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Louisiana Barrier Island Comprehensive Monitoring 
(BICM) Program Summary Report: Data and Analyses 2006 
through 2010

By Jack L. Kindinger1, Noreen A. Buster1, James G. Flocks1, Julie C. Bernier1, and Mark A. Kulp2

Executive Summary
The Barrier Island Comprehensive Monitoring (BICM) program was implemented under the Louisiana Coastal 

Area Science and Technology (LCA S&T) office as a component of the System Wide Assessment and Monitoring 
(SWAMP) program. The BICM project was developed by the State of Louisiana (Coastal Protection Restoration Authority 
[CPRA], formerly Department of Natural Resources [DNR]) to complement other Louisiana coastal monitoring programs 
such as the Coastwide Reference Monitoring System-Wetlands (CRMS-Wetlands) and was a collaborative research effort 
by CPRA, University of New Orleans (UNO), and the U.S. Geological Survey (USGS). The goal of the BICM program 
was to provide long-term data on the barrier islands of Louisiana that could be used to plan, design, evaluate, and maintain 
current and future barrier-island restoration projects. The BICM program used both historical and newly acquired (2006 
to 2010) data to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture 
and geotechnical properties, environmental processes, and vegetation composition. BICM datasets included aerial still 
and video photography (multiple time series) for shoreline positions, habitat mapping, and land loss; light detection 
and ranging (lidar) surveys for topographic elevations; single-beam and swath bathymetry; and sediment grab samples. 
Products produced using BICM data and analyses included (but were not limited to) storm-impact assessments, rate of 
shoreline and bathymetric change, shoreline-erosion and accretion maps, high-resolution elevation maps, coastal-shoreline 
and barrier-island habitat-classification maps, and coastal surficial-sediment characterization maps.

Discussions in this report summarize the extensive data-collection efforts and present brief interpretive analyses 
for four coastal Louisiana geographic regions. In addition, several coastal-wide and topical themes were selected that 
integrate the data and analyses within a broader coastal context: (1) barrier-shoreline evolution driven by rapid relative 
sea-level rise (RSLR), (2) hurricane impacts to the Chandeleur Islands and likelihood of island recovery, (3) impact of 
tropical storms on barrier shorelines, (4) Barataria Bay tidal-inlet management, and (5) habitat changes related to RSLR. 
The final theme addresses potential future goals of the BICM program, including rotational annual to semi-decadal 
monitoring, proposed new-data collection, how to incorporate technological advances with previous data-collection and 
monitoring protocols, and standardizing methods and quality-control assessments for continued coastal monitoring and 
restoration. 

Introduction
The historical conversion of Louisiana’s wetlands, cheniers, and barrier islands to open water has been well 

documented in numerous studies and anecdotal observations (Williams and others, 1992; List and others, 1997; Morton 
and others, 2004; Georgiou and others, 2005; Penland and others, 2005; Barras and others, 2008; Blum and Roberts, 
2009; Fearnley, Miner, Kulp, FitzGerald, Flocks, and others, 2009; Couvillion and others, 2011; Linscombe and Hartley, 
2011). The Barrier Island Comprehensive Monitoring (BICM) program (2006 to 2010) was developed to provide baseline 
and monitoring data to support coastal-management decisions and adaptive-management planning. The BICM program 
was initiated under the Louisiana Coastal Area Science and Technology (LCA S&T) office as a component of the System 
Wide Assessment and Monitoring (SWAMP) program (USACE, 2004), planned by the Coastal Protection and Restoration 

1U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida 33701, USA
2Department of Earth and Environmental Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
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Authority (CPRA, previously Louisiana Department of Natural Resources, LDNR) and implemented by a collaborative 
research effort by CPRA, University of New Orleans (UNO), and the U.S. Geological Survey (USGS). The BICM 
program study area encompassed barrier islands and sandy shorelines extending from the Chandeleur Islands west to the 
Chenier Plain of Louisiana (fig. 1). 

Five main objectives were originally identified:

(1) Determine the elevation, longevity, and conservation mass of the barrier islands;

(2) Determine major habitat types and the distribution and quantity of each habitat on the barrier islands over 
time;

(3) Determine geotechnical properties of sediments on the barrier islands and surrounding waters to access 
compatibility of the sediment and the sediment-dispersal pattern to evaluate fill performance;

(4) Relate available data on environmental forces that affect the ecology and morphology of the barrier islands to 
other BICM datasets; and

(5) Determine species composition and diversity of vegetation within major habitat types on the barrier islands.

As the project evolved, six data-collection tasks were designed to address: 

(1) Barrier-shoreline post-storm assessment (aerial videography and photography); 

(2) Historical shoreline changes and barrier-island land loss; 

(3) Bathymetry and historical seafloor change; 

(4) Light detection and ranging (lidar) surveys for the Louisiana coast’s sandy shorelines and barrier islands; 

(5) Habitat mapping and change analysis; and

(6) Characterization of Louisiana coastal surface-sediment samples. 

The methods, data, and results for each of these tasks were published in six data volumes that can be found at 
ftp://ftp.dnr.state.la.us/BICM and are summarized below. The Louisiana coast is a complex system that encompasses 
highly variable geomorphic and geologic settings. Regional discussions in this report describe the geologic history and 
processes that have shaped this coast and provide the relevant scientific context to understand and interpret the BICM 
data. Finally, data that were collected for the BICM program were incorporated into thematic discussions that focus on 
current scientific themes, such as understanding the impacts of sea-level rise and large-storm events on the coastal system. 

Study Area
The BICM program area encompasses the mainland shoreline of the southern Louisiana coast with special 

emphasis on the sandy beaches and barrier islands. For this study, the Louisiana coast was divided into four distinct 
regions based on geologic and physiographic setting: (1) the Pontchartrain Basin, (2) the Mississippi River Delta Plain, (3) 
the Acadiana Bays, and (4) the Chenier Plain. As the project developed, BICM further subdivided the coastline into eight 
regions: the Lakes Region; Chandeleur Islands; Modern, Lafourche, and Teche Deltas; Acadiana Bays; and the eastern and 
western Chenier Plain (fig. 1).

Not all BICM tasks included data collection across every region. Each task had different priorities and areas 
of concern. For example, shoreline-change analyses and lidar surveys were conducted along the entire coast, whereas 
bathymetric surveys focused on the barrier islands and sandy shorelines and were restricted to three primary geographical 
provinces: (1) parts of the eastern and western Chenier Plain; (2) from the western edge of Raccoon Island of the Isles 
Dernieres to Sandy Point along the Plaquemines Parish shoreline; and (3) the Chandeleur Islands. Aerial photography was 

BICM Program Summary Report: Data and Analyses 2006 through 2010
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Study Area

Figure 1.  The original four coastal Louisiana shoreline regions based on geologic and physiographic setting (Pontchartrain Basin, 
Mississippi River Delta Plain, Acadiana Bays, and Chenier Plain) with the eight regions used in BICM analyses (the Lakes Region; 
Chandeleur Islands; Modern, Lafourche, and Teche Deltas; Acadiana Bays; and the eastern and western Chenier Plain).
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collected to support other tasks (for example, to identify shoreline positions for habitat mapping and land-loss analysis) 
and overlaps some or all of the geographic areas focused on by other tasks. Data coverage and general products for each of 
the six tasks and eight BICM regions are provided in figure 2 and table 1.

Although the objectives of BICM were delineated into six tasks, none of them stand alone as single entities. 
Instead, the tasks are interrelated, and data from one task were commonly incorporated into analyses within other tasks. 
For example, while the group tasked with collecting and acquiring historical and modern shorelines created their scientific 
products, the bathymetry group was producing similar products in many of the same areas. Identifying the shoreline 
location of a barrier island is a result of using the nearshore bathymetry, aerial photography, and lidar topography. These 
data are also used to map the geomorphology of the area. Islands consist of sandy sediments, and the nearshore sediment 
texture is a reflection of the source of sediments and the energy of the area. Nearshore surficial sediments were collected 
as a discrete task within BICM; however, maps depicting sediment properties along with bathymetry and shoreline 
position provide a basis for interpreting and understanding sediment transport, sediment-source location, sediment 
depositional sinks, and energy of the environment. Concurrently, another group was tasked with describing habitat 
classification, habitat change, and land-loss trends. Changes in nearshore bathymetry and barrier-island shape are driven 
by sediment deposition or erosion caused by nearshore currents and changes in energy, particularly by storms. As a result 
of these changes, some island habitats can change dramatically while other areas may remain stable over time. Time-series 
analysis of data collected for all tasks is imperative to monitor these dynamic environments. 

The 2006 to 2010 BICM projects primarily focused on the barrier-island environments along the Louisiana coast. 
The barrier islands extend for more than 150 kilometers (km; 93 miles, mi) from southern Terrebonne Parish east to the 
western Mississippi River Delta, and north from the eastern side of the delta to the Mississippi Sound. The majority of 
the data collected for the BICM program focused on these crucial barrier-island systems because these geologic features 
provide unique habitats and protect fragile estuaries and mainland environments from the full force of tropical storms and 
hurricanes. To adequately predict island response to storm events, sediment supply, and sea-level change, it is necessary 
to (1) understand historic shoreline positions and bathymetry; (2) establish baseline topography and bathymetry; and (3) 
characterize habitats and their distribution.

The geomorphology of Louisiana’s barrier islands is a complex arrangement of landscapes produced by fluvial 
processes and sea-level rise over the past 7,000 years. Currently, mainland and barrier-island configurations are shaped 
by eustatic sea-level rise, land subsidence, prevailing wave climate, and storm activity. Interactions among these dynamic 
processes, along with declining historical fluvial deposition, are forcing a redistribution of the antecedent topography 
to maintain equilibrium with the changing coastal environment. The resulting overall trend is net erosion and shoreline 
regression; however, variations in landform distribution, textural composition, and land subsidence create areas of 
localized deposition.

Monitoring barrier-island change requires repetitive surveys of the aerial dimensions of the islands as well as the 
subaerial nearshore and back-barrier environments. Topographic and bathymetric data provide an easy reference for how 
the system is changing. Imagery, lidar, and geophysical surveys are the primary tools currently used to gather detailed 
shoreline position, habitat, and subaerial extent of barrier islands. The results of the BICM program provide data for 
shoreline and seafloor-change analyses, identify “hotspot” areas that are especially sensitive or require additional research, 
and link the geologic framework to surficial processes for selected areas. 

The Louisiana barrier islands are part of a complex system with many overlapping and interrelated processes. 
Data for the BICM tasks were collected and compiled with consistent approaches and methodologies. The resulting data 
are more comparable, consistent, accurate, and complete than previously available barrier-island data that were generated 
for local projects. BICM databases and survey results provide scientific support for understanding the complex coastal 
changes that are occurring in coastal Louisiana and provide a baseline dataset for future investigations of the entire 
Louisiana Coastal Area (LCA) barrier-island system.

Monitoring the Louisiana Coast
Typically, monitoring and modeling environments and associated physical processes on a regional scale are 

more complex efforts than on the local scale, primarily because regional studies must consider diverse physical processes 
that interact at multiple scales. On a regional scale, for example, the benefits of improved habitat in one location may be 
counteracted by degradation at another location, and the net result could be interpreted as no overall benefit. In addition, 
regional studies commonly involve monitoring changes in multiple baseline conditions over time or space and typically 
are very labor intensive. However, regional studies provide a comprehensive assessment of coastal change, whereas 
local studies typically focus on a single system. When possible, site-specific monitoring and regional-scale information 

BICM Program Summary Report: Data and Analyses 2006 through 2010
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Monitoring the Louisiana Coast
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needs should be interrelated. In some cases, regional monitoring efforts may be an extension of ongoing local monitoring 
projects, but regional-scale monitoring may also involve designs and procedures that are different from site-specific 
monitoring and may extend beyond the purview of the local project teams. Although regional-scale monitoring efforts may 
be challenging, the resulting data and analyses enable a more comprehensive understanding of each aspect of the diverse 
coastal environments and their dependence upon and interactions among each other.

Although the BICM data-collection effort was extensive, the BICM data could also be integrated with data from 
existing monitoring efforts in coastal Louisiana. For example, the Coastal Wetlands Planning, Protection and Restoration 
Act (CWPPRA) program has been monitoring restoration and protection projects in coastal Louisiana since 1990 (Steyer 
and Stewart, 1992; Steyer and others, 1995). The CWPPRA monitoring program incorporates a comprehensive wetlands 
monitoring and assessment component, the Coastwide Reference Monitoring System (CRMS; Steyer and others, 2003). 
The establishment of the CRMS network represented a change from local, project-oriented monitoring to regional-scale 
monitoring and assessment of overall ecosystem health. The proposed BICM program study plan (Troutman and others, 
2003) included repeated data-collection efforts along the barrier islands and sandy shorelines every 5 years and was 
intended to complement CRMS and integrate coastal-shoreline monitoring from numerous restoration efforts. CRMS 
and BICM provide system-wide performance measures that are evaluated to help determine the cumulative effects of 
restoration and protection projects in coastal Louisiana, as demonstrated in the Terrebonne Basin Barrier-Shoreline 
Restoration Project Feasibility-Level Monitoring and Adaptive Management Plan (Louisiana Coastal Area [LCA] 
Adaptive Management Framework Team, 2010).

Review of Available Data Prior to BICM Implementation
Several previous studies contributed to our present understanding of the geologic framework and processes in 

the BICM study area. Williams and others (2012), Flocks, Kulp, and others (2009), Flocks, Twichell, and others (2009), 
Flocks, Miner, and others (2009), and Kindinger and others (2001) provided a comprehensive review of relevant studies 
through 2000. Suter and others (1991) conducted a regional nearshore sand-resource inventory from Marsh Island 
to Sandy Point. The Louisiana Barrier Island Erosion Study, a cooperative study with the USGS and the Louisiana 
Geological Survey (LGS), investigated the general geologic framework, historical changes, and modern processes 
affecting the Louisiana barrier islands (Sallenger and Williams, 1989). The final products of the Barrier Island Erosion 
Study included the publication of a shoreline-change atlas (Williams and others, 1992) and a seafloor-change atlas (List 
and others, 1994) for the coastline extending from the Isles Dernieres to the modern delta lobe. Williams and others (1992) 
described the geologic history of the study area and included a detailed series of shoreline maps with accompanying data 
analysis documenting the evolution of the barrier-island systems since the first shoreline surveys in 1853. List and others 
(1994) documented seafloor elevation along the deltaic coast and presented seafloor-erosion and accretion data necessary 
to understand and describe regional sediment-transport processes along the south-central Louisiana coastline.

With funding from CWPPRA, the State of Louisiana implemented a long-term program constructing multiple 
local coastal-protection and restoration projects. After a decade of CWPPRA project implementation, Penland and others 
(2003) assessed five barrier-island restoration projects constructed in Terrebonne Basin along the central Louisiana Gulf 
Coast. That report provided an extensive review of different restoration methods with respect to environmental benefits 
and implications for island longevity, as well as logistical challenges encountered during project construction and total 
construction costs. Penland and others (2003) reported three primary conclusions: (1) the use of dredged material and 
vegetation to restore barrier-island dunes and back-barrier marsh was the most efficient in terms of effectiveness and cost 
to manage and mitigate long-term barrier-island erosion; (2) the use of segmented breakwaters and rubble-mound seawalls 
was less effective and more costly than the use of dredged material and vegetation; and (3) improvements were needed in 
the final design templates to ensure that the slopes and elevations were correct for back-barrier marsh creation. Many of 
the findings in Penland and others (2003) have since been incorporated into subsequent CWPPRA and other restoration 
projects.

Since the early 1980s, the USGS, the LGS, Louisiana State University (LSU), University of New Orleans 
(UNO), and other State and Federal agencies working in coastal Louisiana have compiled large volumes of data. Some 
examples include nearshore to offshore geophysical surveys (USGS, LGS, LSU, and UNO), photo mosaics, repeat lidar 
surveys (USGS and USACE), and the USACE-funded Beneficial Use of Dredged-Material Monitoring Program (2010). 
Some of these data were incorporated into existing national Geographic Information Systems (GIS) databases such as 
usSEABED (USGS; http://walrus.wr.usgs.gov/usseabed/) and regional publications such the Environmental Atlas of the 
Lake Pontchartrain Basin (Penland and others, 2002a). In an effort to facilitate the integration and dissemination of these 
project-specific data for scientific research, the USGS developed the Louisiana Sedimentary and Environmental Database 

Review of Available Data Prior to BICM Implementation
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(LASED; http://coastal.er.usgs.gov/lased/), and the Louisiana Department of Natural Resources developed the Strategic 
Online Natural-Resources Information System (SONRIS). 

Historical relative sea-level rise (RSLR) in coastal Louisiana is among the most rapid in the continental United 
States (Zervas, 2001) and many studies have documented historical land-loss trends and habitat changes in coastal 
Louisiana (for example, Cahoon and Groat, 1990; Reed, 1995; Barras, 2003; Barras and others, 2008; and Linscombe 
and Hartley, 2011). But there are very few peer-reviewed habitat-classification studies for coastal Louisiana. The existing 
studies primarily consist of internal GIS-change analyses conducted for the annual CWPPRA Wetlands Value Assessment 
process and various state and U.S. Army Corps of Engineers (USACE) restoration-planning documents such as Coast 
2050 (LCWCRTF and WCRA, 1998), the LCA (USACE, 2004), and the Louisiana Coastal Master Plan (CPRA, 2007, 
2012). The most recent National Wetlands Inventory database for coastal Louisiana is from 2009 (Dahl, 2009) and 
includes data originally published in Wicker (1980, 1981). Various Landsat Thematic Mapper satellite-based land-cover 
datasets have been used for regional updates, but these generally do not use a common, standardized habitat-classification 
scheme (for example, Hartley and others, 2000 - GAP, 1993; and Fry and others, 2011 - USGS National Land Cover 
Database, 2006). 

Six BICM Volumes – Data Reports
The six data-collection tasks under the 2006 to 2010 BICM program were assigned to separate science teams on 

the basis of area(s) of expertise. In order to meet the objectives outlined in the BICM working plan, the science teams 
acquired both new and, in some cases, historical data. The data for each BICM task were organized into six data volumes, 
each of which includes a brief report summarizing the methodology, data, and results. Currently (December 2012), these 
data volumes can be accessed at: ftp://ftp.dnr.state.la.us/bicm/. Because BICM was largely an extensive data-collection 
effort (table 1) intended to support long-term coastal monitoring, the data volumes primarily consist of raw data. However, 
most of the data volumes also include preliminary analyses that establish historical and baseline conditions for future 
studies, and Volumes 2, 3, and 5 include detailed shoreline, bathymetric, and habitat-change analyses, respectively. In 
addition, much of the 2006 to 2010 BICM data have been published as part of separate studies, including task-specific 
peer-reviewed journal articles (for example, Miner, Kulp, Penland, and others, 2009) and a comprehensive analysis of the 
Breton National Wildlife Refuge (USGS Scientific Investigations Report 2009-5252, Lavoie, 2009). Brief summaries of 
each of the BICM data volumes follow.

Volume 1: Barrier-Shoreline Post-Storm Assessment

The Volume 1 aerial video-survey archive includes imagery from 1984 to 2007 (Westphal and others, 2009). 
The BICM surveys included both still aerial photography and simultaneous video imagery and established a standardized 
methodology to produce imagery that can be directly compared with imagery from future surveys. The baseline 2005 
aerial photography was collected immediately following the landfalls of Hurricanes Katrina and Rita on August 29 and 
September 24, respectively (Westphal, 2009). As part of the Volume 1 Barrier-Shoreline Post-Storm Assessment, photos 
from the 2005 and 2006/2007 surveys (Westphal, 2008; Westphal and Penland, 2009) were compared and the resulting 
photo pairs illustrate recent coastal-landscape change between these time periods (fig. 3). In addition, photographic slide 
archives for historical surveys conducted between 1984 and 1992 were analyzed for images that overlapped with the 
recent surveys, and time series encompassing several time periods were created for locations where multiple images were 
available (Westphal, 2009).

