

GEOLOGIC FRAMEWORK
AND PETROLEUM POTENTIAL
OF THE
ATLANTIC: COASTAL PLAIN
AND CONTINENTAL SHELF

2

3

8

11

12

13

14

16

17

18

19

21

22

20-

15-

(200) R290 20.944 1967

3644-23

UNITED STATES DEPARTMENT OF THE INTERIOR

W. S. GEOLOGICAL SURVEY

I Reports-open file series, no. 944]

cm twanel

GEOLOGIC FRAMEWORK AND PETROLEUM POTENTIAL

OF THE ATLANTIC COASTAL PLAIN AND CONTINENTAL SHELF

By

John C. Maher

With a section on STRATIGRAPHY

By John C. Maher and Esther R. Applin

215384

Open-file report

1967

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards

23

24

PS O All

(200) to accompany Weld - Int. 2905

CEOLOGIC DIVISION
U. S. GEOLOGICAL SURVEY
Washington, D. C.
20242

For release OCTOBER 30, 1967

The U. S. Geological Survey is releasing in open files the following reports. Copies are available for consultation in the Geological Survey Libraries, 1033 GSA Bldg., Washington, D. C., 20242; Bldg. 25, Federal Center, Denver, Colo. 80225; 345 Middlefield Rd., Menlo Park, Calif. 94025; and in other offices as listed:

- l. A solid inclusion borehole probe to determine 3-dimensional stress changes at a point in a rock mass, by Thomas C. Nichols, Jr., John F. Abel, Jr., and Fitzhugh T. Lee. 34 p., 5 text figs., 3 photos. 601 East Cedar Ave., Flagstaff, Ariz. 86001.
- 2. Mines and prospects, Lawson-Dumont-Fall River district, Clear Creek County, Colorado, by C. C. Hawley and Frank Baker Moore. 114 p., 75 figs., 20 tables. 15426 Federal Bldg., Denver, Colo. 80202. Material from which copy can be made at private expense is available in the Library, Denver Federal Center. This report contains supplemental data in connection with USGS Bulletin 1231 which has just been published: "Geology and ore deposits of the Lawson-Dumont-Fall River district, Clear Creek County, Colorado"
- 3. Geologic framework and petroleum potential of the Atlantic Coastal Plain and Continental Shelf, by John C. Maher, with a section on Stratigraphy, by John C. Maher and Esther R. Applin. 232 p., 20 pl., 9 figs., 4 tables. 7638 Federal Bldg., Los Angeles, Calif. 90012; 602 Thomas Bldg., Dallas, Texas, 75202. Material from which copy can be made at private expense is available in the Library, Bldg. 25, Federal Center, Denver, Colo. 80225.
- 4. Quaternary geology of the Grand-Battlement Mesa area, Colorado, by Warren E. Yeend. 145 p., 1 colored pl., 3 black-and-white pl., 38 figs., 6 tables. Scale of map, 1:96,000.

* * * * * * *

The following report was incorrectly listed, when placed in open-file on Oct. 12, 1967. Here is the correct title: Historic surface faulting in continental United States and adjacent parts of Mexico, by M. G. Bonilla. 36 p., 10 figs., 1 large table.

* * * * * * *

1	Contents	
2		Page
3	Abstract	Α
4	Introduction	1
5-	Area and purpose of report	1
6	Sources and reliability of data	4
7	Acknowledgments	8
8	Physiographic features	10
9	Provinces of western North Atlantic region	10
10-	Coastal Plain	13
11	Area and configuration	13
12	Prominent shoreline features	15
13	Gulf of Maine	15
14	Cape Cod Peninsula	16
15-	Delaware Bay	17
16	Chesapeake Bay	18
17	Cape Hatteras	18
18	Cape Fear	19
19	Cape Kennedy	19
20-	Islands	20
21	Long Island	21
22	Block Island	22
23	Marthas Vineyard	23
24	Elizabeth Islands	23
25-	Nantucket Island	24

	444 MAY 1994 AND THE RESERVE OF THE SECOND STATE OF THE SECOND STA	
1	Physiographic features Continued	Page
2	Coastal Plain Continued	
3	Islands Continued	
	Sable Island	24
5 -	Florida Keys	25
,	Continental Shelf	26
	Definition	26
	General characteristics of Continental Shelves	27
	Area and Configuration	29
10-	Blake Plateau	31
	Bahama Banks	32
	Cay Sal Bank	33
	North Atlantic Banks	34
	Submarine canyons	35
15-	Origin of shelves	39
	Structure	43
,	Regional structural pattern	43
	Regional Bouguer gravity anomalies	48a
,	Continental rise and slope	49
20-	Continental Shelf and Coastal Plain	50
1	Appalachian Mountain front	51
2	Piedmont Plateau, Blue Ridge, and Appalachian Basin	52
3	Regional magnetic anomalies	52a
4	Coastal Plain	52a
25	Continental Shelf and slope	53

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

		D
1	Structure Continued	Page
2	Principal structural features	57
3	Cape Fear arch	58
4	Peninsular arch	60
5-	Southwest Georgia embayment	60
6	Bahama uplift	62
7	South Florida embayment	64
8	Southeast Georgia embayment	65
9	Salisbury embayment	66
10 -	Baltimore Canyon trough	67
11	Georges Bank trough	68
12	Emerald Bank trough	69
13	Stratigraphy (by J. C. Maher and E. R. Applin)	70
14	Regional setting	70
15-	Submarine outcrops and bottom deposits	73
16	Pre-Mesozoic submarine outcrops	79
17	Cretaceous submarine outcrops	79
18	Tertiary submarine outcrops	82
19	Tertiary or Quaternary bottom deposits	89
20-	Quaternary bottom deposits	90
21	Offshore test holes	94
22	U. S. Coast Guard test holes off Savannah, Georgia	94
23	JOIDES test holes off Jacksonville, Florida	96
24	Regional correlations	102
25-		

- 1		1
1	Stratigraphy (by J. C. Maher and E. R. Applin) Continued	Pages
2	Mesozoic rocks	108
3	Triassic(?) rocks	108
4	Upper Jurassic or Lower Cretaceous (Neocomian) rocks	111
5-	Lower Cretaceous rocks	114
6	Rocks of Trinity age	117
7	Rocks of early Trinity age	119
8	Rocks of late Trinity age	121
9	Rocks of Fredericksburg age	124
10-	Rocks of Washita age	126
11	Upper Cretaceous rocks	129
12	Rocks of Woodbine and Eagle Ford age	133
13	Rocks of Austin age	137
14	Rocks of Taylor age	139
15-	Rocks of Navarro age	142
16	Cenozoic rocks	145
17	Tertiary rocks	146
18	Paleocene rocks	147
19	Eocene rocks	150
20-	Oligocene rocks	156
21	Miocene rocks	158
22	Tertiary and Quaternary deposits	163
23	Post-Miocene deposits	163
24	Petroleum potential	165
25-	Hydrocarbons and source beds	165

1	Petroleum potential Continued	Pages
2	Reservoirs and fluids	172
3	Hatteras Light well	174
4	Andros Island well	179
5-	Traps	180
6	Sealing beds	182
7	Folds and faults	184
8	Lithofacies	186
9	Unconformities	187
10-	Hydrodynamic conditions	189
11	Summation of petroleum potential	191
12	References cited	197
13		
14		
15-		
16		
17		
18		
19		
20-		
22	304	
23		
24		
25-		

Illustrations

/Plates 1-20 in pocket/

Plate 1. Locations of selected wells along the Atlantic Coast.

5-

10-

11

12

13

14

16

17

18

19

21

22

23

24

20-

15-

- 2. Locations of published seismic profiles and bottom samples along the Atlantic Coast (January 1, 1965).
- Physiographic diagram of Atlantic Coastal Plain and Continental Shelf of North America.
- 4. General geology and regional structure along the Atlantic Coast.
- 5. Diagrammatic cross sections of Atlantic continental margin.
- 6. Diagrammatic cross sections from Jacksonville, Florida, to Cape Hatteras, North Carolina, showing relationship of seismic horizons offshore to subsurface geology onshore.
- 7. Bouguer gravity anomalies along the Atlantic Coast.
- 8. High-intensity magnetic trends along the Atlantic Continental Shelf.
- Geologic cross section AB of Mesozoic and Cenozoic rocks from Florida Keys to Long Island.
- 10. Geologic cross section CD of Mesozoic and Tertiary rocks from the Fall Line to the Atlantic Ocean in New Jersey.
- 11. Geologic cross section EF of Mesozoic and Cenozoic rocks from the Fall Line to the Atlantic Ocean in Maryland.
- 12. Geologic cross section GH of Mesozoic and Cenozoic rocks from the Fall Line to the Atlantic Ocean in North Carolina.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

V

U. S. GOVERNMENT

VI

	l .		
1	Plate 13.	Geologic cross section IJ of Mesozoic and Cenozoic roc	ks from
2		the Fall Line to the Atlantic Ocean in northern Geo	rgia.
3	14.	Geologic cross section KL of Mesozoic and Cenozoic roc	ks from
4		the Fall Line in Alabama to the Atlantic Ocean in G	eorgia.
5-	15.	Geologic cross section MN of Mesozoic and Cenozoic roc	ks
6		across the Florida peninsula.	
7	16.	Geologic cross section OP of Mesozoic and Cenozoic roc	ks from
8		Florida Keys to Andros Island, B. I.	
9	17.	Thickness of Upper Jurassic(?) and Lower Cretaceous ro	cks
10-		along the Atlantic Coast.	
11	18.	Thickness of Upper Cretaceous rocks along the Atlantic	Coast.
12	19.	Thickness of rocks of Woodbine and Eagle Ford age alon	g the
13		Atlantic Coast.	
14	20.	Thickness of Cenozoic rocks along the Atlantic Coast.	
15-	Figure 1.	Physiographic province map of eastern North America,	Page
16		showing area discussed in this report	la
17	2.	Principal physiographic features of the Atlantic	
18		Coastal Plain and Continental Shelf	10a
19	3.	Physiographic features of Florida Keys region	25a
20-	4.	Physiographic diagram of Bahama Banks showing	
21		relation of geologic data to bathymetry	32a
22	5.	Physiographic diagram of Hudson Canyon	38a
23			
24			
25			

Page 57a
57 a
57 a
96a
98a
99a
Page
232
106a
cket
174a

U. S. GOVERNMENT

V11/

Geologic framework and petroleum potential of the
Atlantic Coastal Plain and Continental Shelf

By John C. Maher

Abstract

The Atlantic Coastal Plain and Continental Shelf of North America is represented by a belt of Mesozoic and Cenozoic rocks, 150 to 300 miles wide and 2,400 miles long, extending from southern Florida to the Grand Banks of Newfoundland. This belt of Mesozoic and Cenozoic rocks encompasses an area of about 400,000 to 450,000 square miles, more than three-fourths of which is covered by the Atlantic Ocean. The volume of Mesozoic and Cenozoic rocks beneath the Atlantic Coastal Plain and Continental Shelf exceeds 450,000 cubic miles, perhaps by a considerable amount. More than one-half of this is seaward far enough to contain marine source rocks in sufficient proportion to attract exploration for oil. A larger fraction, perhaps three-quarters of the volume, may be of interest in exploration for gas.

13

19

24

25

The Coastal Plain consists of land between the crystalline piedmont of the Appalachian System and mean low-tide from southern Florida to the tip of Long Island plus a few small offshore islands and the Cape Cod Peninsula. This is an area of more than 100,000 square miles.

The Continental Shelf extends from mean low-tide to the break marking the beginning of the continental rise, which is somewhat less than 600 feet in depth at most places. It is a gently sloping platform, about 350,000 square miles in area, that widens from less than 3 miles off southern Florida to about 285 miles off Newfoundland.

The Blake Plateau occupies an area of about 70,000 square miles between the 500 and 5,000-foot bottom contours from the Cape Hatteras vicinity to the northernmost bank of the Bahamas. It has a gentle slope with only minor irregularities and scattered patches of Recent sediments.

10-

11

12

13

14

16

17

18

20-

21

23

24

25-

Both gravity and magnetic anomalies along the Atlantic Coast reflect primarily compositional differences at considerable depths in the earth's crust, but are related to some extent to the structure and composition of the Coastal Plain sedimentary rocks and shallow basement. Four alternating belts of predominantly positive and predominantly negative Bouguer gravity anomalies extend diagonally across the region from southwest to northeast. These correspond roughly with the continental rise and slope, the Continental Shelf and Coastal Plain, the Appalachian Mountain System front, and the Piedmont Plateau-Blue Ridge-Appalachian Basin region.

U. S. GOVERNMENT PRINTING OFFICE : 1959 O - 511171

Long, linear, southwesterly magnetic anomalies trend roughly parallel to the Appalachian Mountain System and the Shelf edge. These trends are interrupted along the 40th parallel, about 50 miles south of New York, by a linear anomaly, suggesting a transcurrent fault, more or less alined with a string of seamounts extending down the continental rise to the abyssal plain. The trends parallel to the Appalachians terminate in Florida against a southeasterly magnetic trend thought by some to represent an extension of the Quachita Mountain System. One large anomaly, known as the slope anomaly, parallels the Shelf edge north of Cape Fear and seemingly represents the basement ridge located previously by seismic methods. Recently the suggestion has been made that the basement ridge along the Atlantic Shelf is a buried, quiescent island arc and that the slope anomaly reflects intrusive and extrusive phases of volcanism during the active tectonic development of the island arc.

11

12

13

14

16

17

18

19

21

22

23

24

15-

Structural contours on the basement rocks, as drawn from outcrops.

wells, and seismic data, parallel the Appalachian Mountains except in

North and South Carolina, where they bulge seaward around the Cape Fear

arch, and in Florida, where the deeper contours follow the peninsula.

The basement surface is relatively smooth and dips seaward at rates ranging
from 10 feet a mile inland to as much as 120 feet a mile near the ocean.

A decided steepening of the slope is apparent below a depth of 5,000 feet
in most of the area. The principal structural features are the Southwest
Georgia embayment, South Florida embayment, Peninsular arch, Bahama uplift,
Southeast Georgia embayment, Cape Fear arch, Salisbury embayment,
Baltimore Canyon trough, and Georges Bank trough.

Triassic, Cretaceous, and Tertiary rocks crop out roughly parallel
to the present Atlantic coastline. Triassic outcrops are confined to
scattered down-faulted basins within the piedmont. Lower Cretaceous
outcrops are recognized in the Salisbury embayment of New Jersey, Delaware,
Maryland, and Virginia, and may be represented farther south as thin
clastic beds mapped with the basal Upper Cretaceous. Upper Cretaceous
rocks crop out almost continuously along the Fall Line from eastern
Alabama to the north flank of the Cape Fear arch in North Carolina, and
from Virginia to New York. Tertiary rocks crop out in broad patterns
throughout the Coastal Plain except on the Cape Fear arch and where masked
by a veneer of alluvial deposits.

