

U. S. GEOLOGICAL SURVEY:

Reports-Open file series, no. 656: 1962.

IDRI SALT DEPOSITS
FEZZAN PROVINCE - LIBYA

by

Gus H. Goudarzi
United States Geological Survey

April 1962

(200)
R290

(200)

R290

no. 656

USGS LIBRARY - RESTON

3 1818 00082872 1

U. S. GEOLOGICAL SURVEY
BUREAU OF THE GEOLOGICAL
SURVEY, U. S. GOVERNMENT
Washington, D. C.

U. S. Geological Survey:

Reports - Open File series, no. 656: 1962:

1. Exploration of the Agouti-Aswa-Aswa deposits, Tripoli-Tarabta, Libya.

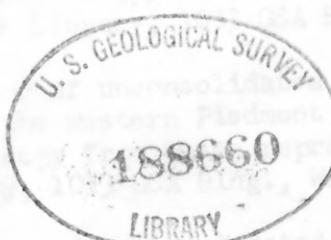
2. Exploration of the Agouti-Aswa-Aswa deposits, Tripoli-Tarabta, Libya, by G. H. Goudarzi. 60 p., 14 pls., 3 figs.

3. A geological report on the iron deposits of the Agouti Valley area, in the Agouti, Aswa, and Aswa-Aswa provinces, Libya, by G. H. Goudarzi. 77 p., 27 pls., 10 figs., 3 tables.

4. Report on Barada, Fashla, Idri and Debarra salt deposits in Libya, by G. H. Goudarzi. 38 p., 14 pls.

5. Salt deposits, Fashla Province, Libya, by G. H. Goudarzi. 36 p., 15 pls., 10 figs., 14 tables.

Copies of the following report are available for consultation in the Geological Survey Library, 245 Middlefield Rd., Menlo Park, California:


6. Preliminary geologic map of the Raspberry Mine area, Mason County, California, by Robert L. Pack. 1 map.

Copies of the following reports are available for consultation at the Geological Survey Library, 245 Middlefield Rd., Menlo Park, Calif., or at the Geological Survey Library, 1939 16th St., Washington 25, D. C., Federal Center, or at the Geological Survey Library, 245 Middlefield Rd., Menlo Park, Calif., or at the Geological Survey Library, 3451 Balsam St., Denver 14, Colo., or at the Geological Survey Library, 1939 16th St., Washington 25, D. C.

7. Description, composition, and fauna of unconsolidated sediments in some tributaries to the Neuse River, a tributary of the Tar River, a tributary of the Neuse River, by W. H. White. 17 p., 2 figs., 10 tables. A copy from the Library, 1939 16th St., Washington, D. C., or at private expense is available in the Library, 1939 16th St., Washington, D. C.

8. Description, composition, and fauna of unconsolidated sediments in some tributaries to the Broad River in western North Carolina, by W. H. White. 17 p., 2 figs., 10 tables. A copy from the Library, 1939 16th St., Washington, D. C., or at private expense is available in the Library, 1939 16th St., Washington, D. C.

9. Description, composition, and fauna of unconsolidated sediments in some tributaries to the Neuse, Tar, and Cape Fear rivers in the western Piedmont of South Carolina, by Norman P. Cuppels. 17 p., 2 figs., 10 tables. A copy from the Library, 1939 16th St., Washington, D. C., or at private expense is available in the Library, 1939 16th St., Washington, D. C.

*Is a company
(200)
R290
no. 656*

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
Washington, D. C.

For release AUGUST 8, 1962

The Geological Survey is releasing in open files the following reports. Copies are available for consultation in the Geological Survey Library, 1033 GSA Bldg., Washington, D. C.:

1. Geology of the Wilson Peak stock, San Miguel Mountains, Colorado, by C. S. Bromfield. 154 p., 1 pl., 37 figs., 8 tables.
2. Exploration of the Jefren gypsum-anhydrite deposit, Tripolitania, Libya, by J. L. Gualtieri. 65 p., 11 pl., 3 figs.
3. A geologic report on the iron deposit of the Shatti Valley area of the Fezzan Province, Libya, by G. H. Goudarzi. 77 p., 38 pl., 10 figs., 3 tables.
4. Report on Marada, Pisida, Idri and Tauorga salt deposits in Libya, by G. H. Goudarzi. 31 p., 11 pl.
5. Idri salt deposits, Fezzan Province, Libya, by G. H. Goudarzi. 36 p., 5 pl., 7 figs., 19 tables.

Copies of the following report are available for consultation in the Geological Survey Library, 345 Middlefield Rd., Menlo Park, California:

6. Preliminary geologic map of the Strawberry Mine area, Madera County, California, by Dallas L. Peck. 1 map.

Copies of the following reports are available for consultation at the Geological Survey Libraries, 1033 GSA Bldg., Washington, D. C.; Bldg. 25, Federal Center, Denver, Colo.; and 345 Middlefield Rd., Menlo Park, Calif.:

7. Description, composition, and tenor of unconsolidated sediments in monazite-bearing tributaries to the Catawba River in the western Piedmont of North Carolina, by Amos M. White. 17 p., 2 figs., 9 tables. A copy from which reproductions can be made at private expense is available in the Library, 1033 GSA Bldg., Washington, D.C.

8. Description, composition, and tenor of unconsolidated sediments in monazite-bearing tributaries to the Broad River in the western Piedmont of South Carolina and North Carolina, by P. K. Theobald, Jr. A copy from which reproductions can be made at private expense is available in the Library, 1033 GSA Bldg., Washington, D. C.

9. Description, composition, and tenor of unconsolidated sediments in monazite-bearing tributaries to the Enoree, Tyger, and Pacolet Rivers in the western Piedmont of South Carolina, by Norman P. Cuppels. 17 p., 2 figs., 10 tables. A copy from which reproductions can be made at private expense is available in the Library, 1033 GSA Bldg., Washington, D. C.

10. TET-809. Geology of the Williston basin, North Dakota, Montana, and South Dakota, with reference to subsurface disposal of radioactive wastes, by Charles A. Sandberg. 148 p., 28 figs. Also on file at 468 New Custom House, Denver, Colo.; 437 Federal Bldg., Salt Lake City, Utah; Water Resources Div., USGS, Room 201, 1 North 7th St. West, Billings, Mont.; North Dakota Geological Survey, University Station, Grand Forks, No. Dak.; South Dakota Geological Survey, Vermillion, So. Dak.

