U.S. Geological Survey
Reports—open file.
Illustrations (long list)

Figures

Page

1. Index map showing location of the Balmat-Edwards (Gouverneur) mining district in the northwestern Adirondack Mountains, New York................................. 1

2. Generalized geologic map of the northwestern Adirondacks showing distribution of the major metasedimentary, igneous, and metasomatic rocks, and mineral deposits..... 13

3. Generalized plan and section showing the major structural features in the Grenville series of the northwestern Adirondacks, New York................................. 20

4. Generalized map of parts of the Sylvia Lake-Cedar Lake marble belt, showing distribution of highly dolomitic and siliceous-calcitic parts of the footwall marble.... 28

5. Generalized curves showing the interrelations between the mineralogical, chemical and textural features of granitic gneiss and quartz-biotite-oligoclase gneiss. For specific modal values see Engel and Engel 1953b.... 26

6. Possible longitudinal profiles of several major folds in the district. These profiles are drawn along the axial planes of the folds and represent the intersections of these axial planes with a specific horizon in the folded rocks................................. 88

7. Diagrammatic sketches illustrating the inferred development of structural features in the Balmat-Edwards district... 247
Illustrations (long list) Cont'd.

Figures

Figure 8. Inferred form of the peripherally pyritic, quartz-biotite-feldspar gneiss in the Fullerville-Edwards marble. This interpretation is based largely upon the geologic features shown in plate 1 together with petrographic studies of the rock layers.

9. Diagrammatic sketches of the form of an elliptical body of garnetiferous quartz-biotite gneiss south of Edwards, New York (South Edwards gneiss), showing three possible interpretations of its structural form.

10. Isometric sketch of the Edwards refold in the median gneiss and an enlargement of a component part showing the more obvious lithologic features. Relict bedding is visible in many places and defines a prominent lithologic layering at most parts of the fold. The other prominent planar feature is cleavage (foliation) parallel to the axial plane of the refold. Both cleavage and the relict bedding are followed by pegmatites and quartz veins, as illustrated in the enlargement. The intersections of bedding and the axial plane cleavage form a pronounced lineation which is essentially parallel to the axis of the fold. The trace of the axial plane of the initial isoclinal fold is approximately the line E-F. Small-scale folds or lineations which may have formed during the development of the initial isocline are not apparent in this part of the gneiss.
Figure 11. Isometric sketch of the commercial parts of the Fowler and American talc belts north of Balmat, N. Y., showing their general surface and subsurface form and interrelations. The unshaded areas at the top of the talc belts represent the surficial areas of these units. Although the shading is induced by horizontal lines, most lineations in the rock except slickensides are parallel to fold axes.

12. Geologic features of the Fowler talc belt as exposed on the fourth level of the Woodcock talc mine north of Balmat, New York. The folds plunge 30° to 60° N. The marble interlayered with the talc is calcitic. The "x" on the plan view marks the site of the photograph shown on plate 11B.

13. Generalized geologic map of the Talcville talc belt as exposed on the seventh level of the International Talc Co. No. 2½ mine, Talcville, N. Y. The thicknesses of the amphibolite and the graphitic bed are exaggerated.

14. Relations of SiO₂, MgO, and CaO in marble, talc belts, and major commercial zones in the talc. Based on analyses listed in tables 3 and 20.

15. Stratigraphic relations between talc belts and associated lithologic units, and cross-section showing chemical changes believed to have occurred in evolution of those units.
Figure 16. Sketch of a specimen of highly sheared anthophyllite-
tremolite schist. The large cracked blades are trem-
olitic in various stages of alteration to fibrous antho-
phyllite. The fibrous matrix is chiefly anthophyllite
but contains remnants of tremolite. This rock represents
a stage in the shearing and alteration of a very coarse-
grained tremolite rock. It is one type of highly desir-
able "commercial talc" found along a zone of major shear
within the talc belts................................. 280

17. Anthophyllite-tremolite rock less deformed than that of
figure 16. Although the large blades of tremolite were
not sheared into a fine-grained aggregate, they are about
as much altered to anthophyllite as those in figure 16.
Each of them looks like a single crystal, but is really
composed of a myriad of anthophyllite fibers, which have
replaced a crystal of tremolite and retained its outward
form. A photograph of a thin section of somewhat finer-
grained rock of this type is shown in figure 17A........ 280

18. Highly lineated and crumpled anthophyllite schist. The
lineation is due to the subparallel fibers of anthophyllite
and lies in the plane of schistosity but normal to the
trend of the folds. The lineation, schistosity, and folding
were probably all of about the same age, and the tiny
folds are parallel to nearby major folds. Compare with
figures 19 and 22................................. 280
Illustrations (long list) Cont'd.