Volume 2: Shoreline Changes and Barrier-Island Land Loss, 1800s to 2005

Historically, land-loss rates in coastal Louisiana exceeded 100 square kilometers per year (km2/yr) (37 square 
miles per year [mi2/yr]) (Dunbar and others, 1992; Barras and others, 2003; National Inventory Report [NIR], 2008). 
Although land-loss rates have declined since about 1978, recent land-loss rates remain higher than the pre-1950s 
background rates (Barras and others, 2008; Couvillion and others, 2011; NIR, 2010), resulting in drastic changes to 
shoreline position, geometry, and configuration. BICM data were used to conduct a comprehensive shoreline-change 
analysis of the entire coastal shoreline in order to (1) establish a baseline dataset for future restoration efforts; (2) define 
the character and patterns of historical shoreline change; and (3) quantify the rates of linear shoreline retreat. The effects 
of the 2005 hurricane season in Louisiana and subsequent development of integrated hurricane-protection and coastal-
restoration planning programs made this an appropriate time to collect the baseline data necessary for understanding past 

BICM Program Summary Report: Data and Analyses 2006 through 2010
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Six BICM Volumes – Data Reports

Figure 3.  Example of Volume 1 Barrier-Shoreline Post-Storm Assessment aerial time-series photo pair of Trinity Island for 2005 and 
2007. Red arrow denotes the same geographic location (BICM Volume 1; Westphal and Penland, 2009).

changes and planning for the future. 
In data Volume 2, historical maps, satellite imagery, and aerial photography were integrated to document patterns 

and rates of shoreline change relative to the high-water line for 80 shoreline reaches over four time periods (figs. 4 and 
5): 1855–2005 (historical term), 1920s–2005 (long term), 1996–2005 (short term), and 2004–2005 (near term) (Martinez, 
O’Brien, and others, 2009a). The average historical and long-term shoreline-change rates were –2.7 and –4.2 meter per 
year (m/yr) (–8.9 and 13.8 foot per year [ft/yr]), respectively. Between 1996 and 2005, the average short-term shoreline-
change rate accelerated to –8.2 m/yr (–26.9 ft/yr). The average near-term rate of erosion following landfall of Hurricanes 
Katrina and Rita in 2005 was –57.8 m/yr (–186.6 ft/yr) (Sallenger and others, 2009). The highest rates of erosion due 
to the 2005 storm impacts were found along the Isle Dernieres and the Timbalier and Chandeleur Islands, where some 
shoreline reaches underwent as much as 182 meters (m) (597 feet [ft]) of landward retreat. Shoreline reaches that did not 
undergo significant shoreline retreat generally were associated with beach nourishment, dune construction, and back-
barrier marsh-creation projects.

Volume 3: Bathymetry and Historical Seafloor Change, 1869–2007 

High rates of delta-plain subsidence, ongoing eustatic sea-level rise, and processes such as storms, island 
segmentation, changes in sediment supply, and human alteration, collectively contribute to shoreline retreat and barrier-
island land loss as shoreline sediments are eroded or become inundated by marine waters (Penland and Ramsey, 1990). 
Although mapping and identifying shoreline changes and the aerial extent of barrier islands is essential to understanding 
the shoreline and barrier island response to storms, monitoring the subaqueous extent of the islands is also important. 
A significant component of the BICM program included documenting the historically dynamic morphology within the 
nearshore, offshore, and back-barrier environments in coastal Louisiana. Data Volume 3 includes (1) compilation of 
known historic bathymetric datasets from multiple time periods; (2) new bathymetric data collected during the BICM 
project; and (3) analyses of patterns and rates of seafloor change along selected shorelines. 
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Figure 4.  Location map depicting the 80 different reaches of shoreline (numbered on figure) designated during the BICM program to 
analyze shoreline change for coastal Louisiana. See the Volume 2 data report for maps depicting historical (1855–2005), long term 
(1920s–2005), short term (1996–2005), and near term (2004–2005) shoreline changes for each of the 80 regions (modified from BICM 
Volume 2; Martinez, O’Brien, and others, 2009a).

The Chandeleur Islands region provides a good example where historical data were located, georeferenced, 
digitized, and transformed to a common horizontal and vertical datum for comparison with the recent bathymetric data 
acquired for BICM (Miner, Kulp, Penland, and others, 2009). From these data, maps were created that depict bathymetric 
change over approximately 130 years (fig. 6) (Miner, Kulp, Motti, and others, 2009; Miner, Kulp, Penland, and others, 
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Six BICM Volumes – Data Reports

Figure 5.  Historical shoreline positions for the Isle Dernieres from 1887 to 2005 with change maps for time periods: 1887–1934, 1934–
1996, 1996–2004, and 2004–2005 (modified from BICM Volume 2; Martinez, O’Brien, and others, 2009a).
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2009; Miner, Kulp, Weathers, Motti, and others, 2009; Miner and others, 2011). Similar datasets were compiled for 
the Isles Dernieres, Timbalier Islands, and Plaquemines Parish barrier islands and also along the western Chenier Plain 
beaches. These maps contributed to a comprehensive assessment of the most geologically active portions of the barrier 
islands. In addition, the most recent surveys conducted by the USGS and UNO will serve as an important baseline-
bathymetry dataset for future monitoring of the shoreline to measure both storm-induced and long-term coastal change.

Volume 4: Accuracy of EAARL Lidar Ground Elevations Using a Bare-Earth Algorithm in Marsh and Beach 
Grasses on the Chandeleur Islands, Louisiana

Topographic surveys of the BICM shorelines were collected using four different airborne lidar systems (Hansen 
and Howd, 2009; Morgan, 2009). For most of the BICM regions, post-hurricane surveys were flown in September 
or October 2005 (Chenier Plain, Acadiana Bays, and Chandeleur Islands) using the National Aeronautical and Space 
Administration (NASA) Experimental Advanced Airborne Lidar (EAARL) system. Post-hurricane data along the Teche, 
Lafourche, and Modern delta coasts were collected in December 2006 using a Leica ALS50-II lidar system. For each of 
the regions, the post-hurricane data were compared to data collected in September 2001 (Chandeleur Islands only) or 
October 2002 using the NASA All Terrain Mapper (ATM) (Hansen and Howd, 2009). Additional surveys were flown 
over the Chandeleur Islands in October 2005 using the USACE Compact Hydrographic Airborne Rapid Total Survey 
(CHARTS) lidar system and in March and September 2006, and in June 2007 using EAARL to monitor post-hurricane 
morphological changes (Doran and others, 2009).

The Chandeleur Islands lost more than 80 percent of their land area during Hurricane Katrina, and many of the 
islands experienced continued shoreline retreat during the following 2 years (fig. 7). In addition to land-area losses, the 
decreased dune elevations made the islands increasingly vulnerable to future storm inundation. The USGS, CPRA, and 
USACE are continuing to monitor changes in shoreline position, land area, and elevation to assess the long-term post-
storm response of the Chandeleur Islands. 

Volume 5: Chenier Plain, South-Central Louisiana, and Chandeleur Islands Habitat Mapping and Change 
Analysis 1996 to 2005 

The goal of Volume 5 task was to classify land area by habitat type along five coastal shorelines (the western 
Chenier Plain; the Teche, Lafourche, and Modern deltas; and the Chandeleur Islands) (figs. 1 and 2) for four discrete time 
periods (1996 or 1998, 2001 or 2002, 2004, and 2005) and to identify habitat changes that occurred between those time 
periods (Fearnley, Brien, and others, 2009a). The BICM data sources were color-infrared (CIR), QuickBird satellite and 
Digital Orthophoto Quarter Quadrangle (DOQQ) imagery for each region and time period. Imagery data were mosaicked, 
projected to a common datum, and resampled to 2-m (6.6-ft) pixel resolution. Habitat types were classified using the 
eight categories (water, intertidal, marsh, barrier vegetation, beach, bare land, structure, and riprap) defined by Penland 
and others (2004). The habitat maps were analyzed to produce habitat- and land-area-change maps for each region 
(fig. 8) (Fearnley, Brien, and others, 2009b, 2009c). Monthly and annual mean water levels from six USACE tide gages 
were calculated for the analysis time periods, and differences in mean water level between image-acquisition dates were 
assessed in the habitat-change interpretations.

Hurricanes Katrina and Rita significantly impacted many coastal habitats within the BICM study areas. In 
several areas, low-lying habitats were inundated with water and eroded due to flooding and high winds associated with 
the passage of each storm. This resulted in a decrease in coastal land and habitat areas in 2005. However, some areas also 
experienced an increase in beach habitat along the coastline as a result of sediment being transported inland with the storm 
surge. Overall, reductions in the extent of marsh, barrier vegetation, and intertidal habitat occurred due to conversion to 
beach or open water; these changes can be attributed directly to hurricane impacts (Fearnley, Brien, and others, 2009d; 
Fearnley, Miner, Kulp, Bohling, Martinez and Penland, 2009; Fearnley, Miner, Kulp, Bohling, and Penland, 2009).

Volume 6: Characterization of Louisiana Coastal Sediment Samples: Back-Barrier through Offshore Samples 
of the Chenier Plain, South-Central Barrier-Island Systems, and Chandeleur Islands

Characterization of sediment texture, or grain size, within coastal-zone environments is necessary in order to 
evaluate relations between sediment-transport patterns, alongshore variability from the shoreline to Depth-of-Closure 
(DoC), geotechnical properties that influence the development of shoreline nourishment and restoration approaches, and 

BICM Program Summary Report: Data and Analyses 2006 through 2010
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Six BICM Volumes – Data Reports

Figure 6.  Seafloor-change maps created by digitizing historical bathymetry and collecting data during the BICM program for the 
northern Chandeleur Islands from (A) the 1870s to the 1920s and from (B) the 1920s to 2006/2007.  Warm colors denote erosion, and 
cool colors show deposition of sediment around the islands (modified from BICM Volume 5; Miner, Kulp, Motti, and others, 2009, Miner 
and others, and 2011). Abbreviation: m, meter.

to model-anticipated coastal-system response to storm events. Sediment samples were collected during BICM along 
shore-normal transects across washover platform, back-barrier marsh, dune, beach berm, upper shoreface (mean low 
water; MLW), middle shoreface, and basal shoreface (seaward to DoC) environments in the western Chenier Plain, Teche, 
Lafourche, and Modern deltas, and in the Chandeleur Island regions (Kulp and others, 2011a, 2011b). This baseline 
dataset provides a foundation for restoration monitoring and planning, modeling coastal processes, and developing a 
better understanding of sediment-dispersal patterns. For example, beach-sediment sampling provided data used to relate 
fill performance to characteristics of the fill material for beach nourishment and restoration projects. This sampling design 
also characterized longshore and cross-shore variability in sediment characteristics that will allow assessments of the 
hydrodynamic zonation of sediments on the islands (fig. 9) and that can be used to help explain habitat distribution and 
vegetation composition on the islands.
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Figure 7.  A time-series depiction of lidar data collected for the Chandeleur Islands showing land loss along the island chain over an 
approximately 5-year period from October 2002 (pink), to September 2005—2 days post-Hurricane Katrina (yellow), and to June 2007—
22 months post-Hurricane Katrina (green) (courtesy, USGS).
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Regional Discussions
Multiple large datasets were acquired throughout the extent of the Louisiana coast during the 2006 to 2010 BICM 

program (table 1). The coast encompasses several geologic and physiographic settings and multiple unique habitats. In 
order to provide the necessary scientific context and background to understand and interpret the BICM data, the eight 
BICM regions were grouped into four areas: (1) the Pontchartrain Basin, (2) the Mississippi River Delta Plain, (3) the 
Acadiana Bays, and (4) the Chenier Plain (figs. 1 and 2). Each of the following regional discussions includes a brief 
description of the geologic setting and BICM results, with a mention of major topographic, bathymetric, habitat, and 
storm-impact changes that occurred in that region. 

The subsurface geologic framework and surface topography of the Louisiana coast reflect a complex history 
of regional plate-tectonic events and fluvial, deltaic, and marine sedimentary processes affected by numerous large-
magnitude sea-level variations (Salvador, 1991; Flocks , Twichell, and others, 2009). Despite the complexity, a long 
history of in-depth investigations yielded a substantial understanding of the regional geologic evolution and framework 
and the processes that shape the coast. Kulp and others (2005) provided an excellent review of the geologic history and 
framework of the north-central Gulf of Mexico basin with a specific emphasis on Holocene processes and geomorphologic 
features of the Louisiana coast. 

The 300-km- (186-mi) wide deltaic plain is the product of continuous sediment accumulation deposited by the 
Mississippi River and its distributaries within the entrenched Pleistocene alluvial valley during the last 8,000 to 7,000 
years as sea level rose to within –10 m (–30 ft) of its present position. The delta plain is composed of six major delta 
complexes (fig. 10) consisting of at least 18 smaller deltaic lobes. Several classic studies (for example, Fisk, 1955, 1961; 
Kolb and Van Lopik, 1958; Coleman and Gagliano, 1964; Frazier, 1967) focused on the regressive phase of Mississippi 
Delta sedimentation, during which overlapping, stacked sequences of unconsolidated sands and muddy deltaic sediments 
were deposited adjacent to the active distributary channel(s). Delta-lobe switching occurred about every 1,000 years as 
fluvial gradients along the active distributary decreased and the available accommodation space filled (Coleman, 1981; 
Roberts, 1997). There are relatively few discussions of the corresponding transgressive component of the Mississippi 
Delta, in particular those of Boyd and Penland (1981) and Boyd and others (1989). Following abandonment of individual 
delta lobes or delta complexes, dewatering, compaction, and subsidence of the unconsolidated deltaic sediments 
contributed to regional sea-level rise and submergence of the former deltaic headland. The coarser-grained deltaic 
sediments were reworked by marine processes to form transgressive coastlines, barrier-island systems, and, ultimately, 

Six BICM Volumes – Data Reports

Figure 10.  Distribution and chronology of Holocene Mississippi River delta complexes (modified from Kulp and others, 2005).
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submerged sand shoals on the continental shelf, and the finer-grained sediments were concentrated in back-barrier marsh 
and estuarine environments (van Andel, 1960; van Andel and Poole, 1960; Frazier, 1967; Coleman, 1988; Boyd and 
Penland, 1988; and Boyd and others, 1989).

In addition to periodic shifts in the course of the Mississippi River, sea-level rise has influenced the development 
of the delta plain. From a maximum lowstand at approximate depths of –110 to –150 m (–360 to –490 ft) at the end of 
the Pleistocene Epoch (Curray, 1960; Frazier, 1974; Suter and others, 1987), relative sea level rose rapidly (>0.02 m/yr; 
>0.065 ft/yr) during the early Holocene to within –10 m (–30 ft) of present levels by 7,500 years ago (Coleman, 1988; 
Penland and Boyd, 1981; Penland and others, 1988). Since the middle Holocene, sea level has continued to rise gradually, 
primarily due to compaction and subsidence of thick (>100 m, >300 ft) Holocene deltaic sediments.

The geologic history of the Chenier Plain is closely linked to depositional processes in the delta plain. Beginning 
about 3,000 years ago, alongshore processes began depositing fine-grained deltaic sediments in prograding mudflats along 
the Chenier Plain coastline. When the Mississippi River deltaic depocenters shifted to the east, sediment supply to the 
Chenier Plain decreased, and the mud-rich sediments were reworked by coastal processes, which concentrated the coarser-
grained sediments into shore-parallel, transgressive, sandy, beach ridges (“cheniers”). The extant topography, consisting 
of broad mudflats capped by wetland vegetation separated by intervening narrow cheniers, is a result of repeated cycles of 
deposition and sediment reworking. 

Lakes Region - Lake Pontchartrain Basin 
The estuarine ecosystem that includes Lake Pontchartrain is one of the largest in the United States. The lake 

originated as an embayment open to the Gulf of Mexico and covers an area of 1,632 km2 (630 mi2) that rarely exceeds 6 m 
(20 ft) of water depth (figs. 1 and 2). The tidal estuaries of Lake Pontchartrain, Lake Maurepas, and Lake Borgne together 
occupy more than 15,000 km2 (5,792 mi2) and represent the drainage terminus of the Pontchartrain Basin watershed 
(fig. 11). The watershed encompasses approximately 44,000 km2 (16,989 mi2) of rolling hills, woodlands, estuaries, and 
wetlands that support agricultural, coastal, urban, and industrial communities (fig. 1). 

BICM Program Summary Report: Data and Analyses 2006 through 2010

Figure 11.  Map of the Pontchartrain Basin showing the river 
basins that drain into Lakes Pontchartrain, Maurepas, and 
Borgne (modified from Flocks and others 2009a).



19

The areas around Lake Pontchartrain support a population of 2 million, or nearly one-half of the inhabitants in 
Louisiana (http://coastal.louisiana.gov/index.cfm?md=pagebuilder&tmp=home&pid=112 - accessed Dec. 2012). Over 
the past two centuries, human activities have significantly controlled and impacted the geography and environmental 
quality of the lake. Much of the southern shoreline is armored to prevent shoreline erosion, and manmade transportation 
corridors reduce hydrologic connectivity through the Rigolets and Pass Manchac tidal channels and control tidal 
interchange with the Gulf of Mexico. Agricultural and stormwater runoff, deforestation, and shell dredging have degraded 
water quality, reduced habitat, and increased erosion in the surrounding wetlands. By the end of the twentieth century, 
much of the commercial and recreational value of the lake had been damaged (Penland, Beall, and Kindinger, 2002). 
Following the Pontchartrain Basin Restoration Act of 2000, a variety of monitoring, research, and restoration activities 
has led to an enhanced understanding of the ecosystem, and several ecosystem-restoration initiatives and management 
plans have been implemented (Penland, Beall, Bristch, and Williams, 2002, Penland, Beall, and Kindinger, 2002; Penland, 
Beall, and Maygarden, 2002; Reed, 2009).

The evolution of the Pontchartrain Basin began 60 million years ago with the formation of the Gulf of Mexico. 
However, most of the present morphologic features, including Lake Pontchartrain, developed during the last 1,000 years 
(kyr) (Flocks, Kulp, and others, 2009). A prominent feature of the Pontchartrain Basin is a series of terraces north of the 
lake that were formed over numerous glacial cycles from the Pliocene through the Pleistocene. These alluvial deposits dip 
to the south and are overlain south of the lake by the Holocene deposits of the Mississippi River Delta Plain.

During the late Holocene, as rising sea level approached present levels, longshore transport developed a barrier-
island system that extends from Mobile Bay to the Pontchartrain embayment. By 4,000 years ago, while the locus of delta 
building was in west-central Louisiana, the barrier-island systems migrated westward into the area that is now Orleans 
Parish. This barrier-island system, known as the Pine Island trend, initiated closure of the incipient Lake Pontchartrain 

Lakes Region - Lake Pontchartrain Basin

Figure 12.  Holocene evolutionary model of Lake Pontchartrain: (A) Sea-level lowstand at the end of the Late Wisconsinan exposed 
the Prairie Terrace Formation that was incised by rivers extending to the shelf edge. (B) During the Holocene transgression, longshore-
transport processes led to the development of the Pine Island barrier trend. This mid-Holocene trend extends from the Pearl River Delta 
toward the west to the modern subsurface of New Orleans. (C) The Pine Island complex is thought to have ceased development as the 
St. Bernard delta complex prograded across the Pontchartrain Basin from the west, effectively closing off the estuary from the open 
Gulf of Mexico and (D) forming the present southern shoreline of Lake Pontchartrain (modified from Flocks, Kulp, and others, 2009).

http://coastal.louisiana.gov/index.cfm?md=pagebuilder&tmp=home&pid=112
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from the Gulf of Mexico. Eventually, the Mississippi River avulsed eastward, forming the St. Bernard delta complex 
across modern Plaquemines Parish, burying the Pine Island trend, and creating the modern morphology of wetlands, lakes, 
and the Chandeleur Islands (fig. 12). This region is referred to as the Lakes Region because of the system of lakes that 
developed during this time. 

The elevation difference between Lake Pontchartrain and neighboring metropolitan New Orleans creates an 
extremely vulnerable environment for flooding by tropical storms. New Orleans’ elevations average 1.8 m (5.9 ft) below 
lake level, necessitating protection by a system of levees, and stormwater from the city is pumped into the lake. In 
addition, high rates of sea-level rise due to regional subsidence contribute to the ongoing loss of wetlands and barrier-
islands, which abate storm surge and wave activity during storm events. The extreme vulnerability of New Orleans to 
storm impact was demonstrated in the aftermath of Hurricane Katrina in 2005. On August 29, the eye wall of Katrina 
passed along the eastern edge of the lake. The city of New Orleans experienced wind speeds in excess of 160 kilometers 
per hour (kph) (100 miles per hour [mph]) and a surge of 6–9 m (20–30 ft) (Heitmuller and Perez, 2007). The system 
of protection levees failed at several locations, and 277 x 106 cubic meters [m3] (9,782 x 106 cubic feet [ft3]) of water 
from Lake Pontchartrain, Lake Borgne, and the Chandeleur Sound flooded Orleans and St. Bernard Parishes. Four days 
after the storm, analyses of lidar topography indicated that 150 km2 (60 mi2) of the New Orleans area was flooded by 
1 m (3.28 ft) of water and that water was 3 m (9.8 ft) deep over 25 km2 (9.7 mi2) (Gesch, 2007). The water remained for 
2 weeks and mixed with wastewater, petrochemicals, and other waste associated with the industrial corridor. The bulk 
of this contaminated water was then pumped back into Lake Pontchartrain. Heitmuller and Perez (2007) estimate that 
100 to 200 billion liters (22–44 billion gallons) of water were discharged into the lake; their study concludes that most 
of the waterborne contaminants and microorganisms were flushed out of the lake through the Rigolets and Chef Menteur 
tidal passes. Elsewhere in the Pontchartrain Basin, saltwater intrusion from the floodwaters damaged floodplain forests 
and eroded shorelines (Barras, 2007; Faulkner and others, 2007). In wetland areas surrounding the lake, introduction of 
organic material from the storm surge initiated increased plant growth and elevation, although this increase had dissipated 
2 years after the storm (Reed and others, 2009).