11. Bouguer gravity map of the Twin Buttes area, Pima and Santa Cruz Counties, Arizona, by Donald Plouff. 1 map. Also on file at 437 Federal Bldg., Salt Lake City, Utah; 602 Thomas Bldg., Dallas, Texas; Arizona Bureau of Mines, University of Arizona, Tucson, Ariz.; 1031 Bartlett Bldg., Los Angeles, Calif.; 232 Appraisers Bldg., San Francisco, Calif.; 468 New Custom House, Denver, Colo. Copy from which reproductions can be made at private expense are available in the Library, Bldg. 25, Federal Center, Denver, Colo.

Additional depositories are hereby announced for the following report, placed on open file on May 10, 1962:

Aeromagnetic maps of the Twin Buttes area, Pima and Santa Cruz Counties, Arizona, flown at 500 feet above ground and flown at 4,000 feet barometric elevation, by G. E. Andreasen and J. A. Pitkin. 2 maps. Now also on file at 468 New Custom House, Denver, Colo.; 1031 Bartlett Bldg., Los Angeles, Calif.; and 232 Appraisers Bldg., San Francisco, Calif.

* * * * *

1 (200)

2 R290

3 70.656

1 IDRI SALT DEPOSITS

2 FEZZAN PROVINCE - LIBYA

3
4 by *Robert*

5 Gus H. Goudarzi 1918-

6 United States Geological Survey

7 Reports - Open file series

8

9 United States Operations Mission

10

11 UNITED KINGDOM OF LIBYA

12

13

14

15

16 April 1962

17

18

19

20 This report is preliminary and has not

21 been edited for conformity with Geological

22 Survey format and nomenclature

23

24

25

Contents

	<u>Page</u>
Abstract.....	1
Introduction.....	3
Location and Extent.....	3
Nature of the deposit.....	3
Previous work.....	7
Present Investigations.....	7
Acknowledgement.....	8
Sampling.....	8
Solar evaporation.....	9
Fractional crystallization.....	30
Test pits in bedrock.....	33
Summary and recommendation.....	35

Illustrations

2	Plate I. Index map showing the location of Idri	
3	salt deposit and the new hard surface	
4	Fezzan road	4
5	II. Devonian section southeast of Idri	5
6	III. Map of Idri salt flats showing locations	
7	of samples and sample analyses	In pocket
8	IV. Map of Idri salt flat showing location	
9	of experimental plots and sample analyses.	In pocket
10	V. Map of Idri salt flats showing location	
11	of samples, experimental plots and test	
12	pits	In pocket
13		
14		
15	Figure 1. Idri salt flat	6
16	2. Experimental plots at Idri	24
17	3. Supersaturated solution formed in the	
18	pits at Idri	25
19	4. Crystals formed in bottom of pits at Idri	26
20	5. Crystalline salts in the pits at Idri	27
21	6. Crystalline salts in top and bottom of	
22	pits at Idri	28
23	7. Evaporating vats at Idri	32

Tables

Table 1. Composition of soluble salts from		Page
Idri deposit	8	
2 - 15. Composition of brine at Idri plot no. 1		
to plot no. 14	10-23	
16. Composition of the crystallized salt		
in a pit at Idri and two samples of the		
natural crust	29	
17. Results of fractional crystallization		
by solar evaporation	31	
18. Average composition of the bedrock test		
pits	34	
19. Composition of salts recrystallized by		
artificial heat	35	

1 IDRI SALT DEPOSIT

2 FEZZAN PROVINCE - LIBYA

3 By Gus H. Goudarzi

5 Abstract

7 The Idri salt deposit, located 135 kilometers west of
8 Brack in the Shatti Valley area of the Fezzan province, United
9 Kingdom of Libya, covers an area of about 35^{square}₁ kilometers. It
10 is connected to the newly constructed black-top Fezzan road by
11 about 250 kilometers of secondary road. The deposit is a salt
12 flat that lies in a closed depression. It consists of a hard
13 crust commonly 20 to 40 cm thick overlying 40 cm of salts and
14 wet sand above the brine.

15 The origin of the deposit is attributed to the percolating
16 waters that concentrate into a brine and then by capillary
17 action and evaporation form a crust on the surface.

18 Samples from several pits had the following average composition:

19 Composition of soluble salt from Idri deposit*
20

	NaCl	K ₂ O (Equiv.)	MgCl ₂
Crust	69.9	3.4	1.6
Undercrust	13.5	0.7	0.4
Brine	11.2	0.6	0.6

25 *The water insoluble components were not determined.

1 Experiments with fractional crystallization by solar evapo-
2 ration in the field indicated that fairly pure table salt may be
3 obtained in the first stage of evaporation, and a product
4 containing about 6 percent K_2O equivalent may be recovered in the
5 second stage.

6 Laboratory experiments indicate that by the dissolving of
7 the natural crust and recrystallization by artificial heat a salt
8 mixture containing about 7 to 10 percent potassium may be
9 recovered.

10 No future geologic work is recommended for the area but it
11 is suggested that the deposit may be worked on a small scale to
12 recover a pure table salt and, if the conditions warrant, the
13 residual brine may be further treated to recover potash as a by-
14 product.

15--

16

17

18

19

20--

21

22

23

24

25--

Introduction

Location and extent.--The Edri salt deposit, located at approximately $27^{\circ}30'N$ latitude and $13^{\circ}10'E$ longitude, covers an area of about 35 square kilometers. It lies about 135 kilometers west of Brak in the Shatti Valley area of the Fezzan province, United Kingdom of Libya. The area is connected by about 250 kilometers of secondary road to the newly constructed hard surface Fezzan road at a point 500 kilometers south of the main Tripoli-Benghazi coastal highway. (See plate I).

Nature of the deposit.--The Idri salt flat (sebcha) lies in a closed depression in a region of Devonian rocks whose interbedded sandstone and sandy siltstone are capped by a conglomeratic ferruginous sandstone (duricrust).

A measured section southeast of the salt flat is shown on plate II.

The origin of the deposit is attributed to the percolating meteoric waters which dissolve the soluble constituents from the surrounding sandstone and siltstone and carry them into the Idri depression. These waters are concentrated to a brine that saturates the sand, then by percolation, capillary action, and evaporation, salts accumulate on the surface in ^{the} ₁ form of evaporites. fig.1.