Figures

Page

Figure 19. Lineated mat of talc and anthophyllite ruptured by folding. The axis of this fold plunges northwest, and is accordant in space with many other small and large folds in the district. The anthophyllite fibers lie nearly athwart the axes of folding, much as they do in figure 18. 280

20. Diagram showing the maximum refractive index in 32 anthophyllites, plotted against eight percent of FeO + Fe₂O₃ + TiO₂ + MnO. Four of the anthophyllites (dots) are from the talc deposits; the data for the 28 crosses have been assembled from the literature by Rabbitt (1948) who also constructed the diagram. 284

21. Optical properties of diopsides from the Balmat-Edwards district (crosses) compared with those of other diopsides are recorded by Hess (1949). 290

22. Nearly pure tremolite schist with pronounced linear structure. Most of the tremolite crystals are needle-like to sword-shaped in form and lie parallel to the axes of large folds in this and associated rocks. A few large irregularly oriented blades of tremolite have grown at the expense of the subparallel needles. The texture is completely granoblastic. The pronounced cross-joints in this rock are very common in the talc belts. 293
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General stratigraphic sequence (in order of increasing age) in the Grenville series, Grenville Lowlands, northwestern Adirondacks, New York.</td>
<td>19a</td>
</tr>
<tr>
<td>2</td>
<td>Inferred stratigraphic relations between the metasedimentary rock units of the Grenville series in the Balmat-Edwards district, New York.</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>Approximate chemical and mineralogical composition of the marble between Sylvia Lake and Cedar Lake and its inferred composition prior to metamorphic changes.</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>Mineralogical composition in volume percent of some of the least altered specimens of dolomite Zones 1 and 3.</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>Accessory element concentrations in weight percent of some of the inferred least altered specimens of dolomite Zones 1 and 3.</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>Approximate chemical composition in weight percent of specimens of dolomite Zones 1 and 3 as determined with the emission spectroscope.</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>Modal analyses of the several types of pyritic schist.</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>Mineral composition in volume percent of some parts of silicated dolomite.</td>
<td>127</td>
</tr>
<tr>
<td>9</td>
<td>Approximate chemical composition of parts of the silicated dolomite.</td>
<td>116</td>
</tr>
<tr>
<td>10</td>
<td>Concentrations of accessory elements in parts of the silicated dolomite.</td>
<td>117</td>
</tr>
</tbody>
</table>
Tables

Long Form (Cont'd.)

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
</tr>
<tr>
<td>169</td>
</tr>
<tr>
<td>170</td>
</tr>
<tr>
<td>189</td>
</tr>
<tr>
<td>190</td>
</tr>
<tr>
<td>201</td>
</tr>
<tr>
<td>202</td>
</tr>
<tr>
<td>204</td>
</tr>
</tbody>
</table>

Table 11. Compositions of a composite sample across the calcitic siliceous footwall marble, of talc in dolomitic marble, and of the inferred premetamorphic or early metamorphic rock now altered to siliceous calcite

Table 12. Mineralogical composition in volume percent of layers of rusty marble in the Balmat-Edwards district

Table 13. Chemical composition of average samples of rusty marble, siliceous calcitic footwall marble, adjacent talc belts, and tremolite from the rusty marble

Table 14. Modal analyses of median gneiss

Table 15. Chemical analysis and mode of quartz-microcline granulite from the median gneiss. Specimen taken from exposure on Talcville Road just south of the bridge across the Oswegatchie River (12.1 N., at 4.02 E.)

Table 16. Average mineralogical composition of four major segments of quartz-biotite gneiss and the approximate, average mineralogical composition of four gneissic interlayers in the marble of the district

Table 17. Averages of chemical compositions of quartz-biotite gneiss, several graywacke sandstones, shales and composite sandy shales

Table 18. Analyses of biotites and garnets from the quartz-biotite gneiss north and west of Edwards, New York
Tables

Long Form (Cont'd.)

