimation.  The steps to generate a realization are:
1. Define a grid and select a training image large enough to 

enclose the study area.
2. Tessellete  the training image into small templates.
3. Use different filters to generate scores to characterize 

template patterns.
4. Use the filtering multivariate information to classify the 

templates into clusters that group pattern styles.
5. Define a random visitation sequence.
6. Select at random a template from the cluster best 

matching the conditioning data or select a template at 
random if there is no conditioning data.

7. Paste the central portion of the template (inner patch) in 
the realization.

8. Go back to Step 5 until the modeling is completed. 
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DIAGRAMATIC GENERATION OF AN 
UNCONDITIONAL REALIZATION

Training image

Courtesy of A
. Journel, Stanford U

niversity

Note that the progression is by patches, not by pixels.
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BACK TO THE ELY WEST EXAMPLE
Training image

The training image must at least extend over the area 
of interest.
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PAGE 272 EXERCISE ONCE MORE, NOW 
EMPLOYING FILTER SIMULATION
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A. TWO REALIZATIONS FOR ELY WEST
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COMPARISON TO EXHAUSTIVE SAMPLE

Exhaustive sample
81,796 measurements

First realization, based on
40 measurements plus 

the training image
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B. SEMIVARIOGRAMS 
FOR FIRST REALIZATION

Reproduction of exhaustive semivariogram is not as 
good as that of simulated annealing, but comparable 
to the overall approximation by sequential Gaussian 
simulation.
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C. HISTOGRAMS

Filter simulation does a superior job approximating the 
histogram of the exhaustive sample because of the 
positive influence of the training image.
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D. Q-Q PLOT

The distribution for the first realization is in close 
agreement with that of the exhaustive sample. 
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E. ERRORS IN FIRST REALIZATION 
ACCORDING TO EXHAUSTIVE SAMPLE

Errors are unbiased and the lowest among the simulation 
methods considered in this primer.
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ERROR SEMIVARIOGRAMS

In common with all other methods, errors here are 
correlated.  The semivariogram resembles the one for 
the attribute being modeled.
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F. A VIEW OF ERRORS AND NODAL 
STANDARD DEVIATIONS

Nodal standard deviationError

5 5

3 2 2 3

Above a nodal standard deviation of 
1.5, the dispersion of errors tends to 
be the same regardless of the value of 
the nodal standard deviation.
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18. RELIABILITY
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UNCERTAINTY
From the outset, the 
quantitative 
assessment of the 
uncertainty associated 
with the resulting 
models has been an 
important objective of 
geostatistics.

Basic for the analysis is having information about 
the probability distribution of the errors.

This chapter explores the different ways in which 
geostatistics uses results from previous methods for 
uncertainty assessment.
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THE RANDOM FUNCTION MODEL

By collecting the values of multiple realizations at the 
same node, it is possible in practice to model the 
concept of multiple variates over a sampling domain.

s

t

Diagrammatic idea

After Christakos and others, 2005.

Reproduced with kind permission of Springer Science and Business Media

Actual implementation:
central node, Ely West
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MAPS OF MOMENTS

Although nodal distributions have all the information for 
assessing uncertainty, customarily there are so many 
nodes that their individual inspection is impractical, 
creating, once more, a need to prepare summaries.

The easiest solution is to map some consistent 
summary statistic for the nodal distributions.  The most 
common options are:
A. Nodal mean, also known as E-type
B. Nodal standard deviation

Both options share the advantage of reducing all 
information to one map, no matter how many the 
realizations.
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A.  NODAL MEAN MAP
• E-type maps tend to remind us of kriging maps, sharing 

their smooth appearance.
• As in kriging, smoothing disqualifies E-type maps from 

being realistic models.
• In the unlikely event that an E-type map is a good model, it 

is always less demanding to prepare it by using kriging.

Ordinary kriging estimation Sequential Gaussian simulation

The link between E-type maps and kriging is an interesting 
fact to remember, but E-type maps lack practical interest.            
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B. NODAL STANDARD DEVIATION MAPS

Ordinary kriging estimation Sequential Gaussian simulation

• The resemblance between standard deviations from 
simulation and kriging can be good, but never as good as 
the one for the means.

• Although nodal standard deviation provides a semi-
quantitative feeling about uncertainty, other summary 
statistics are more efficient for summarizing the 
information contained in the realizations.
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NORMALITY
Kriging can be used in reliability 
estimation, but it is necessary to 
assume the form of the nodal 
distributions.  The common 
practice is to assume normality, 
with a mean equal to the 
estimate,      and a standard x

z(
s,

x)

*z

*σ

When the errors indeed follow a multivariate normal 
distribution reasonably closely, results can be quite 
reliable, as we will see for the case of the UNCF sample.

Whereas kriging may not be great at characterizing the 
true attribute, it can do a much better job, comparable to 
that of simulation, when it comes to assessing confidence 
intervals.

