FOOTHILL COPPER-ZINC BELT OF THE SUGAR MOUNTAINS, NORTH KEYSTONE MINE, COPPERopolis, CALIFORNIA

By George R. Hayt and Jarvis B. Booth

One of the most important producing centers of copper in the foothills belt is the North Keystone mine, which has been in production since 1864. The mine was opened in 1867, after having been discovered since 1860, and is now operated by the Keystone Copper Corporation of Copperville.

The mine consists of a series of levels connected by a vein of a single sheet. The vein is almost parallel to the strike of the ore body, and it is about 300 feet in length, the thickness of the ore body is from 1 foot to 30 feet, and the width of the vein is from 1 foot to 3 feet. The ore body is composed of hard quartzite, with intervals of chalcopyrite. The chalcopyrite is in the form of small veinlets, and it is a valuable mineral for the production of copper.

The mining is done by stoping and tunneling, and the ore is crushed and milled at the mill. The mill is located about 1 mile from the mine, and it has a capacity of 300 tons per day. The ore is treated with a solution of hydrochloric acid to leach the copper from the gangue, and the copper is recovered by electrolysis. The concentration of copper in the ore body is about 1% by weight.

The ore body is surrounded by a contact aureole, which consists of quartz, chlorite, and epidote. The aureole is about 100 feet wide, and it is a valuable source of copper. The ore body is also surrounded by a series of faults, which have caused the ore body to be broken into lensoid bodies. The lensoid bodies are about 30 feet in length and 10 feet in width, and they contain about 0.5% copper by weight.

The ore body is about 100 feet deep, and it is enclosed by a series of hanging walls and footwalls. The hanging walls are composed of a series of lenses of quartzite, and the footwalls are composed of a series of lenses of chlorite.

The ore body is about 100 feet deep, and it is enclosed by a series of hanging walls and footwalls. The hanging walls are composed of a series of lenses of quartzite, and the footwalls are composed of a series of lenses of chlorite.

The ore body is about 100 feet deep, and it is enclosed by a series of hanging walls and footwalls. The hanging walls are composed of a series of lenses of quartzite, and the footwalls are composed of a series of lenses of chlorite.

The ore body is about 100 feet deep, and it is enclosed by a series of hanging walls and footwalls. The hanging walls are composed of a series of lenses of quartzite, and the footwalls are composed of a series of lenses of chlorite.