The Cretaceous and Tertiary rocks exposed from southern Georgia
northward to Long Island are mainly continental clastics interspersed
with some thin lignitic layers and marl beds. Seaward, these rocks become
marine in character and thicken to more than 10,000 feet at the coastline.
Cretaceous rocks do not crop out in southern Georgia and Florida, and
Tertiary rocks are only partially exposed. Both are dominantly marine
carbonates in the subsurface and exceed 15,000 feet in thickness in the
Florida Keys and Bahama Islands.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

20-

The oldest rock recovered from the sea bottom along the Atlantic Coast has come from the Paleozoic granite pinnacles at a depth of about 5 fathoms on Cashes Ledge near the middle of the Gulf of Maine. Cretaceous rocks of Taylor and Navarro age have been dredged from the east walls of Oceanographer and Gilbert Canyons off Georges Bank and rocks of Woodbine age from the escarpment of the Blake Plateau opposite Cape Kennedy. In addition, cobbles of chalk containing Cretaceous Foraminifera have been found in a core from the floor of Northeast Providence channel, 11,096 feet beneath the sea between the Bahama Islands, and reworked Cretaceous 10- Foraminifera have been identified in a core of coarse glauconitic sand on the continental rise, 155 miles southwest of Cape Hatteras. Short cores and dredgings of Tertiary rocks, mostly Late Eccene (Jackson) and younger in age, have been recovered at more than three dozen localities concentrated for the most part between Georges Bank and the Hudson Canyon, and in the Blake Plateau-Bahama Banks region. Pleistocene silts and clays have been found in many cores, and gravel and boulders of glacial origin have been dredged north of New York City.

11

12

13

16

18

19

21

22

23

24

Shoals, artesian submarine springs, and underwater photographs have provided some stratigraphic and structural information about the upper strata of the Shelf. Marl of lower Miocene age is reported to crop out on the fishing banks known as "Black Rocks" off the coast of North and South Carolina. An oceanic spring in the Ocala Limestone of upper Eocene age has been charted about $2\frac{1}{2}$ miles east of Crescent Beach near St. Augustine, Florida. Others have been reported along the east coast near Cape Kennedy. An interesting limestone outcrop of unknown age has been photographed at a depth of 6,000 feet in the Tongue of the Ocean of the Bahama Islands.

A test hole has been drilled on the Shelf in 54 feet of water about 10 miles off Savannah, Georgia. The test hole, which stopped in the Ocala Limestone of upper Eocene age, revealed that rather uniform thicknesses of Oligocene, lower Miocene, and middle Miocene strata extend from shore seaward for at least 10 miles, that the upper Miocene rocks and the Pleistocene and Recent deposits decrease in thickness seaward, and that only the Oligocene rocks exhibit a pronounced facies change -- one from carbonates to clastics in a seaward direction.

19

17

18

11

12

21

23

Test holes located 27 to 221 miles off Jacksonville, Florida, indicate that Paleocene beds probably continue from the Coastal Plain to the edge of the Blake Plateau, and are exposed as sea bottom along the lower part of the slope. The Eocene, Oligocene, and Miocene beds appear to be prograded seaward beneath the outer Shelf and upper slope, absent from the lower slope, and greatly thinned on the Plateau. The absence of Eocene, Oligocene, Miocene, and post-Miocene deposits from the lower slope corresponds rather closely to the axis of maximum velocity of the Gulf Stream. This lends support to the theory that sometime during early Tertiary time the Gulf Stream began flowing through the Straits of Florida, the Stream's velocity prevented sedimentation on the ancient shelf except near the coast, and the ancient shelf subsided slowly to form the Blake Plateau.

12

13

14

18

19

21

22

23

24

25

The subsurface correlations of the Mesozoic and Cenozoic rocks beneath the Coastal Plain are traced along eight cross sections. One cross section extends subsurface correlations from the marine carbonate facies beneath the Florida Keys northward into the mixed marine and continental clastic facies beneath Long Island. The others trace units of the dominantly clastic outcrops downdip into marine facies along the coast.

The pre-Mesozoic basement rocks beneath the Coastal Plain are primarily igneous and metamorphic rocks of Precambrian and Paleozoic age. Some Paleozoic sedimentary rocks ranging from Early Ordovician to Middle Devonian in age are present in the basement in northern Florida.

Triassic rocks(?), which consist of red arkose, sandstone, shale, tuff, and basalt flows, in places intruded by diabase, are present in down-faulted basins in the basement. Rocks of Upper Jurassic or Lower Cretaceous (Neocomian) age, undifferentiated, are present beneath southern Florida. There the sequence, as much as 1,100 feet thick, consists principally of limestone, dolomite, and anhydrite with a marginal clastic facies at the base where it rests on igneous basement. Equivalent rocks about 900 feet thick are present at Cape Hatteras, North Carolina, and extend northward along the coast into New Jersey.

In Florida, the Lower Cretaceous rocks, subdivided into rocks of
Trinity, Fredericksburg, and Washita age, are dominantly carbonates and
exceed 6,700 feet in thickness beneath the Florida Keys. Northward along
the coast, the rocks wedge out on the Peninsular arch, then reappear as
a thin clastic unit across Georgia and South Carolina. They are missing
from the higher parts of the Cape Fear arch in North Carolina but are
present on the east flank as a thickening wedge of mixed clastic and
carbonate rocks more than 2,800 feet thick at Cape Hatteras and 2,600 feet
thick in Maryland. Lower Cretaceous rocks probably extend into northern
New Jersey but do not reach Long Island.

Upper Cretaceous rocks, which can be subdivided into rocks of Woodbine,
Eagle Ford, Austin, Taylor, and Navarro age, are about 1,200 to 3,000 feet
thick in wells along the coast. In Florida, they are almost totally
marine carbonates. These grade northward along the coast into mixed marine
carbonates and clastics in North Carolina, and then into marine and
continental clastics beneath Long Island.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Tertiary rocks and thin Quaternary deposits are present along the coast. The thickness of Tertiary rocks along the coast ranges from 4,300 feet in southern Florida to 130 feet on Long Island. In general, the Tertiary rocks are dominantly carbonates along the southern half of the Atlantic coastline, and mostly sandstone and limy shale along the northern half.

Upper Jurassic and Lower Cretaceous rocks offer the most promising prospects for oil and gas production in the Atlantic coastal region. Their combined thickness probably exceeds 5,000 feet offshore in the Baltimore Canvon trough, in the Southeast Georgia embayment, and beneath the Blake Plateau and Bahama Islands. Marine beds generally regarded as potential sources of petroleum are predominant, and the environment of their deposition, at least in the southern areas, probably favored reef growth. Thick, very porous, salt-water bearing reservoirs, both sandstone and carbonate, are numerous. Important unconformities are present not only at the top but within the sequence. Three small accumulations of oil have been found in Lower Cretaceous rocks of southwestern Florida.

13

14

16

17 18

19

21

22

23

24

25-

U. S. GOVERNMENT PRINTING OFFICE: 1959 0 - 511171

15-

Rocks of Upper Cretaceous age have good possibilities for oil and gas production beneath the Continental Shelf, but only fair possibilities, chiefly for gas, in the Coastal Plain. Although the thickness of these rocks does not exceed 3,500 feet onshore and may be only a few thousand 5- feet more beneath the Shelf, the beds are buried sufficiently beneath the Tertiary rocks to provide ample opportunity for the accumulation of petroleum. Reservoirs are thick and numerous in the Upper Cretaceous rocks of the Coastal Plain and seem to extend beneath the Shelf where marine source rocks may be expected. Rocks of Woodbine and Eagle Ford age appear to be a favorable reservoir-source rock combination whose thickness probably exceeds 2,000 feet offshore. The basal unconformity is important from the standpoint of petroleum accumulation, as in places it permits the basal Upper Cretaceous sandstones of Woodbine age to overlap the underlying. more marine Lower Cretaceous rocks.

Tertiary rocks along the Atlantic Coast exhibit very good reservoir and fair source rock characteristics. However, the Tertiary rocks are less promising for large accumulations of petroleum than the Jurassic and Cretaceous rocks. They probably are less than 4,000 feet thick in most of the area north of southern Florida and the Bahama Islands; they contain fresh-to-brackish artesian water in much of that area; they crop out in part along the Shelf and in other places give rise to submarine springs in sink holes. In addition, structural features are reflected less distinctly in the Tertiary rocks than in the older rocks, and unconformities and overlaps within the Tertiary rocks are less significant regionally 25- than those in older rocks.

The Continental Shelf offers more promise as a potential petroleum province than the Coastal Plain because it has a thicker sedimentary column with better source beds and trapping possibilities. The probabilities for discovery of large accumulations of petroleum in the Atlantic coastal region on a well-for-well basis seem to favor the Upper Jurassic and Lower Cretaceous rocks beneath the Continental Shelf. 10-11 12 13 14 15-16 17 18 19 20-21 22 23 24 25

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Introduction

Area and purpose of report

The Atlantic Coastal Plain and Continental Shelf of North America are represented by a belt of Mesozoic and Cenozoic rocks, 150 to 300 miles wide and 2,400 miles long, extending from southern Florida to the Grand Banks of Newfoundland (fig. 1). This belt encompasses an area of

Figure 1 near here

about 400,000 to 450,000 square miles, more than three-fourths of which is covered to a depth of 100 fathoms by the Atlantic Ocean. The submerged part forms the Continental Shelf, which widens northward from 285 miles off Florida to about 300 miles on the Grand Banks off Newfoundland. The area of the Continental Shelf, including the Gulf of Maine, approximates 350,000 square miles. The emergent part, the Coastal Plain, narrows northward from a 200-mile width in Georgia to the terminal point of Long Island. Beyond this point, remnants of the Coastal Plain are present in the form of the New England Islands and the Cape Cod Peninsula. The area of the Coastal Plain, including the eastern half of the Florida peninsula, approximates 100,000 square miles.

The volume of Mesozoic and Cenozoic rocks beneath the Atlantic

Coastal Plain and Continental Shelf of North America exceeds 450,000

cubic miles, perhaps by a considerable amount (see Gilluly, 1964, p. 484,

for estimates of volume between Nova Scotia and Virginia). More than

one-half of this is seaward far enough to contain marine source rocks in sufficient proportion to attract exploration for oil. A larger fraction, perhaps three-quarters of the volume, may be of interest in exploration for gas.

FIG. 1 PHYSIOGRAPHIC PROVINCE MAP OF EASTERN NORTH AMERICA SHOWING AREA DISCUSSED IN THIS REPORT

This report discusses the structure along the Atlantic Coast from southern Florida (Florida Keys) to Cabot Strait between Nova Scotia and Newfoundland (fig. 1), and the stratigraphy of the area between southern Florida and Cape Cod, Massachusetts. The Continental Shelf off 5- Newfoundland is omitted because of lack of geological and geophysical information. Particular emphasis has been placed on the regional stratigraphic aspects of the subsurface rocks. The purpose of this report is to establish a stratigraphic framework within this large sedimentary mass, to outline the structure 10- of the continental margin, and to evaluate the petroleum possibilities of this relatively unexplored province to the extent possible at this time. It may serve also to aid or supplement the detailed oceanographic 13 investigations being conducted jointly by the U. S. Geological Survey and the Woods Hole Oceanographic Institution along the Atlantic 15- Continental Shelf (Emery and Schlee, 1963). It is by no means a summation of all geology and oceanography along the Atlantic Coast, but a selective review and synthesis of the regional aspects of the ancient rocks beneath the Coastal Plain and Continental Shelf, based on data available January 1, 1965. 20-21 22 23 24

Earlier reports and maps prepared by the Geological Survey have provided a broad review of the general characteristics, problems, and potential mineral resources of the continental shelves of the western hemisphere (Trumbull, Lyman, Pepper, and Thomasson, 1958); an estimate of the potential petroleum reserves of the Atlantic Coastal Plain and Continental Shelf based primarily on thickness of sediments (Johnson, Trumbull, and Eaton, 1959); a representation of the basement structure along the Atlantic Coast from Florida to the Gulf of Maine (Tectonic both geological and map of the United States, U. S. Geol. Survey, 1962) based on geophysical data published up to 1959; a report on correlations of subsurface Mesozoic and Cenozoic rocks along the Atlantic Coast (Maher, 1965); and a summary discussion of petroleum possibilities in relation to the stratigraphy (Maher, 1966). In addition, numerous publications have resulted from cooperative investigations with the Woods Hole Oceanographic Institution. These include a map showing the relation of land and submarine topography, Nova Scotia to Florida (Uchupi, 1965), a summary of the geology of the continental margin off eastern United States (Emery, 1965), and many reports of lesser scope, most of which are mentioned herein where appropriate.

16

20-

24

25

Sources and reliability of data

Many organizations provided well records and geological information for this report. Numerous oil companies made available samples, cores, electric logs, and data from deep oil tests. The Pure Oil Company permitted use of nonconfidential data from a reconnaissance report prepared by J. C. Maher and Irvin Bass in 1959. The Gulf Oil Corporation and Anchor Gas Company loaned samples and cores of their wells. State agencies and U. S. Geological Survey field offices engaged in ground-water investigations supplied a wealth of shallow subsurface data. The 10- following state agencies are included in this group: Florida Geological 11 Survey, R. O. Vernon, Director: Georgia Department of Mines, Mining, and 12 Geology, the late Garland Peyton, Director; South Carolina Development Board, Henry Johnson, State Geologist; North Carolina Department of 14 Conservation and Development, J. L. Stuckey, former State Geologist; Virginia Division of Mineral Resources, J. L. Calver, Director; Maryland Department of Geology, Mines, and Water Resources, K. N. Weaver, Director; 17 and New Jersey Department of Conservation and Economic Development, Kemble 18 Widmer, Director. The U. S. Geological Survey field offices include those at Tallahassee, Florida (C. S. Conover, District Engineer); Atlanta, 19 20- Georgia (H. B. Counts, District Engineer); Columbia, South Carolina (G. E. Siple, District Geologist); Raleigh, North Carolina (G. G. Wyrick, 22 District Geologist); Baltimore, Maryland (E. G. Otton, District Geologist); Frenton, New Jersey (Allen Sinnott, District Geologist); Mineola, New 24 Mork (N. M. Perlmutter, Geologist-in-Charge); and Boston, Massachusetts 25- (R. G. Peterson, District Geologist).