Table 19. Modal analyses of granites and granitic gneisses in the district and an average of 75 modal analyses of granite in the quartz-biotite-oligoclase gneiss............. 213

20. Chemical analyses and modes of inequigranular granitic gneiss (Hermon type granite of Buddington, 1939) in quartz-biotite-oligoclase gneiss and in marble........... 213

21. Wet chemical and spectroscopic analyses of perthites from pegmatites in marble and in quartz-biotite-oligoclase gneiss.. 217

22. Annotated list of minerals found in the talc belts..... 276

23. Approximate chemical compositions of the common minerals in the talc belts and in closely associated marble..... 273

24. Chemical, mineralogical and density data employed to calculate changes in constituent oxides in the average talc belt during metamorphism. A constant thickness of 230 feet is assumed for the belt.................. 266

25. Chemical analyses of channel samples across each of 5 major belts and zones of commercial talc in the Balmat-Edwards district................................. 270

26. Compositions of commercial talc, Balmat-Edwards district. Each represents an analysis of a channel sample across a specific minable zone of commercial talc within the talc belts.. 271
Tables

Long Form (Cont'd.)

Table 27. Physical properties of anthophyllite from the talc deposits.

Table 28. Partial chemical analyses of anthophyllites from the talc deposits. Numbers of specimens are the same as those in table 27.

Table 29. Chemical composition of serpentines from the Balmat-Edwards district.

Table 30. Chemical and spectroscopic analysis of talc from Balmat, New York.

Table 31. Chemical analyses of tremolites from the Balmat-Edwards district and from Baltimore County, Maryland.

Table 32. Physical properties of tremolites from the talc deposits of the Balmat-Edwards district.

Table 33. Optical properties and partial chemical analysis of tourmalines from the Woodcock mine, near Balmat, New York.
Illustrations--long list

Plates 2 in pocket

Manuscript page

Plate 1. Geologic outcrop map of the Balmat-Edwards district, northwestern Adirondacks, New York......

2. Generalized geologic map of the northwestern Adirondacks, showing orientation and distribution of linear elements.........................

3A. Massive, friable, almost pure dolomite beds of Zone 1, just northeast of Kellogg Corners. The alluvium also is dolomite sand formed by the disintegration of the rock. This locality is at 1.85 S., 13.3 W., very near the most southeasterly tip of the pyritic schist..............

3B. Nearly pure dolomite sub-zone within Zone 11, west of Sylvia Lake. The layering is essentially accordant with the contacts of this unit and the enclosing siliceous zones and dips very gently to the left (west). Lithologically this dolomite is almost identical with that of the upper dolomite shown in plate 3A............

Plate 3C. Folded contact of dolomite and silicated dolomite units southwest of Sylvia Lake. The camera is facing northeast at 1°90' S., 12°95' W., at an abrupt curvature in the layers. On the right hand side of the photo both underlying dolomite of Zone 3 and overlying quartz-diopside dolomite (Zone 11) are nearly horizontal. To the left they curve abruptly upward and stand vertical. The resulting L-shaped fold plunges very gently north (pl. 1). Note the crinkled, blebby form of the diopsidic quartz lenses in the silicated dolomite unit.

Plate 3D. Contact of silicated dolomite of Zone 4 and almost pure dolomite of Zone 3 west of Sylvia Lake. At this point they strike north and dip about 20° west. The units are well defined stratigraphic zones. The lenses and nodules in the silicated dolomite are diopsidic quartzite, possibly originally chertlike, rudely aligned in the dolomite.
Plate 4A. Silicated dolomite northeast of the Edwards
talc belt and southwest of Cedar Lake. The
lenses and irregular layers weathered in relief
are largely serpen
tinous diopside or diopside
sheathing a quartz core. These interlayers de-
fine a unit near the stratigraphic top of sili-
cated dolomite (Zone 10?) and are interpreted
as relict siliceous beds in the dolomite. At
most places where the diopside is appreciably
serpentinized a halo of calcite separates the
serpentine from the dolomite.................

4B. Diopsidic quartzite beds and laminae in the
calcitic footwall marble (Zone 14), at the con-
tact of this unit and the Fowler talc belt
(left side of photo). At this locality (4.45
N., 7.65 W.), the beds strike northeast and dip
steeply northwest. The contact of talc and
footwall marble is essentially accordant with
the bedding shown here. If mapped in detail
however, this contact is found to deviate from
a single horizon by discordances involving
several to 20 feet of beds as it is traced
1,000 feet westward and down dip in the Arnold
talc mine..................
Illustrations--long list (Cont'd.)

Plates

Plate 4C. Massive diopsidic quartzite layers (beds) in Zone 6 of the silicated dolomite exposed along the north shore of Sylvia Lake (1.95 N., 12.10 W.). The thickest of these beds average about two feet. In aggregate they define a characteristic subzone readily traced around the lake and northeast of it in the Gleason zinc mine of the St. Joseph Lead Co. The interlayered dolomite (locally some calcite) comprises less than half of this zone in this area.