Future evolution of the Pontchartrain Basin is dependent on continued geologic change. This change is most 
dramatically expressed in wetland loss and shoreline erosion as sediment compaction and fault-related subsidence, 
coupled with RSLR, impact the southern portion of the basin. Increasing open-water areas expose major industrial and 
metropolitan centers to storm impact. Continued investigation and monitoring of the processes that drive this change are 
necessary to properly manage the coastal zone and protect the ecosystem and human population. 

The BICM program has limited data from the Lakes Region. Data Volume 1 contains video aerial surveys from 
2006 and 2007, and an oblique digital-photo survey in 2007. Data Volume 2 has shoreline-change analysis from 1880 to 
2005.

History of Topographic and Bathymetric Changes

Rates of shoreline retreat in the Lakes region accelerated along most shoreline reaches since 1855, averaging 
–1.5, –2.4, and –3.0 m/yr (–5.0, –7.9, and –10.0 ft/yr) for the historical (1855–2005), long-term (1904–2005), and 
short-term (1996–2005) periods, respectively (fig. 13). Following landfall of Hurricane Katrina, near-term (2004–2005) 
shoreline-change rates in this region increased significantly, averaging –11.9 m/yr (–39.0 ft/yr) (Martinez, O’Brien, and 
others, 2009a). No bathymetric or lidar data were collected in the Lakes Region during the BICM project.

Habitat Change

The BICM project did not collect habitat classification or change data in the Lakes Region. This is an important 
data gap in the BICM program.

Impacts of Storms

The elevation difference between Lake Pontchartrain and neighboring metropolitan New Orleans creates an 
extremely vulnerable environment for impact by tropical storms. Post-Katrina BICM imagery was collected in the Lakes 
region in 2006 (aerial photography) and 2007 (video aerial surveys) (fig. 14; Westphal and others, 2009).

BICM Program Summary Report: Data and Analyses 2006 through 2010
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Mississippi River Delta Plain

Figure 13.  Map showing shoreline change around Lake Pontchartrain, Lake Borgne, and Lake Maurepaus between 1855 and 2005. 
Data compiled and analyzed for the BICM program, Volume 2 (modified from BICM Volume 2; Martinez, O’Brien, and others, 2009a).

Figure 14.  Aerial photos taken of the coastline within the Pontchartrain Lake Basin in 2006 as part of the BICM program: A) East 
Rigolets and B) Frenier Swamp areas (BICM Volume 1; Westphal and others, 2009).
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Mississippi River Delta Plain

Chandeleur Islands 

The arcuate, 80-km- (50-mi) long Chandeleur Islands (fig. 1) form the longest barrier-island chain in the northern 
Gulf of Mexico. The Chandeleur barrier-island system is part of the Breton National Wildlife Refuge, which extends 
from Hewes Point north of the Chandeleur Islands, along the ephemeral shoals of Curlew and Grand Gosier Islands, to 
Breton Island in the south (fig. 15). The Chandeleur Islands were formed through the erosion and reworking of the deltaic 
headland of the abandoned St. Bernard Delta complex (fig. 10) (Suter and others, 1988; Brooks and others, 1995). The 

BICM Program Summary Report: Data and Analyses 2006 through 2010

Figure 15.  Bathymetric map (2006–2007) using BICM data collected in the nearshore waters around the Breton National Wildlife 
Refuge area. The Chandeleur Islands (green) arcuate barrier-island chain extends from Hewes Point in the north, along the islands to the 
ephemeral shoals of Curlew and Grand Gosier, and Breton Island in the south (modified from Flocks, Twichell, and others, 2009; Twichell 
and others, 2009a). Abbreviation: m, meter.
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delta was active from about 3,500 to 1,800 years ago (Tӧrnqvist and others, 1996; Miner, Kulp, Weathers, and Flocks, 
2009; Miner, Kulp, Weathers, Motti, and others, 2009; Rogers and Kulp, 2009). After abandonment, waves and currents 
concentrated the coarser-grained deltaic sediments into the Chandeleur Islands and the offshore St. Bernard Shoals. 
Compaction and subsidence of the muddy St. Bernard prodelta deposits, which may be greater than 35 m (115 ft) thick 
(Twichell and others, 2009a), and relative sea-level rise resulted in erosion and submergence of the back-barrier marsh 
environments such that the Chandeleur Islands are presently located about 40 km (25 mi) offshore of the Louisiana 
mainland.

History of Topographic and Bathymetric Change

Topographic and bathymetric data collected for BICM in 2006 and 2007 were merged into a single topographic-
bathymetric grid (fig. 15). This dataset was compared against historical survey data from the 1870s and 1920s (fig. 16) 
to create bathymetric-change maps and to calculate volumes of sediment erosion and deposition around the Chandeleur 
Islands over the past ~140 years (fig. 6). The 2006/2007 data also serve as a baseline (post-Hurricane Katrina) for future 
change analyses.

The northern segment of the Chandeleur Islands (Hewes Point to Curlew Shoal) includes the highest elevations 
and most extensive subaerial island extents. Between the 1870s and 2006, this segment underwent net shoreface erosion 
of about 285 x 106 m3 (373 x 106 yd3). Much of the eroded sediment was deposited in the back-barrier environment 
(29 percent) through overwash processes or was transported north to Hewes Point (45 percent). 

The Hewes Point terminal spit at the north end of the Chandeleur Islands is an elongate deposit up to 8 m (26 ft) 
thick (fig. 17) consisting of 97 percent well-sorted, fine-grained sand that formed as the result of littoral transport of 
sediment into the deeper waters north of the barrier-island platform. A combination of island orientation parallel to the 
prevailing wave climate, a centralized source of sandy deposits, and terminal accommodation space adjacent to the St. 
Bernard Delta produced this unique depositional system; the approximately 258 x 106 m3 (338 x 106 yd3) deposit at Hewes 
Point is the largest sand body among the Louisiana barrier-island systems. South of Hewes Point, the Chandeleur Islands 
are composed of small islands separated by inlets. The islands contain dunes and overwash splays that protect back-barrier 
saltwater marsh and submerged aquatic vegetation. Although this is the longest section of the barrier-island arc, there is 
significantly less sediment than at Hewes Point because the island platform is only 1.5 to 4.2 km (0.9 to 2.6 mi) wide, and 
the barrier-island deposits are less than 5 m (16.4 ft) thick (Twichell and others, 2009a). Large parts of this section are at 
or below sea level and contain a veneer of sandy material. 

Historically, the central section of the Chandeleur barrier-island system (Curlew and Grand Gosier shoals) 
underwent the greatest amount of net erosion (Miner, Kulp, FitzGerald, and Georgiou, 2009). More than 405 x 106 m3 
(530 x 106 yd3) of sediment were eroded between the 1870s and 2007, of which only 18 percent was deposited in the 
back-barrier environment. The Curlew and Grand Gosier shoals are the submerged remnants of these formerly emergent 
barrier islands. The Curlew – Grand Gosier platform is wider (3.7 to 12 km, 2.3 to 7.5 mi) than, and about as thick as, the 
platform that underlies the Chandeleur Islands. 

Like the shoals, Breton Island at the southern end of the Chandeleur barrier-island system has been severely 
reduced in size and is predominantly submerged. The Breton Island platform is 5.2 to 7.6 km (3.2 to 4.7 mi) wide and 
is also less than 5 m (16.4 ft) thick (Twichell and others, 2009a). Only 7 percent of the 51 x 106 m3 (68 x 106 yd3) that 
eroded historically along the shoreface was deposited in the back-barrier environment (Miner, Kulp, FitzGerald, and 
Georgiou, 2009). Much of the sediment loss at Breton Island can be attributed to updrift sand removal at the Mississippi 
River to Gulf Outlet (MRGO) shipping channel. Maintenance of the MRGO has moved up to 52 x 106 m3 (68 x 106 yd3) of 
sediment to a disposal area seaward of the island platform, depleting sediment from the natural system.

Shoreline- and seafloor-change analyses based on historical hydrographic data (since 1869), shoreline surveys 
(since 1855), and satellite imagery for the Chandeleur Islands reveal long-term trends of barrier-island shoreface retreat, 
platform thinning, and, recently, barrier-island disintegration. Volume calculations indicate that sediment was deposited 
downdrift (northward) and seaward at the Hewes Point terminal spit over the past 125 years. A similar volume of sediment 
accreted at the extreme southern limits of the island chain. The volume deposited in the back barrier, however, is only half 
that distributed to the flanks, indicating that the dominant transport mode is alongshore as opposed to cross-shore. The 
depositional sinks at the flanks of the island arc accreted at rates of more than 1 x 106 m3/yr (1.3 x 106 yd3/yr) between 
1870 and 2007; however, calculations of potential alongshore sediment-transport rates based on 20 years of offshore wave 
data are two orders of magnitude less than the accretion rates. The sediment sources for these accretionary zones at the 
flanks include (1) relict deltaic deposits that have eroded from the shoreface since 1870 and (2) nearshore and subaerial 
barrier-island sand. (For more detailed discussion on volumetric changes, see Theme 2, this report.)

Mississippi River Delta Plain
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Figure 17.  Sediment isopach of Hewes Point terminal spit; deposit (purple and red) is approximately 27 km2 (10 mi2), 8 m (26.3 ft) thick, 
and is composed of 97 percent well-sorted fine sand (modified from Flocks and others, 2011). Abbreviation: m, meter.

Habitat Change

Analysis of BICM habitat data from 1998, 2002, 2004, and 2005 indicated that even prior to Hurricane Katrina, 
the distribution of habitat types on the Chandeleur Islands varied between analyses, and significant changes occurred 
following the passage of Hurricane Katrina in 2005. For example, after Hurricanes Isidore and Lili impacted the area in 
2002, about half of the land area on Breton Island (figs. 18a and 19) and almost all of Grand Gosier and Curlew Islands 
were converted to open water (Fearnley, Brien, and others, 2009b). All three islands had recovered slightly by 2004, but 
all habitat types on Breton, Curlew, and Grand Gosier Islands were converted to open water in 2005 (fig. 19) following the 
passage of Hurricane Katrina (Fearnley, Brien, and others, 2009d).

Compared with the southern and central islands (Breton to Curlew Islands), the total habitat acreage on the 
northern Chandeleur Islands was relatively stable from 1998 to 2004 (fig. 19). In 2001, specimens of Spartina alterniflora 
(smooth cordgrass) were planted on 10 overwash fans on the northern islands as part of the Chandeleur Islands Marsh 
Restoration Project (PO-27; LCWCRTF, 2004). These plantings and higher island elevations may have helped to mitigate 
the impacts of Hurricanes Isidore and Lili in this area. Like Breton, Grand Gosier, and Curlew Islands, the northern 
Chandeleur Islands were significantly impacted by Hurricane Katrina; in the 2005 analysis, all habitat types except some 
marsh areas were converted to open water (figs. 18b and 19).

Impacts of Storms

Presently, the Chandeleur Islands are experiencing a very high RSLR (>4 millimeter per year [mm/yr]; >0.16 inch 
per year [in/yr]; Twichell and others, 2009b) and are undergoing extreme subaerial deterioration due to the combined 
effects of compaction of the underlying St. Bernard prodelta deposits, eustatic sea-level rise, and multiple impacts by 
tropical storms in the past decade. Recent storm activity has had the most significant impact on the subaerial extent of 
the Chandeleur Islands, and researchers have documented an increasing inability of this barrier-island chain to recover 
from storm-induced breaching and dune erosion (fig. 7). Tropical storms can cause rapid land loss, and major events drive 
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Mississippi River Delta Plain

Figure 18B.  Habitat-change map of the Chandeleur Islands (2004 to 2005)—note the large areas of habitat change to water after 
passage of Hurricane Katrina. This is a final product of data collected during BICM used first to classify habitats and then to determine 
change in habitats over time along the Louisiana coast (BICM Volume 5; Fearnley, Brien, and others, 2009b).
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Figure 19.  Cumulative percentage histograms of habitat change in analysis areas during the four analyses time periods: (A) Breton 
Island analysis area totals 9.3 km2 or 2,354 ac. (B) Curlew and Grand Gosier Islands analysis area totals 44.9 km2 or 11,089 ac. (C) North 
Chandeleur Island analysis area totals 205.4 km2 or 50,748 ac. (modified from BICM Volume 5; Fearnley, Brien, and others, 2009d).

long-term shoreline erosion and transgressive submergence of the barrier-island chain. For example, only the vegetated 
back-barrier-marsh platforms remained emergent following the passage of Hurricane Katrina in 2005. Subsequently, a 
sandy beach reformed seaward of the marsh platform; however, the shoreline retreated landward by tens of meters, and the 
total emergent land area was significantly reduced compared with pre-Katrina conditions (fig. 20). The impact of tropical 
storms on the Chandeleur Islands is discussed in greater detail in Theme 2.

Modern Delta, Lafourche, and Teche Deltas

The Modern Delta BICM study area extends from Quatre Bayou Pass east to Sandy Point in Plaquemines Parish 
on the west flank of the Mississippi Balize (Birdsfoot) Delta and includes the Chaland Headland, Bay Joe Wise, Shell 
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Island, Scofield, and Sandy Point (fig. 1). The Modern Delta, as defined for the BICM study, makes up only a small 
portion of the Balize Delta and is part of a continuous shoreline extending from Raccoon Point in Terrebonne Parish to 
Sandy Point; therefore, it will be discussed with the Lafourche and Teche Deltas.

The south-central Louisiana coastline that includes the Teche, Lafourche, and Modern Deltas forms a 165-km 
(102-mi) stretch of barrier shoreline that extends from Raccoon Point in the west to Sandy Point in the east. The study 
area consists of a series of barrier islands and two erosional headlands (fig. 1) that extend approximately 10 km (6.2 mi) 
seaward of the Gulf shoreline and approximately 2 km (1.2 mi) landward of the back-barrier shoreline. 

Mississippi River Delta Plain

Figure 20.  Oblique aerial-photo time series of a portion of the Chandeleur Islands: top photo is from July 18, 2001 (courtesy, USGS), 
middle photo is one day after Hurricane Katrina, and bottom photo is 22 months after Hurricane Katrina. Arrows denote same 
geographical location (BICM Volume 1; Westphal and others, 2009).
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The rapidly eroding Caminada Headland is a remnant of the Bayou Lafourche delta lobe that was active from 
about 1,500 years to 800 years B.P. (before present) (Frazier 1967; Miner, Kulp, Penland, and others, 2009). After 
abandonment, sediments eroded from the subsiding headland were redistributed, forming the transgressive Timbalier 
Islands and Grand Isle barrier systems west and east of Bayou Lafourche, respectively (Penland and Boyd, 1985; Penland 
and others, 1988; Jaffe and others, 1997). West and east of the Timbalier Islands and Grand Isle, the Isles Dernieres and 
Barataria Bight shorelines formed as the result of earlier deltaic progradation and abandonment cycles associated with 
the Lafourche (3,500–4000 years B.P.) and St. Bernard (3,500–2,000 years B.P.) delta complexes, respectively (fig. 10; 
Frazier 1967; Kulp and others, 2005). These shorelines also receive sediment transported downdrift from the eroding 
Caminada Headland. The Plaquemines shoreline east of the Barataria Bight was constructed by sediment eroded from 
the modern Balize delta lobe (1,000 years B.P. to present) as well as reworked sediment transported alongshore from the 
western Chaland Headland (Frazier 1967; Penland and Boyd 1985; Penland and others, 1988; Kulp and others, 2005; 
Miner, Kulp, FitzGerald, Flocks, and Weathers, 2009). 

History of Topographic and Bathymetric Change

High rates of RSLR (~0.9 (centimeter per year [cm/yr], 0.35 in/yr) coupled with storm-induced current and wave 
erosion have led to a large deficit in the coastal-sediment budget along the Teche-Lafourche and Plaquemines shorelines, 
which is forcing barrier-shoreface retreat along the periphery of the Terrebonne and Barataria Basins of the Mississippi 
River Delta Plain. One of the impacts associated with higher rates of RSLR is the conversion of interior wetlands to open 
water, leading to increased bay tidal prism. The increase in tidal prism results in degradation of the barrier islands by inlet 
widening, the formation of new inlets, and sediment sequestration in ebb-tidal deltas. In 2006, BICM sponsored nearshore 
single-beam bathymetric surveys (fig. 21) from Raccoon Point to Sandy Point. These data were integrated with historical 
bathymetry from three time periods (1880s, 1930s, and 1980s) to construct a series of digital elevation models that were 
used to calculate sediment volumetric changes and determine long-term erosional and depositional trends (Miner, Kulp, 
Penland, and others, 2009). Miner, Kulp, Penland, and others (2009) identified several predominant trends during the 125-
year period, including (1) shoreface erosion of ~1.6 x 109 m3 (2.1 x 109 yd3) that forced ~3 km (~1.9 mi) of shoreface 
retreat, (2) sediment deposition in coastal bights and enlargement of ebb-tidal deltas, and (3) a combined increase in tidal 
inlet cross-sectional area from ~41,400 to ~139,500 square meters (m2) (~45,514 to ~166,841 square yards [yd2]). Despite 
the observed sedimentation in coastal bights and ebb-tidal deltas, only ~14 percent of the eroded sediment volume was 
deposited within the study area. Miner, Kulp, Penland, and others (2009) also analyzed bathymetric and shoreline change 
datasets separated by shorter time (sub-annual) periods, demonstrating that long-term trends are driven by processes 
associated with major hurricane impacts, and rates of shoreface erosion are an order of magnitude greater during active 
hurricane seasons compared to long-term trends. 

.  The majority (~89 percent) of the total erosion in the study area occurred along the shorefaces of the Isles 
Dernieres, Caminada Headland, and Plaquemines shorelines. By comparing the volume eroded per unit area of these three 
shoreface zones, Miner, Kulp, Penland, and others (2009) showed that the Caminada Headland underwent the greatest 
amount of erosion –3.4 cubic meters per square meter (m3/m2) (4.5 cubic yards per square yard [yd3/yd2]) relative to –2.1 
and –1.7 m3/m2 (–2.75 and –2.2 yd3/yd2) for the Isles Dernieres and Plaquemines shoreface zones, respectively. They 
measured an approximate maximum vertical erosion of –10 m (32.8 ft) along the Caminada Headland, –5 m (16.4 ft) 
along the Isles Dernieres, and –6 (19.7 ft) m along the Plaquemines shoreline. Erosion was not limited to the nearshore 
and upper shoreface; rather, a significant portion of the total shoreface erosion occurred along the lower shoreface and 
extended offshore beyond the limits of the study area (fig. 22).

In addition to shoreface erosion, scour at tidal inlets accounted for ~6 percent of the total erosion that occurred 
in the study area between the 1880s and 2006 (Miner, Kulp, Penland, and others, 2009). Processes that contribute to tidal 
inlet scour include (1) landward migration of inlet throats, (2) lateral inlet channel migration, (3) inlet throat deepening 
and widening, and (4) barrier breaches that remain open, forming new tidal inlets. For a more detailed discussion of 
hydrodynamic processes in Barataria Basin, see Theme 4 in this report.

The observed landward scouring and seaward shoaling of tidal inlets along the Teche-Lafourche coasts line 
resulted in high rates of shoreline and shoreface retreat in the study area (Miner and others, 2007; Miner, Kulp, Motti, and 
others 2009). The highest rates of inlet landward migration occurred along the Timbalier Islands. Raccoon Pass migrated 
landward at a rate of 29 m/yr (95 ft/yr) since the 1880s, and Little Pass Timbalier migrated landward at a rate of 44 m/yr 
(144 ft/yr) since the 1930s.

