

(200) R290 no.719

U. S. Geological Survey

Reports - open file series,

Mo. 719: 1964

182205

14 APRIL 1964

(200) R290 no.719

UNITED STATES DEPARTMENT OF THE INTERIOR

U.S. GEOLOGICAL SURVEY

eports - open file series

RECONNAISSANCE GEOCHEMISTRY OF STREAM SEDIMENTS

FROM THREE AREAS NEAR JUNEAU, ALASKA

By

Henry C. Berg

U. S. GEOLOGICAL EI MAR 201 LIBRAR Open-file report

1964

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards

(200) { to accompany R290 { to accompany 20,719

Weld - 2905 Int.

GEOLOGIC DIVISION U.S. GEOLOGICAL SURVEY Washington, D. C.

For release MARCH 23, 1964

The Geological Survey is releasing in open files the following reports. Copies are available for consultation in the following offices: Geological Survey Libraries, 1033 GSA Bldg., Washington, D. C.; Bldg. 25, Federal Center, Denver, Colo.; 345 Middlefield Rd., Menlo Park, Calif.; Brooks Memorial Bldg., College, Alaska; 311 5th St. School Bldg., Juneau, Alaska; Alaska Div. of Mines and Minerals, State Capitol Bldg., Juneau, Alaska; 503 Cordova Bldg., Anchorage, Alaska; South 157 Howard St., Spokane, Wash.; 232 Appraisers Bldg., San Francisco, Calif.; 1031 Bartlett Bldg., Los Angeles, Calif.; 468 New Custom House, Denver, Colo.; 602 Thomas Bldg., Dallas, Texas:

1. Preliminary report on tests of the application of geophysical methods to Arctic ground water problems, by David F. Barnes and Gerald R. MacCarthy. 37 p., 22 figs., 1 table. Copies from which reproductions can be made at private expense are available in the Alaskan Branch, 345 Middlefield Rd., Menlo Park, Calif.

2. Reconnaissance geochemistry of stream sediments from three areas near Juneau, Alaska, by Henry C. Berg. 4 p., 1 fig., 2 tables. Copies from which reproductions can be made at private expense are available in the Alaskan Branch, 345 Middlefield Rd., Menlo Park, Calif.

* * * * * * *

RECONNAISSANCE GEOCHEMISTRY OF STREAM SEDIMENTS

FROM THREE AREAS NEAR JUNEAU, ALASKA

By Henry C. Berg

ABSTRACT

Results of a preliminary inquiry into background metal content of stream sediments near Juneau, Alaska, and whether this background is related to geologic terrane indicate that stream sediments derived chiefly from metamorphic rocks show significantly higher modal nickel, zinc, and arsenic than do sediments derived mainly from sedimentary or igneous rocks. Metal-content data that are closely related to areal geology will be required before systematic geochemical prospecting by stream-sediment sampling in southeast Alaska will be very effective. Reconnaissance geochemistry of stream sediments

from three areas near Juneau, Alaska by Henry C. Berg, Menlo Park, California

A reconnaissance study was undertaken near Juneau, Alaska, to determine the relationship between the trace-metal content of stream sediments and the geologic terrane from which the sediments were derived. Previous investigations of trace metals in stream sediments in southeastern Alaska have sought anomalies (unusually high values) in one or more metals (Chapman and Shacklette, 1960; Chapman, 1962) or have been efforts to detect metal anomalies in sediments near specific mineral deposits (Race, 1962) without being able to take into sufficient account the likelihood that the background metal content of stream sediments might vary significantly with varying types of source rocks.

In this study, 46 analyses of the trace-metal content of siltsized sediments from 43 streams are identified and grouped as nearly as possible by main type of rock--sedimentary, metamorphic, and intrusive igneous (including contact zones) -- in the stream drainage (table 1). Figure 1 shows at a glance that the area under consideration is geologically complex, and in some instances the source of the sediment at a sample site might be more than one of these types. Where this is so, the source rock type is queried on table 1. Samples were collected without special reference to known or suspected mineral deposits, but because the area has been sporadically mineralized, some samples show anomalously high values in certain metals. In order to minimize the effect of anomalous values on the calculation of background metal contents, the mode (most commonly occurring value) was selected as the most appropriate and meaningful "average" value for each metal (table 2). For some metals, more than one mode is reported; this happens when two values occur an equal number of times for a given metal, instead of a single value occurring most frequently. Where a bimodal range is small, it is probably of little consequence, but in ranges such as 200 ppm and 700 ppm, and 300 ppm and 700 ppm, it may be very significant. Table 2 also shows ranges in metal content in stream sediments by source-rock type. In some cases, the high end of the range is probably anomalous, such as the maximum of 200 parts per million (ppm) of nickel in stream sediments derived from the metamorphic rocks. However, it should be noted that the modal nickel content of stream sediments derived from the metamorphic rocks is relatively high (70 ppm) compared to that of stream sediments

FIGURE 1.-- Generalized geologic map of the Chilkat Range, Admiralty Island, and northeastern Chichagof Island, showing location of stream sediment samples and lode prospects. Inset: Index map of southeastern Alaska showing location of area of this report.