4D. Diopsidic quartzite beds and laminated layers intercalated in moderately siliceous calcite of the calcitic footwall marble. The locality is about 1,200 feet northeast of the Wight talc mine. The Fowler talc belt lies just northwest (spatially above) this outcrop. At this point the siliceous beds are partly dismembered and floated apart in the enveloping siliceous calcite. This kind of deformation increases to the southwest and is less apparent along the strike to the northeast (upper right of photo).
Plate 5A. Highly serpentinous and diopsidic clots and irregular masses in partly calcitic, partly dolomitic marble. The dolomitic marble (D) appears as the dark, embayed "islands" or remnants whereas the calcitic marble (C) forms lighter colored sheaths and matrices to the serpentinous and diopsidic clots. The horizontal shear planes in the silicate clots are parallel to relict bedding and to the dominant foliation. Features of this and associated marble indicate the evolution of calcitic marble from dolomite as magnesia is concentrated in the serpentine...

5B. White tongues and lenses of calcite forming along the foliation (and relict bedding) at the expense of pre-existing dark colored dolomite. The differences in color accurately represent the differences in composition of the rock. The gray color of the dolomite is induced largely by dirty algal growths thereon, whereas the calcite weathers free of these incrustations. The marble shown here is just north of the large Fowler amphibolite mass, and south of the median gneiss. Consequently this marble is inferred to lie stratigraphically above the gneiss and to be the youngest marble in this part of the Grenville series.
Plate 5C. Silicated marble showing the interrelations of serpentinous diopside lenses and beds to calcite and dolomite. The serpentinous diopside lenses (S) such as that under the point of the pick, all are enveloped in light colored calcite (C) which has formed as magnesia from the darker gray dolomite (D) was abstracted and incorporated in the serpentine. The resulting metamorphic rock patterns are directly related to the relict bedding. The differences in shade of dolomite and calcite are only surficial as described in plate 5B. On freshly broken surfaces both carbonates are about the same color, texture, and grain size.

5D. At least two generations of calcite (C1 and C2) forming at the expense of the darker dolomite. The first generation of calcite (C1) has formed in the same way as the calcite in plate 5C. The younger, discordant veinlets of calcite (C2) have formed along joints and tiny faults which cut across the relict bedding and dominant foliation. Some of the youngest calcite is fibrous (pseudomorphous after aragonite) and seems to be the product of surficial weathering of the dolomite.
Illustrations--long list (Cont'd.)

Plates

Plate 6A. Siliceous calcite comprising highly deformed footwall marble north of Balmat, N. Y. The clots and clusters which are weathered in sharp relief are largely quartz, randomly distributed in a matrix of calcite. No dolomite and very few magnesium-bearing silicates are present in this siliceous calcitic footwall marble. Bedding is largely obliterated..............................

6B. Crumpled and aligned quartz leaves and irregular lenses weathered into relief in a calcite matrix in the footwall marble. The locality is just southwest of the Freeman talc shaft at Talcville, N. Y. The axes of the crumples and small folds in the quartz plunge northwest, away from the observer, parallel to the axes of nearby major folds. This siliceous marble merges along the strike to the east into quartz schist of the type shown in plates 8C and 8D.................................
Plate 6C. Siliceous calcitic footwall marble containing a folded fragment of a silicated interbed. The fragment is a part of the diopsidic quartzite units shown in plate 4D. Most of the smaller clusters and fragments that stand in relief in the marble are quartz grains. All of the carbonate is calcite.

6D. Highly quartzose clusters and knots aligned in complex flowage folds in calcitic footwall marble. The locality is about at 1.5 N., 9.7 W., about 1,000 feet south-southeast of the Woodcock talc mine. Much of the quartz in these clusters is interpreted to be introduced into the marble. Fragments of diopsidic-quartzite interbeds also are dispersed in this part of the marble as shown in plate 6C.
Illustrations--long list (Cont'd.)

Plates

Plate 7A. Silicated marble from which magnesium is inferred to have been abstracted. The thin layers and irregular clots weathered in relief are composed of quartz and slightly serpentinous diopside. The light colored matrix and massive rock (CM) is calcitic marble, the dark colored "islands" and relicts (DM) are dolomite. Some magnesium has been abstracted from these layers if the assumption is correct that all of the carbonate was dolomite at the onset of severe metamorphism.