Some of the most useful publications on regional stratigraphy and structure of the Coastal Plain are those of Cooke and Munyan (1938), Applin and Applin (1944, 1947, 1965), Richards (1945, 1948, 1950), Southeastern Geological Society (1949), Spangler (1950), Spangler and 5- Peterson (1950), Skeels (1950), Bonini (1957), Meyer (1957), Pooley (1960), Bonini and Woollard (1960), LeGrand (1961), and Murray (1961). Local reports that present important basic data in detail include those of Cederstrom (1943, 1945), Siple (1946), Swain (1947, 1951, and 1952), Anderson (1948), Applin (1951), Brown (1958), Puri and Vernon (1959), 10- Herrick (1961), Herrick and Vorhis (1963), and Gill, Seaber, Vecchioli, and Anderson (1963); most of which are publications of state geological surveys. Other reports on the Coastal Plain geology are included in the appended list of references. 15-17 18 21 22 23 24

U. S. GOVERNMENT PRINTING OFFICE: 1959 O + 511171

Geophysical and oceanographic data on the Continental Shelf have been taken almost entirely from reports prepared by the Woods Hole Oceanographic Institution and the Lamont Geological Observatory and published in Bulletins of the Geological Society of America. These include articles by Ewing, Crary, and Rutherford (1937), Miller (1937), Ewing, Woollard, and Vine (1939, 1940), Ewing, Worzel, Steenland, and Press (1950), Oliver and Drake (1951), Officer and Ewing (1954), Drake, Worzel, and Beckmann (1954), Press and Beckmann (1954), Katz and Ewing (1956), Hersey, Bunce, Wyrick, and Dietz (1959), Drake, Ewing, and Sutton 10- (1959), and Heezen, Tharp, and Ewing (1959). Bathymetry of the Shelf has been taken from the Tectonic map of the United States (U. S. Geological Survey, 1962) and navigation charts of the U. S. Navy Hydrographic Office 12 13 (1951, 1962), the U. S. Coast and Geodetic Survey (1945, 1957, 1959, 1961, 1962), and the International Hydrographic Bureau (1958). 14 The amount and reliability of geologic and geophysical data on 15which this report is based differs greatly from one part of the region 16 to another. The records of about 400 oil and deep water wells have been 17 used in this report (pl. 1 and table 1), but more than half of these are 18 for wells in Florida and Georgia. In addition, the geological records 20- for these wells are more complete and accurate than those for wells in the northern part of the Coastal Plain. No deep tests have been drilled 22 in offshore waters on the Continental Shelf, except in the Florida Keys 23 area. In general, the geological data is much more reliable south of 24 the Cape Fear arch than north of it.

Numerous seismic refraction profiles of the Continental Shelf have been published by different workers. Most are shown on plate 2, although space does not permit plotting of some short ones such as those off Sable Island (Berger, Blanchard, Keen, McAllister, and Tsong, 1965), Rhode Island (Birch and Dietz, 1962), Georgia (Antoine and Henry, 1965, fig. 1) and Florida (Rona and Clay, 1966). They are well distributed from northern Florida to Nova Scotia but little agreement exists on their stratigraphic interpretation, partly because of the pronounced effect of lateral facies changes on seismic velocity 10- measurements. Some seismic profiles off southern Newfoundland (Press and Beckman, 1954; Bentley and Worzel (1956) have been published, but little or no information is available on the Grand Banks. The geophysical information available outlines the regional structure of the Shelf, but provides only speculative results for the stratigraphy 15- at this time. 22 23 24 25

Acknowledgments

3

11

12

13

14

17

18

19

21

22

23

25-

Numerous individuals have contributed to the completion of this report. E. R. Applin and P. L. Applin, who have pioneered in the Mesozoic stratigraphy of Florida, provided much basic data summarized in their numerous publications by the U. S. Geological Survey. They also made available considerable unpublished paleontologic data for wells in Alabama, Georgia, South Carolina, and North Carolina. E. R. Applin, who contributed the discussion of the paleontologic basis for age assignments in this report, was employed part time for a few months to supply additional paleontologic data on selected wells in Florida and the Anchor Gas Company No. 1 Dickinson well in New Jersey. In addition, both offered valued suggestions on many stratigraphic problems and reviewed cross sections KL. MN. and OP.

- S. M. Herrick of the U. S. Geological Survey, Atlanta, Georgia, whose definitive paleontology has established the stratigraphic framework of subsurface rocks in Georgia, was most generous with published and unpublished data. His interested cooperation and thoughtful discussions of regional subsurface concepts were important to the completion of the cross sections. Cross sections IJ and KL were reviewed by Herrick.
- P. M. Brown of the U. S. Geological Survey, Raleigh, North Carolina, provided data for several wells in North Carolina. He also reviewed cross section GH and offered valued criticisms.

opinion for a specimen of Charophyta from the Anchor Gas Company well in New Jersey. J. M. Schopf and R. H. Tschudy of the U. S. Geological Survey aided with opinions of the age of spores and pollen in the same 5-well. N. M. Perlmutter and Ruth Todd of the U. S. Geological Survey allowed the writer to read the manuscript of their report on the Monmouth group in the well at the Bellport Coast Guard Station, Long Island (well 6, pl. 1). R. S. Stewart of the Anchor Gas Company, L. J. Franz and Roy A. Worrell of the Gulf Oil Corporation, W. D. Lynch and Marvin Horton of Chevron Oil Company, L. R. McFarland of Mobil Oil Company, K. N. Weaver of the Maryland Department of Geology, Mines and Water Resources, H. G. Richards of the Philadelphia Academy of Natural Sciences, W. E. Wilson 15- of the North Carolina Geological Survey, J. L. Ruhle of the Virginia Geological Survey, and Clarence Babcock of the Florida Geological Survey provided cores, samples, and data for key wells. Special acknowledgment of assistance also is due to the following members of the U. S. Geological Survey: Seymour Subitzky, J. E. Johnston, W. N. Palmquist, N. D. Hoy, 20- H. R. Bergquist, E. G. Otton, C. A. Richardson, C. A. Kaye, H. E. LeGrand, V. T. Stringfield, J. V. A. Trumbull, and J. F. Pepper. 22

R. E. Peck of the University of Missouri identified and gave an age

& U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Physiographic features

Provinces of western North Atlantic region

The physiographic provinces of the western North Atlantic region. as defined by Heezen, Tharp, and Ewing (1959) and outlined in figure 1, 5- are the abyssal plain, the continental rise, the continental slope, the Continental Shelf, the Coastal Plain, and the Appalachian System. The abyssal plain is a part of the ocean-basin floor; the continental rise, slope, and Shelf make up the continental margin; and the Coastal Plain and Appalachian System are parts of the North American Continent.

The abyssal plain is the flat ocean bottom, with a slope of less than 1:1,000, that almost surrounds the Bermuda rise on which the Bermuda pedestal sets. Except in a small, isolated area near the Blake plateau and Bahama banks where calcareous sediments predominate, the surface is covered with quartz silt that Heezen, Tharp, and Ewing (1959, p. 58) 15- suggest may come from the Cape Hatteras region or the Hudson Canvon (see fig. 2). Numerous seamounts are present in the northern part of the

Figure 2 near here

abyssal plain.

11

12

18

19

22

The continental rise begins rather abruptly at the edge of the abyssal plain and extends upward with slopes ranging from 1:100 to 1:700 to the continental slope. It is relatively wide, reaching several hundred miles in places. The depth of water on the continental rise ranges from 750 to 2,800 fathoms. It has low relief for the most part, but is represented by an outer ridge adjacent to the Blake plateau. A few submarine canyons extend across the continental rise (Ericson, Ewing, and Heezen, 1951, p. 964), and several seamounts are present off the New England coast.

The continental slope parallels the continental rise and Continental Shelf at depths ranging from 50 to 1,750 fathoms. The slope is relatively steep (3° - 6°) and narrow. The limits of the slope are marked at the base by a gradient in excess of 1:40 and at the top by the sharp break at the edge of the Shelf. Numerous submarine canyons traverse the continental slope.

The Continental Shelf extends from mean low-tide to the Shelf break, or beginning of the continental rise, which is somewhat less than 100 fathoms in depth at most places. It is a gently sloping surface with a gradient of less than 1:1,000 ranging in width from a few miles off Florida to more than 300 miles off Newfoundland. The relief is relatively low, although the surface is cut by numerous submarine canvons.

The Coastal Plain consists of land between the crystalline piedmont of the Appalachian System and mean low-tide from southern Florida to the tip of Long Island, a few small offshore islands, and the Cape Cod Peninsula. The Fall Line marks its inland limit along the Appalachian Mountains. Its maximum width is about 200 miles in Georgia and it narrows northward. The altitude ranges from sea level to about 800 feet, but is less than 300 feet in most parts.

U. S. GOVERNMENT PRINTING OFFICE: 1959 G - 51117

8

9

10

11

12

13

14

16

17

18

19

21

22

24

20-

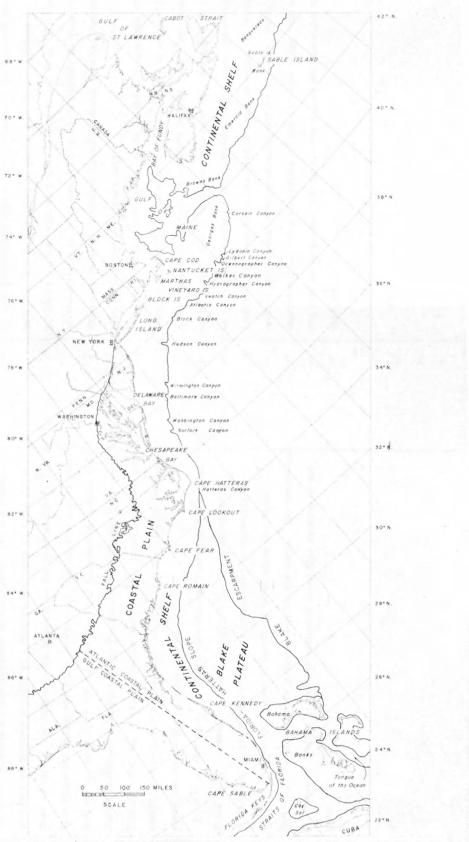


FIG. 2 PRÍNCIPAL PHYSIOGRAPHIC FEATURES OF THE ATLANTIC COASTAL PLAIN AND CONTINENTAL SHELF

The Appalachian System is a highland of Paleozoic and older rocks stretching from the Canadian Maritime Provinces southwestward into Alabama. In the central and southern part, the System comprises three distinct, subparallel physiographic subdivisions: (1) the Piedmont province of moderate relief, with maximum altitudes of about 2,000 feet carved in crystalline rocks adjacent to the Coastal Plain, (2) the Blue Ridge and valley and ridge province of considerable relief with maximum altitudes of 5,000 to 6,000 feet and composed of faulted and folded sedimentary rocks, and (3) the Appalachian plateau province of highly dissected, flat-lying sedimentary rocks. These belts are less readily recognized in the northern section from New York to Newfoundland, where the topography is quite rugged.

5-

20-

15-

The physiographic setting of the Coastal Plain and Continental
Shelf is represented graphically in plate 3. The gradient of the
continental slope in this diagram is exaggerated considerably to
emphasize the steeper slope of the Shelf break along the Blake
Plateau in contrast to the gentler slope to the north. The extent and
thickness of draping by younger sediments along this feature is not
known.

Coastal Plain

Area and configuration

The Atlantic Coastal Plain, as discussed in this report, consists of land between the crystalline piedmont of the Appalachian System and mean low tide of the Atlantic Ocean from the median line of the Florida peninsula to the terminal point of Long Island (Fig. 2). Farther northeastward, it is represented by Block Island, Marthas Vineyard, the Elizabeth Islands, Nantucket Island, and the Cape Cod Peninsula. This area exceeds 100,000 square miles.

10-

ec

The Coastal Plain stands low as compared to the area of the Appalachian tectonic system that borders it on the west, but it is not a featureless plain. Hills with 200 feet of relief are present in much of the inland area. Marine terraces are well-developed on its surface as a result of ancient changes in sea level. These terraces are traceable for long distances, and are characterized by features of ancient shorelines, such as wave-cut cliffs, beaches, spits, bars, and emerged deltas. The elevations of the terraces range from about 25 to 270 feet above present sea level--the higher are the older and less distinct.

& U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

lc

The sedimentary rocks that underlie the Atlantic Coastal Plain are soft and little resistant to erosion, but rest for the most part on a very resistant crystalline basement. Because of this difference in erosion resistance, the western boundary of the Coastal Plain sediments forms a topographic demarcation line. Falls and rapids are found in most of the seaward-flowing rivers at this line (the Fall Line) and because this line marks the upper limit of river navigation, many of the important eastern cities are located along it, such as Trenton, Philadelphia, Wilmington, Baltimore, Washington, Fredericksburg, Richmond, Columbia, and Augusta.

The Coastal Plain is deeply indented by branching bays or drowned river valleys and exhibits numerous large spits and bars from Cape Lookout, off North Carolina, northward to New York (£1. 3). South of Cape Lookout, drowned river valleys and barrier beaches are not as common and numerous small islands fringe the coast of the Carolinas and Georgia. Fenneman (1938, p. 13 and 38) termed the latter the sea island section and the former the embayed section.

18

19

Prominent shoreline features

. Gulf of Maine

The Gulf of Maine, about 25,000 square miles in area, is the
largest reentrant in the Atlantic Coast south of Cabot Strait (see
fig. 2). It is almost enclosed by banks and shoals, beneath 3 to 50
fathoms of water, that swing southward in an arc linking Cape Cod and
Nova Scotia (see Murray, 1947, for topography). One deep channel, 100
to 150 fathoms deep, cuts through the enclosing banks and shoals near
Nova Scotia to connect with the deeper floor of the ocean (Torphy and
Leigler, 1957). The waters behind the banks are 50 to 190 fathoms deep
in somewhat irregular fashion, suggestive of a former glacial
lake-and-river drainage system behind a cuesta of Cretaceous and
Tertiary rocks (Johnson, 1925, p. 267; Chadwick, 1949, p. 1967; Uchupi,
1966, p. 166-167). A long, constricted arm of the Gulf, the Bay of
Fundy, through which exceptionally high tides pass, extends
northeasterly between New Brunswick and Nova Scotia.

17

ec.

18

20-

21

ь,

23

0.5

U. S. GOVERNMENT PRINTING OFFICE: 1959 0 - 511171

Cape Cod Peninsula

Cape Cod Peninsula, a seaward projection of Massachusetts, is the 2 most prominent emergent feature of the Atlantic shoreline (see fig. 2). Its geography and geology have been described by Davis (1896), Shaler (1898), and Woodworth (1934, p. 237-249). The great size, strong relief, and bold projection of this Peninsula into the Atlantic Ocean are remarkable. In the shape of a man's arm bent at the elbow, the Peninsula projects about 40 miles eastward into the Ocean and then an equal distance northward into the Gulf of Maine. The age and development of this hook have been discussed recently by Zeigler, Tuttle, 11 Tasha, and Giesel (1965). A long spur of sand trails southward from the elbow as Monomoy Island, a continuation of the long, straight, sandy 12 shoreline along the entrance to the Gulf of Maine. The interior shore around Cape Cod Bay is low and swampy, whereas that facing the Ocean is 14 more abrupt and indented farther by inlets. The topography of the Peninsula is dominated by morainal ridges and glacial hills with altitudes of 200 to 300 feet. Glacial drift masks the underlying 17 geology, but Cretaceous and Tertiary rocks have been reported in wells near Provincetown at the tip of the Peninsula (Zeigler, Tuttle, Tasha, and Giese, 1960, p. 1397-1398; 1964, p. 708). Hoskins and Knott (1961) have interpreted continuous seismic profiles in the adjacent bay as 22 showing marine Tertiary strata and erosional remnants of Cretaceous 23 layers.