.*σ
,*z

deviation equal to the kriging standard error,
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BEST DISPLAYS FOR SUMMARIZING 
UNCERTAINTY

A. The probability distribution for some global attribute 
after reducing each realization to one single number, 
which can be of the same nature or different from 
the sampled attribute.

B. The kth percentile map displaying the threshold for 
which there is a probability                       that the 
true value is less than or equal to the threshold. The 
units of this type of map are the same as those of 
the attribute.

C. A probability map showing the chances that the true 
value be equal to or less than a given threshold.

D. Interval probability map displaying fluctuations in the 
chances that the true value be between a pair of 
fixed values.

1100/0 ≤≤ k
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A.  SUMMARY DISTRIBUTIONS 
ASSESSING GAS POTENTIAL IN 

GREATER NATURAL BUTTES, UTAH
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B. BACK TO THE UNCF EXAMPLE.  
10th PERCENTILE MAP

Ordinary kriging estimation

( ) ( )[ ] 10.0_Prob =≤ ss valuenodeZ

Sequential Gaussian simulation
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C. PROBABILITY MAP FOR TWO 
THRESHOLDS USING SEQUENTIAL 

GAUSSIAN SIMULATION

( )[ ]7966Prob ≤sZ( )[ ]7872Prob ≤sZ
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PROBABILITY MAP FOR TWO 
THRESHOLDS USING ORDINARY KRIGING

( )[ ]7966Prob ≤sZ( )[ 7872Prob ≤sZ ]
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D. INTERVAL PROBABILITY

Ordinary kriging estimation

( )[ ]79667872Prob ≤≤ sZ

Sequential Gaussian simulation
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BACK TO ELY: WHERE ARE TRUE VALUES 
LANDING AT THE NODAL DISTRIBUTIONS?

Each node shows 
the cumulative 
probability below 
the true value, 
which requires 
consideration of 
all realizations.

Blanks denote 
that the true value 
is outside the 
nodal distribution, 
certainly not a 
good situation.
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ACCURACY OF CONFIDENCE INTERVALS

Using the nodal 
distributions, for a 
given probability, the 
scatterplots show how 
frequently the true 
values are indeed 
below the quantile 
associated with the 
given probability.

Note that these plots 
are global assessments 
comprising all nodes 
for all realizations.
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19. NAVIGATION CHARTS
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KRIGING OR SIMULATION?

• Perform kriging if the paramount criterion is individual 
minimization of prediction error or if the main interest is an 
exploratory mapping of a poorly known attribute through a 
deliberately smooth, thus simplified, version of reality.

• Go for simulation if it is not acceptable having to assume 
normality of the errors for reliability assessment, if correct 
modeling of spatial continuity is more important than local 
accuracy, or if there is interest in a stochastic assessment 
of some global attribute, such as the examples in page 326.

Although there are no clear excluding rules, common criteria 
to prefer one approach over the other are:

Always remember that, unless you are in a terrible hurry, 
nothing prevents trying both kriging and simulation, as done 
with the Ely data, and judge according to the results.
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RANKING OF FOUR METHODS
IN THE SPECIAL CASE OF ELY WEST

Exhaustive sample

1 2

3 4

Method Distribution 
reproduction 

Semivariogram 
reproduction 

 
Texture 

 
Transition 

 
Error 

Confidence 
interval 

 
Total 

1. Filter simulation 1 2 1 1 2 2 9 
2. Sim. annealing 2 1 3 2 3 1 12 
3. Seq. Gauss. sim. 2 2 2 4 3 4 17 
4. Ordinary kiriging 4 4 4 2 1 3 18 
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WHAT TYPE OF KRIGING?

• Use simple kriging if there is no trend and the population 
mean is known, a rare situation.

• Run ordinary kriging if the mean is unknown and the  
trend is approximately constant within the search 
neighborhood (page 185).  This is the predominant case.  
Ordinary kriging is actually a special name for universal 
kriging for a polynomial of degree 0.

• Otherwise, employ universal kriging proper of degree 1 or 
2, whose main feature is extrapolation, which is still poor.

Selection of the type of point kriging is ruled by the 
knowledge of and type of mean (trend).

Use the same criteria to decide the type of block kriging 
and cokriging.

As the complexity of the trend model goes up from simple 
to universal kriging, so does the estimation variance.

As for the use of semivariogram or covariance, the choice 
is immaterial because they are equivalent.
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WHAT KIND OF SIMULATION?

• Apply filter simulation if you already have a good idea 
about the spatial variation of your attribute, good 
enough to be able to provide a training image.  Quality 
of results are crucially dependent on the quality of the 
training image.

• In terms of usage, popularity of the methods is divided 
among the other two types covered here.  Go for 
simulated annealing if you want to stay away from any 
form of normality assumption and the grid size is less 
than 100,000 nodes.

• Otherwise, try sequential Gaussian simulation.
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