Lateral inlet migration in the study area was driven by lateral spit accretion as the barrier island migrated across 
a former inlet location (Miner, Kulp, Motti, and others, 2009). Because of the high rates of shoreline retreat, lateral 

BICM Program Summary Report: Data and Analyses 2006 through 2010
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Mississippi River Delta Plain

Figure 21.  Bathymetry (gray increasing water depth to darker blue) collected during the BICM project in 2006 along Caminada 
Headland, Grand Isle, and Grand Terre. Barrier extents are indicated by green with shorelines derived from thematic classifications 
produced from image datasets and GIS editing (modified from BICM Volume 3; Miner, Kulp, Weathers, Motti, and others, 2009). 
Abbreviation: m, meter.

Figure 22.  Seafloor-change map of the Raccoon Point to Sandy Point area from the 1880s to 2005. High erosion occurs along the Isles 
Dernieres, Caminada, and Plaquemines shorelines, with deposition occurring at the tidal passes. The 2005 bathymetry data collected 
during BICM (BICM Volume 3; Miner, Kulp, Motti, and others, 2009) were compared with 1880s bathymetry from List and others 
(1994) and with shoreline data analyzed for the BICM program (modified from BICM Volume 2; Martinez, O’Brien, and others, 2009a). 
Abbreviation: m, meter.
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migration is often accompanied by landward migration. The only tidal inlet where lateral migration dominated the 
morphologic evolution of the barrier system was at Cat Island Pass, where Timbalier Island has migrated >8 km (5 mi) to 
the west since the 1880s (figs. 22 and 23).

Barras (2006) reported that interior wetland loss in the Barataria and Terrebonne Basins inland of the Teche-
Lafourche shoreline occurred at a rate of ~16 km2/yr (6.2 mi2/yr) for the period 1956 to 2004. Several studies have 
documented increased historical tidal prisms along coastal Louisiana resulting from increased mainland open-water areas. 
The greater water volumes passing through the tidal inlets during each tidal cycle deepen and enlarge existing inlets and 
contribute to the formation of additional stable inlets along the barrier shoreline (FitzGerald and others, 2004, 2007; Miner 
and others, 2007; Howes, 2009). Between the 1880s and 2006, the combined tidal inlet cross-sectional area increased 
more than threefold in the study area (see Theme 4; Howes, 2009), and the number of tidal inlets have increased from 13 
to about 25. During this same time period, the combined barrier island footprint decreased in area from 81 to 25 km2 (31 
to 10 mi2) (Martinez, O’Brien, and others, 2009a).

Increasing the tidal prism also increases the efficiency of sediment trapping in ebb-tidal deltas (Walton and 
Adams, 1976; FitzGerald and others, 2004, 2007; Miner and others, 2007), increasing their sediment volume and extent. 
Although local ebb-tidal delta progradation is apparent at most inlets, the ebb-tidal deltas at coastal bights are the primary 
long-term sediment sinks. This is because more sediment was lost due to shoreface erosion at these locations than was 
deposited at ebb-tidal deltas, causing shoreface retreat at the terminal lobes of the ebb tidal deltas (Miner, Kulp, Motti, and 
others, 2009).

BICM Program Summary Report: Data and Analyses 2006 through 2010

Figure 23.  Historical (from 1884 to 2005) shoreline-change time series of Timbalier Island, Caminada Headland, and Grand Isle using 
shoreline data compiled from BICM Volume 2 (modified from BICM Volume 2; Martinez, O’Brien, and others, 2009a). Note shoreline 
retreat and land loss of Caminada Headland and westward migration and land loss of Timbalier Island.
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Habitat Change 

BICM habitat data for 1998, 2001, 2004, 2005 were compared along the Teche, Lafourche, and Modern Delta 
shorelines. This portion of the Louisiana coast has a long history of being engineered to help maintain its form and 
structure, and many of the observed habitat changes were directly related to these restoration efforts. The most common 
construction projects typically place large amounts of dredge material (primarily fine-grained sand) on the shoreface to 
enhance beach width and elevation. Another common shoreface protection method was used at Raccoon Island, where 
eight concrete breakwaters were constructed in 1997 along the nearshore and eight more were constructed in 2008–09. 
Some projects also emplaced fine-grained material on the bayside of islands to provide substrate for back-barrier marsh 
environments. 

Habitat change in response to barrier island restoration varies; the following examples describe some of the 
changes that occurred post construction and also how hurricanes impacted those habitats. The Whiskey Island Restoration 
project (TE-27; LCWCRTF, 2002a) was completed in 2002 and showed that although the overall acreages of bare land 
and intertidal flat habitats increased as a result of dredge material emplacement, there was a slight decrease in marsh 
habitat acreages as a result of burial. By 2004, plants had begun to colonize the placed material and the acreages of barrier 
vegetation increased as acreages of bare land decreased. Marsh habitat acreage remained relatively stable, indicating 
that the placed material was colonized by dune and other non-wetland species rather than marsh grass—a result of the 
increased elevation of the placed material. Storm surge associated with Hurricanes Katrina and Rita caused significant 
washover at Whiskey Island, increasing the acreages of beach and intertidal flat habitat (figs. 24 and 25). The extent of 
marsh habitat at Whiskey Island remained relatively unchanged after the passage of Hurricanes Katrina and Rita.

The 1997 breakwater construction at Raccoon Island (TE-29; LCWCRTF, 2002b) increased the intertidal flat 
habitat acreage behind the structures by 2004 (fig. 25). Between 1996 (pre-construction of breakwaters) and 2004, marsh 
plants colonized the newly accumulated intertidal flats, increasing the acreages of marsh habitat. Significant overwash 
resulting from Hurricanes Katrina and Rita in 2005 deposited sandy sediment on Raccoon Island and increasing the 
acreages of beach and intertidal flat habitat while decreasing the acreages of marsh habitat for the 2005 analysis period.

Similar restoration projects have been constructed on Trinity and East Islands (Teche Delta) and Timbalier 
and East Timbalier Islands, Caminada Headland, Grand Isle, and Grand Terre and East Grand Terre Islands (Lafourche 
Delta). In most cases, dredged material was emplaced to create terraces, dunes, and marsh (LCWCRTF, 2002c, 2002d), 
resulting in increased acreages of bare land. Following the passage of Hurricanes Katrina and Rita, beach and overwash 
habitat generally increased at these locations. Planting native flora, such as Spartina patens and Panicum armanum, and 
placement of sand fencing also helped to create dunes (LCWCRTF, 2002c). Construction of breakwaters along Grand 
Isle, as well as numerous placements of sand for beach nourishment, has helped to maintain land acreages. The placement 
of dredge material and vegetative plantings on Grand Terre created 127 acres of land in the eastern portion of the island 
(LCWCRTF, 2008). 

Impacts of Storms

Using data collected during the BICM program, Miner, Kulp, Motti, and others (2009) and Miner, Kulp, 
FitzGerald, and Georgiou (2009) analyzed the impact of storms on the Teche, Lafourche, and Modern Delta coastline. The 
following summarizes these results.

Bathymetric data collected in July 2005 (DeWitt and others, 2007) were compared to the BICM data collected in 
June 2006 (fig. 26) to assess the impact of storms on the Caminada Headland shoreface and compare long-term sediment 
transport volumes with short-term sediment transport resulting from extreme storms. In order to assess the impact of three 
hurricanes that impacted the area in 2005 (Hurricanes Cindy, Katrina, and Rita; Knabb and others, 2005, 2006; Stewart, 
2006), the 2006 survey reoccupied the same transects as the 2005 survey. Miner, Kulp, Penland, and others (2009) showed 
that between 2005 and 2006, the maximum vertical erosion (~1 m; ~3.28 ft) occurred in water depths >8 m (26 ft) along 
the lower shoreface (fig. 26). The volume of sediment eroded from the Caminada Headland shoreface and nearshore 
environments was 8.94 x 107 m3 (11.69 x 107 yd3) from a 1.55 x 108 m2 (1.85 x 108 yd2) area. The long-term (1880s to 
2006) average rate of erosion for the same area was ~2.4 x 106 m3/yr (~3.14 x 106 yd3/yr). Shoreline straightening and 
equilibrium occurs during post-storm redistribution of sediment from nearby shorelines by littoral transport processes (fig. 
27). Redistribution of sediment readily occurs especially when nearby islands have recently been nourished providing an 
available sediment source. 

Mississippi River Delta Plain
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Acadiana Bays
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Figure 26.  Caminada Headland shoreface seafloor-change map, 2005 to 2006: (A) Short-term bathymetric changes along the shoreface 
of the Caminada Headland and (B) the x-x’ shore-normal profile comparison, demonstrating erosion that occurred between July 2005 
and June 2006. The two surveys were separated by the 2005 hurricane season, during which Hurricanes Cindy, Katrina, and Rita 
impacted the study area. The volume of sediment eroded during this single year was almost 40 percent more than the long-term 
(1880s–2006) average of erosion. The map coordinate system is UTM Zone 15 N meters. Modified from Miner, Kulp, FitzGerald, Flocks, 
and Weathers, 2009, and DeWitt and others, 2007. Abbreviation: m, meter.
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Acadiana Bays

Figure 27.  Example of Volume 1 Barrier-Shoreline Post-Storm Assessment aerial time-series photo pair of Elmers Island for 2005 and 
2007 (BICM Volume 1; Westphal and Penland, 2009).

Acadiana Bays
The Acadiana Bays extend from Marsh Island to Point Au Fer Islands and include West Cote Blanche, East Cote 

Blanche, and Atchafalaya Bays (figs. 1 and 2). These shallow bays and marshes are remnants of the Teche/Maringouin 
inner-shelf delta complex and include some of the oldest deposits in the BICM study area. The Teche delta complex 
deposited sediments in this region from about 6,000 to 3,000 years ago, after which flow was directed eastward to the 
St. Bernard delta complex (Frazier, 1967). Presently, the predominant process is active deposition and delta building 
associated with the Atchafalaya River, which is generating some of the highest accretion rates (at the Wax Lake and 
Atchafalaya Deltas) in the Mississippi River Delta Plain. These sediments are mostly laminated muds with coarser-grained 
material accumulating proximal to the modern deltas.

Compared with the other BICM study areas, the Acadiana Bays region has historically been the focus of far fewer 
investigations; most of these studies focused on the Atchafalaya and Wax Lake Deltas. As reported by van Heerden and 
Roberts (1988), in the 1970s, subaerial growth of the bayhead Atchafalaya Delta resulted from sediment infilling of the 
Atchafalaya River Basin and flood events that delivered an increased sediment load from the basin to the river mouth in 
Atchafalaya Bay. Since then, flood events and human alterations have contributed to or reduced delta growth (Flocks and 
others, 2002). Van Heerden and Roberts (1988) described the delta stratigraphy as “old bay” fill and prodelta deposits that 
coarsen upward into distributary and levee deposits. Roberts and others (1997) described a similar geologic framework 
from the Wax Lake Delta.
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A stratigraphic cross section across Atchafalaya Bay to the west of the present navigation channel (fig. 28) shows 
the transition from a brackish-marsh environment into estuarine, or bay, and then modern fluvial delta (Flocks and others, 
2002). Calibrated Accelerator Mass Spectrometry (AMS) radiocarbon-age dates from the marsh-peat layers range from 
2,470 to 3,310 years BC, which corresponds to the end of active Teche Delta progradation. Averaged subsidence rate 
across the core transects is approximately 0.094 cm/yr (0.037 in/yr). This is the same average subsidence rate determined 
by Roberts and others (1994) from a core acquired approximately 19 km (12 mi) to the northwest (and within the second 
lobe of the Teche Delta, as defined by Frazier [1967]). Farther offshore, Neill and Allison (2005) measured deposition 
rates of Atchafalaya River muds at 1–2 cm/yr (0.4–1.79 in/yr). However, they suggested that sediment bypassing farther 
offshore and erosion by storms will prevent future land accretion in the area, constraining any subaerial extension to the 
modern Wax Lake and Atchafalaya Deltas.

BICM Program Summary Report: Data and Analyses 2006 through 2010

Figure 28.  Vibracore transect across Atchafalaya Bay, to the west of the present navigation channel. The cross section reflects the 
transition from a brackish-marsh environment into estuarine, or bay, and then modern fluvial delta (modified from Flocks and others, 
2002). Abbreviation: km, kilometer; AMS, Accelerator Mass Spectrometry.

History of Topographic and Bathymetric Changes

Shoreline-change trends in the Acadiana Bays region reflect the growth of the Atchafalaya and Wax Lake Deltas 
over the past century (fig. 29). In general, between the mid-1800s and the mid-1900s, rates of shoreline loss were fairly 
consistent, averaging about –3.5 m/yr (–11.5 ft/yr) (calculated from Martinez, O’Brien, and others, 2009a). Over the next 
half century, the bay shoreline reaches continued to retreat even as rapid accretion at the Wax Lake and Atchafalaya Deltas 
was initiated. Since then, shoreline retreat across the bays has stabilized, and delta growth has continued. Despite delta 
growth of >6 m/yr (>20 ft/yr) since the mid-1900s, long-term shoreline trends for the Acadiana Bays are negative, ranging 
from –1.5 to –8.0 m/yr (–4.9 to –26.3 ft/yr), with a 119-year cumulative average of –3.0 m/yr (–9.8 ft/yr), and an average 
cumulative retreat of 1.2 km (0.75 mi). No bathymetric data were collected in the Acadiana Bay region during the BICM 
project.
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Acadiana Bays

Figure 29.  Shoreline-change map (1800s to 2005) of the Morgan City quadrangle. USGS Quadrangle in the Acadiana Bays region 
analyzed during BICM project (BICM Volume 2; Martinez, O’Brien, and others, 2009a).

Figure 30.  Oblique aerial photos: (A) Atchafalya Delta, 2006, and (B) Marsh Island, 2005, shorelines taken as part of the BICM program 
(BICM Volume 1; Westphal and Penland, 2009).
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Habitat Changes and Impacts of Storms

No habitat classification or change data were collected in the Acadiana Bays region during the BICM project. 
This is an important data gap in the BICM program. In 2005, post-Hurricanes Katrina and Rita photography was acquired 
as a photo survey of the Marsh Island Gulf shoreline (fig. 30). This photo survey was integrated into the BICM Volume 1 
dataset, but no further analysis, historical time-series photography, or post-hurricane photo pairs are available. This is an 
important data gap in the BICM program.

Chenier Plain 
The Chenier Plain extends from Sabine Pass in the west to Southwest Point on Vermillion Bay in the east. The 

BICM project further divided the Chenier Plain into the western and eastern Chenier Plain (Sabine Pass to the Lower Mud 
Lake Outlet and Lower Mud Lake Outlet to Southwest Point, respectively) (figs. 1 and 2). The Sabine, Calcasieu, and 
Mermentau Rivers transect the Chenier Plain. Four major lakes in the Chenier Plain (Sabine and Calcasieu Lakes in the 
western Chenier Plain and Grand and White Lakes in the eastern Chenier Plain) formed as bays at the mouths of drowned 
late Pleistocene incised river valleys as sea level rose during the Holocene. Early studies (Fisk, 1944; Byrne and others, 
1959; Gould and McFarlan, 1959) correlated the timing and development of individual ridges and chenier complexes 
with delta-lobe switching and shifts in the location of the Delta Plain depocenters. Penland and Suter (1989) and McBride 
and others (2007) further refined these chronologies and described in detail the distribution, geomorphic features, and 
processes that formed the different cheniers and chenier complexes. Although transgressive processes dominated along 
the Chenier Plain coastline historically, with the modern Mississippi deltaic depocenter located in the eastern delta plain, 
Huh and others (2001) and Draut and others (2005) documented renewed mudflat progradation and increased sediment 
deposition on the inner-continental shelf along the eastern Chenier Plain coastline associated with sediment derived from 
the Atchafalaya River.

BICM Program Summary Report: Data and Analyses 2006 through 2010

Figure 31.  Historical (1855 to 2005) shoreline-change rates in meters per year along the Chenier Plain coastline (BICM Volume 2; 
Martinez, O’Brien, and others, 2009a).
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History of Topographic and Bathymetric Changes

BICM and historical bathymetric data were collected only offshore of the western Chenier Plain beaches, whereas 
lidar surveys and shoreline-change analyses were conducted along the entire length of the Chenier Plain coastline. 
Historically, the western Chenier Plain shoreline has been relatively stable, with average shoreline-change rates averaging 
0.73, –4.49, and 0.7 m/yr (2.4, –1.6, and 2.3 ft/yr) for the historical (1855–2005), long-term (1904–2005), and short-
term (1996–2005) periods, respectively (Martinez and others, 2009a). In contrast, the eastern Chenier Plain shorelines 
experienced rapid retreat of –4.1, –4.76, and –7.3 m/yr (–13.4, –15.6, and –23.8 ft/yr) during the same time periods 
(fig. 31; Martinez, O’Brien, and others, 2009a). In particular, the Mermentau River, Rockefeller Refuge, and Mulberry 
Island shoreline reaches consistently experienced very high rates of erosion (up to –15.6 m/yr or –51.0 ft/yr short-term 
change along the Rockefeller Refuge shoreline). The Freshwater Bayou shoreline is the only reach in the eastern Chenier 
Plain where the shoreline prograded (2.6 to 3.2 m/yr or 8.6 to 10.4 ft/yr) for the historical to short-term analysis periods. 
This shoreline corresponds to the same area where Huh and others (2001) and Draut and others (2005) documented 
mudflat progradation and inner-shelf deposition along the eastern Chenier Plain coast. Average near-term shoreline-change 
rates differed significantly from the historical- to decadal-scale change rates for both the western (18.2 m/yr or 60.0 ft/
yr) and eastern (0.76 m/yr or 2.5 ft/yr) Chenier Plain coastlines. Assuming that these changes are indicative of nearly 
instantaneous redistribution of sediment from the nearshore area by Hurricane Rita, it is unlikely that the near-term trends 
will persist into the future.

Bathymetric data collected for BICM in 2007 (fig. 32) were compared with historical survey data from the 1880s 
and 1920s to create bathymetric-change maps and calculate volumes of sediment erosion and deposition along the western 
Chenier Plain beaches over the past ~130 years (Miner, Kulp, Weathers, and Flocks, 2009). These maps show significant 
changes in depositional patterns for the 1880s to 1920s relative to the 1920s to 2007s time period (figs. 33 and 34). The 
2007 dataset also serves as a baseline (post-Hurricane Rita) for future change analyses. Between the 1880s and 1920s, 
significant volumes of sediment were deposited in the Calcasieu Pass and Sabine Pass ebb-tidal deltas (net deposition 
55.4 x 106 and 56.8 x 106 m3 or 72.5 x 106 and 74.3 x 106 yd3, respectively), and the overall trend for the nearshore areas 
was essentially no change or sediment deposition (fig. 33). The only areas that showed net sediment erosion during this 
time were the Calcasieu River inlet and the nearshore extent along the Lower Mud Lake shoreline. In contrast, except 
for Calcasieu River ebb-tidal delta and localized deposition updrift of the Sabine and Calcasieu Pass jetties, most of the 

Chenier Plain

Figure 32.  Western Chenier shoreline and 2007 bathymetric map using BICM-program data. Land is indicated by green with shorelines 
derived from thematic classifications produced from image datasets and GIS editing (BICM Volume 3; from Miner, Kulp, Weathers, and 
Flocks, 2009). Abbreviation: m, meter.
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Figure 33.  Western Chenier historical seafloor-change map from the 1880s to 1920s using digitized H- and T-sheets from the US 
Coastal and Geodetic Survey (modified from BICM Volume 2; Martinez, O’Brien, and others, 2009a) and seafloor change methods and 
uncertainty analysis (BICM Volume 3; Miner, Kulp, Weathers, and Flocks, 2009). Abbreviation: m, meter.

Figure 34.  Western Chenier historical seafloor-change map from the 1920s to 2007 using digitized H- and T-sheets from the U.S. 
Coast and Geodetic Survey (modified from BICM Volume 2; Martinez, O’Brien, and others, 2009a) and seafloor change methods and 
uncertainty analysis (BICM Volume 3; Miner, Kulp, Weathers, and Flocks, 2009). Abbreviation: m, meter.
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analysis areas along the western Chenier Plain coastline underwent seafloor erosion between the 1920s and 2007 (fig. 
34). However, because of the large volume of sediment deposited in the Calcasieu River ebb-tidal delta offshore from 
Calcasieu Pass (net sediment deposition 130.8 x 106 m3; 171.1 x 106 yd3), the overall 1920s to 2007 change for the entire 
analysis extent was net sediment accumulation. The change in historical depositional patterns was likely due in large part 
to dredging and enlargement of the deep-draft Calcasieu Ship Channel, which channeled freshwater flow and sediment 
discharge to the Gulf of Mexico, bypassing the interior coastal wetlands and the nearshore coastal areas (LCWCRTF, 
2002e; McCorquodale and others, 2009; Meselhe and Miller, 2009).

