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Outline 

• Update on Regional Stress Field of the CEUS 
• 10 stress inversions from (Mazzotti and Townend, 2010) 
• 52 New Well-Constrained Focal Plane Mechanisms 

(Hurd and Zoback, 2012) 
• Strength of Crustal Faults in CEUS 

• Hurd and Zoback revisiting ML Zoback (1992) 
• Stress and Fault Strength in New Madrid Region 
• A Few Words About Crustal Rheology  

 
 

Slide 2 



 
Fault Slip in 
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and Coulomb 
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Zoback and Zoback (1980, 1989) 

Relatively Uniform Stress Orientations Across Complex Geologic Boundaries       
 

Intraplate Earthquakes Result from Contemporary Stress Field Acting on Pre-
Existing Faults 

Zoback and Zoback (1980, 1989) Slide 4 



 

2008 1989 1989 

Little Progress in Mapping Intraplate 
Stress in CEUS ~ 20 Years Slide 5 



Stress Inversions in Areas of Dense Seismicity 
Mazzotti and Townend (2010) 
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52 New Focal Plane Mechanisms 
Hurd and Zoback (2012) 
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Mapping Relative Stress Magnitudes 
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82 data  
points 

Mapping Relative Stress Magnitudes 
Hurd and Zoback (2012) 
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Townend and Zoback (2000) 

Strong Crust in Intraplate Areas 
Lab Coefficients of Friction and Hydrostatic Pore Pressure 

Stress Measurements 

Slide 11 



Estimating Fault Strength From Stress/Fault Orientation 

Assume Mohr-Coulomb Criterion 

τ = µ(SN – PP) 

Question – If we assume hydstrostatic PP, is the 
relationship between the local stress field 
(derived from independent data) and slip on one 
of the nodal planes of each focal plane 
mechanism consistent with laboratory-derived 
coefficients of friction?  

Hurd and Zoback (2012) 

Friction Defines Orientation Between Stress  
Field and Optimally-Oriented Fault Planes 
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Slip Compatibility Test 

1) Rotate nodal plane strike from +45°  
2) At each strike, rotate dip + 45°  
3) Calculate µ that explains slip vector on each nodal 

plane 
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Which tells us: 
 

(1) Which nodal plane is preferred (for example, 
closer to the nearest plane that would fail if  

     µ = 0.6) 
 

(1) How close (in terms of strike and dip 
deviation) this preferred plane is to an 
optimally-oriented plane 

Slip Compatibility Test 
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Stress Field and Slip on Preferred Nodal Plane 
Consistent With µ=0.6 
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Summary 

• New data points confirm consistent NE-SW 
SHmax in most of the CEUS (but there are 
exceptions) 

• Horizontal stresses become increasingly 
compressive moving from central U.S. to 
northeastern U.S. and SE Canada 

• Slip compatible with µ=0.6 on preferred nodal 
plane in the regional stress field 

• So what about the New Madrid region? 

Slide 16 



2008 WSM Data Base 

New Madrid Focal Plane Mechanisms 

New FM’s and Mazzotti and 
Townend Inversions 
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2008 WSM Data Base 

1963  1962 
1975 

New Madrid Focal Plane Mechanisms 

New FM’s and Mazzotti and 
Townend Inversions 

18 FM’s prior to 2005 
90% Confidence 

N73ºE < SHmax< N92ºE 

FM’s 1-10  
2008-2010 
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Summary 

• New data points confirm consistent NE-SW 
SHmax in most of the CEUS (but there are 
exceptions) 

• Horizontal stresses become increasingly 
compressive moving from central U.S. to 
northeastern U.S. and SE Canada 

• Slip compatible with µ ≈ 0.6 on preferred nodal 
plane in the regional stress field 

• Slip on faults in New Madrid seem consistent 
with regional stress field for expected values of 
fault friction 
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USGS Seismicity 
1964–2010 
(Mag. ≥ 3.0) 
O. Boyd (2010, written commun.) 
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Brittle Failure in Critically-Stressed Crust Results  
From Creep in Lower Crust and Upper Mantle 

Zoback and Harjes (1997) 

Brittle Crust in Failure Equilibrium  
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(Calais and others, 2010) Slide 23 



Concentrated Deformation in  
Area of a Localized Weak Mantle Model? 
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Grollimund and Zoback (2001) 



 

Bermuda Hot Spot Track 
(in New Madrid Area in Late Cretaceous Time) 

1886 
Charleston 

1811-1812 
New Madrid 

Geologic History and Inheritance of Potential Seismogenic 
Structures is Important 

1775 
Cape Ann 

Charlevoix 
5 historic events 

M > 6 
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Brittle Failure in Critically-Stressed Crust Results  
From Creep in Lower Crust and Upper Mantle 

Brittle Crust in Failure Equilibrium  
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