Delaware Bay

Delaware Bay is the drowned lower valley of the Delaware River,
which separates New Jersey from Delaware and Pennsylvania (see fig. 2).

It is about 52 miles long and, at its broadest point, about 28 miles
wide. The lower end is partially enclosed by the Cape May Peninsula of
New Jersey and Cape Henlopen of Delaware. The main channel ranges in
depth from 35 fathoms in the upper reaches to 150 fathoms near the mouth,
but most of the Bay is less than 20 fathoms deep. Shoals ring the point
of the Cape May Peninsula and parallel the channels upstream. The

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

2

11

12

13

14

16

17

18

19

21

22

23

24

25-

15-

24

Chesapeake Bay

ec.

11

12

13

Chesapeake Bay, which divides northern Maryland and separates southern Maryland from Virginia (see fig. 2), represents a drowned drainage system that includes the lower valleys of the Susquehanna, Potomac, Rappahannock, York, and James Rivers. It is over 160 miles long, more than 25 miles wide in its central part, and about 13 miles wide at its mouth between Cape Charles (Maryland) and Cape Henry (Virginia). The main channel ranges in depth from 20 to 82 fathoms and leaves the Bay close to Cape Henry on the south shore. A crescent-shaped series of shoals parallels the north shore around Cape Charles.

Cape Hatteras

12

13

14

15-

Cape Hatteras projects about 32 miles eastward from the mainland of North Carolina. It marks the meeting point of two long offshore bars in the form of sweeping curves concave toward the sea. These offshore bars extend almost without interruption from a few miles south of Cape Henry at the mouth of Chesapeake Bay to Cape Lookout (See Fig. 2), a distance of about 120 miles. The bars are as much as 2 or 3 miles wide and 25 feet high at places, but are less than 1 mile wide and 10 feet high throughout most of their combined length. They enclose two sizeable, shallow bodies of water -- Albemarle Sound at the north and Pamlico Sound at the south. These sounds include not only the lagoonal area behind the bars but also parts of the drowned valleys of the Chowan and Pamlico Rivers. The waters of the sounds are 25 fathoms deep in some places. particularly near the rivers, but mostly less than 15 fathoms in the lagoonal areas. A part of the large tract of marshland that separates the two drainage systems is known as East Dismal Swamp. The formation of the offshore bars at Cape Hatteras has been attributed by Davis

(1924, p. 475-477) to reverse flow of great eddies along the shoreward margin of the northward-flowing Gulf current market PRINTER OFFICE 1889 0-1011

Cape Fear

Cape Fear marks the intersection of two long, open, and shallow bays midway between Cape Lookout, North Carolina, and Cape Romain,

South Carolina (see fig. 2). These bays, alined almost symmetrically on ecopposite sides of Cape Fear, are about 95 miles long and produce concavities of 20 to 25 miles in a coastline that is relatively free of barrier bars so common in the Cape Hatteras area. Although the Cape protrudes less than 20 miles beyond the general coastline of the region, its associated shoals jut out another 34 miles into the Atlantic Ocean. This Cape is related not only to marginal eddies in the Gulf Stream, but also to a structural arch prominent in the ancient rocks.

Cape Kennedy

Cape Kennedy, formerly Cape Canaveral, is not a very prominent shoreline feature, but it is the largest between Cape Romaine, South Carolina, and the tip of the Florida Peninsula (fee fig. 2). It projects about 14 miles seaward as the terminal point of a low, triangular mass of islands, bars, and coastal lagoons accreted to the mainland about midway along the eastern coast of Florida. The highest land surface in this complex is about 12 feet above sea level. The Cape is a point on the outer bar encompassing Merritts Island and the intervening subparallel coastal lagoons and rivers. The subparallelism of such waterways and the coastline is one of the outstanding features of the Florida coast. Shoals extend only a few miles seaward from Cape Kennedy; another shoal area, known as False Cape, lies about 8 miles to the north. The suggestion has been made by White (1958, p. 47) that Cape Kennedy is the result of deformation, and perhaps faulting, of the ancient rocks along a line from Indian Rocks on the west coast to Cape Kennedy.

Islands

2

10-

12

13

14

16

17

18

19

21

22

23

24

25

20-

15-

At times during Pleistocene geologic history, the Coastal Plain has included a considerable part of the present-day Continental Shelf. The numerous islands along the Atlantic Coast were then the higher parts of the emerged Coastal Plain. The larger of these include Long Island, Block Island, Marthas Vineyard, the Elizabeth Islands, Nantucket Island, Sable Island, and the Florida Keys, most of which are shown on figure 2. The Bahama Islands also may have been a part of the continental land at some earlier period.

Long Island, Block Island, Marthas Vineyard, the Elizabeth Islands, and Nantucket Island, which make up the New England Islands, represent a former cuesta of Cretaceous and Tertiary rocks continuing mostly submerged from the New Jersey coast to the Cape Cod Peninsula. Thick Pleistocene glacial deposits mantle these islands, suggesting that the scarps of older rocks interfered with the southward advance of the ice masses and caused the local accumulation of glacial debris in moraines and outwash plains. A comprehensive report on these islands written by Woodworth and Wigglesworth (1934) has been drawn upon for the brief descriptions that follow.

Long Island

Long Island, 1,411 square miles in area, projects eastward from the East River of New York City to the longitude of Rhode Island. The island is about 120 miles long, less than 25 miles wide, and less than 200 feet in altitude except for a few ridges and hills reaching a maximum of 340 feet. The topography is essentially that of a glacial outwash plain sloping to the south, interrupted by two ridges of terminal moraines joined at the western end but extending separately along the remainder of the Island's length. One runs along the north shore and the other through the middle, diverging into the two eastern peninsulas about 14 miles apart. The southern shore of the Island is flat and protected by long barrier beaches most of its length. The eastern part of the northern shore is relatively straight and smooth due to active wave erosion, but the western part of the northern shore is deeply embayed. The steep-sided bays and inlets there are related historically to previously existing valleys eroded into the cliff face of Cretaceous beds dipping southward. Long Island Sound, a shallow arm of the sea less than 20 miles wide and 160 feet deep, intervenes between the northern shore and the New England coast. The geological formations underlying Long Island are Upper Cretaceous and Pleistocene in age. The geology is discussed in Veatch and others (1906), Fuller (1914), Suter, de Laguna, and Perlmutter (1949), de Laguna (1963), and Perlmutter and Geraghty (1963).

24

13

1

2

Block Island

Block Island, approximately 6 miles long and 4 miles wide, lies about 15 miles northeasterly from Long Island and about 10 miles off the Rhode Island coast. A small inlet separates the Island, highest at 5- opposite ends, into north and south parts connected only by a strip of marshland and beach. Steep cliffs, 100 to 150 feet high, mark the southern coast. The Island is formed of thick glacial deposits thought to rest on and against a higher part of the former Cretaceous cuesta between New Jersey and Cape Cod (Fenneman, 1938, p. 14, 15). Tuttle, 10- Allen, and Hahn correlated a seismic velocity zone beneath the glacial deposits with the Magothy clay outcrops identified by Woodworth (1934, 12 p. 212). 13 14 15-16 17 18 19 20-21 22

23

24

25

Marthas Vineyard

Marthas Vineyard, about 100 square miles in area, is a triangular-shaped island, with its apex to the north, about 4 miles off the southwestern part of Cape Cod Peninsula. It is about 20 miles long and 10 miles wide, and rises to 308 feet above sea level near the southwestern corner. The northwestern side of the Island is lined with glacial hills and ridges, generally 100 to 200 feet higher than the central and southeastern lowlands. The lowlands slope gently southeastward, which results in numerous embayments closed by sand bars along the south shore. Although the hills and ridges are composed of coarse glacial debris and the lowlands of glacial outwash, Cretaceous and Tertiary rocks are at or near the surface in several places (Shaler, 1885, p. 325-328, pl. 20; Wigglesworth, 1934, p. 140-160). The subparallelism of the ridges to the coast resembles that of cuestas on a belted coastal plain. These rocks form the westernmost promontory of the Island known as Gays Head.

Elizabeth Islands

The Elizabeth Islands compose a short chain of a half-dozen islands, too small to show on figure 2, extending 16 miles southwesterly from Cape Cod Peninsula. They are alined subparallel to and 4 to 5 miles northwest of the ridges on Marthas Vineyard. These islands are covered with glacial materials for the most part, but one island, Nonamesset, next to the mainland, is reported to have exposures of Cretaceous lignite and Tertiary (Miocene) greensand on its south shore (Woodworth and Wigglesworth, 1934, p. 309-310). The alinement of the outcrops and topographic features on both Marthas Vineyard and the Elizabeth Islands add to the resemblance of submerged cuestas in the region.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

12

17

18

Nantucket Island

Nantucket Island, 51 square miles in area, is the easternmost of the islands off New England. It is about 15 miles southeast of Marthas Vineyard and 10 to 20 miles south of Cape Cod Peninsula. The land surface is covered with glacial drift, and lies relatively low and flat. The few isolated hills range from 50 to 108 feet above sea level. The harbor on the north side of the Island is protected by a long barrier beach. Cretaceous and Tertiary rocks probably underlie the several hundred feet of glacial deposits penetrated by water wells on the Island. The geology of Nantucket Island has been described by Shaler (1899) and Woodworth (1934c, p. 93-116). Recently the pollen flora from a boring on the nearby Nantucket Shoals was described by Livingstone (1964), and by Groot and Groot (1964).

Sable Island

11

12

13

14

15-Sable Island, about one mile wide and 30 miles long, is a thin arc of sand bowed seaward about 100 miles off Nova Scotia at lat 44°N., long 60°W. It is the emergent part of a large shoal area called Sable Island Bank. The surface consists of stabilized sand dunes at the east end and along the north side. Sand flats surface the remainder of the Island. A narrow lake, a few miles long, splits the Island down the middle near its widest part. According to Willmore and Tolmie (1956, p. 13), the Island may be composed entirely of glacial deposits reworked in part by waves or it may have a glacially mantled scarp of Cretaceous or Tertiary rocks as a shallow substructure. Recent deep seismic observations by Berger. Blanchard. Keen, McAllister, and Tsong (1965, p. 959) suggest that the ridge in the basement which has been proposed to underlie the Shelf edge off Halifax Officer and Ewing, 1954, fig. 2) continues northeastward beneath Sable Island, and that the thickness of sedimentary rocks under the Island approximates 14.750 feet.

Florida Keys

The Florida Keys, well described by Cooke (1939, p. 68-70; 1945, p. 11, 256-265), constitute a low island arc curving along the Straits of Florida from Biscayne Bay near Miami 200 miles southwestward to the Dry Tortugas (see fig. 3). Between Biscayne Bay and Big Pine Key, the

Figure 3 near here

11

12

25-

arc of islands consists of a coral reef interrupted by tidal channels. and the islands are elongate parallel to the Straits of Florida. Between Big Pine Key and Key West, the islands are composed of Miami colite, such as crops out on the mainland, and the islands tend to be elongate to the northwest at right angles to the chain. The Marquesas, about 20 miles west of Key West, and the Dry Tortugas about 45 miles beyond the Marquesas, are coral sand banks in the form of atolls (Cooke, 1939, p. 70-72). About five miles seaward from the arc is a submerged living coral reef that parallels it throughout the entire length. The corals are growing upward through 10 fathoms of water. The largest island of the Florida Keys is Key Largo south of Biscayne Bay. It is 27 miles long and up to $3\frac{1}{2}$ miles wide. Most Keys are less than six miles long, a mile wide, and 10 feet in altitude. The Keys are separated from southern Florida by the Florida Bay, a shallow embayment mostly less than two fathoms deep, containing many mud banks and shoals. Mangrove swamps occupy much of the shallow water at the head of the Bay and behind the Keys.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

25

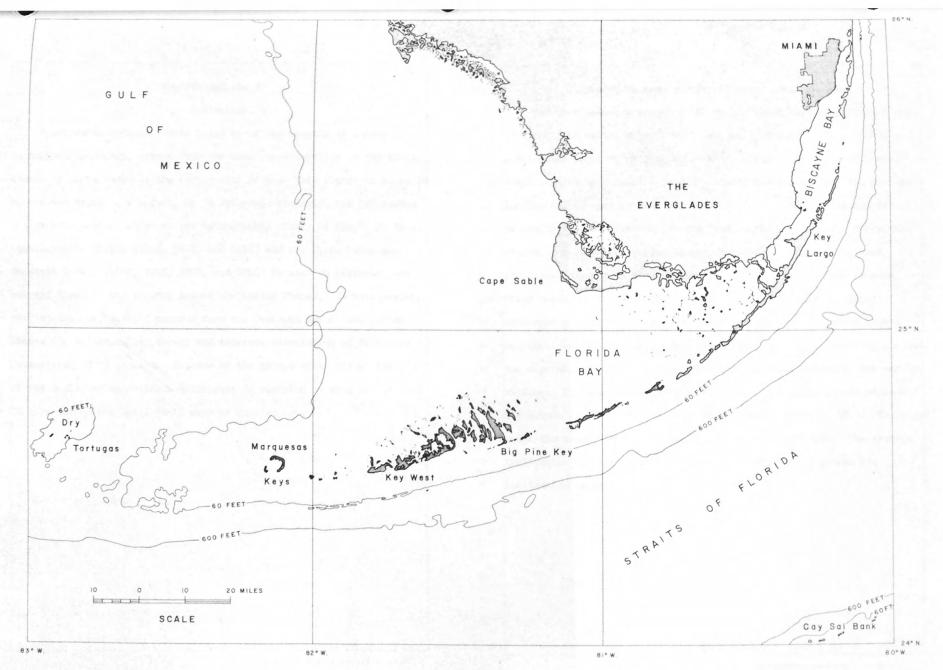


FIG. 3 PHYSIOGRAPHIC FEATURES OF FLORIDA KEYS REGION

25-

Continental Shelf

9.1267

21

23

Definition

Continental shelves, which exist along the margins of oceans
throughout the world, extend from the mean low-water line to the abrupt
change in slope known as the continental slope. This change is found at
an average depth of 432 feet, or 72 fathoms. Commonly, the 100-fathom
bathymetric contour shown on the hydrographic charts of the U. S. Navy
Oceanographic Office (1411, 5617, and 6610) and the U. S. Coast and
Geodetic Survey (1000, 1001, 1002, and 1003) is used to represent the
seaward limit of the shelves around the United States. In this report,
the 500-foot bathymetric contour from the Tectonic map of the United
States (U. S. Geological Survey and American Association of Petroleum
Geologists, 1962) is used. Because of the abrupt declivity at the edge
of the Shelf, no appreciable difference in position or area of the Shelf
is apparent on the small scale maps of this report.