TABLE 1.--Metal content of 46 stream sediment samples from three areas near Juneau, Alaska. (Unless otherwise noted, analyses are by semiquantitative spectrographic methods. Asterisk(*) denotes semiquantitative chemical analysis. The following elements are below the limit of detection of the method used and are reported in parts per million as follows: Sn<10; Ag<1; Ge<20; Ga<20; La<50; Bi<10; In<10; Cd<50; Sb<200; Tl<100; Nb<50; Ta<50; W<50. Samples collected in 1957, 1958, and 1959 by H.C. Berg and R.A. Loney. Semiquantitative spectrographic analyses by E.F. Cooley; semiquantitative chemical analyses by H.H. Mehnert and W.L. Jones, U. S. Geological Survey)

	Lo	NUMBER	Be	B	Mg	Si	Sc	Ti	V	Cr	Mn	Fe	Co	PPm	Cu	Zn	AS	Sr	Y	Zr	Mo	Ba	Pb	Main type of rock
	1	58A B922	<1	20	2	20	20	.5	200	100	700	5	15	30	70	50	40*	300	20	100	<10	300	10	Sedimentary
0	2	58AB4 23	<1	50	1.5	20	20	.5	200	100	300	5	15	50	70	50	20	200	20	70	<10	300	10	" "
LA	3	58AB+ 24	<1	30	1.5	7	10	.2	150	30	1500	3	10	30	50	75*	30	10	10	50	410	200	210	н н
H	4	581 B125	41	20	1	10	10	.3	150	100	200	3	<10	20	50	75*	20*	200	10	30	< 10	300	<10	u 11
HO	5	58 AB = 26	<1	50	1.5	20	<10	.3	200	100	500	5	15	50	70	<25	108	50	20	70	<10	300	10	a a
ICHAG	6	580B-27	<1	20	1.5	15	10	.2	70	70	500	2	410	20	30	<25	30	700	10	20	<10	300	10	si (i
	7	58 AR= 28	11	20	3	20	10	.3	100	50	500	5	15	30	20#	50	20*	700	10	70	15	300	(25*	1) II
HO	8	58 AB+ 29	<1	30	3	30	15	.3	150	70	500	5	15	30	30*	125	60	70	10	150	15	300	1254	11 II
N	9	58AB 95	<1	20	2	20	50	.5	300	150	1500	7	20	50	300	100*	60*	200	30	100	×10	300	210	u n
E	10	58AB- 96	<1	70	1.5	20	20	.3	200	150	500	5	10	50	70	75*	60*	300	20	70	<10	500	10	11 H
SAS	11	S8AB 98	<1	10	1.5	10	<10	2	100	50	300	3	<10	30	30	50	60	700	20	50	<10	300	<10	<i>u 0</i>
THT	12	58AB 99	<1	10	1.5	10	10	.2	70	100	200	2	210	20	20	125	40	1000	<10	30	210	300	<10	10 H
OR'	13	58A8+119	<1	<10	1.5	15	10	.3	200	150	500	5	10	30	50	425	60	300	15	50	<10	300	<10	^и и
7	14	STALY SC	<1	10	1.5	20	15	.5	150	150	700	5	15	20	70	<25ª	50	200	20	50	<10	300	10	<i>is</i> 11
and	15	57ALY HC	<1	20	1	20	15	.7	200	150	2000	5	20	50	100	425	20	200	20	100	<10	300	<10	³⁶ 11
E	16	57AL GC	<1	<10	1.5	15	15	.5	150	150	1500	5	10	30	30	50	20*	300	20	150	<10	500	410	13 H
ALIC	17	57AL NC	<1	<10	2	15	10	.5	150	70	700	5	15	20	70	25*	100*	200	20	50	<10	300	<10	Taneous
2	18	58AB+ 97	41	20	1.5	20	20	5	200	150	1500	7	15	150	50	75*	10*	200	20	70	<10	700	10	Igneous?
L'HY	19	58A B+ 100	<1	10	2	30	<10	.3	100	50	700	5	10	20	104	<25×	30	1000	10	150	15	500	×25	Teneous