Habitat Change

BICM habitat classification and change analyses were limited to the western Chenier Plain beaches; no habitat 
data were collected in the eastern Chenier Plain. Total marsh habitat in the western Chenier Plain remained relatively 
constant from 1998 to 2005, although there was some variability within the separate analysis areas. Construction of the 
Holly Beach Sand Management Project (CS-31) was completed in 2003. This CS-31 project restored approximately 300 
acres of beach habitat between Holly and Constance Beaches, reestablished the shoreline near its historical position, and 
protected approximately 8,000 acres of existing intermediate and brackish-marsh wetlands north of the beach (LCWCRTF, 
2004). The positive benefit of this project is reflected in the increased beach and marsh acreage in this area between 2001 
and 2004. The amount of intertidal flat present in 2001 is significantly less than that in 1998 or 2004 because of the high 
water at the time that the 2001 imagery was acquired. Scouring and flooding of low-lying areas near the coastline after the 
passage of Hurricane Rita resulted in lower acreages of marsh habitat in 2005 compared with that in earlier years (fig. 35). 

Chenier Plain

Figure 35.  BICM habitat-change map (1998 to 2002) for Holly Beach along the western Chenier Plain. This is a final product of data 
collected during the BICM project used first to classify habitats and then to determine change in habitats over time along the Louisiana 
coast (BICM Volume 5; Fearnley and others, 2009b).
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Similarly, beach habitat was reduced in most areas in 2005; however, some localized increases in beach habitat were 
observed. These increases were the result of sediment being redistributed inland with the storm surge.

Impacts of Storms

The Chenier Plain was significantly impacted by Hurricane Rita, which made landfall on September 24, 2005, 
west of Johnson’s Bayou in southwestern Louisiana. Post-hurricane photo pairs from 2005 and 2006 and historical time-
series photos compiled for the BICM Volume 1 post-storm assessment documented significant damage along the Chenier 
Plain coastline as far east as Freshwater Bayou in the eastern Chenier Plain. In many locations, large volumes of sand 
were deposited inland of the previously existing beach, and extensive areas of low-lying coastal wetlands were flooded by 
the storm surge (fig. 36). 

BICM Program Summary Report: Data and Analyses 2006 through 2010

Figure 36.  Oblique aerial time-series photo pair of Johnson’s Bayou shoreline for the years 2005 and 2006 (BICM Volume 1, Westphal, 
2008). House is in the same location.
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Discussion of Louisiana Coast-Wide and Topical Themes

Data collected during the BICM program were extensive and make up one of the broadest available coastal 
geophysical datasets for the Gulf of Mexico (GOM). In an attempt to integrate the data collected into meaningful analyses 
of the Louisiana shoreline, several coastal-wide and topical themes have been selected. The objectives of the thematic 
discussions are to address coast-wide impacts of relative sea-level change to the Louisiana coastal system, focusing on 
inlets, extreme storms, and habitats.

THEME 1: Barrier-Shoreline Evolution in a Regime of Rapid Relative Sea-Level Rise and 
Interior-Wetland Loss

Rates of RSLR, which are locally in excess of 1 cm/yr (0.39 in/yr), are driving barrier-shoreface retreat along the 
periphery of the Mississippi River Delta Plain. In addition, historical wetland losses in the delta-plain interior totaled more 
than 2,300 km2 (888 mi2) between 1956 and 2004 (fig. 37). This conversion of interior wetlands to open water increased 
bay tidal prisms, resulting in degradation of barriers through inlet widening, development of new inlets, and sediment 
storage in ebb-tidal deltas.

Bathymetric surveys completed as part of the BICM effort combined with historical bathymetry from three earlier 
time periods (dating to the 1880s) provide a series of digital-elevation models (DEMs) from Raccoon Point in Terrebonne 
Parish to Sandy Point in Plaquemines Parish (fig. 22). These models capture the three-dimensional morphological 
evolution of this area. As outlined in Miner, Kulp, Penland, and others (2009), these datasets identified three dominant 
trends during the 125-year period: (1) erosion of ~1.6 x 109 m3 (~2.1 x 109 yd3) from the shoreface, forcing shoreface 
retreat, (2) deposition in coastal bights and at ebb-tidal deltas, and (3) an increase in collective tidal-inlet cross-sectional 
area from ~41,400 m2 to ~139,500 m2 (~445,625 to ~1,501,565 square feet [ft2]) (refer to the Modern Delta, Lafourche, 

THEME 1: Barrier-Shoreline Evolution in a Regime of Rapid Relative Sea-Level Rise and Interior-Wetland Loss

Figure 37.  Southern coastal Louisiana land-loss change analysis, 1956 to 2004 (red is conversion of marsh to open water, and green is 
conversion of open water to marsh or delta). Data from Barras and others (2008) and Morton and others (2010).
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and Teche Deltas, Regional Discussions section in this report for more detail). The rate of increased tidal-inlet cross-
sectional area is directly proportional to the rate of interior-wetland loss. By comparing data collected between short time 
frames (years to decades) to long-term trends, Miner, Kulp, Penland, and others (2009) reported that rates of shoreface 
erosion and landward barrier migration are significantly greater from storm impacts when compared to the long-term 
trends. Historical shoreline-change analysis also shows that rates of as much as 3 km/century of barrier-shoreline retreat 
during the past 125 years are accompanied by erosion of the back-barrier shorelines, indicating that a net loss of sediment 
from the system coupled with rapid RSLR is causing the barriers to drown in place. 

Physical Coastal Processes 

The wave climate affecting the Louisiana coast can be divided into offshore- and nearshore-waves regimes, the 
latter generated by cold fronts and tropical storms. Deep-water wave data compiled from buoy records over the past 3 
decades provide a mean wave-height range of 0.3 to 1.3 m (0.98 to 4.27 ft) (Georgiou and others, 2005). Closer to shore, 
wind direction is generally from the south and southwest during the summer, and from the northeast and south during the 
winter. Nearshore-wave climate ranges from 0.07 to 0.8 m (0.23 to 2.63 ft), with the higher-wave climate dominated by 
weak storms. Tropical storms, however, can generate wave heights up to 2 m (6.56 ft). The most drastic shoreline change 
has been observed following the passage of tropical storms, although the much higher frequency of cold-front passage 
makes them an important component in nearshore sediment-transport processes (Georgiou and others, 2005).

Relative sea-level rise in coastal Louisiana is driven by subsidence and eustatic sea-level rise. Subsidence rates 
in Louisiana are 3 to 4 times higher than average rates in the Gulf of Mexico (Penland and Ramsey, 1990). Although 
subsidence is dominated by compaction of the recently deposited Mississippi River Delta Plain stratigraphy, faulting and 
fluid extraction also contribute locally, along with glacial isostatic adjustment and lithospheric flexure (Yu and others, 
2012). Data acquired from the NOAA tide gage at Grand Isle show a long-term (1947–2006) rate of 0.92 cm/yr (0.36 in/
yr), although the rate appears to be slowing in recent years (Miner, Kulp, Penland, and others, 2009). Morton and Bernier 
(2010) suggest a slowing trend in subsidence rates may be the result of rebalancing of subsurface stresses following the 
reduction of fluid withdrawal, a trend that may be reflected in the short-term RSLR rate. Natural RSLR and the conversion 
of wetlands to open water are further exacerbated by anthropogenic alterations. Constraining the Mississippi River with 
engineered levees reduces the amount of river-borne sediments contributing to land building, and the excavation of access 
canals for oil and gas extraction increases wave activity, salinity, and tidal volume, resulting in further erosion of the 
wetlands (FitzGerald and others, 2004; Miner and others, 2007).

Coastal-Sediment Budget

Results of the BICM bathymetric data compared to historical data (1880s to 2006) show that over the past 125 
years, 1.6 x 109 m3 (2.1 x 109 yd3) of sediment have been removed from the coastal system along the Teche, Lafourche, 
and Modern Delta shoreline (Miner, Kulp, Motti, and others, 2009). Erosion has not been spatially consistent in this 
system, with the majority volume per unit area occurring along the Caminada Headland (–3.4 m3/m2, –4.5 yd3/yd2) and Isle 
Dernieres areas (–2.1 m3/m2, –2.75 yd3/yd2), mainly from within the lower shoreface (Miner, Kulp, Penland, and others, 
2009).

As the shoreface erodes and retreats, the tidal inlets separating the barrier islands migrate landward, hydraulically 
scouring the seafloor as they advance while infilling and shoaling at their seaward extent. At the same time, interior-
wetland loss is occurring at extremely high rates. Between 1956 and 2004, more than 1,600 km2 (618 mi2) of wetlands 
within the Barataria and Terrebonne Basins have been converted to open water (Barras, 2006). As the tidal prism 
increases, so does flow at the inlets, creating more scour at the inlet throat and more efficient sediment trapping at the ebb-
tide deltas (FitzGerald and others, 2004, 2007; Miner and others, 2007). The enhanced sediment sink seaward of the inlets 
sequesters material offshore, removing it from the barrier-island system. Over the 125-year study period, more than 80 x 
106 m3 (105 x 106 yd3) of sediment have accumulated offshore from Barataria Pass and adjacent inlets, while 5 x 106 m3 
have been removed from the adjacent Grand Isle inner shelf over the same time period (Miner, Kulp, Penland, and others, 
2009).

BICM Program Summary Report: Data and Analyses 2006 through 2010
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THEME 2:  Hurricane Impact to the Chandeleur Islands during the Period 1855 to 2005 and 
the Likelihood of Island Recovery

The impact of hurricanes on coastal systems has been intensively studied, but only recently have quantitative 
analyses progressed to strengthen realistic predictive modeling of the impact and likelihood of barrier island recovery 
following a hurricane. Developing these predictive capabilities requires baseline data and repetitive pre- and post-storm 
data. The BICM program has progressively provided baseline data for much of the Louisiana coast, but repetitive pre- and 
post-storm data are lacking in many areas. The Chandeleur Islands have been extensively studied using the comprehensive 
database collected by BICM along with pre- and post-storm data from Hurricanes Katrina and Rita and several minor 
storm events. The results from these studies provide a basis for understanding the impact of storms events along other 
sections of the Louisiana coast. Therefore, the recovery of the Chandeleur Islands as a proxy for coastal Louisiana is 
described until sufficient pre- and post-storm data are available to develop predictive models for other Louisiana barrier 
islands and shorelines.

The Chandeleur Islands is an arcuate barrier-island chain, extending 80 km (49 mi) that extends from Hewes 
Point north of the Chandeleur Islands, along the ephemeral shoals of Curlew and Grand Gosier Islands, to Breton 
Island in the south (fig. 38). Similar to other barrier islands of the northern GOM, the Chandeleur Islands are important 

THEME 2:  Hurricane Impact to the Chandeleur Islands during the Period 1855 to 2005 and the Likelihood of Island Recovery

Figure 38.  Location map showing the Chandeleur Islands relative to other physiographic features. The Chandeleur Islands shoreline 
shown is from 2002. The inset bathymetry is from the Coastal Relief Model (Divins and Metzger, 2008). The bathymetry in the larger 
map is a composite of bathymetry collected during the BICM program and the Coastal Relief Model. Abbreviation: m, meter.
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because they (1) attenuate storm impacts for mainland Louisiana and Mississippi (Stone and Orford, 2004; Stone and 
others, 2005), (2) regulate estuarine salinity and circulation (Reyes and others, 2005), and (3) provide unique habitat 
for threatened and endangered species (Poirrier and Handley, 2007; Fearnley, Miner, Kulp, Bohling, Martinez, and 
Penland, 2009; Fearnley, Miner, Kulp, Bohling, and Penland, 2009). Located approximately 40 km (25 mi) offshore of the 
Louisiana mainland wetlands across Breton and Chandeleur Sounds, the islands are inherently susceptible to the effects of 
tropical storms entering the northern Gulf of Mexico and have been impacted by more than 40 hurricanes since the early 
1900s. 

Long-term sediment-transport trends are punctuated by nearly instantaneous restructuring during storm events. 
This was dramatically demonstrated at the Chandeleur Islands in the wake of Hurricane Katrina (2005), where storm 
surge inundated the islands and completely removed the subaerial sand, leaving discontinuous marsh islets (Sallenger 
and others, 2007). Miner, Kulp, Penland, and others (2009) reported that shoreline change related to storm impact 
significantly exceeds long-term change trends, and Fearnley, Miner, Kulp, Bohling, Martinez, and other, (2009) showed 
that the Chandeleur Islands lost the same amount of land between 1855 and 1996 as between 1996 and 2005 (fig. 39). The 
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Figure 39.  Shoreline-retreat and land-
area change for the Chandeleur Islands 
between 1855 and 2005. (A) Average 
linear distance from the shoreline (at 
a given year) to an offshore baseline. 
In 2035, the shoreline is projected to 
erode to the bayside position of the 
islands, and the marsh is expected to 
disappear. (B) Using the frequencies of 
storm activity affecting the northern 
Chandeleur Islands and historical 
shorelines, land area was plotted for two 
periods: 1855–1996 (gray line) and 1989–
2005 (black line). These trends show two 
different trajectories for island survival 
(from Fearnley, Miner, Kulp, Bohling, 
and Penland, 2009). Abbreviation: km, 
kilometer.
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historical (1855 to 1996) loss included changes caused by the passage of Hurricane Camille in 1969, which passed over 
the Chandeleur Islands as a Category 5 storm. Recently, Hurricanes Ivan (2004) and Katrina (2005) decimated the islands, 
reducing surface area by an average rate 10 times greater than in the previous century (Fearnley, Miner, Kulp, Bohling, 
Martinez, and Penland, 2009; Sallenger and others, 2009). Comparing the increased destruction to the Chandeleur Islands 
caused by Hurricanes Katrina and Ivan relative to Camille, Fearnley, Miner, Kulp, Bohling, Martinez, and Penland (2009) 
concluded that hurricane frequency and trajectory relative to island curvature and structure are as important as hurricane 
intensity.

In addition to the historical shoreline data compiled for the BICM project, Fearnley, Miner, Kulp, Bohling, 
Martinez, and Penland (2009) used historic maps from between 1744 and 1848 to determine the historical position of the 
Chandeleur Islands. The geomorphic response of the shoreline during the past century was investigated by using maps 
from five time periods: 1855, 1922, 1989, 2004, and 2005. For a comprehensive documentation of methods, uncertainty 
analysis, and measurement accuracy, see Fearnley, Miner, Kulp, Bohling, and Penland (2009), McBride and others (1992), 
Morton and others (2004), and Martinez, Penland, and others (2009b).

Results of historical (1855 to 2005) shoreline-change analyses conducted by Fearnley, Miner, Kulp, Bohling, 
and Penland (2009) for the Chandeleur Islands are consistent with the conclusions of Miner, Kulp, Penland, and others 
(2009): storm frequency and extreme storm impacts dominate the long-term evolution of island area and shoreline 
retreat (fig. 39). Prior to 1996, storm frequency was low, and island area changed at a relatively low rate of –0.16 km2/yr 
(–0.062 mi2); however, the rate increased to –1.01 km2/yr (–0.39 mi2) when the number of storms impacting the shoreline 
increased between 1996 and 2005. Shoreline-retreat rates also increased from a rate of –11.4 m/yr (–37.4 ft/yr) between 
1922 and 1996 to –41.9 m/yr (–137.5 ft/yr) between 1982 and 2005. The passage of Hurricane Katrina in 2005 produced 
an unprecedented erosional impact when compared to pre-storm observations. The shoreline of the northern Chandeleur 
Islands eroded and moved landward by –201.5 m/yr (–661.1 ft/yr), compared with an average rate of –38.4 m/yr (–126 
ft/yr) between 1922 and 2004. Based on their analysis of historical land-area trends (fig. 39), Fearnley, Miner, Kulp, 
Bohling, and Penland (2009) projected that the Chandeleur Islands could potentially lose all marsh area by 2013 if tropical 
storms continue to impact the islands at rates observed between 1996 and 2005. However, if storm frequency returns to 
pre-1996 conditions, the back-barrier marshes may persist through 2037 (Fearnley, Miner, Kulp, Bohling, and Penland, 
2009). 

Analysis of BICM bathymetric data from the Chandeleur Islands (Miner, Kulp, Weathers, Motti, and others, 
2009) identified long-term trends of barrier-shoreface retreat and land loss that are consistent with the long-term shoreline-
change analyses presented by Fearnley, Miner, Kulp, Bohling, and Penland (2009). Volume calculations by Miner, Kulp, 
Weathers, Motti, and others (2009) indicate that about 150 x 106 m3 (196 x 106 yd3) of sediment have been deposited 
downdrift (northward) and seaward of the northern terminal spit during the past 125 years (fig. 40). At the southern end of 
the island chain (south of Breton Island), a similar volume of sediment has accreted (Miner, Kulp, Weathers, and Flocks, 
2009). The volume of sediment deposited in the back-barrier environment (via cross-shore transport), however, is only 
half that distributed by alongshore currents to the flanks. Sediment-accretion rates of the flanking depositional sinks are 
more than 1.0 x 106 m3 yr–1 (1.3 x 106 yd3 yr1) between 1870 and 2007 (Miner, Kulp, Weathers, and Flocks, 2009). The 
sediment sources for the flanking depositional centers include (1) relict deltaic deposits eroded from the shoreface where 
significant erosion has occurred since 1870 and (2) nearshore and subaerial barrier sand. Miner, Kulp, Weathers, and 
Flocks (2009) concluded that long-term shoreline erosion and transgressive submergence are primarily associated with 
major storms and that rapid land loss accompanies these high-energy events. Seasonal nearshore currents transport sand to 
the flanks of the arc, removing it from the littoral system, and the islands are unable to fully recover from storm impacts. 
These downdrift sand reservoirs provide a unique, quasi-renewable potential resource for restoring the updrift barrier 
system if used in a practical coastal management plan.

The impact of Hurricane Katrina on the Chandeleur Islands in 2005 has been well documented. Sallenger and 
others (2009) studied geomorphic changes to the islands following the storm landfall by using multiple lidar surveys and 
additional BICM data. A summary of their study follows, and the full publication can be found in Lavoie (2009).

Sallenger and others (2009) found that nearly 2 years after Hurricane Katrina removed 86 percent of the subaerial 
surface area of the Chandeleur Islands, most of the island chain continued to rapidly erode (fig. 41). The hurricane impact 
triggered feedback processes that intensified shoreline erosion even under relatively mild, post-storm conditions. These 
processes were triggered during the hurricane storm surge, which completely submerged the islands. Sallenger (2000) 
described this “inundation regime,” and noted that when such submergence occurs, it can lead to differential water levels 
in the bay across the island and offshore, forcing currents to erode narrow beaches or inlets, connecting the back-barrier 
bay with the open ocean. Sallenger and others (2009) showed that during Hurricane Katrina, the Gulf of Mexico-facing 
shorelines were eroded landward an average of 268 m (879.3 ft) (fig. 42). Peak dune elevations on the islands decreased 

THEME 2:  Hurricane Impact to the Chandeleur Islands during the Period 1855 to 2005 and the Likelihood of Island Recovery
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Figure 40.  View to the south of the seafloor 
surfaces of the Chandeleur Islands of the 1870s 
(blue) versus those of 2006 (orange). Note the large 
accretionary zone north of Hewes Point (orange in 
foreground) (modified from summary in Lavoie, 2009). 
Abbreviation: m, meter.

from >6 m (19.6 ft) to <3 m (9.8 ft), and sand was removed from the island surface, exposing remnant marsh platforms 
that were subsequently degraded by relatively small waves. Although some sand had been deposited on the islands by 
June 2007, elevations had not rebuilt appreciably, and the Chandeleurs remained vulnerable to inundation by weak storms. 
Limited sand supply and rapid sea-level rise means it is likely that the Chandeleur Islands will continue to experience 
extreme erosion and will ultimately become completely submerged.