Plate 7B. A sharp contact between calcitic and dolomitic marble. The white calcitic marble (CM) and the dark dolomitic marble (DM) are essentially pure. Sharp contacts between dolomitic marble and the calcitic marble which replaces it are common.
Illustrations--long list (Cont'd.)

Plates

Plate 7C. Footwall marble at the area of abrupt transition from dolomitic to siliceous calcitic footwall marble. The light colored rock (CM) is calcitic marble replacing dark colored dolomitic marble (DM). The dark clots and fragments in the calcitic marble are largely quartz. The locality is just east of the Balmat road and from 50 to 200 feet west of the siliceous calcitic footwall marble shown in plates 6A, 6C and 6D.

7D. Interrelations of calcite, dolomite and silicates in the footwall marble. The locality is about 20 feet along the strike from that shown in plate 7C. Light colored calcite (CM) is embaying and replacing dolomite (DM) along and locally across flow layering.
Illustrations--long list (Cont'd.)

Plates

Plate 8A. A dolomite-calcite-talc breccia in marble. The
large dark colored fragments which retain a pro-
nounced foliation are dolomite with minor diop-
sidic clots. The light colored "matrix" is
largely calcite. The calcite has formed at the
expense of the dolomite and encroached upon it
from a major system of fractures in the pre-
existing dolomite. Veinlets of nodular and bo-
tryoidal talc occur in the calcite and are
interpreted as the loci for the magnesium re-
leased as calcite formed from the dolomite. The
locality is about 1,000 feet west of the Balmat
zinc mine, in the marble separating the American
and Fowler talc belts.........................

8B. Serpentinous clots (S) enveloped in a halo of cal-
cite (C) which embays a matrix of darker colored
dolomite (D). The serpentine clots contain re-
licts of diopside which formed by reaction of dolo-
mite and quartz. The magnesium in the serpentine
appears to have come from the dolomite now replaced
by calcite. The transverse fissure at right of the
photo is typical of these solution features which
are controlled by cross joints in the marble.......

99
Plate 8C. Diopsidic quartz schist which occurs in both dolomite and silicated dolomite zones in the marble. This mass occurs in the hanging wall of the Balmat fault zone, about 800 feet southwest of Balmat Corners.

8D. Closeup of the quartz schist mass in plate 8C. The light colored irregular masses are quartz and the darker material is largely diopside, in part serpentinous. The spongy appearance of the rock is caused by the weathering away of irregular clots and lenses of calcite. The crude foliation in the rock is accordant with relict bedding and the contacts of stratigraphic zones in the enclosure.

9A. Folded segment of the silicated dolomite of Zone 4 southwest of Sylvia Lake. The camera was pointed north and the photo is of a nearly vertical cliff. The folds plunge gently north. Note the short overturned or vertical east flanks, and longer nearly horizontal west flanks of most folds. This asymmetric form is characteristic of almost all of the "refolds" throughout the large syncline that envelops Sylvia Lake. Incipient surfaces and zones of axial plane shear also are apparent in the center and upper left corner of the photo.
Illustrations--long list (Cont'd.)

Plates

Plate 9B. Highly contorted siliceous calcitic footwall marble just south of the Woodcock talc mine. The observer faces north as in plate 9A and the structural features are analogously oriented. Siliceous crumples of this type merge into quartz rods whose longest axes are coincident with the northward plunging axes of folding.

9C. Contorted diopсидic quartzite layers in silicated dolomite. This photo is an enlargement of a small area in the lower left corner of plate 9A. It is apparent from these two photos that most axial areas of the folds in silicated layers are thickened and short flank areas are thinned or disrupted. Presumably the undeformed beds were more continuous and much more uniform in thickness. The diopside in each siliceous layer forms a thin (1/8-1/4 inch+) sheath enveloping a quartz core. Essentially all of the carbonate matrix is dolomite.
Plate 9D. Crumpled feldspathic and diopsidic quartzite laminae and beds near the contact of rusty marble and calcitic footwall marble. The locality is about 1,000 feet northeast of the Wight talc mine. The camera is pointed north and the folds plunge at about 35° in that direction. Note the similarities in the form and direction sense of these small folds and those in plates 9A, 9B, and 9C....