17 18 19 20—

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

General characteristics of continental shelves The continental shelves of the World, which have an estimated area of 11 million square miles (Erwin Kosinna in Pratt, 1947, p. 658), and a volume of about 33 million cubic miles (Pratt, 1947, p. 658), are 5- characterized by a relatively flat, almost level surface. The average inclination is only 12 feet per mile or 0°07'. The inclination is generally a little steeper inshore than in the outer half. The width ranges from less than a mile to many hundreds of miles. The most prominent features on the continental shelves are submarine canyons, which notch the shelf and cut deeply into the continental slope, submerged glacial moraines, troughs and basins near glaciated coasts, and coral reefs and banks. The seaward limit of the continental shelves, the continental slope, is the largest topographic feature on the earth's surface. Its area has been estimated to be 15 million square miles and 15- its volume 40 to 50 million cubic miles (Pratt, 1947, p. 667). The slope meets the ocean floor at an average depth of 12,000 feet. The average inclination for the first 6,000 feet is 4°17', but in places the inclination exceeds 17°. 22 24

The topography of the continental shelves and the distribution of sediments on them are closely related to the alternate raising and lowering of sea level during different stages of Pleistocene time. The total fluctuation has been estimated at 250 to 500 feet both from positions of former strand lines and from theoretical calculations on the volume of ice during the ice age (Flint, 1957, p. 258-270). Dredging and coring operations have revealed highly irregular distributions of types and sizes of loose particles on the shelves. These distribution patterns seem to be controlled more by bottom topography, character of adjacent 10- land, and type of remnant material on the bottom subject to reworking than by depth of water and distance from land. Bays and gulfs with strong currents, and open shelves have dominantly sand-size bottom sediments ranging from fine material near shore to coarse material seaward. Protected bays and gulfs without strong currents have dominantly 15- muddy bottoms with the coarse material near shore and the fine material seaward. The seaward part of the open shelves generally has more coarse material and more bare rock bottom than the middle part, and in many places more than the landward part. Depressions in the shelves commonly contain finer-grained sediments. Shelves that have been subjected to glaciation have sediment distribution patterns less clearly related to recent depositional processes than those that have not.

9.1267

12

14

16

18

19

22

23

24

A recent article by Emery (1965) presents a summary of the characteristics of continental shelves and slopes, and enumerates the many questions remaining unanswered at the present stage of knowledge. Reference to this is suggested for more complete discussion.

Area and configuration

The Atlantic Continental Shelf is a 2400-mile-long submerged platform, about 350,000 square miles in area, that widens from less than 3 miles off southern Florida to about 285 miles off Newfoundland (Fig. 1). It extends subparallel to the shoreline and without interruption from the Straits of Florida to Cape Cod (Fig. 2). At Cape Cod, the Shelf swings about 200 miles seaward to include Georges Bank; there it is interrupted by the deep outlet of the Gulf of Maine and turns back along the shoreline of the Gulf. It emerges from the Gulf at Browns Bank off Nova Scotia and parallels the open coast around Emerald Bank, Sable Island Bank, and Banquereau to Cabot Strait. Cabot Strait. the deep entrance to the Gulf of St. Lawrence, breaks the continuity of the Shelf, but it resumes around Newfoundland to the termination of the Grand Banks. This report discusses the part of the Atlantic Continental Shelf south of Cabot Strait, including the Gulf of Maine.

10

11

12

13

14

16

17

18

19

21

22

23

24

Along the entire Atlantic Coast, the 50fathom (300-foot) bathymetric contour, as shown on U. S. Coast and Geodetic Survey Charts 1000, 1001, and 1002, closely parallels the Shelf edge at a distance of only a few miles. Farther inshore, the bottom contours are more widely spaced and show more parallelism to coastal shapes than to the Shelf edge. This 50-fathom contour may approximate the limit of subaerial erosion at the close of Pleistocene (Wisconsin) time. Earlier Pleistocene shorelines may have ranged from this level to the Shelf break.

U. S. GOVERNMENT PRINTING OFFICE: 1959 0 - 511171

The 5,000-foot bathymetric contour, as shown on the Tectonic map of the United States (U. S. Geol. Survey and Am. Assoc. Petroleum Geologists, 1962), parallels the Shelf edge at a seaward distance of 10 to 20 miles from Nova Scotia to as far south as Cape Lookout (pl. 1 and fig. 2), 5- where instead of following the coastline and Shelf, it continues almost due south along a steep declivity outside the Bahama Banks. The 150-to-200 mile wide flat area between this steep declivity, the Shelf edge, and the Bahama Banks is termed the Blake Plateau. The gentle slope at the Shelf edge is sometimes referred to as the Florida-Hatteras 10- slope to distinguish it from the true continental slope outside the Blake Plateau. 12 13 14 16 17 18 19 20 21 22 23 24

9.1267

Blake Plateau

The Blake Plateau occupies an area of about 70,000 square miles between the 500 and 5,000-foot bottom contours from Cape Lookout to Little Bahama Bank, the northernmost bank of the Bahamas (pl. 1 and 5- fig. 2). Although the 500-foot bottom contour closes around Little Bahama Bank and does not cross the Straits of Florida, the slightly deeper contours trend across this channel somewhat in line with the projection of Cape Kennedy on the mainland. A large reentrant at lat 27°N., and a seaward projection at lat 30°N. are the largest 10- irregularities along the steep edge. On the basis of depth of water, the Blake Plateau would be classified as a part of the continental slope, but topographically and geologically it seems to resemble the Shelf. It has a gentle slope of about 1.5° with only minor irregularities and little, if any, cover of Recent sediments. Small 15- hills and small, elongate depressions are present on the surface in places. Rocks of Upper Cretaceous to Recent age have been recovered from the steep edge of the Plateau (Ericson, Ewing, and Heezen, 1952, p. 504-506). This steep edge is known as the Blake escarpment. Early oceanographic studies of the region were reported by Bartlett (1883) 20- and Agassiz (1888, p. 95-97). Details of some recent investigations are available in reports by Stetson, Squires, and Pratt (1962), Pratt (1963, 1966), Pratt and Heezen (1964), and Uchupi and Tagg (1966).

Bahama Banks

The Bahama Banks comprise a shallow carbonate platform elongated parallel to the coast between the Straits of Florida, Bahama Channel, and the much deeper part of the continental rise (fig. 4). This

Figure 4 near here

11

12

13

14

16

17

18

19

21

22

23

25-

platform, about 50 miles offshore, extends with some interruptions as far southeast as Haiti and includes about 50.000 square miles of banks. shoals, rocks, cays, and islands. The northernmost banks, about 200 miles wide, are the most extensive. They are outlined on figure 2 by lines coinciding with the 500-foot bottom contours. The edges of the banks, particularly the oceanward edges, have steep slopes averaging 10 to 20°; some are nearly vertical. Most banks are covered by less than 10 fathoms of water, and parts are emergent as the Bahama Islands. Detailed studies of present-day sedimentation around the islands are discussed or referred to in Cloud (1962). Great submarine valleys, such as the Tongue of the Ocean (fig. 2) separate some of the banks. These valleys are steep-sided, with flat bottoms sloping gently oceanward. Several are 5,000 to 6,000 feet deep. The origin of these valleys has been attributed to coral reef growth on submarine volcanoes (Schuchert, 1935, p. 26, 27, 531) or on drowned pre-Cretaceous topography (Hess, 1933, p. 27-54; 1960, p. 160-161; Newell, 1955, p. 314), to turbidity currents (Ericson, Ewing, and Heezen, 1952, p. 506), and to grabenlike downfaulting (Talwani, Worzel, and Ewing, 1960, p. 156-160). No general agreement on the origin exists at this time. Comprehensive reports on the stratigraphy and structure of the Bahama Banks include those by Field (1930) and Lee (1951).

Cay Sal Bank

Cay Sal is a relatively small, somewhat rectilinear bank located
at approximately lat 24°N., and long 80°W., midway between the Florida

Keys, Cuba, and the Bahama Banks (fig. 2). Numerous small islands,

pays, rocks, and shoals outline its periphery, but most of the Bank is
covered by 3 to 10 fathoms of water. The edges slope abruptly to depths

of 150 to 400 fathoms. An oil test was drilled on this Bank by the

Bahama California Oil Company and the Bahama Gulf Oil Company in 1958
and 1959, but no information has been released.

11

12

13

14

16

17

18

19

21

23

24

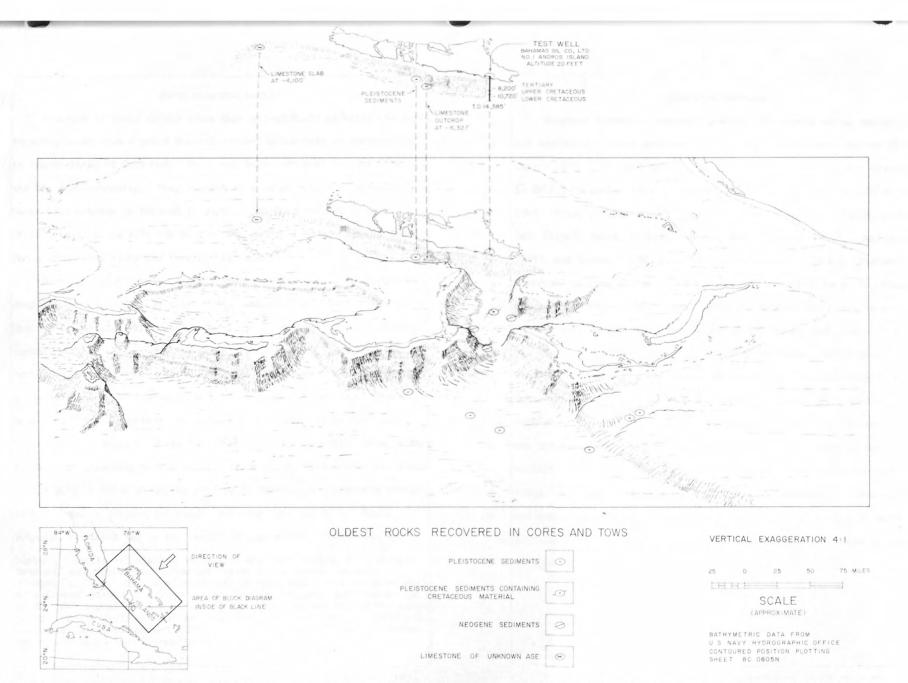


FIG. 4 PHYSIOGRAPHIC DIAGRAM OF BAHAMA BANKS SHOWING RELATION OF GEOLOGIC DATA TO BATHYMETRY

North Atlantic banks

A series of banks on the outer Continental Shelf parallel the North
Atlantic coast from a point several hundred miles east of Newfoundland
to the vicinity of Cape Cod. The Grand Banks off Newfoundland (fig. 1)
are the most extensive. They consist of a large number of irregular
banks that average 30 fathoms in depth. The deep channel of Cabot
Strait, which leads into the Gulf of St. Lawrence, separates the Grand
Banks from those along the Nova Scotian coast.

South of Cabot Strait, closely spaced banks, less than 60 fathoms deep and between 10 and 25 miles wide, dominate the outer Continental Shelf. Banquereau, which lies under 20 to 40 fathoms of water, is the northernmost of these. Next is Sable Island Bank, in less than 20 fathoms of water around Sable Island, and then Emerald Bank and several other small banks at depths of 40 to 50 fathoms off Halifax. Browns Bank lies off the southern tip of Nova Scotia parallel to the entrance to the Gulf of Maine in 20 to 60 fathoms of water. Georges Bank, a very large bank connecting to the shoals off Cape Cod, lies across the mouth of the Gulf of Maine at depths of 1 to 50 fathoms, and exhibits shoals in the shape of subparallel ridges pointing into the Gulf. These subparallel ridges may be the result of glaciation. Cretaceous and Tertiary fossils and glacial materials have been dredged from Georges Bank and Banquereau (see Submarine outcrops and bottom deposits). Johnson (1925, p. 267) considered both Georges and Browns Banks as parts of a drowned cuesta of Cretaceous and Tertiary strata, and Shepard (1934, p. 281-302) emphasized the effect of glaciation on and behind the cuesta.

Recent seismic profiles over Georges Bank (Emery and Uchupi, 1965) and along the Northeast Channel (Uchupi, 1966, p. 166-167) between Georges

and Browns Banks tend to confirm these earlier views.

11

12

13

14

16

17

18

19

22

Submarine canyons

Numerous submarine canyons have been discovered along Georges Bank and southward to Cape Hatteras (U. S. Coast and Geodetic Survey Nautical Charts 1107, 1108, and 1109). These have been described and discussed in detail by Bucher (1940), Stetson (1936), Shepard (1933, 1934a, 1934b, 1948, 1951a, 1951b, 1963, p. 327-329), Veatch and Smith (1939, p. 1-48), Daly (1936), Ewing, Luskin, Roberts, and Hirshman (1960), Johnson (1938, 1939), and Kuenen (1950, p. 485-493) and Roberson (1964). Fifteen principal canyons are shown on figure 2. From north to south, these are Corsair, Lydonia, Gilbert, Oceanographer, Welker, and Hydrographer Canyons off Georges Bank; Veatch, Atlantis, Block, and Hudson Canyons off Cape Cod and Long Island; Wilmington, Baltimore, Washington, and Norfolk Canyons off the Delaware, Maryland, and Virginia coasts, and Hatteras Canyon off Cape Hatteras, North Carolina. Most head in broad 15- notches in the edge of the Shelf at depths of 50 to 100 fathoms, but the Hatteras Canyon appears to start considerably deeper in the vicinity of the 200-fathom depth. The canyons that notch the Shelf have steep, winding, v-shaped gorges with many tributaries, in consolidated and semi-consolidated rocks. They range from about a mile to more than 20- 10 miles in width, and extend far down the continental slope to depths of 1,000 fathoms or more.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

23

24

Only the Hudson Canyon has a channel that crosses the Shelf to connect with a present-day river mouth, although shallow bottom contours indicate drainage patterns above 50 fathoms that may have once connected to Corsair, Oceanographer, Hydrographer, Block, Baltimore, and Norfolk Canyons. This suggests that many channels drained across the Shelf when it was exposed during the advances of Pleistocene glaciers, and that these channels were modified or eliminated by encroaching seas during the retreats of the glaciers (Veatch and Smith, 1939, p. 44-48). Many large gullys, some of which appear dendritic, cut into the Slope below the Shelf in this area. These bear no apparent relation to the principal canyons and may have a different origin. 15-20-

7

8

9

11

12

14

16

17

18

19

21

22

23

24

25-

The Hudson Canyon (Veatch and Smith, 1939, p. 14) is the longest and deepest of the North Atlantic coast canyons (fig. 5). The channel of

Figure 5 near here

ec

11

12

13

14

16

17

19

22

23

24

the Hudson River is entrenched 8 to 25 fathoms, or about 50 to 150 feet, into the Shelf from the mouth of the river to the 60-fathom depth marking the beginning of the gorge. Beyond this, the Canyon walls reach a maximum height of 4,000 feet as they descend the slope and rise to a terminal depth of approximately 2,650 fathoms or 15,900 feet (Northrop, 1953, p. 223). The lower part of the 180-mile-long Canyon is a relatively shallow trench across a large alluvial fan on the continental rise. Miocene clays have been found on the sides of the gorge: coarse sand, gravel, shells, and clay cobbles were cored in the Canyon at a depth of 12,000 feet; and cleanly-washed sand has been sampled in the outer trench and alluvial fan. The results of acoustic probes and cores of the Canyon walls (Ewing, Luskin, Roberts, and Hirshman, 1960, p. 2849-2855) suggest inclined erosional surfaces between beds adjacent to the Canyon edge at depths of 60 and 80-90 fathoms. These are thought to correlate with wave erosion of the Shelf during different Pleistocene times, as suggested by Veatch and Smith (1939, p. 44-48).

