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AN EQUATION FOR POTENTIAL DISTRIBUTION ABOUT 
A WELL BEING BAILED 

By 

H. E. Skibitzke 

• 
A brief ground-water investigation_made at 

the Navajo Ordnance Depot at Bellemont, Ariz., during 

parts of 1949 and 1950 included recommendations for 

the drilling of what ~ater proved to be a 1,650-foot 

test well.· In the course of the study it became 
evident that the only practical opportunity for 
estimating the transmissibility of the deep-seated 
water-bearing zone would hinge upon the successful 
analysis of data collected during and after the 

testing of the proposed well by bailing. Responding 

to a request to study the problem, H. E. Skibitzke 

in an unpublished paper dating back to 1950 developed 

and described the analysis presented herewith as a 

ground-water note. Subsequently M. I. Rorabaugh 

examined and discussed Skibitzke's analysis, offering 

an alternative development of the same solution which 
also is presented herewith. 

The described analysis affords a most useful 
means of gleaning, from data which commonly may be 

~verlooked, a preliminary appraisal of aquifer 

tr~nsmissibility. Skibitzke's derivation of equation 

· Open file 
For distribution in the Ground Water Branch only 
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(6) obviously supports equation (18) in.part 1 of 
Ground~Water Note 28; furthermore, these two equations. 

are identical with equation (~) in Ground-Water Note 

26. It may be observed that there is no basic 

difference· between the analyses of the effects of 

either instanfaneously injecting a "slug" of wc;tter 

into, or removing a slug from, a well. 

Introduction 

Where the expense of installing a test pump on a new 

well is substantial, a significant saving may be made by using 

the bailer of the drill r.ig as the pump, provided that the 

aquifer is of low transmissibi~ity. The test can be made as 
a recovery test to determine the. coefficients of permeati.ility 

and transmissibility. Discharging-well tests, ·in which draw­
down varies as a function of time,· generally are analyzed 
using the nonequilibrium equation developed by Theis (1935). 

This equation was derived through analogy with the.~onduction 
of heat in solids and through suitable modification of a 

solution that Theis credits to H~ S. Carslaw. 

One of the assumptions inh~rent in the derivation of 
Theis' nonequilibrium equation is that the rate of well 
discharge, Q, is st'ead·y·-··~nci".~onstant. Obviously, if .a bailer 

is used as a pump Q will nbt be steady but will be di~con­

tinuous or intermittent.. Therefore the. development .,.of a. new 

equation is required, and recourse may be had to solutions 

available in the theory of heat flow or to modification of 

Theis' equation. 

Derivation from a Selected Heat-Flow Equation 

An approximate fundamental differential equation of 

hydrodynamics, describing the unsteady~state flow of an 

incompressible fluid in a compressible porous medium, has be~n 
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given by Muskat (1937~ p. 133) and Jacob (1950, p. 333) in 
the general form 

where h 

~·ah 
P at (1) 

a head or potential function (the sum of the 

~ravity potential and the pressure potential)., 

as represented by the piezometric surface, of 
the incompressible fluid 

S' = storage coefficient of the water-bearing material 
P = coefficient of permeability of the water-bearing 

material 
t = time 

3 

x, y, z = coordinate distances from the or1g1n of coordinates, 
which later in this paper will be taken at the 

center of the well to be bailed (the axis of the 
w~ll being ·along the z-coordinate axis) 

For an instantaneous point source, of strength Q'/S', 
at the coordinate origin, Carslaw and Jaeger (1947, p. 216-

217) show that a particular solution of equation (1) is. 

2 2 . 
h = 0' /s v e -(x + y + z

2
)/4(P/SY)t 

8 [n(P /S') t] 312 ( 2) 

~here h is now the change in head attributable to the 

instantaneous point source, qv is the volume of water removed 
instantaneously, at time t = 0, from point x = y = z. =·o, 
and S' is as previously defined. Equation (2) expresses the 
head distribution resulting from the assumed conditions 

listed above in a homogeneous and isotropic· medium of infinite 
thickness and extent.. Inasmuch as it is the solution for a 
point sourc~, whereas a pumped or bailed well would approxi­
mate a (vertical) line source, equation 2 can be used to find 

the head distribut~on in the·vi~inity of a bailed well by 
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integrating or summing up all the effects of the point sources 
from -~to +~.along the z axis. Over an infinitesimal length ~ 
dz along the z-axis the source. strength is (Q'/S')dz .. 