10A. Boudinage in relict bedding in layers of rusty marble. The camera faces north and the numerous small boudins plunge gently in that direction, parallel to the axis of a nearby large fold. The layers which form the boudins are feldspar-diopside-quartz granulites whereas the intercalations and matrix material are silicated calcitic marble. Other boudins in other relict beds nearby are oriented at right angles to these, and plunge down the flanks of the associated folds...
Plate 10B. Strongly lineated median gneiss just southwest of the Edwards zinc mine. The camera faces south toward a northwesterly dipping surface of dominant foliation and relict bedding. The elongate blebs and rods of gneiss which define the lineation plunge northwest at about 45°, parallel to the axis of the associated large fold in the median gneiss. The interrelations of these lineations, planar features and folds are sketched in three dimensions in figure 12.

Plate 10D is a closeup of this dip slope of the foliation.

Plate 10C. Deformed and highly feldspathized beds in the median gneiss. The locality is about 800 feet southwest of the Edwards zinc mine. The camera faces north, and the folds plunge northwest at moderate angles. The darker disrupted layers are biotitic gneiss thought to represent reconstituted argillaceous sandstone beds. The lighter colored layers and matrix are largely quartz-microcline granulite (see also tables 14 and 15) thought to be of metasomatic origin. Here as in other parts of the district a common type of asymmetry appears in most folds (see plates 9A, 9B, 9C, 9D).
Illustrations--long list (Cont'd.)

Plates

Plate 10D. A closer view of an area in the right center of plate 10B showing linear elements. The blebs and rods which define the lineation are in part pegmatitic.

11A. Silicated calcitic footwall marble (M) at the contact of the talc (T) on the fifth level of the International No. 2½ mine, Talcville. The dominant lithologic layering in the marble (bedding) is cut and blurred by a younger axial plane foliation whose relations to other structural features are sketched in figure 16.

11B. Highly folded and contorted talc (T) in contact with serpentinous calcitic marble (M), in the Woodcock talc mine. The locality is designated by an X on figure 12, which is a sketch map of the geologic relations.
Plate 11C. A segment of the rusty marble interlayer in the median gneiss on the southeast flank of the Edwards fold. The horizontal layering is relict bedding. The diagonal layering especially prominent in the central and upper part of the photo represents axial plane foliation that tends to blur and locally obliterate bedding. The lowermost layers, which are less siliceous and more calcitic, have flowed parallel to bedding and show no axial plane foliation. The intersections of the axial plane foliation and relict bedding form marked linear features that plunge northwest parallel to the parent fold.

11D. Interlayered siliceous and calcitic members of the footwall marble. The locality is about 1,500 feet northeast of the Wight talc mine. The thinner siliceous interbeds are in incipient stages of disruption and dispersal in the light colored siliceous calcitic marble. Most of the thicker siliceous interbeds are fairly continuous in this area. Some silica is believed to have been introduced into the marble throughout this area.
Plate 12A. A cut and polished surface across a quartz-tourmaline vein which cuts the Fowler talc belt in the Woodcock mine. The optical constants and partial chemical composition of this tourmaline are given in table 33.

Plate 12B. Highly contorted talc (T) and graphitic quartzite (Q) from the Woodcock talc mine. The talc is schistose and is composed largely of anthophyllite and the mineral talc which have replaced marble. The graphitic quartzite is a relict bed.

Plate 12C. Plicated marble in which thin layers of manganese-bearing tremolite have been altered by surficial weathering. The dark layers are discolored by manganese oxide released as the tremolite altered. The specimen is from the third level of the Woodcock mine, Fowler talc belt.
Illustrations--long list (Cont'd.)

Plates

Plate 12D. A fold in silicated marble and pegmatite. The pegmatite (P) is mylonitized and isoclinally folded. The dark core of the fold is a replacement vein of sphalerite-pyrite-galena in calcitic marble (M). The layers to the right of the pegmatite are complexly silicated marble. This fold is a minor one formed in conjunction and accordant with the large Edwards fold. The sulfides replaced the marble near the conclusion of folding. The scale is six inches long...............

13A. Thinly layered and laminated diopsidic marble.

The light colored layers (relict beds) are highly diopsidic quartzite and the darker layers are dolomite. Quartz remains only in the very cores of the diopsidic layers. The incipient dispersal and boudinage features in the silicated layers are clearly visible. Rock of this type occurs in Zone 14 along the footwall contacts of the Balmat, American and Fowler talc belts, and in the hanging wall of the Balmat talc belt......................
Plate 13B. Thinly layered and laminated tremolitic marble.
The light colored layers are largely quartzite, with about 15 percent tremolite. The darker splotched layers are tremolitic marble (calcite). Most of the tremolite (darker colored areas) is serpen tinous. Lenses of this type appear locally within the American, Fowler and Talcville talc belts. They are interpreted as examples of intermediate stages in the conversion of siliceous dolomite to talc.