□ U. S. GOVERNMENT PRINTING OFFICE: 1959 O = 511171.

The origin of submarine canyons has been a subject of speculation, discussion, and investigation for more than fifty years. The theories that have been advanced and restated at different times include subaerial erosion (Veatch and Smith, 1939, p. 48; DuToit, 1940; Shepard 1948, 1963, p. 335-347; Umbgrove, 1947, p. 97-143; and Emery, 1950), turbidity currents (Daly, 1936; Kuenen, 1953, p. 496-526), diastrophic movements (Wegener, 1924, p. 177), artesian springs (Johnson, 1939), tsunamis (Bucher, 1940), hydraulic and tidal currents (Davis, 1934), and landslides and mudslides. Shepard (1963, p. 337) points out that all but two of these have been generally discarded in recent years. The surviving theories are turbidity currents, and subaerial erosion 11 with the drowning and maintenance of the canyons by turbidity currents, 12 13 submarine slides, and sand flows. The first considers the canyons to have been cut by turbidity currents during low sea-level stages of the Pleistocene. The second assumes the canyons to have been cut by rivers prior to the Pleistocene and modified subsequently by submarine phenomena including turbidity currents. 17 18 19 21 22 23 24

Origin of shelves

The origin of continental shelves is directly related to that of the continental slopes. Numerous theories of origin have been advanced over the years, but none has been completely acceptable for all parts of the earth. These theories have been reviewed and discussed in detail by Kuenen (1950, p. 157-163) and Shepard (1963, p. 300-310).

The oldest theory, which prevailed before very much geophysical and geological data could be obtained from beneath the seas, postulated that the slope is the front of a huge pile of sediment eroded from the continent, the inner shelves are wave-cut terraces, and the outer shelves are wave-built terraces. This theory has been generally discredited by then-unknown facts such as the absence of sedimentation on the outer shelf in many regions, the unpredictable grain-size distribution of sediments on the shelf, the presence of large areas of bare bed rock on both the shelf and slope, the irregular topography of the outer shelf, the lack of correlation between the size of waves and depths of the outer shelf, and the relatively high inclination of the slope surface.

Another concept, not in current favor, suggests that the slopes are downwarped remnants of Miocene peneplains (Veatch and Smith, 1939, p. 35). DuToit (1940, p. 398-403) and Umbgrove (1946, p. 251; 1947, p. 97-143) offered somewhat similar views involving arching along the coast, with different mechanics. The presence of exposed bedrock on the slope where sediments would be expected, the lack of observed downward bending of strata in the slope and outer shelf, and seismic evidence of a rise in the basement along the outer shelf tend to discredit most of

13

17

18

23

this theory.

25-



FIG. 5 PHYSIOGRAPHIC DIAGRAM OF HUDSON CANYON

ACROSS THE ATLANTIC CONTINTENTAL SHELF

The most acceptable theories regarding the origin of the shelf and slope now center around diastrophic movements near the contact of the continental and oceanic crust, according to Shepard (1963, p. 310) who cites as supporting evidence the general straightness of the slopes, the angular changes in trend, the excessive steepness, the association with earthquake belts and deep trenches in the Pacific, and the outcrop of rocks along the slopes at different places.

1

3

6

7

8

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25-

15-

Numerous writers have invoked faulting in their explanations of the continental shelf and slope, but few have agreed on the mechanics.

Shepard (1963, p. 303-306) and Heezen, Tharp, and Ewing(1959, p. 51) have favored normal faulting. The slope appears to fit the juncture between the heavy oceanic crust and the lighter continental crust, where isostatic adjustments might be expected to compensate for erosion lightening the continental mass and deposition weighting the ocean floor. Such adjustments could produce long normal-fault scarps, possibly a band of step faults, dipping away from the continent. Some warping of the continental margin also could accompany this. However, most continental slopes are not active fault zones now and their inclination is much less than most fault scarps on land. Heezen (1963, p. 242) believes that the continental slope seems to be a relic related to normal faulting which occurred at some earlier time, and that the upper part of the slope has been modified since by depositional and erosional processes.

Emery (1950) suggested that high-angle thrust faults extend beneath the continental mass from the margins. This idea is supported by the distribution of earthquake epicenters in an ever-deepening pattern beneath the continents. Emery thought it possible that these thrust faults elevated the continental margins sufficiently to permit subaerial erosion of the canyons now present on the shelf and slope. Drake, Ewing, and Sutton (1959, p. 176-185, 191-194) have compared the Continental Shelf and slope of eastern North America to the miogeosyncline and eugeosyncline of the Appalachian system and have discussed the mechanics of thrusting and folding necessary to add the contained sediments to the land mass of the continent. Dietz (1963a, p. 1-21; 1963b, p. 314-333) has proposed along similar lines that the slopes have been constructed by the compressional collapse and folding of the continental rise sedimentary prism against the continental block --15- the flanks of the resulting eugeosynclinal orogen becoming the continental slope. However, he also suggests that continental drift and rifting have given rise to some rift scarps that have been modified as continental 18 slopes. Van Bemmelen (1956, fig. 3, p. 139) depicted a graben structure 19 along the Atlantic Coast of North America. Later, Engelen (1963, p. 65-72) expanded on this concept and showed diagrams of the development of the graben structure based on his interpretation of geophysical profiles published by Heezen, Tharp, and Ewing (1959, pl. 26). According to his hypothesis, block faulting started in Early Cretaceous time in the 25 porthern part and progressed slowly southward through Tertiary time.

& U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

L. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511121

Florida in 1965 suggest some of the difficulties in making world-wide generalizations about the origin of continental shelves and slopes. North of Cape Hatteras, the Continental Shelf and slope are adjacent, and together mark the continental margin. South of Cape Hatteras, the Shelf and slope are discordant -- the Shelf is widely separated from the slope by the Blake Plateau. There the continental margin seems to lie not along the Shelf edge, but along the Blake Plateau. The JOIDES test holes and sparker profile off Jacksonville, discussed later under "Stratigraphy", reveal that the Shelf of the present time had a depositional origin probably related to the velocity axis of the Gulf Stream (see Shepard, 1959, p. 12 116-117). The Shelf area appears to have been prograded seaward rather continuously since early Tertiary time for a distance of 9.3 miles at the JOIDES sites (JOIDES, 1965, p. 715). The JOIDES investigation did not extend to the Blake escarpment nor did it provide any data on the Cretaceous strata. Therefore the nature and origin of continental margins is still a matter of speculation even in this area and it seems obvious that no one explanation will fit all shelves and slopes of the world. 21

The results of the JOIDES test-drilling program off northeastern

w. 1267

23

24

Structure

Regional structural pattern

The Appalachian Mountain System forms the structural backbone of eastern North America, extending from Newfoundland southwestward to central Alabama. See King (1959, p. 41-66; 1964, p. 5-31) for a comprehensive analysis of this System. In the United States, it consists mainly of a narrow anticlinorium of early Paleozoic and Precambrian rocks at the west known as the Blue Ridge Province, and a long, broad belt of intensely deformed and intruded Paleozoic rocks at the east termed the Crystalline Appalachians (see pl. 4). The Crystalline Appalachians, which form the New England Uplands to the north and the piedmont plateau to the south, exhibit the most intense deformation. These metamorphosed Paleozoic rocks crop out in a continuous belt as much as 130 miles wide from Alabama to Canada, except for a 50-mile interval in New Jersey occupied by downfaulted Triassic rocks. Several downfaulted basins of Triassic continental clastic rocks are present also in the piedmont plateau and in the basement beneath the Coastal Plain deposits.

The Mesozoic and Cenozoic sedimentary rocks of the Coastal Plain

overlie in part and wedge out against the eastern flank of the

Appalachian positive structural element raised by late Paleozoic

orogeny. As a result, the regional structure of the Coastal Plain
deposits reflects the major structural anomalies and trends of the
Precambrian and Paleozoic rocks. The Appalachian's salient in the
Carolinas corresponds with the Cape Fear arch outlined by Tertiary
outcrops; the Appalachian's recesses in Georgia, New Jersey, and
Maryland are matched by large embayments in the Coastal Plain deposits;
and in Florida the Peninsular arch formed in the basement rocks in late
Paleozoic time is closely related to the offsetting Ocala uplift of Tertiary

I. S. GOVERNMENT PRINTING OFFICE : 1959 CI - WITH

467-11

Eccene age.

The regional structure of the pre-Cretaceous basement rocks as known from outcrops and wells, and inferred from geophysical surveys, is depicted by contours on plate 4, adapted from the Tectonic map of the United States (U. S. Geol. Survey and Am. Assoc. Petroleum Geologists, 5- 1962). The basement rocks include not only the igneous and metamorphic rocks of Precambrian and Paleozoic age, and volcanic and sedimentary rocks of Triassic(?) age, but also unmetamorphosed sedimentary rocks of Paleozoic age beneath the Florida peninsula.

The structural contours on the basement rocks beneath the Coastal 10- Plain parallel the Appalachian Mountain System except at the boundary between North and South Carolina, where they bulge seaward on the Cape Fear arch, and beneath the Florida peninsula, where the deeper contours are deflected around the southeasterly elongated Peninsular arch. The basement surface dips seaward at rates ranging from ten feet a mile 15- inland to as much as 120 feet a mile near the ocean. It reaches the coast at depths in excess of 12,500 feet in southern Florida: 5.000 feet in southeastern Georgia; 1,500 feet in the Carolinas; 9,500 feet in southeastern New Jersey; and 2,000 feet along the south shore of Long Island. A decided steepening of the slope is apparent below a depth of 3,000 feet in most of the area. Prouty (1946, p. 1918) first recognized this steepening in wells in North Carolina.

11

12

16

17

18

22

24 25-

The basement configuration beneath southernmost Florida and the Keys is not known from wells or seismic surveys. Lower Cretaceous beds exhibit a broad reversal of southerly dip north of Miami and a gentle rise of about 1,500 feet to the Florida Keys (Applin and Applin, 1965, figs. 50, 51 and 52), and may reflect to some extent the configuration of the basement rocks. However, the southward thickening of the intervening wedge of Upper Jurassic or Lower Cretaceous (Neocomian) beds cannot be judged from present data, so the relation of the basement configuration to the structure of the Lower Cretaceous beds is a matter of speculation.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

11

22 23

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - \$11171

Seismic data (see pl. 2) have been sufficient to permit contouring of the basement surface beneath the continental margin in much of the offshore area north of Cape Hatteras. There the basement surface slopes abruptly downward offshore and descends into what Kay (1951, p. 82) has termed the Atlantic geosyncline. This geosyncline, a paraliageosyncline of Mesozoic rocks along the Atlantic Coast according to Kay (1951, p. 82), consists of parallel troughs separated by a ridge along the edge of the Continental Shelf (see pl. 4). Ewing, Worzel, Steenland, and Press (1946, 1950) first concluded from seismic surveys between Cape Henry, Virginia, and Cape Cod, Massachusetts, that the basement surface does not slope uninterruptedly across the continental margin, but upon reaching a 11 depth of about 16,000 feet, 40 miles off Delaware Bay, rises to a depth 12 of about 10,000 feet at the edge of the Continental Shelf (see cross 13 section EFF', pl. 5). Similar findings off Nova Scotia were reported by 14 15-Officer and Ewing (1954, fig. 2). Drake, Ewing, and Sutton (1959, fig. 29) presented a thickness map of total sedimentary rocks on the basement 16 between Cape Hatteras and Halifax, Nova Scotia, in which a second parallel 18 trough containing as much as 20,000 feet of sedimentary rocks was depicted beneath the continental slope. They compared the two troughs 20- separated by a basement ridge to the early Paleozoic troughs of the Appalachians as restored by Kay (1951, pl. 9) and suggested that the inner trough may represent the miogeosyncline; the basement ridge, the 22 geanticlinal barrier; and the outer trough, the eugeosyncline (see cross section CDD' and EFF', pl. 5). This suggestion has met with considerable 25 -approval.

South of Cape Hatteras, the basement surface has been contoured to the edge of the Continental Shelf, but seismic data are too scattered to extend these contours across the Blake Plateau and Bahama Islands to the continental slope. Seismic records have been found to be generally poor in the thick carbonate rocks south of Georgia. The contours on the Shelf parallel the coast for the most part, but bulge seaward off Cape Fear and landward in the Southeast and Southwest Georgia embayments. Data are not sufficient to contour the basement surface beneath southernmost Florida at this time.