Therefore, 

h =1~ 
-~ 

I -~ 2 2 / 
Q 'S' e- ( x~ + y + z ) 4 ( P /S') t dz • 

s Gr<r/s•)t] 312 ( 3) 

Because x, y, and t are not variables of integration it is 
c6nvenient to let .r2 ·= x2 

+ y2 ; to substitute this relation 

in equation (3); and to rewrite the equation in the following 

form 

The required integration can be obtained by noting the 

similarity of the int.egral in equation (4) to the error 

function (erf) of x which is written 

{

X 
') 

erf x = .jrr 
0 

For this well-known function 

2 
-a e da 

erf (-x) = -erf (x) 

(4) 

which means that the curve obtained by plotting the function 
in the x-y plane is symmetrical about the. y-axis. Thus it 

follows that the function to be integrated in equation (4) 
is symmetrical about the axis z =· 0, and hence the integration 

between the limits (-oo) .and (oo) is simpty double the result 

of integrating from (0) to (oo). Using this relation, and a 

table of integrals (Peirce, 1929, p. 63, item 492) it follows 
that 

~ 

~ 
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__ ~~ -(S' /4Pt)z2 
e dz = 

0 

2 [n:(P /S') t] l/2 

SubSti~uting this result in equation .(4) there follows 

or 

h = (Q 1 /S•)(2) (1t(P/S•)t) l/2 

8 [~(P/S' )t] 
312 

(5) 

This solution gives the radial distribution of head changes 

in the vicinity of an ·infinite line .source in terms o~ an 

instantaneous point source of strength Q'/S'. However; in 

the practical application of this solution to the problem of 

5 

a fully penetrating bailed well it is more convenient to have 
the strength in terms of the quantity of water, q, removed by 
the bailer, and the conventionally defined storage coefficient, 

S, of an aquifer of finite thickness, m. 

From equation (5) it is evident that the head distri­
bution i~ indeperident of z,· and therefore the flow charac-

teristics ~f the system would not be changed by confining a 

segment of the aquifer between two impermeable strata in 

x-y planes.. The terms Q'; · S' 
7 

and P in equation (5) may then 

be replaced by equivalent ·terms incorporating the thickness 

and hydrologic properties of the aquifere 

By definitio'n 

. T 
and P = -

' m 

where Tis the coefficient of ·transmissibility of.the aquifer. 
Substituting these ratios for Q' 7 S', and Pin equation (5) 

and adopting the more commonly used symbol, s', in place ·of 

h, there results the final .equation needed 
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. wher.e s' = residual drawdown of the piezometric surface 

q. = volume of water removed from the ~ell in one 

bailer cycle. 
r = distance from center of bailed well to point 

at which drawdown is observed 

and the remaining terms are as previously defined. 

(6) 

Note in equation (6) that as r becomes small and as 

t becomes large the ter~ r 2S~Tt approaches zero. When this 
occurs the value of e-r S/4Tt approaches unity. Thus in and 

near .the bailed well, when r is small iri comparison with the 
extent of the aquifer and when t is large, equation (6) may 
be written· in the simplified form 

s, = _q_ 
41l:Tt 

Derivation from the Theis Recovery Equation 

(7) 

Most of the material presented in this section is 
credited to M. I. Rorabaugh, who independently derived 

equation (7) from the Theis (1935, p~ 522, eq. 7) recovery 

formula. In nondimensional form the recovery formula is 

written as 

sY = _g_ log t 
4nT e t' 

( 8) 

where· t = time elapsed since well discharge began 
t' = time elapsed since well discharge stopped 

It should be remembered that in the derivation of equation 
(8) the term Q is a rate of discharge, and it is specified 
that the times t and t' must be large. 