13C. Siliceous talc composed of folia of the mineral talc (T) enveloping and interlayered with quartz lenticules (Q). This specimen and that shown in plate 12D are taken from the Woodcock talc mine...

13D. Highly deformed siliceous talc. The quartz (Q) forms boudins, rods and knots elongated normal to the plane of the photograph. These linear elements are parallel to axes of major folding in the talc belts and associated rock. There are marked similarities between this type of deformation and that shown in plate 9.
Illustrations--long list

Plates

Plate 14A. A slab of coarsely crystalline tremolitic and anthophyllitic talc, split along the dominant foliation. In this specimen the elongate blades of tremolite (and anthophyllite replacing it) form rosettes and mats of crystals randomly oriented within the plane of the foliation. Viewed in sections normal to this one, however, the rock is thinly and uniformly foliated (schistose). Specimen from the Freeman talc mine, Talcville talc belt.

14B. Section cut normal to the foliation in a slab of tremolitic marble. The rock is approximately 50 percent talcose tremolite in a matrix of calcite. Layers and lenses of this rock merge into purer talcs along and across the strike and are interpreted as representing an intermediate stage in the conversion of an initially dolomitic marble to talc. Note the intersecting foliations (f1 and f2). This specimen is from the Woodcock mine, Fowler talc belt.
Plate 14C. Partly serpentinized, mylonitic pegmatite. The pegmatite (P) has been crushed into a microcrystalline rock and partly replaced by dark green serpentine (S). The specimen is from the Freeman talc mine, Talcville talc belt.

14D. Partly serpentinized perthite crystal. The single perthite crystal (P) is about half replaced by deep green serpentine. This specimen came from a very coarse-grained pegmatite cutting talc and adjacent marble near Talcville. An analysis of unaltered perthite from this pegmatite is given in table 21.

15A. Tremolitic marble sectioned normal to the foliation. The long slender blades of tremolite are growing across the initial layering (bedding) and obliterating it. Some of the tremolites are in turn crumpled along axes which are almost normal to the page.

15B. An advanced stage in the replacement of marble by blades of tremolite growing at right angles to the prominent layering in the marble.
Plate 15C. Anthophyllite-tremolite schist split along the dominant foliation. The anthophyllite fibers form thin mats with a pronounced lineation parallel to (L1). This lineation in the plane of the dominant foliation plunges down the flanks of associated folds at right angles to the axes (FA). Many of the anthophyllite tremolite fibers are crushed and broken. On layers parallel to and less than 1/2 inch from the surface of this slab (shown by cut in upper right of the specimen) tremolite blades define a lineation at right angles to that shown here, and parallel to the axes of associated folds (L2). The specimen is from the International No. 4 mine, Talcville.

16A. Steeply dipping, uniformly foliated zone of commercial talc. The darker layers represent highly serpentinous tremolite. The lighter bands are slightly to moderately talcose and serpentinous tremolite and anthophyllite. The locality is the fifth level of the Woodcock mine, median zone, just west of the shaft.
Plate 16B. Highly contorted commercial talc. This is the same zone shown in plate 15A, in an area of pronounced folding about 150 feet farther northeast. At this point the talc contains less tremolite and more of the mineral talc than that shown in plate 15A. The folds plunge at moderate angles northeast (toward right foreground).

16C. Contorted and schistose commercial talc and serpentinous marble separated by a slickensided surface of discontinuous shear. The shear surface lies subparallel to the foliation in both rocks. The talc (T) is composed largely of folia of the mineral talc, with small amounts of serpentine, anthophyllite, tremolite, quartz and calcite. The marble (M) is serpentinous calcite. Folds and rods of quartz in the talc plunge gently away from the camera (arrows marked F), whereas slickensides on the fault ("slip") surface plunge normal to the fold axes as shown by the arrow marked (S). The locality is the fifth level of the Woodcock mine, hanging wall zone.
Plate 17A. Photomicrograph of highly fibrous talc showing paragenetic relations. The blades of tremolite (TR) are largely replaced by fibers of anthophyllite (A) which in turn is partly replaced by microcrystalline aggregates of the mineral talc (TC). When this talc is ground the anthophyllite fibers fluff up and produce an asbestiform mass. If ground to a minus 250 mesh this talc has an oil absorption of about 50. X50.