The effect of the Cape Fear arch upon the regional structure between Jacksonville, Florida, and Cape Hatteras, North Carolina, is illustrated by plate 6. Offshore seismic cross section AA' adapted from Hersey, Bunce, Wyrick, and Dietz (1959, fig. 3) is compared to stratigraphic cross section AB of this report. From this comparison, it appears that the seismic velocities approximating six kilometers a second represent the pre-Mesozoic basement rocks and that these rocks are about 12,000 feet deep offshore north of Cape Hatteras, about 2,500 feet deep off Cape Fear, and more than 20,000 feet deep offshore south of Jacksonville. Hersey, Bunce, Wyrick, and Dietz (1959, p. 448) have tentatively correlated the 5.16-5.35 km./sec. layer at the south and the 4.30 km./sec. layer at the north with the top of the Lower Cretaceous. The 3.27-3.88 km./sec. layer at the north is correlated by them with the top of the Black Creek Formation (top of rocks of Taylor age), but is not correlated at the south. The Black Creek correlation at the north seems uncertain, as the top of rocks of Taylor age is not a distinct lithologic

1. S. DOVERNMENT PRINTING OFFICE: 1919 Q - STITT

horizon in the nearest wells (pl. 11). The top of rocks of Austin age and that of rocks of Woodbine age would seem to offer better possibilities for seismic velocity change. The 2.26-2.89 km./sec. layer they consider to be near the top of the Upper Cretaceous rocks offshore between Jacksonville and Cape Hatteras. This, too, seems very uncertain as comparison to the stratigraphic cross section suggests the 2.26-2.89 km./sec. layer is too shallow to be Upper Cretaceous, and may be closer to the top of the Eocene rocks. This velocity layer is less than 1,500 feet deep at Cape Hatteras; the top of the Upper Cretaceous rocks in the Cape Hatteras well (well NC-14) has been placed at 3,033 feet and the top of the Eocene (Castle Hayne Limestone) rocks at 1,738 feet in this study. The irregular and rising velocity layers south of Cape Fear suggest that they result from a general facies change to carbonate in that direction, and cannot be relied upon for stratigraphic equivalence.

Regional Bouguer gravity anomalies

Early gravity investigations along the Atlantic seaboard were concerned primarily with relating gravity to surface geology and to seismic and magnetic data (Swick, 1937; Woollard, Ewing, and Johnson, 1938; Woollard, 1939, 1940a, 1941, 1943, 1944, and 1948). One of the early papers that dealt with gravity interpretations of subsurface geology in the Atlantic region was that on the Bahamas by Hess (1933, p. 38-53). He concluded "that the general field of negative anomalies is due to a great thickness of light sediments beneath the Bahamas, but that the dolomitic reef material is relatively heavy, thus making the anomalies on the reef material less negative than those over the submarine valleys." Many years later, Worzel and Shurbet (1955a, p. 97) estimated the great thickness of light sediments beneath the Bahamas to be 93,000 feet. In addition, they stated (p. 97), "If this calcareous system were laid down on an oceanic crust, and approximate isostasy were maintained at all times, the final 16,000 feet would have been laid down in water depths less than 2,000 feet." Other papers that make geological interpretations from gravity measurements along the Atlantic Coast include those of Woollard (1940b and 1949), Skeels (1950), Worzel and Shurbet (1955b), and Worzel, Ewing, and Drake (1953). A summary map of Bouguer gravity anomalies along the Atlantic Coast has been published recently by Woollard and Joesting (1964) and is discussed briefly in the following 23 paragraphs.

24

25 -

The regional Bouguer gravity anomalies along the Atlantic Coast are shown on plate 7, which has been adapted from the Bouguer Gravity Anomaly Map of the United States (Woollard and Joesting, 1964). These anomalies reflect primarily compositional differences at considerable depths in the earth's crust, but are related to some extent to the structure and composition of the Coastal Plain sedimentary rocks and shallow basement. Four alternating belts of predominantly positive and predominantly negative gravity anomalies extend diagonally across the region from southwest to northeast. These correspond roughly with the continental rise and slope, the Continental Shelf and Coastal Plain, the Appalachian Mountain System Front, and the Piedmont Plateau-Blue Ridge-Appalachian Basin region.

Continental Rise and slope

11

12

13

14

16

17

18

21

22

23

24

25-

Positive gravity values extend over a wide area parallel to the outer Continental Shelf and increase rather regularly oceanward across the continental slope and rise. They range from 0 to 40 milligals along the outer Shelf to more than 300 milligals near the boundary between the continental rise and the abyssal plain (fig. 1). A single, slightly negative anomaly about 20 miles wide and 190 miles long is present off South Carolina. The general increase of positive gravity values oceanward probably reflects a transition between the lighter continental crust and the heavier oceanic crust underlying the ocean basins of the earth.

Continental Shelf and Coastal Plain

Negative gravity values predominate on the Continental Shelf and Coastal Plain, although irregular positive anomalies are numerous and large enough to create a confusing pattern not readily related to known surface and shallow subsurface features. The area is underlain by light continental crust on which are irregularly distributed sedimentary rocks with igneous intrusions and flows at places. In general, the negative values range from zero along the outer Continental Shelf to as little as -40 milligals in small isolated anomalies inland, and back to zero along or near the western limit of the Coastal Plain. In Alabama and from Virginia northward, the western zero-gravity contour is as much as 75 miles inside the Coastal Plain and Continental Shelf. A large, positive anomaly breaks the regional pattern from Alabama across Georgia into the Southeast Georgia embayment (fig. 6). Another positive anomaly crosses the regional pattern in southern Florida, and long reentrants are present in the negative pattern at several places south of Virginia.

The largest unbroken area of negative values in the Coastal Plain and Shelf is a crescent-shaped anomaly more than 100 miles wide and 600 miles long between Cape Hatteras and the Gulf of Maine. Several sizeable negative anomalies are present within the larger one. One in northeastern North Carolina and southeastern Virginia reaches a value of -40 milligals; another of -20 milligals and about 200 to 250 miles long is present in the Coastal Plain and Shelf near Atlantic City, New Jersey. It does not coincide with the Baltimore Canyon trough, although it crosses one arm of this basement feature. The large crescent-shaped negative anomaly as a whole conforms somewhat to the zone of maximum compression in the Appalachian Mountain System. Whether it is related to this, or to Triassic deposition, is not known at this time.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

I I SOVERNMENT PRIVING OFFICE 1959 G - 511171

A large area in southwestern Georgia and the Florida Panhandle has negative values that seem to be related somewhat to the composition of the shallow basement rocks. Wells in this area penetrate Paleozoic limestone, sandstone, and shale beds beneath the Mesozoic. The outline of the area underlain by these Paleozoic rocks conforms in a rough way with the zero contour from Alabama to eastern Georgia, but the relationship becomes vague southeastward in Florida where pre-Mesozoic volcanics are found in some wells.

Appalachian Mountain front

narrow belt 30 to 80 miles wide along the front of the Appalachian

Mountain System. This belt parallels the Blue Ridge Province in

Virginia and the Newark Basin in New Jersey (Tectonic map of the United

States, U. S. Geol. Survey and Am. Assoc. Petroleum Geologists, 1962),

but does not conform well to geologic and physiographic boundaries

throughout its length. It cuts diagonally across the Piedmont Plateau

southward to Alabama and continues beneath the Coastal Plain to the

Florida Panhandle. It also encroaches on the Coastal Plain and

Continental Shelf northward from Virginia to the Gulf of Maine. The

exposed rocks within this belt are mainly Paleozoic metamorphics,

including those in the Carolina Slate Belt (Tectonic map of the United

States, U. S. Geol. Survey and Am. Assoc. Petroleum Geologists, 1962).

23 24 25

Piedmont Plateau, Blue Ridge, and Appalachian Basin West of the belt of positive gravity values along the front of the Appalachian Mountain System is a broad expanse with negative gravity anomalies ranging from zero to -100 milligals. The minimum anomalies of -100 milligals are present in the Blue Ridge Province in northeastern Tennessee and northwestern North Carolina, where according to King (1964, p. 19) the -80 milligal contour encloses all the major windows of the thrust sheets of the Southern Appalachians. King suggests that these data indicate that the "surface Precambrian rocks of the southwestern 10- segment of the Blue Ridge province are underlain by a thick body of overridden, deformed Paleozoic and possibly earlier sedimentary rocks." Minimum values of -80 milligals are present in anomalies within the Appalachian Basin, which contains considerable thicknesses of unmetamorphosed Paleozoic sedimentary rocks. 17 18

Regional magnetic anomalies

Coastal Plain

Magnetic observations on the Coastal Plain date back to the early 1930's (MacCarthy, Prouty, and Alexander, 1933; MacCarthy and Alexander, 1934; Jenny, 1934; Johnson and Straley, 1935; and MacCarthy, 1936).

Jenny (1934, p. 413) found northeast magnetic trends in the Coastal Plain of Alabama and Florida and related them to the Appalachian Mountain System, as did Lee, Schwartz, and Hemburger (1945) later. MacCarthy (1936, p. 405, 406) drew similar conclusions about subparallel high and low intensity trends in the Coastal Plain of North and South Carolina. He noted also that these trends curve around the southeastward-trending basement uplift (Cape Fear arch) at Wilmington, discussed earlier by Stephenson (1926, p. 891); that they outline a subsurface Triassic basin near Florence, South Carolina; and that they indicate a distinct change in basement slope near and parallel to the coast.

Maps of vertical magnetic intensity anomalies on the Coastal Plain of North Carolina were published by Skeels (1950, pls. 3 and 4) after the drilling of the deep well at Cape Hatteras (NC-14) in 1946. He compared these with gravity maps (ibid., pls. 1 and 2) and seismic maps (ibid., figs. 3, 19, and 20) of the same area, and noted that both the magnetic and gravity anomalies (ibid., fig. 2) showed north-to-south trends. His conclusions were that the magnetic maps tend to accentuate effects from the upper part of the basement more than do the gravity maps, and that the magnetic properties of the igneous rocks seem to be much more variable than does the density.

In 1959, Elizabeth R. King (1959, fig. 1) published a regional magnetic map of Florida, from which the structural trends of the Precambrian and Paleozoic rocks beneath the Coastal Plain were inferred. Two regional magnetic trends dominate the map. One extends southeasterly from the Florida Panhandle along the southwest side of the peninsula and across the tip of southern Florida toward the Bahama Islands. The second, parallel to the Appalachian Mountain System, crosses northeastern Florida and seemingly is intersected by the first one at the Gulf Coast. Small non-linear anomalies, possibly due to intrusive rocks, separate the two trends in central eastern Florida. King's conclusions, similar to those of Woollard (1949) based on gravity, suggested that the southeasterly trend is a continuation of the Cuachita Mountain System, whose subsurface extension in Alabama and relationship to the Appalachian Mountain System has been the subject of much discussion (King, P. B., 1950, p. 667-668).

S. GOVERNMENT PRINTING CHERCE LIGHT ...

Continental Shelf and slope

Magnetic observations on the Continental Shelf and slope were reported first in 1954 by Keller, Meuschke, and Alldredge (1954), who discussed two aeromagnetic profiles from Fire Island, New York, to Bermuda, and from Ludlam Beach, New Jersey, to Bermuda. They recognized a linear magnetic anomaly near the edge of the Shelf and attributed this to an igneous intrusion, about 48 kilometers wide, into the basement parallel to the coast. This magnetic anomaly at the Shelf edge was noted also by Miller and Ewing (1956, p. 412), Drake, Ewing, and Sutton (1959, p. 175), and Heezen, Tharp, and Ewing (1959, p. 51).

An analysis of ten aeromagnetic profiles across the Shelf and slope by King, Zietz, and Dempsey (1961) established that the anomaly along the buter edge of the Shelf corresponds in position with the basement ridge found by seismic refraction (Drake, Ewing, and Sutton, 1959), but that the intensities do not correspond with depth to basement. The conclusion was drawn that although basement topography may have some effect on the magnetic intensity, the anomaly "may be at least partly the expression of a large mass or series of masses of more magnetic rocks within the basement -- possibly intrusive bodies along a zone parallel to the continental margin at the transition from a continental to an oceanic crust." (p. D303).

11

12

13

14

17

18

22

23

25

A marine magnetic survey by the U. S. Naval Oceanographic Office (1962) provided data on the magnetic anomaly at the Shelf edge between latitudes B4°30'N. and 39°00'N. Conclusions from this survey supported the idea that the anomaly is an expression of a large mass of more highly magnetic rocks in the basement.

Farther north off Nova Scotia, marine magnetic surveys have indicated a broad, low-intensity magnetic anomaly beneath the Shelf edge southeast of Sable Island (Bower, 1962, p. 8). The bathymetric position of this anomaly is similar to that of the one found by Keller, Meuschke, and Alldredge (1954), off the east coast of the United States. Bower (1962, p. 8) believes that the magnetic anomaly near Sable Island could be produced by a large intrusion buried beneath thousands of feet of non-magnetic material. The surveys off Nova Scotia offer no basis for disagreement with seismic evidence (Press and Beckman, 1954, p. 308) for large thicknesses of sedimentary rocks beneath the Shelf in this area.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

11

12

14

16

17

18

19

20-

21

23

24

25

15-

U. S. GOVERNMENT

In 1963, the numerous magnetic observations on the Continental Shelf
and slope were summarized and the anomaly trends plotted on a chart by
Drake, Heirtzler, and Hirshman (1963). Plate 8 shows these high intensity
trends with significant regional trends labelled for this review. The
s-width of the trend lines indicates amplitude, not the width, of the
anomaly. The anomalies are attributed primarily to compositional
differences within the basement, yet these differences are alined so as
to carry certain connotations of regional tectonics.

Long, linear southwesterly trends, despite their crossing and branching
at places, roughly parallel the Appalachian Mountain system and the edge

at places, roughly parallel the Appalachian Mountain system and the edge of the Shelf. This dominant pattern is indicated on plate 8 as the "Appalachian trend." The Appalachian trend terminates in Florida against a southeasterly magnetic trend that Elizabeth King (1959) has suggested as an extension of the Ouachita Mountain system, and is indicated on plate 8 as the "Ouachita(?) trend." The Ouachita trend extends from the vicinity of Tallahassee in northwestern Florida along the southwest coast and across southeastern Florida near Miami to the Bahama Islands. Its identity is lost there in arcuate patterns, perhaps related to an intersection with slope anomaly(?) A of plate 8.

12

13

17

19

The dominant Appalachian trend is interrupted along the 40th parallel,
about 50 miles south of New York, by a linear anomaly more or less alined
with a string of sea mounts extending down the continental rise to the
abyssal plain (see pl. 8). This anomaly has been interpreted by Drake,
Heirtzler, and Hirshman (1963, p. 5270) as a transcurrent fault in the
basement with right lateral displacement of about 100 miles and a total length in excess of 600 miles.