• 
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Consider a short pumping period of length At during 

which a quantity (volume) of water, q, is removed from the 

well. I~ the ensuing recovery period apply equation (8) to 

an o.bservation of residual drawdown in. the pumped well' made 

at a time, t , which repiesents the elapsed time from the 
n 

midpoint of the ~t pumping interval. It should now be 
evident that the following identities may be writt~n and 
substituted in equation (8) 

and 

Q = ~ 
~t 

t =t +&!.. 
n 2 

~t t' = t - -n 2 

Performing the indicated substitutions equation (8) now 

becomes 

I t + At/2 
s ' = q 6. t 1 o g --.::n __ _.,._.. 

4 nT e t - At /2 n 

or (2t /llt) + 1 s' = q/!Jt log ~-n-:--~-~ 
4'11T e (2t /At)- 1 

n 
(9) 

The log te.rm in equation· ( 9) may be expanded into a series 

form by referring to an.appropriate mathematical handbook. 
Thus it is found that 

7 

1 o g n + 
1 = 2 [l + -

1
- + _!:.__ + • • • J ( 1 0) 

e n-1 n 3 5 • • • · • • 3n 5n 
2t 

In this problem evidently n = ~tn which, when substituted in 
the foregoing series, will yield 

(2t /6t) + 1 [ AT3 . At 5 
1 n =2~+ u u oge (2t /At)- 1 · 2t ---3· + 5 + 

n u n 3( 2 t ) · · 5 ( 2 t ) · 
n n 

... J . . (11) 
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For a well that is bailed the pumping time, at, per bailer 

cycle, will be very small relative to the time t • Therefore, . n . 
in the bracketed part of the series shown in equation (11) 

·each term beyond the ·first ·will be so small that it, may be 

neglected, leaving as the equivalent of the log term merely 

~!. Substituting this equivalent in equation (9), it follows 

that 

or 

s t = Y:Tt ( ~ t ) 
n 

s '. = :___9__ 41tTt 
n 

which is identical to equation (7) 

Recovery Analysis After Repeated Bailing 

(12) 

Eq·uat ion ( 7) specifies the residual drawdown, in or 

near a bailed well, for some time t in the recovery period, 

after the removal of only one bailer of water. If after a 
bailer cycles a single observation of residual drawdown is 

made it is obviously specified by the following_ equation 

s' = 

(13) 

where the subscripts identify each bailer cycle in chrono­
logical order. Each time factor represents the interval 

from·the instant of occurrence of the indicated bailer cycle 

to the instant at which s' was observed.. It is likely that 

the volume of water removed in each bailer cycle can be 

• 
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• 
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assumed to be constant. The ref ore equation ( 13) may be 
further simplified to read 

9 

s' = _g__ [L+ l__+ _!_+ .... + l_] (14) 4-n:T tl t2 . t3 t • . . . 
n 

or, in abbreviated notation 

n 

s' = _g_ L: 1 
4nT t . . . . . . . . . . 

i=l 1 

By expressing s' in feet, q in gallons, and t. in days, T 
1 

will be given in units commonly used by the Geological 
Survey--that is, gallons per day per foot. 

Conclusion · 

(15) 

This pap~r could have begun by writing equation (6) 
directly from Carslaw's solution (Theis, 1935, p. 520) • 

However, some of the steys and integration procedures 

involved in the derivation of equation (6) from the more 

general or fundamental "point-source" solution were considered 

worthy of documentation to the extent shown. 

The development of equations (7) and (15) involves 
most of the assumptions inherent in the Theis recovery 

formula, particularly the stipulation that r be small and 
t large. Rorabaugh (personal communication) has observed 

. that the new equations developed herein will be most useftil 

when the bailing is "hit-or-miss". and a reasonable average 
pumping rate cannot be ascertained. When bailing is at a 

fairly uniform rate the strictly cyclic effects might well 
be dissipated before satisfaction of the requirement that 

time be large. In this latter ~vent the Theis method would 
be preferred because all the recovery data are more easily 

·studied graphically. It will be evident that use of the 
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analytical method described in this paper, particularly when 

the number of bailer cycles is larg~, will require much 

computation for each observed residual drawdown in the 

recoyery period. 
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