The deposit consists of a hard crust of fairly pure salt

INDEX MAP SHOWING THE LOCATION OF DRI SALT DEPOSIT
AND THE NEW ~~HARD SURFACE~~ FEZZAN ROAD

PLATE I

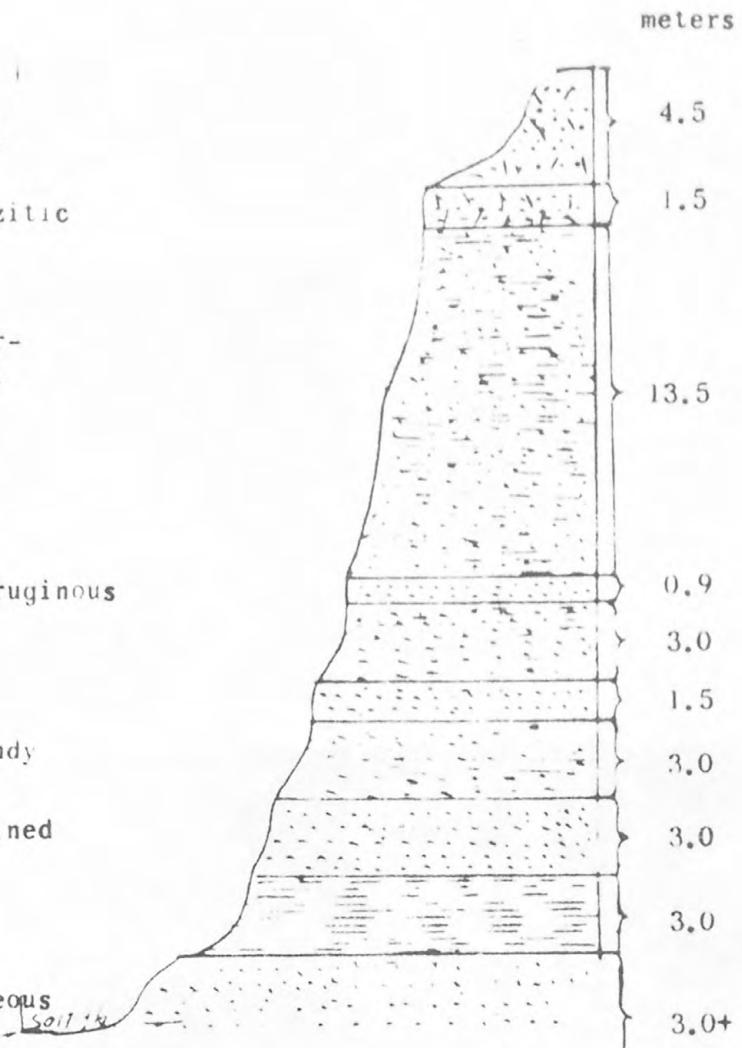
Sandstone: dark-brown (desert tarnished) medium to coarse-grained, quartzitic.

Sandstone: brown ferruginous, quartzitic

Claystone: varicolored, sandy, interbedded with fine-grained sandstone.

Sandstone: brown, fine-grained, ferruginous

Claystone: gray, yellow, sandy


Sandstone: white, fine-grained

Claystone: purple, yellow, gray, sandy and shaly.

Sandstone: tan, fine to medium-grained

Clay: gray, soft, gypseous

Claystone: yellow, tan, sandy gypseous

DEVONIAN SECTION SOUTH-EAST OF EDRI

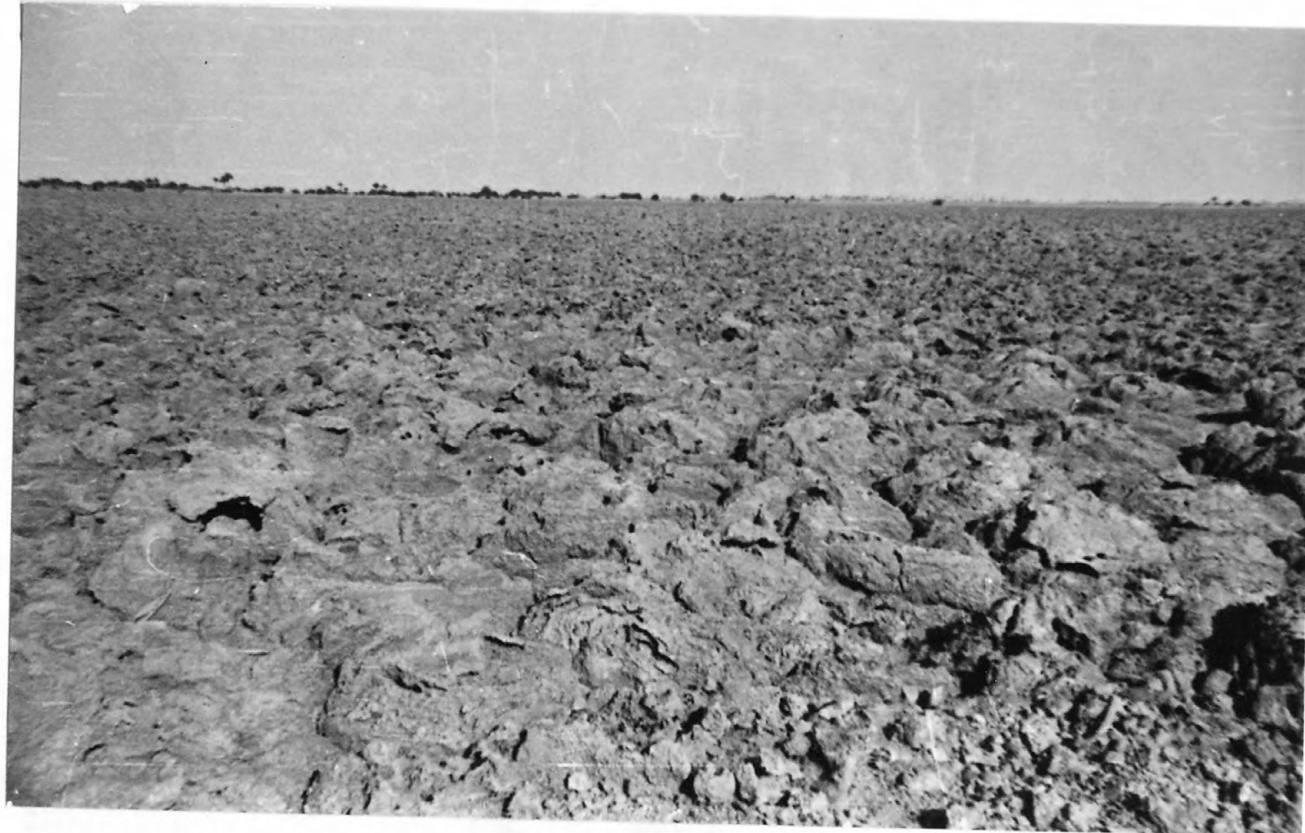

Scale 1:250

PLATE II.