A	20	584 B= 101	<1	20	3	30	10	. 3	100	70	500	5	15	30	15	125	60	300	10	70	15	500	<25*	Transaux?
CH	21	58 A B = 120	21	<10	1	15	410	.3	150	100	700	5	10	20	30	50	10#	700	20	150	40	500	410	Tonenus?
-	22	58 A B= 62	41	10	5	20	20	5	150	150	1000	7	15	50	40*	25*	20#	300	15	70	15	300	<25*	Metamorphic
	23	58 A R. 63	51	30	3	30	20	5	200	150	700	7	15	50	40*	125	60*	100	15	70	7	1500	×25#	11 11
	24	58AB+ 64	41	30	3	30	15	3	150	70	700	5	10	30	20*	125	80*	100	10	70	45	500	125×	11 11
	25	58AB 65	<1	50	3	30	20	.5	150	100	700	7	15	30	10*	125	40*	300	15	100	25	700	225#	0 11
	26	58AB 66	41	20	1	15	10	.7	200	150	1000	7	×104	100	40 %	75*	60*	50	30	100	<10	3000	225 #	11 11
	27	58AB+ 67	41	10	1.5	15	50	1	500	300	1000	10	30	100	40 #	7.5*	40*	300	50	150	<10	2000	125 H	11 ii
	28	58AB+ 68	41	30	3	20	30	.7	300	300	1000	10	20	150	75 N	75*	<10*	200	30	100	510	300	<25 #	11 ()
	29	58AB+ 69	41	20	1.5	20	20	.5	200	150	1000	7	<104	50*	10*	75*	30*	300	20	70	<10	1000	<25#	11 4
	30	58AB-70	41	20	1.5	20	20	.3	200	100	700	5	104	200*	20#	75*	80*	200	20	100	<10	700	425%	1 1 11
	31	58AB- 71	<1	30	3	30	30	.7	200	150	1000	7	30	70	20*	75*	30*	150	20	70	5	700	<254	ti II
Q	32	58AB= 72	<1	30	3	30	20	.3	150	150	1000	5	20	70	60*	120	60 *	100	15	50	5	1000	25%	15 U
SLA	33	57ALy29	<1	50	5	30	20	1	200	150	2000	10	30	70	30*	125#	410*	100	20	150	10	700	25 *	1) %
H	34	57ALY130	41	50	5	30	30	1	200	150	1500	10	30	70	40*	125	200*	150	20	150	7	2000	<25 *	11 st
YT.	35	57A LY131	<1	15	5	30	20	.7	150	150	1000	7	20	70	30*	25*	40*	200	20	150	5	500	<25 m	ii 11
RAI	36	59A B+ 131	1.5	50	1.5	15	15	.7	200	100	2000	5	15	50	40*	125	40*	200	50	200	7	3000	125*	ti ij
H	37	59A B+ 445	41	15	3	15	50	.7	300	200	1000	7	30	70	40*	25*	20*	200	30	200	5	300	425	4 4
AD	38	59AB- 446	<1	15	3	15	30	.5	150	150	1000	7	20	70	40*	75*	300	200	30	150	5	300	<25*	4 11
	39	59AB + 447	<1	30	1.5	15	20	.3	150	100	1000	5	15	50	60*	100*	150*	100	20	70	5	500	<25	#1 ¥7
	40	59A B + 448	41	50	1.5	20	20	.7	150	150	1000	5	20	70	40*	100*	60*	70	20	70	7	1500	425*	
	41	59A Bg/28	<1	50	1.5	20	20	.3	200	200	700	5	15	30	60*	125#	20*	100	15	70	5	1000	125	Sedimentary
	42	59A By 130	1	70	1.5	20	20	.3	150	200	500	5	20	70	40*	100*	10*	150	15	100	5	500	425*	Sedimentary?
	43	59ABy 132	<1	50	1.5	15	15	.2	150	150	700	3	7	20	40*	1000	60*	200	10	50	<5	1000	425	Sedimentary?
	44	59ABy 327	<1	50	1.5	15	20	.5	300	200	1500	7	20	70	75*	75*	20*	150	15	70	7	700	125	Sedimentary
	45	59AB+ 328	<1	50	1.5	15	30	.7	200	200	1000	7	20	50	60*	50*	10*	200	30	150	5	500	425	•1 •1
	46	59AB 444	<1	10	2	15	15	.3	150	150	1000	5	15	30	30*	25*	<10*	700	20	150	15	700	425	Igneous