Impacts of Hurricanes and Implications for Management

Numerous recent studies of the Chandeleur Islands have established that the islands are sand starved. Their 
original sediment source was fluvial sediments from the St. Bernard delta lobe (Penland and others, 1988). About 2,000 
years ago, the Mississippi River shifted course, diverted westward, to the location of the Lafourche delta complex. This 
natural transgression initiated a new stage of the St. Bernard delta complex, as coastal submergence and wave action 
started to form the Chandeleur Islands (Penland and others, 1988; Ritchie and Penland, 1988). As waves and currents 
reworked the delta lobe, sand was concentrating into a headland beach or being deposited in spits that formed to either 
side of the headland, such as Hewes Point to the north. As natural subsidence continued, the back-barrier marshes were 
submerged and the headland detached from the mainland, forming the Chandeleur Islands. With continued subsidence and 
sand starvation, the islands are forecast to become smaller and lower and eventually become a submerged shoal (Penland 
and others, 1988). Submergence of the islands is accelerated by storm impact, and Sallenger and others (2009) report 
that the islands response to Hurricane Katrina reveal failure modes that may ultimately contribute to the demise of the 
Chandeleur Islands. Hurricane Katrina stripped sand from the islands, exposing the muddy marsh platforms to waves and 
leading to rapid erosion (Sallenger and others, 2009).

The impact of Hurricane Katrina on the Chandeleur Islands was an unprecedented erosional event and highlights 
the vulnerability of the Chandeleur Islands to major storms. Fearnley, Miner, Kulp, Bohling and other (2009) analyzed 
measurements available between 1855 and 2005 and showed that the Chandeleur Islands area can be expected to convert 
to ephemeral barrier island/shoals between 2013 and 2037 (fig. 39). In addition to storm frequency, a key factor governing 
shoreline response to storm impact is the trajectory of the storm track with respect to the position of the islands. The 
highest rates of shoreline erosion are caused by storms that pass within 120 km (75 mi) to the west of the islands; a 
relatively small amount of shoreline erosion is caused by storms that pass more than 120 km (more than 75 mi) to the east. 

Curlew and Grand Gosier Islands in the southern part of the barrier-island arc reflect the future of the Chandeleur 
Islands. Curlew and Grand Gosier Islands have been reduced to submerged shoals as a result of the high storm frequency 
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Figure 41.  Maps of the Chandeleur Islands before and after Hurricane Katrina (August 2005) based on lidar data. The island areas 
represent elevations above mean high water (MHW); elevations below MHW are white. (A) Lidar survey from before Hurricane Katrina 
acquired by using the National Aeronautics and Space Administration (NASA) Airborne Topographic Mapper on October 6 and 12, 2002; 
referred to in the text as the “pre-storm” survey. (B) Survey within several days of the landfall of Katrina taken by using the NASA 
Experimental Advanced Airborne Research Lidar (EAARL) from September 1 and 4, 2005; referred to in the text as the survey 2 days 
after. (C) Survey nearly 2 years after landfall taken by using the NASA EAARL on June 27 and 28, 2007; referred to in the text as the 
survey 22 months after.
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Figure 42.  Changes of the shoreline (A) and width 
(B) of the Chandeleur Islands from lidar surveys 
before Hurricane Katrina (August 2005), 2 days 
after the storm, and 22 months after the storm.  
Abbreviation: m, meter.

and diminished sand supply during the past decade. These ephemeral islands have undergone submergence in the past as 
a result of storm impacts, including erosion of their marsh platform, and subsequently reemerged during periods of calmer 
weather. The ephemeral nature of these islands is attributed to the absence of a stabilizing back-barrier marsh (Miner, 
Kulp, Weathers, and Flocks, 2009). As the northern islands erode and island areas are reduced to only sandy shoreline 
deposits with little or no back-barrier marsh, they will begin to behave similarly to the southern ephemeral islands.

Miner, Kulp, Weathers, and Flocks (2009) and Lavoie (2009) observed that during the post-storm recovery 
period, landward transfer of sand is facilitated by (1) landward migration of offshore bars that weld to marsh islets, (2) 
recurved spit formation at hurricane-cut inlets, (3) eolian processes (dunes, wind tidal flats, and deposition on the marsh 
surface), and (4) shoal aggradation and landward migration. The dominance of lateral transport over cross-shore transport 
is important, as sand is being concentrated in thick sediment bodies at the flanks of the island arc (fig. 40, Twichell and 
others, 2009a). By understanding where the sand is going, how long it takes to get there, and how the islands respond 
to a rapid introduction of new sediment, more efficient barrier management strategies can be developed. Lavoie (2009) 
suggested that restoration goals should mimic the natural processes of early stages of barrier island evolution (fig. 43), 
using natural coastal currents to transport sand laterally to the island flanks from a centralized source. This method would 
ultimately enhance the islands’ ability to naturally build back-barrier marsh, dunes, and a continuous sandy shoreline. 
Barrier-island sediment nourishment should be executed with the understanding that gulf-side shoreline erosion is 
inevitable; however, in principle, island area can be maintained and enhanced during retreat with strategic sand placement.
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Figure 43.  Conceptual model demonstrating how a barrier-island management-restoration approach may employ natural physical 
processes to extend the life span of the Chandeleur Islands. The model is based on the Twichell and others (2009a) model that was 
interpreted from geophysical and sedimentological data. (A) Barrier-island formation is the natural result of sediment deposition from 
an abandoned deltaic headland. (B) Continued wave reworking of the sediment that is sourced from a headland or islands. (C) Sediment 
is transported alongshore to the flanks of the island system, leading to the eventual removal of sediment from the littoral system and 
forcing island erosion and submergence. (D) In the case of the Chandeleur Islands, utilizing and placing sediment from the “sediment 
sink” to the north (Hewes Point – HP) and the offshore sediment source from the St. Bernard Shoals (STB) may reverse the process of 
transgressive submergence. (E) The strategically and centrally placed sand will be naturally distributed by longshore currents to close 
inlets, broaden beaches, and increase dune elevations, making sand available for overwash and spit building upon which back-barrier 
growth of marsh vegetation can occur. Placing this sand updrift of the sand that was lost from the system may effectively reset the 
clock to stages A–B.
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THEME 3:  Impact of Tropical Storms on Barrier-Shoreline Elevations and the Response of 
Island Renourishment to Storms 

Hurricanes frequently impact coastal Louisiana causing widespread coastal change (fig. 44). Theme 2 discussed 
the changes that hurricane impacts can cause to barrier island morphology and the possibility of island recovery to pre-
storm conditions. In this theme the oceanographic and geologic processes that impact a coastal system during the passage 
of a storm will be discussed. Since oceanographic and geologic processes cannot be discussed completely separate from 
geomorphology, there is some overlap. As with the previous themes, the Chandeleur Islands, in particular, are used as 
proxy for the Louisiana coastal system because of the extensive data that are available.

BICM Program Summary Report: Data and Analyses 2006 through 2010

Figure 44.  Hurricane and tropical storm tracks that impacted the Louisiana coast over the 50-year time period between 1957 and 2008. 
Source of storm tracks is the National Oceanic and Atmospheric Administration (2010).

The size, intensity, duration, transit speed, and precipitation of tropical storms are highly variable. These 
variations drive the physical processes that influence coastal evolution. Factors that produce different responses include 
(1) the profile across the island and nearshore of a new construction may not be in equilibrium with the natural system 
and (2) the sediment grain-size of the source is different from the native sediment. Once a constructed barrier island or 
shoreline with appropriate sediment grain size has matured and reached equilibrium, it responds similarly to a storm as 
a natural barrier island or shoreline. For this discussion, it is assumed that natural and constructed barrier islands and 
shorelines respond similarly.

The following discussion summarizes several publications that addressed coastal response to tropical storms, 
many of which used data from the BICM project. Since the 1980s, several studies have documented the rapid landward 
migration and degradation of barrier islands and abandoned deltaic-headland shorelines in the Louisiana coastal zone 
(for example, Penland and others, 1988; Williams and others, 1992). Processes associated with the transgressive phase 
of the delta cycle (Roberts, 1997; Penland and others, 1988) including high rates of delta-plain subsidence, a paucity of 
sand, and interior-wetland loss, coupled with climatic factors such as eustatic sea-level rise and frequent large-magnitude 
storm impacts, collectively contribute to barrier degradation in Louisiana (Penland and Ramsey, 1990; McBride and 
others, 1992; List and others, 1994, 1997; FitzGerald and others, 2007; Miner, Kulp, FitzGerald, Flocks, and Weathers, 
2009; Fearnley, Miner, Kulp, Bohling, and Penland, 2009). Some significant processes are undetectable in the absence of 
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a regional-scale investigation covering long time periods (Sallenger and others, 1992; List and Terwindt, 1995). While 
the manifestation of processes that drive transgression in the delta plain are well studied and monitored at the surface, 
the seafloor response and the role of seafloor-sediment dynamics in short- and long-term coastal evolution are not as well 
understood. To more effectively identify the magnitude, rates, and processes of coastal evolution in Louisiana, BICM was 
designed and implemented as a framework for a coast-wide monitoring effort.

As reported in Theme 1, before implementation of the BICM project in Louisiana, the only available regionally 
consistent documentation of bathymetry, sediment transport, and seafloor change was presented in List and others (1994). 
During the two decades that followed that compilation, storm intensity and frequency along the Louisiana coast increased 
significantly (Fearnley, Miner, Kulp, Bohling, and Penland, 2009). As a result of its geographic location, the Louisiana 
coast is susceptible to the effects of almost any major storm entering the northern Gulf of Mexico and has been impacted 
by more than 50 hurricanes since the 1850s.

The first manifestation of storms typically observed is shoreline erosion. Shoreline erosion is an easily measurable 
retreat of the shore along the perimeter of a water body that has substantial fetch to storm waves. The Gulf Coast has been 
impacted by 14 hurricanes over the past decade, and each of these storms caused observable changes to the coast; some 
stretches recovered naturally within months, whereas other changes persisted for several months or years. Sallenger (2000) 
used storm wave-run-up elevation and still-water elevation (which includes storm surge, wave setup, and astronomical 
tide) relative to the peak elevation of the foredune to show that the magnitudes of change can be scaled. Sallenger 
concluded that as the run-up and still-water elevation increase, thresholds that define regimes of increasing impact 
magnitude will be crossed. These impact regimes progress from run-up colliding against the dune and eroding it landward, 
to run-up overwashing the dune, to still-water level completely submerging the beach system (fig. 45; A.H. Sallenger, Jr., 
oral commun., June, 2012). The greatest coastal changes have been observed following complete submergence, which 
can occur locally on a barrier island and can scour inlets, as occurred during Hurricanes Camille (1969), Charley (2004), 
Ivan (2004), and Katrina (2005), or can submerge tens of kilometers of coast, as occurred on the Bolivar Peninsula, Texas, 
during Ike (2008) and on the Chandeleur Islands during Katrina (2005).

THEME 3:  Impact of Tropical Storms on Barrier-Shoreline Elevations and the Response of Island Renourishment to Storms

Figure 45.  Erosion of a barrier island 
is a function of elevation compared 
to total water run-up, for example, 
surge+setup+runup on the beach 
(Sallenger, 2000). The inundation regime 
can submerge tens of kilometers of coast, 
as occurred on the Bolivar Peninsula, 
Texas, during Hurricane Ike (2008) and 
on the Chandeleur Islands during Katrina 
(2005).
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The most complete analysis of Louisiana barrier-island storm response and recovery to date has been by Sallenger 
and others (2009), who analyzed the impact of Hurricane Katrina and recovery of the Chandeleur Islands. Katrina was 
an Impact Level 4 on the Sallenger scale (fig. 45). The Katrina storm surge along the Mississippi coast approached 10 m 
(32.8 ft) (Knabb and others, 2005, reported that the highest measured watermark was near Bay St. Louis, Mississippi, at 
8.5 m, 27.9 ft.) Sallenger and others (2009) reported that peak surges along the Chandeleur Islands were smaller, ranging 
from about 3 m (9.8 ft) in the south to nearly 4 m (13.1 ft) in the north. Setup associated with wave breaking on the Gulf 
front of the islands added approximately an additional 1 m (3.28 ft) of still-water level. Using these data, they were able to 
calculate that the storm surge height was sufficient to submerge the southern half of the island chain; in the northern half, 
peak island dune elevations emerged through the combined surge and setup (fig. 46). The total elevation of wave run-up 
on the beach, however, was sufficient to overtop pre-storm peak elevations along the entire length of the islands (fig. 46). 
Therefore, during the early stages of the storm, the entire area of the islands was periodically overwashed by waves, 
driving sand from beaches and dunes from the Gulf side toward the Chandeleur Sound side.

BICM Program Summary Report: Data and Analyses 2006 through 2010

Figure 46.  Peak elevations (Dhigh) determined 
every 20 m (67 ft) along the length of the 
Chandeleur Islands using lidar data processed for 
first return. Only first return is available for the 
“pre-storm” survey, so even though bare-earth 
data are available for 2 days after Hurricane 
Katrina in 2005, the first return is shown here to 
be comparable with pre-storm data. Also shown 
are storm-surge elevations along the shore as 
determined by NOAA using the Sea, Lake, and 
Overland Surges from Hurricanes (SLOSH) model, 
surge plus calculated wave setup, and surge 
plus extreme (2%) wave run-up. (A) “Pre-storm” 
(merged 2001 and 2002) Dhigh determined from 
lidar data acquired with the NASA Airborne 
Topographic Mapper. (B) Dhigh from 2 days after 
the storm determined from lidar data acquired 
with the NASA Experimental Advanced Airborne 
Research Lidar (from Sallenger and others, 2009).
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During the storm peak, dune elevations were reduced (compare figure 46A with B) because of inundation and 
overwash. At the peak of the storm, the still-water level was sufficient to completely submerge the islands (Sallenger, 
2000; fig. 45, Impact Level 4). Differences in sea level between the Gulf and Sound likely drove currents across the 
island shoals and contributed to the net transport of beach and dune sand from the islands, exposing the underlying marsh 
platforms.

In the aftermath of tropical storms, beaches typically recover naturally to some extent. Recovery processes 
include sand migrating onshore in swash bars and welding onto the beach during the weeks and months after the event 
(Owens and Frobel, 1977). During the 22 months after Katrina’s landfall, repeated lidar surveys showed that the islands 
did not recover uniformly, instead 56 percent of the Gulf-side shore continued to retreat landward, and the islands 
progressively retreated landward between successive lidar surveys (fig. 47). At one location, the total retreat was almost 
500 m (1,640 ft) (Sallenger and others, 2009).

THEME 3:  Impact of Tropical Storms on Barrier-Shoreline Elevations and the Response of Island Renourishment to Storms

Figure 47.  Changes to a 2.5-km (1.6-mi) reach of the Chandeleur Islands showing persistent erosion and landward retreat during 
the 22 months after landfall by Hurricane Katrina (modified from Sallenger and others, 2009). The base map is a rectified, vertical 
photograph from before the storm, January 20, 2004. A time series of lidar maps is overlain on the photograph; with more recent 
surveys overlaid on previous surveys. If no change occurred, only the last survey (purple) would be visible. Erosion is shown between 2 
days after (red) and 2 months after (blue).
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The muddy composition of nearshore sediments likely contributed to the continued rapid erosion and retreat 
following the storm. With the sand stripped from the islands, the muddy-marsh fragments that remained were exposed to 
the surf of the Gulf of Mexico and were vulnerable to erosion even by the relatively low post-Katrina waves. These marsh 
fragments contained a low percentage of sand and as the marsh shore eroded landward, the sand was released and made 
available to form incipient beaches, while the muddy fine sediments in the eroded marsh continued to disperse. Over time, 
these beaches will provide a veneer of sand that is likely to buffer the marshy shore from continued rapid erosion. 

The 44 percent of the Gulf shore that did not continue to erode over the 22 months after the storm showed the 
development of spits and welded swash bars that advanced the shore seaward. At one location, a beach developed seaward 
of the shoreline position, prograding the shoreline after the storm as much as 100 m (328 ft) seaward. Where accretion 
occurred, the islands widened from an average of 167 m (548 ft, 2 days after) to 231 m (758 ft, 22 months after). However, 
the overall mean shoreline change for the islands over the same period was 13 m (40.6 ft) of erosion.

Bare-earth lidar elevations (vegetation removed) acquired 2 days after and 22 months after the storm measure 
peak elevations on the islands. Immediately after the storm, island elevations averaged about 1 m (3.28 ft, fig. 48A); 22 
months later, elevations had increased by only 0.3 m (0.98 ft, fig. 48B and C). Also shown on these plots are the worst-
case (maximum-of-the-maximum) storm-surge elevations for Category 1 through Category 3 hurricanes, as well as the 
surge simulated by NOAA using the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model and Katrina 
conditions.

Post-storm island elevations were lowered sufficiently to be vulnerable to complete submergence (inundation 
regime, Impact Level 4, fig. 45) by a Category 1 hurricane. Nearly 2 years later, island elevations along a portion of 
the northern Chandeleur Islands had recovered enough to be emergent through a Category 1 surge; with the rest of the 
islands vulnerable to inundation. The implication is that islands or shorelines that have been stripped of sand, exposing the 
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Figure 48.  Bare-earth peak elevations (Dhigh), maximum-of-the-maximum storm-surge elevations for different categories (“cat”) of 
hurricanes, and storm surge for Hurricane Katrina computed by using the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) 
model. (A) 2 days after. (B) 22 months after. (C) Change in Dhigh between 2 days after and 22 months after (Sallenger and others, 2009).
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marsh platform base, are highly vulnerable to inundation from subsequent hurricanes, especially in the short term. This 
would likely remove all of the emergent sand from the marsh platforms again, exposing the muddy fragments to further 
degradation. Airborne lidar surveys showed that the inundated Chandeleurs lost 82 percent of their surface area, and their 
Gulf-front shores eroded landward an average of ~250 m (~820 ft). Combined with subsidence of the Mississippi Delta, 
rapid local RSLR has conditioned the coast for future extreme-storm changes. Should global sea-level rise accelerate in 
the future as predicted, barrier islands and sandy shorelines worldwide may respond similarly after being inundated during 
tropical storms.

Besides inundation, extreme storms striking the Gulf Coast region have caused several different morphological 
responses and have resulted in a large range of washover-penetration distances. Morton and Sallenger (2003) report that 
post-storm erosional responses included dune scarps, channel incisions, and washouts, whereas depositional responses 
included perched fans, washover terraces, and sheetwash lineations (fig. 49). The largest of these features are washover 
penetrations, products of shallow water, confined flow, and high-wind stress, ranging in length from approximately ~100 
to 1,000 m (~328 to 3,280 ft) with estimated erosional sediment volumes ranging from ~10 to 225 m3/m (~13 to 294 
yd3/yd) of beach. Unusual styles of morphological response (sheetwash lineations and incised channels) and maximum 
washover-penetration distances are closely correlated. Regional morphological responses and washover-penetration 
distances are controlled primarily by storm size, intensity, and approach direction. Transport and deposition of washover 
sediments across barrier islands and into the adjacent lagoon are common processes along the Gulf. These morphologic 
responses have a potential direct impact to constructed sandy beaches.

The washover process and associated deposits occur along the shores that are overtopped and inundated by 
waves and storm surge, causing the shoreline to retreat landward. The deposits form washover fans and terraces parallel 
to the wetland shores of the Gulf of Mexico or to shores of large embayments. Typical widths of washover deposits are 5 
to 20 m (16.4 to 65.6 ft) along the embayment shores, whereas 20- to 150-m (65.6- to 492-ft) widths have been reported 
along the Gulf shore for extreme storms (Morgan and others, 1958; Ritchie and Penland, 1988; Nyman and others, 1995; 
Faulkner and others, 2007). Thick washover deposits can raise the land elevation above the zone of normal inundation. 
Consequently, an overwashed former wetland near the shoreline can be colonized by non-marsh vegetation and be 
converted to an upland habitat (Courtemanche and others, 1999). As an example, in 1992, Hurricane Andrew buried marsh 
areas with overwash sediments; 2 years later, as much as 40 percent of these barren areas had been revegetated (Morton 
and Barras, 2011). 