- 5 -

Author: Share elevations if available,
Vertical scale could be
shown directly in the
section and thicknesses given
in caption. I suggest
showing your graphic column to
the left side with captions
to right. Thus:
- sandstone available
- no elevations available
in 35' data given
is sufficient
for purpose
of column

25—

23

22

21

20—

19

18

17

16

15—

14

13

12

11

10—

9

8

7

6

5—

4

3

2

1

6

Figure 1. Idri salt flat. Extensive accumulation of salt crusts (Evaporite) cover an area of about 35 square kilometers (width of immediate foreground 21 feet).

1 (NaCl) as much as 40 cm thick overlying an undercrust of salts
2 and wet sand 40 cm thick. The brine occurs below this under-
3 crust at an average depth of about 60 cm.

4 The chemical analyses show that the crust is composed
5 essentially of halite (NaCl), but that small quantities of
6 potassium and magnesium chlorides are present. The undercrust
7 is a mixture of wet sand and salts and the brine contains com-
8 paratively little dissolved solids.

9 Previous work.--Local residents have worked the deposit
10 on a very small scale as a source of table salt, but so far as
11 known it had not been previously studied or investigated.

12 Present investigations.--The deposit was first examined by
13 the writer in the spring of 1955 while carrying out geological
14 reconnaissance studies in the Fezzan province. Several grab
15 samples collected at that time had the following average compo-
16 sition in percent:

17	Na	27.40
18	K	5.55
19	SO ₄	4.42
20-	Cl	41.45
21	Mg	negligible

22
23 In 1956 the Libyan American Reconstruction Commission
24 allocated funds for investigations of the deposit as a possible
25 source of table salt and potash. The writer, on behalf of the

1 Ministry of National Economy, undertook the investigation of
2 the area.

3 Acknowledgement.--The work was carried out in the desert
4 with Libyan Nationals who received on-the-job training in
5 sampling techniques and other aspects of the field investigation.

6 Many thanks are due to the Fezzanese government officials
7 and to Mohamed Jihani, Hameda Buazza, and Mohamed Burkais who
8 assisted in all the field work and did the sampling during
9 the different phases of the investigations.

10 Sampling.--As a first step, the area was sampled by
11 digging 25 sample pits about 60 cm in diameter and as much as
12 1 meter deep to the water table. Samples were collected from
13 the crust, the undercrust, and the brine. The locations of
14 the sample pits, together with summaries of the chemical analyses
15 of the samples, are shown on plate III. (In pocket)

16 The average composition of the 25 samples is shown on table I.

17
18 TABLE I
19
20 Composition of soluble salt from Idri deposit*
21

	NaCl	K ₂ O (Equiv.)	MgCl ₂
Crust	69.9	3.4	1.6
Undercrust	13.5	0.7	0.4
Brine	11.2	0.6	0.6

24 *The water insoluble components were not determined.
25

1 Solar evaporation.--The second phase of the study was
2 the selection of 14 plots each 30 meters square for evaporation
3 tests. As a first step, the crust was removed and samples of
4 the crust, undercrust, and brine were collected. The locations
5 of the plots, together with summaries of the sample analyses,
6 are shown on plate IV. (In pocket).

7 In each plot 25 pits each about 3 meters square and one
8 meter deep were dug to allow the brines to accumulate and
9 evaporate. Brine samples were collected each week and although
10 a trend towards gradually higher concentration was noted, no
11 appreciable increase in the total dissolved solids was observed.
12 Tables 2 to 15 show the range of composition of the brine during
13 the experimental period.

14 A few inconsistencies in some of the tables probably
15 result from errors introduced during field sampling, labelling,
16 transportation, analysis, or other steps before reporting. The
17 tabulations made in various tables are copied from the chemical
18 laboratory analytical statements.

19 Figures 2 to 5 show the different stages of evaporation and
20 figure 6 shows salts crystallized in a pit. Table 16 shows the
21 comparison of the composition of the salt crystals formed in a
22 pit with those of two samples of the naturally formed crust.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

TABLE 2

COMPOSITION OF BRINE AT IDRI PLOT No.1
(Weekly Samples Collected from May to Aug.1956)

Sample	Na	K	Cl	SO ₄	Mg	HCO ₃	Dissolved solids	Remarks
1	4.094	.373	6.574	1.349	.23	.026		
2	4.479	.409	7.208	1.445	.26	.026		
3	6.942	.595	11.042	1.965	.395	.038		
4	5.514	.493	8.715	1.642	.312	.030		
5	5.846	.486	9.353	1.726	.333	.021		
6	6.044	1.040	10.638	1.909	.352	.020	20.140	
7	6.104	1.075	10.736	1.859	.376	.019	20.260	
8	7.182	1.083	11.336	2.008	.374	.018	22.160	
9	7.339	1.097	11.797	2.074	.393	.018	22.820	
10	9.646	1.176	14.077	2.111	.526	.023	27.64	
11	12.395	.917	15.075	2.096	.443	.037	31.044	
12	9.978	.874	9.125	1.747	.413	.023	22.25	

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

TABLE 3

COMPOSITION OF BRINE AT 1DRI PLOT No.2
(Weekly Samples Collected from May to Sep. 1956)

Sample	Na	K	Cl	SO ₄	Mg	HCO ₃	Dissolved solids	Remarks
1	.721	.097	1.193	.23	.048	.03		
2	.997	.137	1.664	.315	.067	.03		
3	7.003	.776	10.46	1.67	.377	.020	20.420	
4	1.232	.222	1.985	.422	.094	.035	4.020	
5	1.223	.243	2.127	.442	.096	.036	4.220	
6	1.554	.271	2.268	.534	.102	.028	4.800	
7	1.524	.278	2.411	.540	.107	.034	4.940	
8	1.574	.280	2.66	.564	.115	.033	5.280	
9	2.221	.466	2.526	.450	.118	.03	6.016	
10	2.090	.432	2.773	.481	.030	.030	5.896	
11	1.994	.491	3.120	.584	.125	.040	6.420	
12	1.732	.458	2.721	.452	.091	.016	5.540	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
TABLE 4																									
COMPOSITION OF BRINE AT IDRI PLOT No.3 (Weekly Samples Collected from May to Aug.1956)																									
Sample	Na	K	Cl	SO ₄	Mg	HCO ₃	Dissolved solids	Remarks																	
1	2.02	.148	3.287	.300	.053	.015																			
2	2.601	.189	4.180	.375	.066	.023																			
3	2.442	.201	4.535	.408	.078	.026																			
4	3.406	.397	5.496	.502	.106	.031	10.006																		
5	2.421	.571	4.722	.502	.073	.024	8.360																		
6	2.264	.574	5.07	.518	.075	.025	8.580																		
7	2.211	.579	5.071	.567	.094	.028	8.620																		
8	3.074	.584	5.106	.526	.093	.025	9.480																		
9	3.050	.586	5.141	.609	.087	.024	9.560																		
10	3.092	.587	5.248	.510	.089	.030	9.620																		
11	4.161	.906	6.52	.499	.126	.019	12.300																		
12	3.851	.81	5.868	.642	.097	.028	11.36																		