TABLE 2.--Metal content of stream sediments grouped by main type of rock in stream drainage. (Compiled from data in Table 1. Range shows minimum and maximum metal content of samples by main drainage rock type. "Average" or background metal content of each metal is expressed as mode(s))

	META	L	Веррп	B ppm	Mg	Si %	Sc	Ti	V ppm	Cr	Mn ppm	Fe	Co ppm	Ni	Cu ppm	Zn ppm	As ppm	Sr	Y ppm	Zr	Mo ppm	Ba	Pb ppm
inage	rphic ples)	RANGE	< 1- 1.5	210- 50	1-5	15- 30	10-50	.3- 1.0	150- 500	70- 300	700- 2000	5-10	210- 30	30- 200	10- 70	<25- 125	<10- 300	50- 300	10- 50	50- 200	<5- 10	300- 3000	<10- 50
eam dre	Metamo (19san	MODE (S)	< 1	30	3	30	20	.7	150 and 200	150	1000	7	15	70:	-40	75	40 and 60	200	20	70	5	300 and 700	10
in stre	Sedimentary (21 samples)	RANGE	<1-	210- 70	/-3	7- 30	<10- 50	.2- .7	70- 300	30- 200	200- 2000	2- 7	7- 20	20- 70	20- 300	425- 125	10- 100	10- 1000	<10- 30	20- 150	none	200- 1900	~10-
rock		MODE(S)	<1	20 and 50	1.5	20	10 and 20	.3	200	150	500	5	15	30	70	<25	20	200	20	70	<10	300	<10
ype of	[[gneous] (6 samples)	RANGE	none	20	/-3	15- 30	20	.3- .5	100- 200	50- 150	500- 1500	5- 7	10- 15	20- 150	10- 70	<25- 75	<10- 100	200-	10 - 20	50- 150	none	300- 700	none
Main t		MODE(S)	<1	none	2	15	410 and 10	.3	150	70 and 150	700	5	15	20	30	125 and 25	10	200 and 700	20	150	210	500	<10

Va

derived from the intrusive igneous rocks (20 ppm). Thus, the 150 ppm of nickel at the upper end of the nickel range for sediment derived from the intrusive rocks and their contact aureoles may be of greater prospecting significance. Similarly, from table 2, the maximum zinc content of stream sediments derived chiefly from the metamorphic rocks is 125 ppm, and this value may be anomalous (Chapman and Shacklette, 1960, p. Bl07; Chapman, 1962). The zinc mode in this case is 75 ppm. The maximum zinc content reported in stream sediments derived mainly from the sedimentary rocks is also 125 ppm, but the zinc mode is less than 25 ppm, suggesting (1) that 125 ppm of zinc in stream sediments derived from the sedimentary rocks is of greater prospecting significance than 125 ppm of zinc in stream sediments derived from the metamorphic rocks, and (2) that anomalous zinc values in the sedimentary rocks may start at lower levels than those in the metamorphic rocks in the Juneau district. A similar, but less extreme, case may be made for arsenic.

The results of this investigation show that, in the area under consideration, and perhaps throughout southeastern Alaska, there is a relationship between background content of at least certain metals in stream sediments and the rocks from which the sediments were derived. The results also show that prospecting for mineral deposits by streamsediment sampling in southeastern Alaska is likely to be more meaningful, and that subtle, difficult-to-detect anomalies in metal content are less likely to be overlooked if analytical data are arranged so as to reflect the influence of the geologic terrane. A program of detailed, random, stream-sediment sampling throughout southeastern Alaska is indicated in order to compute background metal-content data that are closely related to areal geology. These data are necessary before effective systematic geochemical prospecting by stream-sediment sampling in this region can be undertaken.

References cited

- Chapman, R. M., and Shacklette, H. T., 1960, Geochemical exploration in Alaska: Art. 49 in U.S. Geol. Survey Prof. Paper 400-B, p. Bl04-Bl07.
- Chapman, R. M., 1962, Semiquantitative spectrographic analyses of 166 sediment samples from streams in Alaska <u>[abs.]</u>: Alaskan Sci. Conf., 12th, College, Alaska, 1961, Proc., p. 144-146.
- Race, W. H., 1962, Preliminary geochemical investigation, Tracy and Endicott Arm area: Alaska Div. Mines and Minerals Rept. for Year 1962, p. 68-74.