THEME 3:  Impact of Tropical Storms on Barrier-Shoreline Elevations and the Response of Island Renourishment to Storms

Figure 49.  Types of erosional and depositional features produced by extreme storms include (A) dune erosion, (B) channel incision, (C) 
washout, (D) washover terrace, (E) perched fan, (F) sheetwash lineations (Morton and Sallenger, 2003). Whereas these six processes 
can cause shoreline deposition and erosion (Morton and Sallenger, 2003), perhaps the most frequently reported hurricane morphological 
impacts are the widespread shoreline deposits that result from the inland transport of sand and shell by storm overwash. See Sallenger 
scale Impact Level 3 (fig. 45).
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Bathymetric data collected during the BICM project were particularly useful in documenting the evolution of 
tidal-inlet morphology and hydrodynamics, as well as the redistribution of sediment reservoirs that result from the high 
rate of RSLR. Tidal inlets play an integral role in the response of the Louisiana coast to RSLR, and this study identified 
previously unrecognized feedback among inlet morphology, back-barrier tidal range, and tidal prism. This will be 
discussed with a focus on the Barataria Basin barrier island system, beginning with an overview of the morphological and 
hydrodynamic response of the Barataria Basin to RSLR then focusing specifically on the role of tidal inlets. In Barataria 
Basin, high rates of RSLR (~1 cm/yr) caused substantial wetland loss between 1956 and 2004 (more than 775 km2, about 
300 mi2; Barras, 2006) and a concomitant increase in area of open water within Barataria Bay. The increase in open water 
within the bay resulted in a larger tidal prism and forced a greater tidal discharge through the inlets. Inlet cross-sectional 
areas enlarged over time to accommodate the enlarging prism and as inlet area increased, the data indicate that back-
barrier tidal range increased and augmented the tidal prism. This feedback between inlet morphology and back-barrier 
tidal range had not been recognized before and illustrates the dynamic, interconnected nature of the processes associated 
with Barataria Bay (or any bay) as a whole. These findings have implications for restoration practices and for identifying 
the importance of constructing land in the lower basin in a proximal location to the tidal inlets. This discussion utilizes 
BICM data as well as additional historical bathymetric data and hydrodynamic data and summarizes the master’s thesis of 
Howes (2009).

BICM Program Summary Report: Data and Analyses 2006 through 2010

Figure 50.  Hydrodynamic instrument deployment locations and acoustic Doppler current profiler (ADCP) survey tracklines  
(Howes, 2009).
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Methods

To establish the response of tidal inlet morphology and hydrodynamics to RLSR over the past ~100 years, 
modern conditions were measured and compared with past conditions using historical datasets and records. Modern inlet 
morphology was measured with single-beam bathymetric surveys, which were conducted in 2006 and repeated in 2007, 
and included the four Barataria Bay inlets (Barataria Pass, Quatre Bayou, Pass Abel, and Caminada Pass) (fig. 50). To 
establish a comparison with past conditions, a historical record of inlet morphology was obtained from the regional-scale 
bathymetric changes in Barataria documented in BICM Volume 3 using data from surveys in the 1890s, 1930s, 1980s, 
and 2006. Because surveys in the 1890s, 1930s, and 1980s spanned multiple years, the midpoint dates were chosen for 
reference (1888, 1935, and 1988, respectively) (Miner, Kulp, FitzGerald, and Georgiou, 2009). To constrain the modern 
hydrodynamics, acoustic-doppler current profilers (ADCP) were used to profile the tidal flow/exchange within the inlets, 
and four current meters were placed landward of the surveyed inlets to measure the tidal water-surface elevation at the 
time of the surveys. Modern tidal range and the propagation of the tidal wave through Barataria Bay were determined 
from 11 USGS tide-gage stations located within the back-barrier. Historical data on tidal range were obtained from the 
Grand Isle tide-gage for the period 1951 to 2006, and additional historical hydrodynamic data were used from a long-term 
current meter deployment on the Gulf side of Barataria Pass in 2002. Unfortunately, there was no historical record of inlet 
hydraulics. In order to address this gap, modern field data were used to calibrate a one-dimensional (1-D) hydrodynamic 
model of inlet hydraulics focused on Barataria Pass. Once the model was calibrated, it was used to hindcast historical inlet 
hydraulics as well as back-barrier tidal range based on past bathymetric configurations of Barataria Pass obtained from the 
1890s, 1930s, 1980, and 2006 surveys. 

Tidal-Inlet Morphological and Hydrodynamic Evolution

The tidal inlet cross sections in Barataria Basin display variable morphologies. However, two distinct categories 
of inlets were apparent: (1) inlets with a symmetrical cross section, and (2) inlets with a distinctly asymmetrical cross 
section. Barataria Pass is symmetric in cross section, whereas Quatre Bayou Pass, Pass Abel, and Caminada Pass inlets 
are each asymmetric with a shallow subaqueous platform along their eastern margin and a thalweg (deepest portion of 
the inlet) occurring consistently on the western margin (fig. 51a). The asymmetric inlets generally are wider than their 
symmetric counterpart, and among the asymmetric inlets, the Caminada platform width is significantly less than the 
platform widths at Pass Abel and Quatre Bayou.

Historically, cross-sectional areas of the Barataria Basin inlets have increased in response to wetland loss and 
the ensuing larger tidal prism. Between 1888 and 2006, the cumulative inlet area increased by a factor of three, from 
6,400 m2 to 20,890 m2 (68,889 ft2 to 224,858 ft2) (Howes, 2009). However, as the inlet cross-sectional areas increased to 
accommodate the greater tidal prism, the two categories of inlet symmetries evolved very differently. 

The cross-sectional area of Barataria Pass increased primarily by way of deepening of the inlet (fig. 51a). This 
process can be described by the hydraulic radius, which is defined as the ratio of inlet area to inlet perimeter and is a 
proxy for the mean flow depth. As the cross-sectional area increased, so did the hydraulic radius, following a linear 
trend (indicating deepening) (fig. 51b). In contrast, the increase in area of Quatre Bayou, Caminada Pass, and Pass Abel 
primarily was associated with widening and the erosion of the channel edge, producing a wide shallow platform and an 
asymmetric inlet. As the cross-sectional areas of these inlets increased, the hydraulic radii (or mean flow depth) remained 
nearly constant (fig. 51b). This response demonstrates that morphology of Quatre Bayou, Pass Abel, and Caminada 
evolved along a very different trajectory than that of Barataria Pass. The difference in cross-sectional morphology is 
significant in terms of inlet hydraulics. If all other variables remain constant, a larger hydraulic radius in a channel results 
in greater channel efficiency and less energy lost to friction between the water and the sediment bed. Thus increases in 
channel area at Barataria Pass have resulted in greater inlet efficiency in contrast to the Quatre Bayou, Pass Abel, and 
Caminada Pass, where inlet areas have increased with the widening platform region, but not with the same increase in 
inlet efficiency. This effect is apparent in the hydrodynamic data. For a given tide, Barataria Pass is able to convey twice 
the discharge of Quatre Bayou, despite comparable cross-sectional areas, a fact that can be attributed to the difference in 
hydraulic radius and efficiency. An increase in hydraulic radius, with other factors being constant, also reduces tidal wave 
attenuation and results in a larger tidal range in the back-barrier environments (see Tidal-Range Evolution).

In addition to understanding the overall cross-sectional response of the inlet system to wetland loss and larger 
tidal prisms, it is also important to determine how the tidal discharge and prism are distributed between the inlets. The 
peak discharge at the inlets varies directly with tidal range, such that the greatest discharge occurs during tropic tides (fig. 
52). Tidal discharge is distributed unevenly between the inlets. The discharge at Barataria Pass is more than twice the 
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Figure 51.  (A) High resolution tidal inlet cross sections from 
single beam soundings (Howes, 2009) (* denotes transects 
across the inlets were taken along the same line each, with 
the exception of Quatre Bayou, where they were offset by 50 
meters). (B) Barataria Pass shows an increase in inlet hydraulic 
radius with increased cross-sectional area compared to the 
other three passes. It is also the only inlet that did not develop 
an inlet platform even with increased cross-sectional area 
(Howes, 2009).
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Figure 52.  Graph showing the relation between 
peak ebb discharge and tidal range for the four inlets 
(Barataria Pass, Quatre Bayou, Caminada Pass, and 
Pass Abel). The data represent a synthesis of ADCP 
and BICM data collected in 2002, 2006, and 2009 
(Howes, 2009).

magnitude of any other inlet for a given tide. As the tidal range increases over a tropic-equatorial cycle, the peak discharge 
at Barataria Pass increases at a faster rate than at the other inlets (fig. 52), resulting in its capture of a greater proportion of 
flow relative to the other inlets during the largest tides. Barataria is clearly the dominant inlet in the system and is thus the 
focus of the 1-D model. Quatre Bayou has the second largest discharge of the inlets, whereas the discharges at Caminada 
Pass and Pass Abel are roughly equal in magnitude and are the least significant of the group. In order to calculate tidal 
prism, discharge was integrated over a single flood or ebb cycle to determine the volume of water (prism) exchanged 
through the inlets. On the basis of these calculations, Barataria Pass exchanges nearly 50 percent of the bay’s tidal prism. 
These discharge data were used to construct and validate a 1-D model of inlet hydraulics. In general, the model is in close 
agreement with the field data but with a slight tendency to overpredict discharge. This model is used in a later section to 
hindcast bay tidal range. 

Tidal currents in each of the four inlets exceed 1 meter per second (m/s) (3.28 feet per second [ft/s]) at peak ebb 
discharge (Howes, 2009). The greatest currents at Barataria Pass are concentrated along the eastern portion of the inlet 
(average current velocity exceeds 1.25 m/s, 4.1 ft/s). In the other three inlets—Caminada Pass, Pass Abel, and Quatre 
Bayou—maximum currents are entirely confined to the western thalwegs, and the depth-averaged currents in the channels 
are generally ~1 m/s (3.28 ft/s), locally exceeding 1.5 m/s. The shallow platforms in these three inlets account for ~60 
percent of the cross-sectional area, but only 30–35 percent of the total discharge at peak flow. Thus, the majority of the 
discharge is confined to the inlet thalwegs. The inlets to Barataria Bay are ebb-dominant; thus, sediments eroded from the 
bay or adjacent to the inlets are redistributed offshore and sequestered in ebb-tidal deltas. The ebb dominance results from 
the interaction of the diurnal and semi-diurnal tidal constituents (for more information on this process see, van Maren, 
2004). The following section describes the morphological response of each inlet in greater detail.

Barataria Pass

A review of historical bathymetry at Barataria Pass indicated that the inlet channel has not migrated laterally and 
has occupied the same footprint since at least 1888 (fig. 53) (Howes, 2009). In 1958, a navigational jetty was constructed 
on the western side of the inlet. The jetty trapped the littoral transport of sediment, causing Grand Isle to prograde seaward 
while all other regions, such as Grand Terre, retreated. Progradation and erosion of the shoreline resulted in a 15-degree 
counter-clockwise rotation of the inlet channel between 1888 and 2006 (Howes, 2009). In addition to channel rotation, 
Barataria Pass has undergone other geomorphic changes: (1) the inlet has lengthened, (2) the cross-sectional area of the 
inlet throat (defined as the area between the islands) has increased, and (3) the hydraulic radius has increased (Howes, 
2009) (fig. 54).

In his analysis of Barataria Pass, Howes (2009) used the 5-m contour to approximate the location of the inlet 
channel and the 10-m contour to approximate the inlet throat/thalweg (the deepest portion of the inlet) (fig. 54a). The inlet 
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Figure 53.  Graph showing inlet cross-sectional 
area since 1888. The gray points along the x-axis 
represent the bathymetric-survey dates. The change 
between the data points is a linear interpolation 
(Howes, 2009).

Figure 54.  The morphological evolution of Barataria Pass, including (A) the extension of the inlet channel as defined by the 5m 
contour, (B) the inlet throat defined as greater than 10 m deep, (C) cross sections across the inlet throat, and (D) the change in hydraulic 
and dynamic radius (dynamic radius is a measure that weights the depth to the power of 5/3); the dynamic-radius measure shows the 
same general trend as hydraulic radius (Howes, 2009).
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channel extends beyond the barrier islands into the back barrier and seaward onto the ebb-tidal delta. The inlet channel has 
increased in cross-sectional area in response to tidal-prism changes within Barataria Bay. As the tidal prism increases, a 
greater volume of flow converges on the inlet channel, and velocities increase at the channel entrance, resulting in erosion 
and elongation of the channel. The inlet throat occurs in the confined portion between the barrier islands and experiences 
the highest tidal velocities; the length of the inlet throat has remained more stable than that of the inlet channel (fig. 54b). 
The greatest rate of change in cross-sectional area of the inlet throat occurred during the period from 1888 to 1935. 
After 1935, the rates of increase decelerated, and the channel area seemed to stabilize between 1988 and 2006 (fig. 53). 
Although the cross-sectional area of Barataria Pass stabilized in 1988, the cross-sectional area of the other inlets in the 
system has continued to increase. 

Quatre Bayou Pass

Quatre Bayou Pass is the second largest tidal conduit within the Barataria system (Howes, 2009) (fig. 52). 
The inlet throat has significantly deepened over time and has migrated landward as the shoreline retreated historically 
(Penland and others, 2005; Miner, Kulp, FitzGerald, Flocks, and Weathers, 2009) (fig. 55). The shoreline and the inlet 
have undergone more than 1 km of shoreline retreat since 1884 at an average rate of –11.6 m/yr (–38 ft/yr) (Penland and 
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Figure 55.  Morphological evolution at Quatre Bayou Pass, including (A) the extension of the inlet channel, (B) the inlet throat defined 
as greater than 10 m (32.8 ft) deep, (C) cross sections across the inlet throat, and (D) the change in hydraulic and dynamic radius.
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others, 2005). As the pass migrated landward, it eroded into a complex sedimentary sequence that may consist of a relict 
distributary channel (Levin, 1995), resulting in an extremely irregular bathymetry within the modern inlet channel. The 
rates of shoreline retreat are high in the vicinity of Quatre Bayou inlet for two reasons: (1) the inlet lacks a proximal 
sediment source such as the Caminada headland to the west, and (2) a portion of the longshore drift is trapped in the 
updrift ebb-tidal delta at Barataria Pass (List and others, 1997). 

The 10-m contour within Quatre Bayou did not exist at the time of the 1935 surveys; the contour developed as the 
inlet deepened between 1935 and 1988 (fig. 55b). Howes (2009) reported that the opening at Quatre Bayou widened since 
the 1888 survey and that the opening consists of two distinct geomorphic features: (1) a channel thalweg on the west bank, 
and (2) an extensive shallow shelf on the eastern margin that occupies most of the inlet width (fig. 55c). The majority 
of the tidal flow (between 65 and 75 percent) is confined within the channel. The shelf has a nearly constant depth over 
its width, and Howes (2009) suggested that a combination of sediment starvation and wave-current processes eroded a 
veneer of unconsolidated barrier sediments adjacent to the inlet, leaving the platform morphology. During a sustained ebb 
flow, tidal currents over this platform are between 0.35 and 0.50 m/s (1.45 and 1.64 ft/s) with velocities sufficient to cause 
erosion of sands and abrasion of muds. Georgiou and others (2005) showed that storm waves (>1–2 m, >3.28–6.56 ft) may 
also play a role in the erosion of this platform. The increase in hydraulic radius in Quatre Bayou is much more muted than 
the increase in Barataria Pass when measured over the same time period, since much of the increase in cross-sectional area 
has been due to the expansion and widening of the shallow subaqueous platform (Howes, 2009).

BICM Program Summary Report: Data and Analyses 2006 through 2010

Figure 56.  Morphological evolution at Pass Abel, including (A) the extension of the inlet channel, (B) there is no panel for B because 
the inlet throat was defined as greater than 10 m, and this inlet did not achieve that depth, (C) cross sections across the inlet throat, 
and (D) the change in hydraulic and dynamic radius.
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Pass Abel

The morphological evolution of Pass Abel is similar to that of Quatre Bayou. Pass Abel is the widest inlet in the 
chain (2.2 km, 1.4 mi) (fig. 56). The thalweg is located along the western margin, abutting a wide subaqueous platform on 
the eastern side; a morphology that is remarkably similar to that of Quatre Bayou (fig. 55b). Pass Abel formed between the 
1888 and 1935 surveys. Shamban (1985) reported that it was present on the 1841 maps, although this initial opening was 
ephemeral and had apparently closed by 1888 before reopening permanently sometime after that (fig. 56a). FitzGerald and 
others (2004) hypothesized that the inlet reopened and remained stable in response to the increased bay tidal prism due to 
ongoing wetland loss. The proximity of Pass Abel to Barataria Pass allows it to capture a portion of Barataria’s tidal prism, 
which likely has contributed to the decreasing rate of change in inlet area at Barataria Pass after 1935 (Howes, 2009). 

THEME 4: Barataria Bay Tidal-Inlet Management Considerations

Figure 57.  Morphologic evolution at Caminada Pass, including (A) the extension of the inlet channel, (B) there is no panel for B 
because the inlet throat was defined as greater than 10 m, and this inlet did not achieve that depth, (C) cross sections across the inlet 
throat, and (D) the change in hydraulic and dynamic radius.
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Caminada Pass

The channel thalweg at Caminada Pass is also situated on the western margin of the inlet. A shallow platform 
extends to the eastern margin (fig. 57a and b), where the shore has been stabilized by riprap (Howes, 2009). In this area, 
the shoreline retreat rate is slower than in other areas of Barataria Basin, primarily due to the close proximity of Caminada 
Pass to the Caminada Headland, which is the primary sediment source for the shoreline (Howes, 2009). Between 1988 and 
2006, the inlet grew substantially in cross-sectional area, channel-platform area, and hydraulic radius (fig. 57c). 

Shoaling in Caminada Pass between 2006 and 2007 (Howes, 2009) was apparently a post-storm response to 
the Hurricane Katrina landfall. During passage of the hurricane, the wind pattern forced water into the basin (which was 
elevated due to the storm surge) southwest toward Caminada Pass (Resio and Westerink, 2008). Elevated water levels and 
storm-surge return flows produced ebb currents through the inlet in excess of 3.3 m/s (10.8 ft/s) (Carter, 2008). Howes 
(2009) suggested that these storm-induced, ebb-dominated tidal currents eroded sand from the channel margins, resulting 
in a temporary widening of the inlet, and the inlet, cross-sectional area was, thus, out of equilibrium with normal tidal 
flows. Subsequent shoaling of the inlet restored it to pre-storm configuration (a process captured by the 2006–2007 repeat 
survey). 

Tidal-Range Evolution

A long-term tide- gage dataset provides a historical record of tidal range in Barataria Bay. The record is a 
composite of two tide stations: the older Bayou Rigaud station and a modern Grand Isle station. Until 1979, the Bayou 
Rigaud station (NOAA ID: 8761720) was situated approximately 2.0 km (1.24 mi) west of Barataria Pass. In 1979, the 
modern Grand Isle station (876172) was installed in close proximity to Barataria Pass. The timing of station relocation 
does not correspond to the break in slope in the tide record around 1970; thus, the relocation is not responsible for the 
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Figure 58.  (A) Three complete cycles of the 18.6-year nodal tidal cycle. (B) The residual tidal signal after the 18.6-year cycle is 
removed, showing an increase in tidal range over approximately the past 50 years; the rate change increased between 1951 and the 
early 1970s (Howes, 2009).
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observed changes in tidal range (Howes, 2009). The tidal record is clearly dominated by an 18.6-year cycle, but also 
contains a longer-term increase in tidal range underlying the 18.6-year cycle (fig. 58).

To identify the underlying trend, Howes (2009) applied a fast-Fourier transform to the long-term Grand 
Isle (1951–2006) tidal record (fig. 58) after removing the variance associated with the 18.6-year cycle signal. This 
analysis identified an increase in tidal range of 2.5–3.0 cm (0.98–1.18 in.) over the period of 1951–2006, which is an 
approximately 10 percent increase from 1951 levels. The analysis showed that the greatest rate of tidal-range increase 
occurred between 1950 and 1970, which coincided with peak rates of RSLR (fig. 59). After 1970, the tidal range 
stabilized. Howes (2009) hypothesized that the increase in tidal range is explained by the observed change in inlet 
hydraulics, in particular the increase in the hydraulic radius of Barataria Pass, which was a result of the larger tidal prism 
caused by high rates of RSLR and wetland loss. Qualitatively, the overall trends in both the hydraulic radius and tidal 
range are extremely similar, although data on hydraulic radius are limited to three points (fig. 59). To test this hypothesis, 
Howes (2009) applied a 1-D hydrodynamic model to hindcast the tidal range in the back-barrier bay immediately 
behind Barataria Pass. Using historical bathymetry data to determine past channel configuration and cross-sectional 
areas, he calculated the previous hydraulic radius and past inlet configuration. The model predicts an increase in tidal 
range stemming from the observed tidal-inlet evolution and establishes a previously unrecognized feedback between the 
inlet hydraulics and back barrier tidal range in Barataria. The model under-predicts the observed increase in tidal range 
obtained from the long-term gage record, but it confirms the existence of the process feedback. 