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

TABLE 5

COMPOSITION OF BRINE AT JDR PLOT No. 4
(Weekly samples collected from July to Aug. 1956)

Sample	Na	K	CL	SO ₄	Mg	HCO ₃	Dissolved solids	Remarks
1	2.351	.834	3.528	.425	.037	.024	7.298	
2	3.746	.523	4.361	.540	.120	.022	9.420	
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								

25-

24

23

22

21

20-

19

18

17

16

15-

14

13

12

11

10-

9

8

7

6

5-

4

3

2

1

TABLE 6

COMPOSITION OF BRINE AT EDRI PLOT No. 5
(Weekly Samples Collected from May to Aug. 1956)

Sample	Na	K	Cl	SO ₄	Mg	HCO ₃	Dissolved solids	Remarks
1	5.554	.49	8.865	1.497	.30	.021		
2	6.014	.537	9.708	1.60	.333	.027		
3	1.174	.293	1.95	.460	.086	.050	4.040	
4	7.497	.680	10.106	1.851	.357	.032	20.70	
5	7.67	.565	10.247	1.852	.344	.023	20.90	
6	7.418	.53	10.247	1.695	.369	.023	20.44	
7	8.010	.60	10.708	1.695	.387	.024	21.600	
8	8.057	.668	10.886	1.703	.395	.025	21.92	
9	8.087	.609	10.987	1.571	.389	.026	21.73	
10	11.192	.962	14.487	1.738	.391	.029	28.896	

24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

TABLE 7

COMPOSITION OF BRINE AT 1 DRI PLOT No. 6
(Weekly Samples Collected from Jun to Sep. 1956)

Sample	Na	K	Cl	SO ₄	Mg	HCO ₃	Dissolved solids	Remarks
1	2.534	.284	3.309	.556	.075	.010		
2	3.003	.308	4.538	.576	.087	.016	8.740	
3	3.150	.313	4.716	.411	.091	.015	8.92	
4	3.125	.289	4.847	.452	.09	.013	9.040	
5	3.189	.316	4.787	.650	.095	.011	9.30	
6	3.162	.329	4.787	.70	.10	.011	9.32	
7	3.310	.329	4.751	.625	.10	.025	9.36	
8	3.406	.851	4.372	.644	.09	.014	9.546	
9	3.484	.867	4.832	.664	.096	.016	10.146	
10	3.297	.60	5.070	.773	.076	.042	10.10	
11	3.478	.347	5.21	.70	.066	.006	9.93	

25-
24-
23-
22-
21-
20-
19-
18-
17-
16-
15-
14-
13-
12-
11-
10-
9-
8-
7-
6-
5-
4-
3-
2-
1-

TABLE 8

COMPOSITION OF BRINE AT 1DRI PLOT No. 7
(Weekly Samples Collected from May to Sep. 1956)

Sample	Na	K	Cl	SO ₄	Mg	HCO ₃	Dissolved solids	Remarks
1	11.837	2.072	17.411	.963	.280	.019	32.76	
2	14.83	2.320	20.034	.946	.370	.019	38.70	
3	12.193	2.257	19.467	.897	.347	.017	35.34	
4	13.489	2.613	20.52	.946	.399	.019	37.66	
5	14.46	2.73	20.318	.954	.432	.019	39.04	
6	20.156	3.176	20.433	1.013	.232	.018	45.100	
7	13.321	3.159	20.46	1.234	.459	.016	38.78	
8	13.617	3.12	19.928	1.201	.488	.016	38.52	
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								

25-
24-
23-
22-
21-
19-
18-
17-
16-
15-
14-
13-
12-
11-
10-
9-
8-
7-
6-
5-
4-
3-
2-
1-

TABLE 9

COMPOSITION OF BRINE AT 100' PLOT No.8
(Weekly Samples Collected from Jun to Oct. 1956)

Sample	Na	K	Cl	SO ₄	Mg	HCO ₃	Dissolved solids	Remarks
1	2.391	.241	3.617	.461	.134	.043	7.000	
2	3.052	.243	4.113	.608	.156	.044	8.32	
3	3.075	.284	4.202	.617	.145	.048	8.46	
4	3.101	.282	4.219	.535	.150	.047	8.46	
5	3.284	.291	4.252	.452	.144	.042	8.56	
6	2.670	.494	4.131	.493	.148	.046	8.044	
7	6.836	.688	5.564	.490	.136	.049	13.796	
8	3.148	.265	4.45	.451	.145	.042	8.59	
9	3.204	.261	4.468	.475	.145	.043	8.68	
10	2.576	.246	4.184	.444	.120	.073	7.83	
11	2.073	.254	3.723	.65	.141	.069	8.20	

TABLE 10

COMPOSITION OF BRINE AT IDRI PLOT No.9
 (Weekly Samples Collected from May to Sep. 1956)

Sample	Na	K	Cl	SO ₄	Mg	HCO ₃	Dissolved solids	Remarks
1	2.295	.195	3.762	.401	.102	.016		
2	3.608	0.485	4.929	.584	.146	.022	9.98	
3	3.949	.509	5.638	.593	.17	.022	11.02	
4	3.916	.510	6.134	.610	.176	.022	11.46	
5	3.941	.51	6.347	.617	.181	.025	11.74	
6	3.942	.506	6.347	.559	.176	.023	11.68	
7	3.928	.505	6.134	.576	.176	.024	11.46	
8	8.453	1.46	11.33	.636	.176	.025	22.162	
9	10.342	1.15	14.600	1.170	.481	.022	27.668	
10	3.995	.508	6.88	.57	.188	.028	12.270	
11	3.68	.274	5.71	.68	.154	.023	10.26	
12	3.33	.244	5.744	.70	.157	.01	10.31	