17B. Tremolitic talc partly replaced by microcrystalline grains of the mineral talc. The light colored boundaries of each tremolite grain and cleavage lines are altered to the mineral talc. This variety of talc is not fibrous and has an oil absorption of about 34 when ground to a minus 300 mesh. X16, crossed nicols.

17C. Slightly serpentinous and talcose commercial talc. It averages about 80 percent tremolite, 5 percent serpentine, 14 percent talc and 1 percent calcite. It has an oil absorption of about 36 when ground to a minus 300 mesh. X50, crossed nicols.
Plate 17D. Commercial talc composed of diopside, tremolite, serpentine and talc. Tremolite and very rare diopside (light and dark laminae) comprise about 18 percent of this talc, serpentine about 50 percent, and the mineral talc (the very light colored spots) about 32 percent. This talc ground to minus 300 mesh has an oil absorption of about 48. X16, crossed nicols.................................

18A. Diopside (D) veined by serpentine (S), the whole partly replaced by microcrystalline talc (T). Layers and lenses of this type lie in contact with commercial talc at numerous localities in the district. X50.................................

18B. Commercial talc composed of tremolite (TR) altered to and veined by serpentine (S). The tremolite comprises about 64 percent of this rock. This talc ground to minus 300 mesh has an oil absorption of about 38 to 40. X50, crossed nicols......

18C. Commercial talc composed in large part of contorted folia of the mineral talc. Both coarse folia (FT) and microcrystalline talc (MT) are present. Talc of this type forms the zone shown in plate 16C. X50, crossed nicols.................................
Plate 18D. Highly tremolitic commercial talc. The blades of tremolite are somewhat randomly oriented and only slightly altered. Some parts of this rock are almost pure tremolite and have an oil absorption of about 30 when ground to a minus 300 mesh. X50, crossed nicols.

19A. Partly ground anthophyllite and fibers of the mineral talc. The mineral talc tends to be fibrous when it replaces fibrous anthophyllite. This specimen is about 77 percent anthophyllite, 23 percent the mineral talc. Prior to crushing the anthophyllite looked like that shown in plate 17A, although the fibers in this photo are much longer. This material is the most asbestiform talc in the district, but is rarely found in lenses or layers of minable dimensions.

19B. Partly ground talc in which folia of the mineral talc are the major constituent. About 10 percent of microcrystalline serpentine (S) also is present, as well as a few fibers of anthophyllite. There is little or no tremolite. Almost none of the commercial talcs contain this much of the mineral talc. X50, reflected light.
Illustrations--long list (cont'd)

Plates

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Structure contour map of the footwalls of the Fowler and Talcville talc belts</td>
<td>240</td>
</tr>
<tr>
<td>21</td>
<td>Topographic and geologic map of the surface at the International No. 2½ mine, with vertical sections across the talc belts</td>
<td>257</td>
</tr>
<tr>
<td>22</td>
<td>Geology of the International No. 2½ mine, fifth and seventh levels</td>
<td>257</td>
</tr>
<tr>
<td>23</td>
<td>No. 4 mine, geology of the International No. 4 mine and of the adjoining accessible parts of the No. 3 and No. 5 mines</td>
<td>257</td>
</tr>
<tr>
<td>24</td>
<td>Topographic and geologic map of Newton Hill, with cross sections</td>
<td>139, 257</td>
</tr>
<tr>
<td>25</td>
<td>Mine survey of the Wintergreen Hill mine</td>
<td>339</td>
</tr>
<tr>
<td>26</td>
<td>Subsurface geology of and vertical sections across the Woodcock mine</td>
<td>132, 240</td>
</tr>
<tr>
<td>27</td>
<td>Topographic and geologic map of the surface in the vicinity of the Woodcock and Wight mines</td>
<td>240</td>
</tr>
<tr>
<td>28</td>
<td>Subsurface geology of and vertical section across the Wight mine</td>
<td>260</td>
</tr>
<tr>
<td>29</td>
<td>Topographic and geologic map of and vertical sections across the Ontario mine</td>
<td>260, 357</td>
</tr>
<tr>
<td>30</td>
<td>Subsurface geology of the Ontario talc mine</td>
<td>360, 357</td>
</tr>
<tr>
<td>31</td>
<td>Subsurface geology of and vertical sections across the Arnold mine</td>
<td>135, 260</td>
</tr>
</tbody>
</table>
Figure 1. Index map showing location of the Balmat-Edwards (Gouverneur) mining district in the northwestern Adirondacks, New York.