The observed increase in tidal range has implications for restoration efforts. Traditionally in Louisiana, interior 
wetland loss in response to RSLR has been considered the sole mechanism contributing to the increase in tidal prism. 
However, Howes (2009) identified an internal feedback among back barrier wetland loss, inlet hydraulics, and a 
subsequent increase in tidal range. The increase in tidal range resulting from inlet alteration augments the initial response 
associated with wetland loss and may account for as much as 30 percent of the total increase in tidal prism over the period 
of the dataset. Restoration efforts should consider this effect and focus on maintaining the integrity of the barrier islands 
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Figure 59.  (A) Relative sea-level rise at Grand Isle, 1947–2006. (B) Hydraulic radius at Barataria Pass (blue points) and the increase in 
annual tidal range at Grand Isle relative to tidal range in 1951, as shown in figure 59 (Howes, 2009).
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and their inlets. The inlets are the effective agents in limiting back-barrier tidal range and thus prism, and as their cross-
sectional areas increase they become less effective at this process.

Once the tide propagates into Barataria Bay through the inlets, it continues into the basin as a progressive wave. 
The tide is gradually attenuated the farther it travels from the inlets. On a tropic cycle, the tide range decreases from 
0.53 m (1.74 ft) at Barataria Pass to approximately 0.07 cm (0.28 in.) at the Davis Pond diversion ~100 km (62.2 mi) 
up the basin. It takes approximately 13 hours for the high tide to travel from the inlet to Davis Pond. The style of tidal 
wave propagation also has implications for restoration and coastal management. Tidal prism is a volume of water and 
is calculated as a wetted area multiplied by a tidal range. On the basis of this concept, to optimize effectiveness land 
reclamation efforts should consider focusing on the lower portions of the basin, where the efforts may have a much greater 
impact in terms of reducing tidal prism on a per-unit-area basis, because the tidal range is greatest here. For example, a 
unit area of land will reduce tidal prism by 0.53 m3 (18.7 ft3) at Barataria Pass as opposed to 0.07 m3 (2.5 ft3) at Davis 
Pond, which is a factor of ~7.5. This conclusion is in opposition to a recent recommendation of Blum and Roberts (2009) 
that land be created in the upper portions of the basins. Blum and Roberts (2009) concluded that the modern sediment 
supply of the Mississippi River is insufficient to sustain the Louisiana deltaic plain in its entirety, especially in the face of 
accelerated sea-level rise, which is an important and indisputable point. However, the approach and recommendation of 
those authors are based on a passive sediment mass balance and omit the dynamics processes that govern coastal response 
and redistribute sediment. These dynamics processes provide restoration efforts some control over morphological change 
and the inevitable transgression on a decadal–centennial timescale. If the goal of a given restoration effort is to maximize 
overall restoration effectiveness on the entire basin then focusing on segments where effects of the tidal prism are greatest 
should be considered. In particular, the recommendation of those authors for land creation in the upper basin omits the 
central importance of tidal prism on coastal stability and does not consider the feedbacks between inlets and the back 
barrier that are especially relevant for coastal stability on the longer timescales. In addition, land creation in the upper 
basin would consist of low-salinity wetlands, which are more susceptible to erosion during the passage of storms than 
their high-salinity counterparts in the lower basin, as was observed during Hurricane Katrina in Breton Sound (Howes and 
others, 2010). Stemming the increase in tidal prism should be a central focus of restoration, since it is the only means by 
which to slow the erosion of inlets and the fragmentation of the barrier coast, which is especially relevant on a decadal-
centennial timescale.

Conclusions: Impacting Wetlands and Inlets in Central Louisiana

The processes affecting Barataria Pass, Quatre Bayou Pass, Pass Abel, and Caminada Pass inlets are not unique to 
the Barataria Basin. Processes in this basin are an example of the far-reaching effects of RSLR on coastal land loss and the 
strong interaction and coupling between barrier-island and back-barrier systems. The coastline as a whole is changing, and 
no morphologic feature, habitat, or process is stable or independent from another. The observations and results presented 
by Howes (2009) (summarized above), are specific to Barataria Bay but are relevant to future changes along the entire 
coast. Howes’ (2009) primary conclusions follow:

(1) The spatial pattern of wetland loss in the back barrier has a strong bearing on tidal exchange through the inlets 
and the increase in tidal prism. Wetland loss in the lower basin results in a larger increase in tidal prism per unit area of 
land lost due to the larger tidal range. As a consequence, restoration efforts directed at land reclamation should focus on 
the lower basin where they will have the greatest potential to effect tidal prism and stabilize the system on a per unit area 
basis. 

(2) The cumulative cross-sectional area of the Barataria Bay inlets enlarged by ~15,000 m2 (161,459 ft2) in 
response to back-barrier wetland loss and a larger tidal prism between 1890 and 2006. In the current barrier-shoreline 
configuration, the bay’s tidal prism is distributed unevenly in the inlets. Barataria Pass controls nearly half of the tidal 
exchange between Barataria Bay and the Gulf of Mexico (48 percent), with Quatre Bayou contributing 23 percent, and 
Caminada Pass and Pass Abel supplying 14–15 percent, respectively. 

 (3) There are previously unrecognized complex coupling and dynamic feedbacks among back barrier wetland 
loss, inlet hydraulics, and tidal range. RSLR and the ensuing wetland loss forced significant changes in both the 
morphology and hydraulics of the tidal inlets, which in turn increased back-barrier tidal range. This coupling feedback 
compounds the initial back-barrier wetland loss and forms a substantial component of the trends in observed tidal prism, 
coastal erosion, and sediment redistribution and storage in offshore ebb-tidal deltas. Restoration efforts clearly benefit 
from a better understanding of these dynamic interactions. This understanding provides a potential to maximize the value 
of sediment input by focusing effort on key areas of the system, which can limit or reduce the rate of transgression and 
coastal land loss. 

BICM Program Summary Report: Data and Analyses 2006 through 2010
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THEME 5: Habitat Changes Related to Long-Term Relative Sea-Level-Driven Erosion and 
Short-Term Storm-Driven Erosion

Habitat change analyses by Fearnley, Brien, and others (2009d) showed that Hurricanes Katrina and Rita had a 
significant impact on coastal habitats within the BICM study areas. In several areas, low-lying habitats were inundated 
with water and eroded, resulting in a decrease in coastal habitat. In some areas, an increase in beach habitat was observed 
along the coastline as a result of sediment being moved inland with the storm surge. Overall, reductions in marsh, barrier 
vegetation, and intertidal-flat habitat due to the conversion to beach or open water can be attributed directly to hurricane 
impacts. The following sections describe the results of Fearnley, Brien, and others (2009d) habitat-change analyses for 
each BICM region based on data from 1996 or 1998, 2001 or 2002, 2004, and 2005; the last two datasets bracket the 2005 
hurricane season.

Pontchartrain Basin

No habitat classification or change data were collected during the BICM project. This is an important data gap in 
the BICM program.

Mississippi River Delta Plain

Chandeleur Islands (Breton Island to Hewes Point)

Fearnley, Brien, and others (2009d) reported that the Chandeleur Islands experienced the greatest overall habitat 
change because of multiple hurricane impacts to the islands. After Hurricanes Isidore and Lili impacted the area in 2002, 
about half of the land area on Breton Island and almost all of Grand Gosier and Curlew Islands were converted to open 
water. These islands had recovered slightly by 2004, but all habitat types on Breton, Curlew, and Grand Gosier Islands 
were converted to open water in 2005 following the passage of Hurricane Katrina. Compared with the southern and central 
islands (Breton to Curlew Islands), the total habitat acreage on the northern Chandeleur Islands was relatively stable from 
1998 to 2004. Higher elevations along the northern islands may have helped to mitigate the impacts of Hurricanes Isidore 
and Lili in this area. Like Breton, Grand Gosier, and Curlew Islands, however, all habitat types except some marsh areas 
were converted to open water in 2005. 

Modern Delta (Chaland Headland, Bay Joe Wise, Shell Island, Scofield, and Sandy Point) 

The relative acreage of habitats within the Modern Delta remained approximately constant between analyses 
despite the passage of Hurricanes Katrina and Rita. The acreage of intertidal habitat fluctuated but was likely a result 
of changes in water-level conditions between time periods and not a response to hurricane effects (Fearnley, Brien, and 
others, 2009d). In addition, the completion of several restoration projects in this area in 2006 and may have masked the 
results of the analysis.

Lafourche Delta (Timbalier Island, East Timbalier Island, the Caminada Headland, Grand Isle, Grand Terre Island, and 
East Grand Terre Island) 

At Timbalier, East Timbalier, and Caminada Islands, overwash increased beach habitat, and a net decrease 
in marsh habitat and a total loss of barrier vegetation occurred on all three islands. Despite hurricane impacts, barrier 
vegetation and marsh habitat increased between 2004 and 2005, likely as a result of restoration efforts and the 
implementation of breakwaters. Grand Isle and Grand Terre experienced minimal impacts from the passage of the 2005 
hurricanes, and restoration efforts at Grand Terre apparently increased marsh habitat at the expense of barrier vegetation 
(Fearnley, Brien,  and others, 2009d).
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Teche Delta (Isles Dernieres Chain from Raccoon Point to Wine Island Pass)

 At Raccoon Island, hurricane overwash decreased marsh habitat and increased the acreage of beach and intertidal 
habitat. Whiskey Island marsh habitat proved resilient to washover; however, acreage of beach habitat was converted to 
open water, likely because of shoreline erosion. In addition, intertidal, marsh, and barrier-island vegetation lost significant 
acreage that was converted to beach. Hurricane impacts at Trinity Island included an increase in the acreage of beach and 
intertidal-flat habitat, despite the conversion of intertidal habitat to open water, because of habitat change from marsh and 
barrier-island vegetation to intertidal habitat. Washover increased the acreage of beach habitat at East Island, reducing 
intertidal-flat, marsh, and barrier-island habitats.

Acadiana Bay

No habitat classification or change data were collected during the BICM project. This is an important data gap in 
the BICM program.

Chenier Plain (Ocean View to Hackberry Beaches)

Total marsh habitat in the western Chenier Plain remained relatively constant from 1998 to 2005. Increased 
beach and marsh habitat between Holly and Constance Beaches between 2001 and 2004 were likely directly attributable 
to restoration efforts here. Reduced marsh and beach habitat acreages in 2005 were attributed to the passage of Hurricane 
Rita (Fearnley, Brien, and others, 2009d). 

THEME 6: Future Goals of the BICM Program
To more effectively identify the magnitude, rates, and processes of shoreline change, a barrier-island 

comprehensive monitoring program (BICM) was developed as a framework for a coast-wide monitoring effort. A 
significant component of this effort includes documenting the historically dynamic morphologic evolution of the 
Louisiana nearshore, shoreline, and back-barrier environments. This aspect of the program is designed to complement 
other project-specific monitoring programs that are currently underway through the support of agencies such as CPRA and 
USACE. 

In contrast to project-specific monitoring efforts, the BICM project provided more comprehensive, region-
wide datasets. The methodologies developed under the BICM project allow efficient and accurate integration of historic 
and current datasets and provide a baseline that can be used in future assessments. This project provided long-term 
morphological data for all of Louisiana’s barrier islands and mainland shorelines, rather than just those islands and 
areas that are slated for coastal restoration projects or have had construction previously completed. In addition, BICM 
specifically provided a larger proportion of unified, long-term datasets that will be available to monitor construction 
projects, plan and design future barrier-island projects, develop operation and maintenance activities, and assess the range 
of impacts created by past and future tropical storms. The development of coastal models, such as those quantifying 
littoral-sediment budgets, and a more advanced understanding of the mechanisms forcing coastal evolution become 
increasingly feasible with the availability of the BICM datasets. These factors constitute critically important elements of 
any effort that is aimed at effective coastal restoration, sediment nourishment, or management.

The intent of this theme is to provide guidance for developing a continuation of the BICM program based on 
results of BICM Phase 1, to outline an ongoing monitoring program, and to develop tools that can be readily applied 
by the end users. The original BICM program objectives remain unchanged (see Introduction) and are incorporated in 
the proposed future BICM efforts. Feedback and assessment of the initial phase of the BICM program indicates it has 
advanced coastal science and provided baseline data that will directly influence coastal management practices. The 
continuing program can fill in gaps and enhance its value with future monitoring that includes broader aspects of the 
physical environment. Additionally, the timing of data collections should be staggered to better utilize resources and 
enhance data collection. 

BICM Program Summary Report: Data and Analyses 2006 through 2010
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Future BICM Monitoring

Semi-Decadal and Annual-Scale Monitoring of BICM Regions

The initial BICM program established four geologic regions of the Louisiana coastal zone: Pontchartrain Basin, 
Mississippi River Delta Plain, Acadiana Bays, and the Chenier Plain. These regions would be monitored on a 5-year 
rotating basis, with measurement of physical parameters such as habitat type, topography and bathymetry, subsidence 
rates, and shoreline change. Presently, there are data gaps (for example, the Acadiana Bays region has very limited data), 
and additional efforts need to be focused in these areas to complete the comprehensive dataset. Several options may be 
considered: (1) revisiting each of the four geologic regions every 5 years on a rotating schedule until evaluation of the 
data collection determines optimum schedules that efficiently utilize resources and funding; (2) collecting all data for a 
geologic region simultaneously and rotating on a 5-year basis; or (3) collecting all of one data type in a single year (for 
example bathymetry or lidar) so that annual remobilization is not necessary. Scheduling data collection following storm 
impacts and to evaluate restoration and construction projects (such as at Shell Island and Whiskey Island) should also be 
considered and should be integrated with adaptive-management plans. 

On an annual basis, coverage of the barrier shorelines (for example., Raccoon Point to Sandy Point and the 
Chandeleur Islands) would be targeted to quantify shoreline and seafloor change. These annual geophysical profiles would 
reoccupy select, evenly spaced, BICM baseline data but at an increased survey trackline spacing. This approach would not 
provide the coverage necessary to produce a surface model, as provided by the baseline and semidecadal-scale surveys, 
but would efficiently quantify the nearshore processes that drive barrier-island evolution in Louisiana, including annual 
storm impact. Reoccupying survey transects allows for direct comparison to quantify short-term trends in shoreface 
profiles and sediment dynamics. Quantifying these short-term rates and identifying their role in long-term evolution 
are critical for barrier-island-restoration project design, site selection, identification of sand sources and sinks, life-span 
predictions, and post-construction monitoring. The annual surveys would also characterize short-term change due to 
winter cold fronts and tropical storms.

Proposed Data Collection
The BICM program is a data-collection effort. Data collection and data products could be based on BICM 

protocols that have been developed through user comments, workshops, and planning meetings. Data collections 
emphasized here are primarily a continuation of established methods developed during existing BICM studies and 
suggested modifications. The different types of data collections listed below provide specific individual datasets, but when 
used in combination, a broader holistic view of the Louisiana coastal system can be developed.

(1) Barrier-Island Habitat Assessment: Oblique aerial photography and video could be used to document 
shoreline conditions, habitat type, and changes due to impacts from hurricanes and seasonal storms.

(2) Shoreline Change Assessment: Imagery (for example, Digital Orthophoto Quarter Quads (DOQQ’s), Color 
Infrared (CIR) aerial photography or Digital Globe QuickBird satellite imagery) and lidar have been and 
could be used to monitor Louisiana shoreline-change rates. Assessment of the rates of shoreline change over 
time should drive planning for future aerial-photography surveys.

(3) Bathymetry: Changes in coastal bathymetry are critical to monitoring the impacts of tropical and seasonal 
storms, changes in sediment-transport patterns, and impacts of restoration efforts. The success of the initial 
BICM bathymetric surveys indicates that future surveys could be expanded to include additional inner-
shelf and shoreline areas to provide the same management support to a broader region. Rates of change and 
impacts of storm events should drive the frequency of surveys. The near-surface geologic framework in these 
areas could also be characterized to determine the influence of the topography on coastal change.

(4) Topography: Barrier-island and shoreline elevations are critical for monitoring rates of changes in 
geomorphic features and sediment volumes. Lidar surveys are the most efficient and cost-effective data-
collection method for this task. Lidar and bathymetric surveys could be coordinated to share resources, 
provide accurate integration, and enhance modeling efforts.

THEME 6: Future Goals of the BICM Program
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(5) Habitat: Continued habitat-classification analysis is critical to monitoring the impacts of relative sea-level 
rise, storms, restoration, and coastal-planning activities. 

(6) Sediment Characterization: Changes in sediment character are typically an indicator of change in sediment 
transport and budget. Monitoring the coastal-sediment character in the BICM regions is crucial to evaluating 
restoration-project performance in addition to changes to unaltered systems.

(7) Subsidence: Monitoring of local subsidence rates will provide local rates of sea-level rise and establish 
elevation response to construction projects as opposed to natural changes. The need to incorporate local 
subsidence rates into restoration-project metrics has been identified and integrated into the Louisiana Coastal 
Master Plan (Beck and others, 2012). It is critical to identify the rate of subsidence in each BICM region and 
along each shoreline.

Technology Advances 
Because data collection and processing are the primary activities of BICM, using the best and most current 

technologies should be an important objective. For example, technological advances in topographic and bathymetric 
data-collection and processing techniques, resolution, equipment, and software could be reviewed and applied to enhance 
monitoring and coastal-management practices. This would also hold true for all data collected (coastal imagery, lidar, 
habitat type). However, since the objective of the BICM program is to monitor change over time, baseline protocols and 
datums need be adhered to so that the datasets remain comparable.

Standardization of Methods and Quality Control
Standardization of methods would provide guidance and coordination that assures that all data collected under 

BICM efforts and by project-specific studies are conducted under a uniform set of standards so that they are comparable 
and complimentary. This would include, but is not limited to, data-collection locations and datums, precision of 
instrumentation/systems that are used for data collection, methodology/calibration techniques, and uncertainty analysis/
quality control. Data-collection planning, processing, and analysis could be overseen by a single entity to ensure 
uniformity and consistency with established standards. BICM-type datasets that are collected by other agencies or under 
project-specific objectives outside of BICM (for example, LCA or CWPPRA coastal-management projects) could be 
processed and incorporated into the more regional and longer-term monitoring efforts expected of the BICM program. 
Since the completion of this phase of BICM in 2010, CPRA has developed protocols for geophysical data acquisition that 
aids consultants to collect data in a uniform manner for inclusion into the Louisiana Sand Resources Database (LASARD) 
(Syed Khalil, oral commun., 2012).

External Considerations

The BICM program, as implemented, is primarily a data-collection and synthesis effort to monitor coastal change 
in specific regions of Louisiana. Several considerations, while not under BICM responsibilities, should be promoted to 
other projects and partners.

Establishment of Hydrodynamic Monitoring Stations
Monitoring stations that record wave, current, water level, salinity, temperature, and other such data statistics 

could be established at key locations including barrier-shoreface and proximal back-barrier environments and at tidal 
inlets. These data are critical for quantifying and modeling regional processes along the sandy shorelines and can provide 
information for external projects that in turn can contribute analysis and results to the BICM program. These stations 
would complement or be incorporated into the existing CRMS-Wetlands stations and future CRMS-Water stations as well 
as existing stations offshore (Wave-Current-Surge Information System for Coastal Louisiana [WAVCIS] and National 
Ocean Service [NOS]).

BICM Program Summary Report: Data and Analyses 2006 through 2010
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Development of Barrier-Island Value Assessment Model
The goal of this task would be to develop an assessment tool that would replace or augment existing models (for 

example, Wetland Value Assessment [WVA]) presently used to quantify changes in habitat quality and quantity that are 
predicted as a result of proposed barrier-island-restoration projects. Based on findings in the BICM project and in previous 
studies along the Louisiana barrier islands, the existing WVA barrier-island and barrier-headland models do not consider 
some of the most critical barrier-island-system habitats (for example, marine submerged aquatic vegetation, back-barrier 
platform, barrier shoal, and submerged-spit platforms) and processes. Moreover, existing models put a priority on total 
area created as a result of the project and do not consider sediment volume or strategic placement of sediment that 
might provide increased island area in subsequent years post-construction due to natural sediment-transport trends, tidal 
processes, and aeolian processes. This tool would consider the unique morphodynamics of sandy barrier-island systems 
(including subsurface stratigraphy) for quantifying projected changes as a result of project construction and projected 
changes without construction and would allow for development of best practices and management for restoration. 

Data Management and User Tools
A clear data-management system could be established that would allow researchers collecting and processing 

the data to seamlessly upload materials from offsite portals, archive data at various stages of development, and develop a 
template-based system to automatically generate end products to identical standards. This system would also be designed 
so that end users can efficiently obtain the data (temporally and spatially) as required for their specific missions from Web-
based portals. This structure would also allow information to be accessed quickly and comprehensively for emergency 
response to natural and manmade disasters.

Discussion of Louisiana Coast-Wide and Topical Themes
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