TABLE 11

COMPOSITION OF BRINE AT IDRI PLOT No. 10
(Weekly samples collected from Jul to Jul. 1956)

1 2 3 4 5— 6 7 8 9 10— 11 12 13 14 15— 16 17 18 19 20— 21 22 23 24 25—

TABLE 12

COMPOSITION OF BRINE AT EDRI PLOT No. 11
(Weekly samples collected from May to Sep. 1956)

TABLE 13

COMPOSITION OF BRINE AT JURI PLOT No. 12
(Weekly samples collected from Aug. to Sep. 1956)

5--	1
4	2
3	3
2	4
1	5
6	6
7	7
8	8
9	9
10--	10
11	11
12	12
13	13
14	14
15--	15
16	16
17	17
18	18
19	19
20--	20
21	21
22?	22?
23	23
24	24
25--	25

T A B L E 14

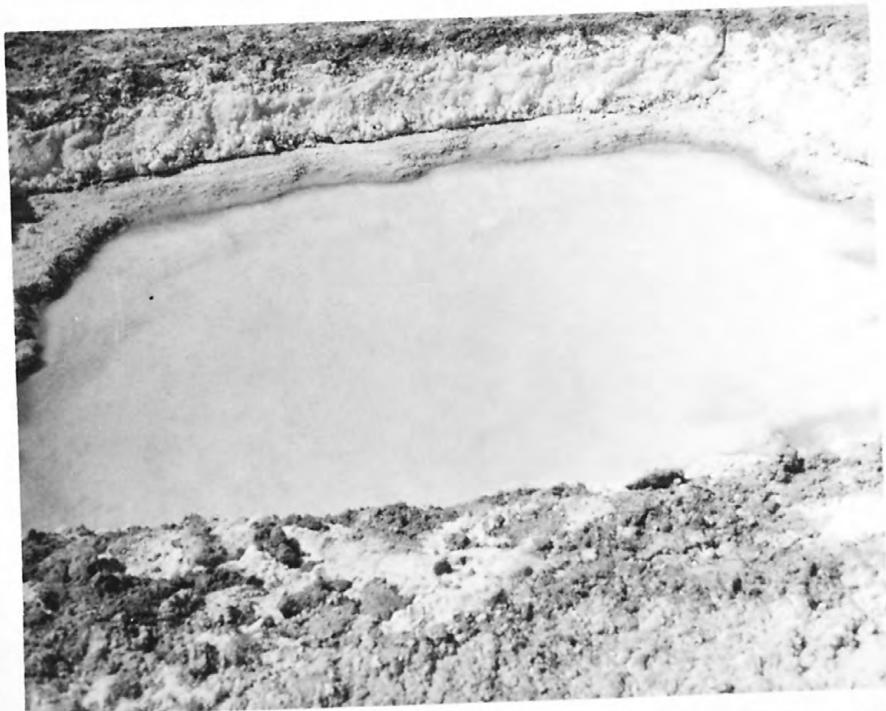
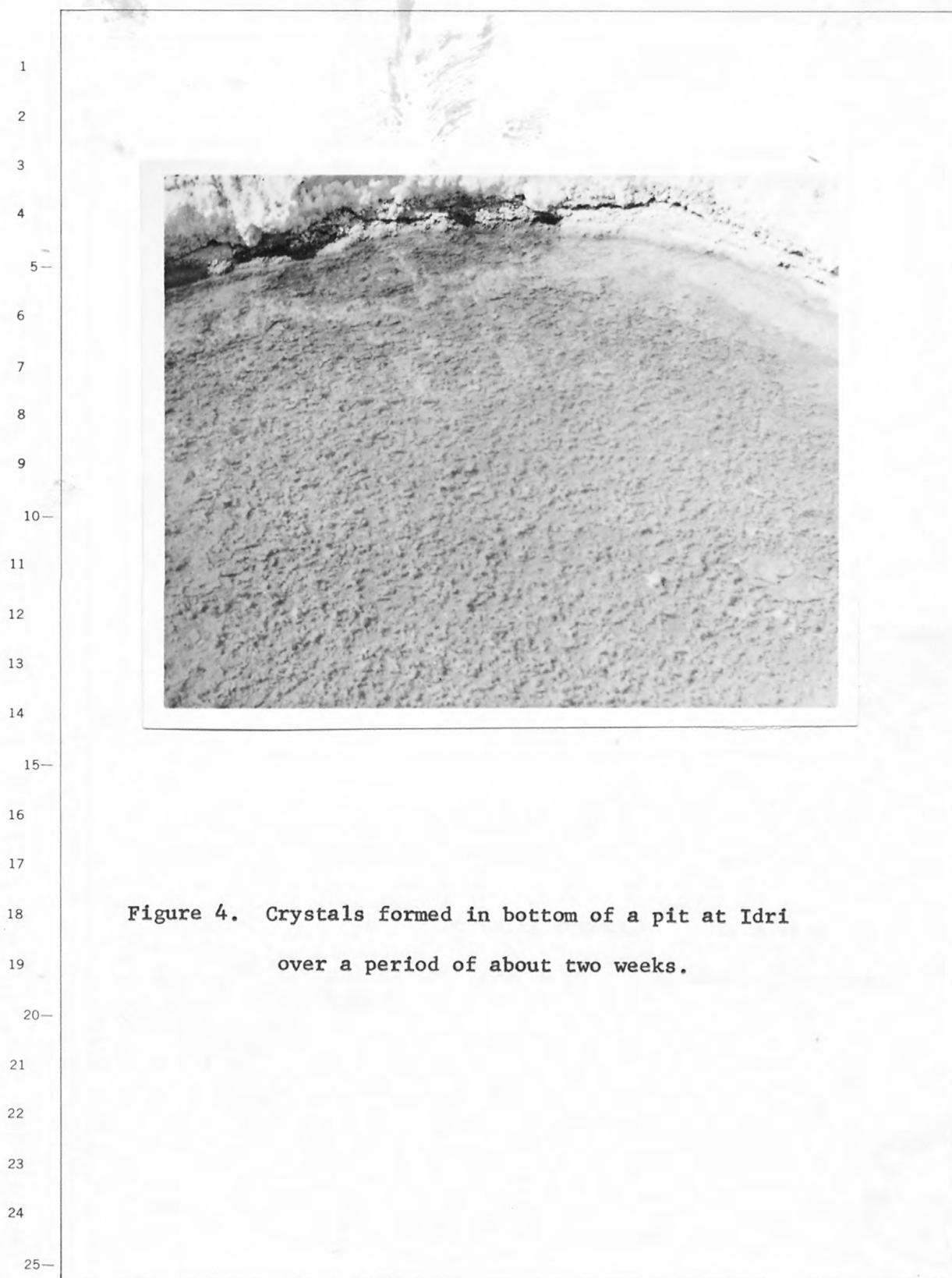
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

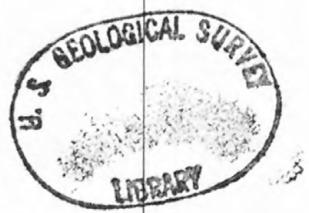
T A B L E 15

COMPOSITION OF BRINE AT JORI PLOT No.14
(Weekly samples collected from May to Sep. 1956)

Sample	Na	K	CL	SO ₄	Mg	HCO ₃	Dissolved solids	Remarks
1	1.004	.145	1.489		.055	.027	3.252	
2	1.386	.185	1.970	.560	.071	.030	4.280	
3	1.000	.171	1.740	.395	.056	.045	3.480	
4	0.891	.113	1.702	.418	.074	.025	3.710	
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								

Figure 2.--Experimental plots at Edri. Crust was removed and 25 pits 3 meters square were dug to the water table.


Figure 3. Pit at Idri containing supersaturated salt
solution formed after about one week; 3 meters
square.

18 **Figure 4. Crystals formed in bottom of a pit at Idri**
19 **over a period of about two weeks.**

Figure 5. Crystalline salts forming in bottom of a
pit at Idri over a period of about five weeks.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

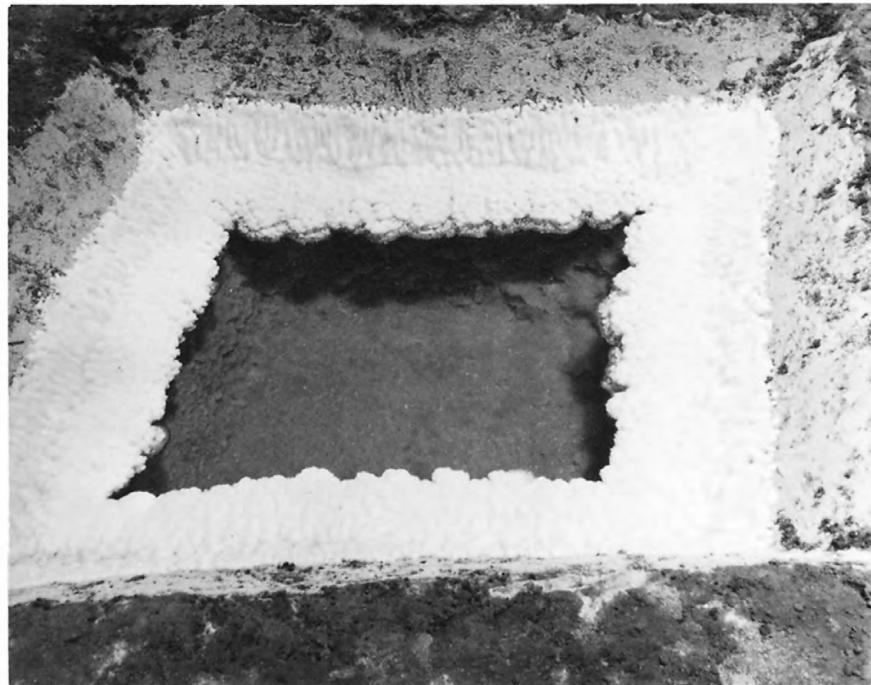


Figure 6. Crystalline crust formed on top and bottom
of a pit by allowing brine to accumulate and
evaporate.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
TABLE 16Composition of crystallized salts in a pit at Idriand two samples of the natural crust.

	Na	K	Mg	Cl	SO ₄	Insol.
Crystallized salt	37.1	0.5	0.06	59.1	1.1	0.3
Natural salt (1)	32.5	2.0	0.14	53.3	2.5	6.7
Natural salt (2)	35.3	1.9	0.06	54.4	2.4	4.4

1 Fractional crystallization by solar evaporation.--As a
2 third phase of the investigation, two tanks were constructed
3 in each plot and designated as Tank A and B. Brines from each
4 plot were poured into Tank A, sampled and allowed to evaporate.
5 After several days the residual brine was transferred to Tank B,
6 sampled, and allowed to evaporate to dryness fig. 7. The crystallized
7 salts from each tank were collected, weighed, and sampled.
8 The initial volume and composition of the brine in each tank,
9 the date sampled and the number of days in the tank including
10 the weight and the composition of the crystallized salts are
11 all incorporated in table 17.

12 The results of the experiments on fractional crystallization
13 by solar evaporation were not conclusive. However, the tests
14 indicated that a fairly pure table salt may be obtained from the
15 brines at Edri on first stages of crystallization (Tank A).
16 Analyses of the residual brines and those of the salts collected
17 from tank B, the second stage, show that they contain an average
18 of 4.7 percent K_2O equivalent. This residue might be further
19 treated and potash (K_2O) extracted as a by-product on a small
20 scale. It was further noted that plots 8, 9, 11 and 12, located
21 along the edges of the area, yielded an average of 1.11 percent
22 of equivalent K_2O , in Tank B, and almost none in Tank A. Plots
23 1 to 7, 10 and 14, in the central part of the deposit yielded
24 an average of 4.02 percent K_2O equivalent in Tank A and 5.9 percent
25 in Tank B.

TABLE 17
IDRI SALT FLATS
Results of Fractional Crystallization
BY SOLAR EVAPORATION

LOCATION		BRINE					SALT CRYSTALS				
		Initial VOLUME	ANALYSIS			DATE	Total Days	Weight (Kg)	ANALYSIS		
PLOT N° 1	TANK A		cu.m. 1.260	21.368	0.362	2.844	8/15/56		148	33.284	0.413
	TANK B	0.360	11.500	1.235	1.872		8/29/56	20	132	28.035	2.030
PLOT N° 2	TANK A	1.260	Lost sample			9/9/56			No crystal formed		
	TANK B	0.300	4.231	0.217	0.595	9/23/56		28	32.577	0.632	7.036
PLOT N° 3	TANK A	1.187	3.542	0.098	0.360	8/28/56	17	26	33.542	0.017	5.200
	TANK B	0.120	11.680	0.308	1.698	9/11/56	5	15	33.734	0.153	4.728
PLOT N° 4	TANK A	1.089	5.012	0.389	0.762	8/22/56	20	17	13.225	0.192	0.936
	TANK B	0.210	33.505	0.045	5.231	9/5/56	9	35	35.086	0.153	3.908
PLOT N° 5	TANK A	1.200	12.937	0.446	1.284	8/12/56	28	150	33.623	0.336	5.241
	TANK B	0.295	No sample			8/26/56	16	55	31.684	0.722	4.826
PLOT N° 6	TANK A	1.200	6.873	0.674	0.408	9/15/56	14		No crystal formed		
	TANK B	0.436	9.003	0.148	1.012	9/29/56		84	30.535	0.384	8.667
PLOT N° 7	TANK A	1.072	13.617	0.488	3.744	9/1/56	22	238	34.872	0.255	6.152
	TANK B	0.238	8.626	0.706	6.193	9/15/56		83	36.824	1.150	4.005
PLOT N° 8	TANK A	1.050	2.495	0.140	0.300				No crystal formed		
	TANK B	0.600	3.910	0.158	0.450				No crystal formed		
PLOT N° 9	TANK A	1.000	3.622	0.168	0.316	10/3/56	14		No crystal formed		
	TANK B		7.190	0.168	0.316	10/17/56		45	34.355	0.117	1.388
PLOT N° 10	TANK A	1.260	2.424	0.062	0.322	8/4/56	16	6	11.911	0.084	1.588
	TANK B	0.404	8.907	0.056	1.660	8/18/56	30	54	34.655	0.039	6.084
PLOT N° 11	TANK A		7.762	0.254	0.903	9/27/56	15	144	34.902	0.142	1.353
	TANK B		Lost sample				14		No crystal formed		
PLOT N° 12	TANK A	0.945	4.140	0.086	0.316			62	35.252	0.096	1.576
	TANK B		7.302	0.096	0.574						
PLOT N° 13	TANK A		No Record						No crystal formed		
	TANK B		Samples Lost				14		No crystal formed		
PLOT N° 14	TANK A	0.780	0.890	0.057	0.132	9/20/56		22	34.961	0.260	3.745
	TANK B	0.265	2.760	0.093	0.319	10/4/56					
PLOT N°	TANK A										
	TANK B										
PLOT N°	TANK A										
	TANK B										

Figure 7. Evaporation to dryness was done in vats from which the crystallized salts were collected, weighed, and sampled for purposes of the study.

1 Test pits in the bedrock.--In two of the several springs
2 on the slopes of Idri Hill in the center of the area, some
3 secondary sulphur, possibly a product of the decomposition of
4 gypsum or anhydrite, were noted. Consequently 13 test pits
5 were dug on the Idri Hill in the bedrock to the water table for
6 sampling purposes. The pits were about 1 x 0.50 meters and
7 ranged from 0.33 meter⁷ to 2.40 meters in depth. Plate V shows
8 the location of these pits on Idri Hill and also the location
9 of sample holes and plots in the area. Each pit was sampled and
10 the average compositions of the sample are shown on table 18.

11 It is noteworthy that samples collected from the pits on
12 the Idri Hill contained an average of 0.98 percent potassium.
13 This supports the theory that percolating meteoric waters are
14 partially responsible for the comparatively high potassium
15 concentration in the Idri deposit.

16 Laboratory experiments.--Experiments were carried out at
17 the Sidi Mesri Chemical Laboratory in an attempt to determine
18 the amounts of potassium that could be recovered from the deposit.

19 Bulk samples were crushed and one kilogram sample of the
20 salt were dissolved in 5 liters of water. The solutions at
21 10° Baume were heated slowly and evaporated to dryness.

22 Four samples of the crystallized salts were collected at
23 different times during the process. Table 19 shows the compo-
24 sitions of these salts.

25--

1
2
3
4
5—
6
7
8
9
10—
11
12
13
14
15—
16
17
18
19
20—
21
22
23
24
25—

TABLE 18
AVERAGE COMPOSITION OF THE BEDROCK PIT SAMPLES

Pit No.	Total Depth m.	Fe	K	S	Percent HCl soluble
1	2.10	22.00	0.60	0.03	50.66
2	1.40	9.65	0.83	0.03	22.56
3	2.07	9.54	0.29	0.04	30.51
4	2.40	3.37	0.35	0.03	52.60
5	1.72	11.29	0.84	0.02	31.05
6	0.33	8.16	1.91	0.04	50.80
7	0.67	6.48	1.87	0.04	38.80
8	1.94	6.31	0.75	0.01	16.10
9	2.00	5.21	0.80	0.01	19.71
10	1.08	7.39	1.73	0.02	44.50
11	1.44	7.43	1.15	0.01	38.50
12	1.13	8.25	0.63	0.01	22.00
13	1.39	No samples			

1
2
3
4
5 TABLE 19
6 *laboratory methods*
7 Composition of salts recrystallized by artificial heat
8
9

	Cl	K	Mg	Ca	Na	SO ₄
(1)	56.6	1.1	-	-	36.2	-
(2)	58.0	1.7	-	-	35.9	-
(3)	55.1	6.6	0.2	0.7	32.0	3.1
(4)	53.8	10.0	0.4	0.3	28.9	2.4

10 The crystals were dried and weighed and the laboratory
11 reported that from 1 kilogram of salt 120 grams of #3 and 80 grams
12 of #4 salts may be recovered by artificial heat.

13 The above experiments indicate that from one metric ton of the
14 naturally-formed crusts approximately 200 kilograms of a product
15 containing 6 to 10 percent potash (K₂O) equivalent may be recovered.

16 Summary and recommendation.--No future geologic studies or
17 further investigation of the Idri salt deposit are recommended.

18 The studies already made suggest that the deposit may be
19 worked on a comparatively small scale as a source of pure table
20 salt for local use. If the conditions warrant the residual brines
21 could be further treated and potash recovered as a by-product.

22 It is estimated that the present crust of the deposit
23 contains about 3,000,000 metric tons of crude natural salt which
24 represents about 2,000,000 tons of table salt and 100,000 tons of

1 potash (K_2O) equivalent. However, the salt crust would continue to
2 accumulate on the surface and it is estimated that within five years
3 the harvested areas would be covered by a new salt crust. Consequently
4 the deposit could be worked repeatedly if selective harvesting is
5 practiced and only 20 percent of the area is mined in one year.

6

7

8

9

10-

11

12

13

14

15-

16

17

18

19

20-

21

22

23

24

25-

POCKET CONTAINS
3 ~~4~~ ITEMS.

#2

USGS LIBRARY - RESTON

3 1818 00082872 1