The large anomaly along the edge of the Continental Shelf, commonly referred to as the "slope anomaly," extends from north of Halifax (Bower, 1962, p. 8) to Cape Fear (pl. 8) with one offsetting interruption by the transcurrent fault(?) trend near New York. South of Cape Fear, the slope 5- anomaly branches with one trend (slope anomaly A, pl. 8) continuing parallel to the edge of the Blake plateau and the other (slope anomaly B. pl. 8) extending subparallel to the coast to its termination against the Ouachita(?) trend. Seismic data south of Cape Fear are not sufficient to relate these trends to basement ridges as is possible north 10- of Cape Fear. Either trend A or B may reflect a basement ridge connecting to the basement ridge to the north. If slope anomaly B connects, the basement ridge to the north presumably is related to the Appalachian system in origin. If slope anomaly A connects, the basement ridge may be a feature of continental margins. Recently. Watkins and Geddes (1965) reported on the slope anomaly between Cape Hatteras, North Carolina, and Cape May, New Jersey, where it 16 is 30 to 80 kilometers wide with peak intensities generally 350 gammas more than those of adjacent areas. From comparison of this anomaly to some along the Aleutian Island chain and across the island of Puerto Rico, 20- they drew the inference that the basement ridge along the Atlantic Shelf is a buried, quiescent island arc and that the slope anomaly reflects 22 intrusive and extrusive phases of volcanism during the active tectonic 23 development of the island arc (p. 1357). 24 25-

Principal structural features

The principal structural features of the Atlantic Coastal Plain and Continental Shelf that can be outlined by contours on the basement rocks are shown on plate 4. Named features beyond the limits of the basement contours can be located on figure 6. The principal structural

Figure 6 near here

features are discussed briefly in the following paragraphs; for fuller discussion see Stephenson (1928), Eardley (1962, p. 135-153), and Murray (1961, p. 92-98).

13

2

7

8

9

11

12

15-

17

18

20-

21

23

24

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

867-

13

17

Cape Fear arch

The Cape Fear arch is a southeastward plunging basement nose, the axis of which intersects the North Carolina coastline near Cape Fear.

Variously known as the Creat Carolina ridge, Wilmington anticline,

Carolina ridge, or as used in this report, the Cape Fear arch, it is the most prominent structural feature of the central part of the Atlantic Coastal Plain. It is observable in the Cretaceous outcrop pattern, well data, magnetometer surveys (MacCarthy, 1936, p. 405), and seismic surveys (Bonini, 1955, p. 1533; 1957; Meyer, 1957). The general shape is in the form of a gentle warp, with the axial plunge increasing sharply near the shoreline and gradually diminishing updip toward the Fall Line. Along the axis of the arch from the Fall Line to the coast the basement rocks dip at an average of about 13 feet per mile. The arch is asymmetric in cross section, with the north limb the steeper. Lower Cretaceous rocks and some Upper Cretaceous rocks are missing from the crest of the feature, but are present on the flanks.

Seismic information (Meyer, 1957, p. 81; Hersey, Bunce, Wyrick, and Dietz, 1959, p. 445) indicates that the Cape Fear arch protrudes seaward across the Continental Shelf as a large regional nose in the basement rocks. At the crest of the arch on the coastline, the basement rocks are present at a depth of about 1,100 feet. The basement rocks slope off to depths of 5,000 feet at Cape Lookout, North Carolina, at the north, and 2,500 feet at Cape Romain, South Carolina, on the south.

At the edge of the Continental Shelf, the basement rocks on the crest of the arch are 4,000 feet below sea level.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

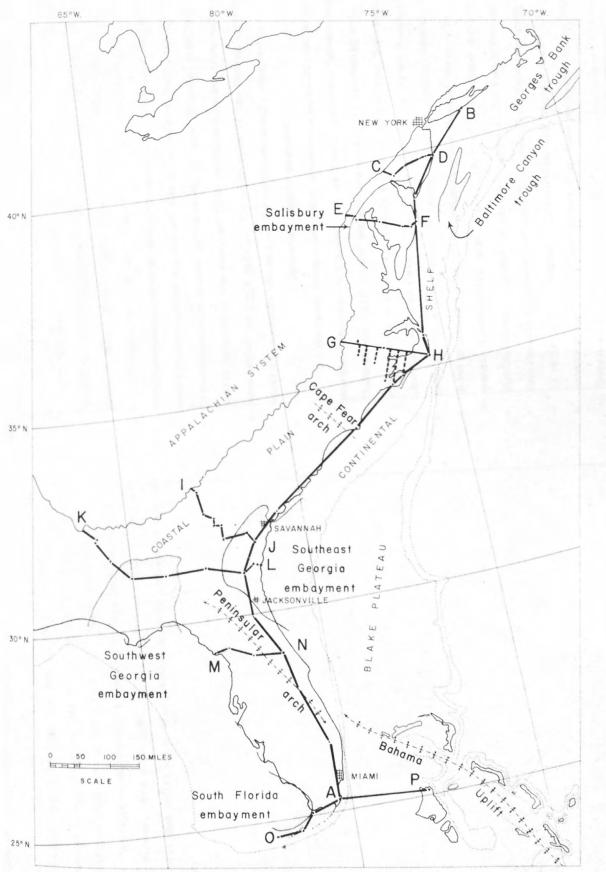


FIGURE 6. INDEX MAP OF ATLANTIC COASTAL PLAIN AND CONTINENTAL SHELF SHOWING PRINCIPAL STRUCTURAL FEATURES AND LINES OF CROSS SECTIONS

The formation of the Cape Fear arch is thought to have been accompanied by down-warping of the flanks, which Cooke (1936, p. 158) believed took place during late Eocene time. Other geologists have dated the origin at different times ranging from early Cretaceous to early Miocene. Both Siple (1946, p. 37) and Eardley (1951, p. 131) have suggested that uplift and erosion probably occurred during more than one stage. 9 10 11 12 14 15-16 17 18 19 20-22 24

Peninsular arch

The dominant subsurface structural feature of Florida and southeastern Georgia is the Peninsular arch. It has a southeast trend and extends from southern Georgia down the axis of the Florida peninsula (Applin, 1951, p. 3; Toulmin, 1955, p. 210). The structure was topographically high in Early Cretaceous and early Late Cretaceous time during which sediments were deposited around it, but not over it -- beds of Austin age rest on Paleozoic rocks in places on the crest. A later (Miocene) auxiliary uplift occurred on the southwest flank of the Peninsular arch, which has been called the Ocala uplift. The north slope of the Peninsular arch marks the southern boundary of the Southeast Georgia embayment.

Southwest Georgia embayment

The Southwest Georgia embayment encompasses parts of southwestern Georgia, southeastern Alabama, and the Florida Panhandle between the Chatahoochee uplift of Alabama and Georgia and the Peninsular arch. It appears to be a relatively shallow reentrant in the Upper Cretaceous (Austin) rocks, as shown by the Tectonic map of the United States (U. S. Geol. Survey and Am. Assoc. Petroleum Geologists, 1962). However, it is quite prominent in the older sedimentary and basement rocks. The contained sedimentary rocks exceed 7,500 feet in thickness north of the Florida-Georgia boundary and probably exceed 15,000 feet offshore.

Considerable thicknesses of Lower Cretaceous rocks have been penetrated by wells in this embayment. The stratigraphy suggests that this embayment was well filled by Lower Cretaceous sediments before Upper Cretaceous rocks were laid down in it.

60

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 51117

867-100

13

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Antoine and Harding (1963, fig. 8) have postulated on geophysical evidence the protrusion of the Peninsular arch (Ocala uplift) southwestward into the Gulf of Mexico. They present structure maps (figs. 6 and 7) showing this in Cretaceous rocks as well as in the basement rocks. If this is the case, the Southwest Georgia embayment is somewhat more constricted offshore than might be expected from the onshore contours shown on plate 4. 10-15-20-

Bahama uplift

A positive structural element extending northwestward through the Bahama Islands was inferred first by Hess (1933, p. 42-45, and fig. 9) from the submarine topography and gravity measurements in that region. He believed that the formation of the long, parallel northwestward=trending submarine valleys between the Islands had been controlled by folded sedimentary formations, rather than by faulted structures. Hess pointed out the need for further geophysical data to determine whether or not the folded Appalachians, or a branch of them, extend under the Bahama region. The same gravity data with many more contributed by oil companies were interpreted in 1959 by Talwani, Worzel, and Ewing (1959, p. 159) as indicative of graben-like downfaulting along the same trend.

In 1947, Pressler (1947, p. 1858) suggested on the basis of the sea-bottom configuration "that the Florida peninsula is bounded on the east and south by major fault zones, and that the Bahaman and Cuban areas are very large faulted segments of the Gulf of Mexico plate or basin."

His sketch map (Pressler, 1947, fig. 1) indicated an anticlinal flexure, which he named the Bahama uplift, plunging northwestward through the (See fig. 6) eastern rim islands of the Bahama group toward Cape Kennedy and terminating against a major fault zone at the edge of the Continental Shelf. Pressler (1947, p. 1853) also suggested a probable close relationship between the Bahama uplift and the southeast-trending basement ridge now known as the Peninsular arch.

1. S. GOVERNMENT PRESIDE OFFICE: 1939 O - 511

I. S. GOVERNMENT PHINCIPAL OF FR. L. 1844 CO. SILI-

In 1961, Murray (1961, p. 101) agreed with earlier concepts in stating that "crystalline and sedimentary rocks of Paleozoic age probably exist beneath the Bahama Islands and form the backbone on which the sedimentary sequence of the islands has accumulated." At the present time, no conclusive geophysical evidence has been published, although it may exist in oil company files, and the one deep well (14,585 feet deep) on Andros Island is insufficient to outline the form or prove the existence of the Bahama uplift.

11

10

14

13

16

18

20-

21

23

24

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511173

867-10

South Florida embayment

The South Florida embayment as described by Pressler (1947, p. 1856) embraced the synclinal area between the Peninsular arch, the Bahama Islands, and Cuba. The axis was believed to extend "along a general line through Great Inagua Island to a point near the south end of Andros Island, thence across the Bahama Banks to the Florida Keys near the north end of Key Largo and across Dade and Monroe Counties to the southwest coast of Florida." Patton (1954, p. 160) restricted the term to the area between the south flank of the Ocala uplift, a Tertiary feature offsetting the Peninsular arch, to the Straits of Florida just south of the Florida Keys. Murray (1961, p. 101) followed Pressler's geographic name and description of the area, but referred to the feature as a basin rather than an embayment. Applin and Applin (1965. p. 15 and 16) point out that data revealed by deep wells drilled among the Florida Keys since Pressler's contribution in 1947 have led to a restriction in the southeastern extent of the embayment. They apply the term "South Florida embayment" to the negative area whose axis 18 "trends about N.65°W. from the eastern end of Florida Bay across the southern tip of the Peninsula and plunges toward the Gulf of Mexico." Oglesby (1965) has presented six structure and thickness maps showing hypothetical closure of the embayment beneath the Gulf of Mexico to form what he terms the "South Florida basin." There is not much evidence for 23 or against this speculation at this time. The position of the South Florida embayment as now known is shown in figure 6. It is well reflected by known thicknesses of Upper

Cretaceous and Cenozoic rocks in and adjacent to Florida Bay. The basement configuration in this area is not known at present.

Southeast Georgia embayment

The Southeast Georgia embayment (Toulmin, 1955), also termed the Okefenokee embayment (Pressler, 1947, p. 1856), is recessed into the Atlantic Coast between Savannah, Georgia, and Jacksonville, Florida. It interrupts the long, uniform slope of the basement off the south flank of the Cape Fear arch and extends southwestward to the Peninsular arch. This embayment is primarily a tectonically passive feature, although it may have undergone some downwarping on the Continental Shelf, where the contained rocks exceed 10,000 feet in thickness. Recently, Murray (1961, p. 96) used the term "Savannah basin" in lieu of Southeast Georgia embayment, but extended the northern limit to the Cape Fear arch in South Carolina so that the terms are not synonymous.

A basement ridge, the Yamacraw ridge, was described from seismic Mayer and Weelland (1956):
studies by Meyer (1957, p. 71); and Woollard, Bonini, and Meyer, (1957, p. 49) as a southwestward projection into the embayment about 15 to 30 miles inland from the coast. A later, more detailed seismic survey by Pooley (1960, p. 21) confirmed the existence of an elongate seismic anomaly but located its axis at the coastline between Parris Island,
South Carolina, and Sea Island, Georgia. Pooley (1960, p. 21, and pl. 2) depicts this anomaly as a basement ridge, not reflected in the overlying beds, about 110 miles long and 40 miles wide, with more than 1,000 feet of relief. Data from subsequently drilled wells at the southern extremity of the anomaly do not substantiate these dimensions. However, they do not necessarily preclude the existence of a relatively minor structural nose in the basement rocks farther north near the South Carolina border.

18

19

21

24

Salisbury embayment

The name "Salisbury embayment" was applied by Richards (1948, p. 54)

to the low area in the basement rocks between Washington, D. C., and

Ocean City, Maryland, without definite north or south limits. Additional

well and seismic data (Tectonic map of the United States, U. S. Geol.

Survey and Am. Assoc. Petroleum Geologists, 1962) suggest now that the

Salisbury embayment is a reentrant on the basement rocks from a line

drawn westward from Newport News, Virginia, along the James River to a

line drawn westward to the piedmont from Atlantic City, New Jersey. This

embayment is fairly prominent in the basement rocks, but loses form in

the younger beds, which suggests that it is a pre-Cretaceous feature

almost filled by Cretaceous sedimentation. At the coastline in Delaware,

it contains about 10,000 feet of Mesozoic and Cenozoic rocks.

This feature is a part of the much larger Chesapeake-Delaware

embayment of Murray, 1961, p. 92), which includes a large portion of the
geosynclinal province north and east of the Cape Fear arch to the Grand

Banks off Newfoundland. Despite the fact that both the Chesapeake and

Delaware Bays from which the name is derived are located within the more
restricted Salisbury embayment, the newer name does not supercede the
term "Salisbury embayment."

21

14

18

19

23

24

25

U. S. SOVERNMENT PRINTING OFFICE 1959 O : MILIT

Baltimore Canyon trough

1

17

22

23

Published seismic work (see Drake, Ewing, and Sutton, 1959, fig. 29) 2 has revealed a long, narrow trough in the basement rocks off the New Jersey and Delaware coast. According to the Tectonic map of the United States (U. S. Geol. Survey and Am. Assoc. Petroleum Geologists, 1962), the basement rocks descend below sea level from 10,000 feet near the mouth of Delaware Bay to more than 16,000 feet about 40 miles offshore and then rise to somewhat less than 10,000 feet at the edge of the Continental Shelf before dropping abruptly to 20,000 feet beneath the 10- continental slope. The trough, as outlined by the 10,000 foot contour. parallels the Shelf edge for about 150 miles from a latitude of about 40° N. to about 38°N., where it apparently crosses the Shelf edge to 12 the slope. Along its western side, it exhibits a bulge landward toward Delaware Bay. This bulge corresponds somewhat to the much wider Salisbury 15- embayment on land.

Inasmuch as this relatively unexplored trough is important not only
to the continental history, but also perhaps to petroleum exploration
yet to come, this negative feature has been designated the <u>Baltimore</u>
Canyon trough (Maher, 1965, p. 6). Baltimore Canyon is a submarine
physiographic feature shown on the U. S. Coast and Geodetic Survey Nautical
Charts 1108 and 1109 at the approximate location where the trough
intersects the edge of the Shelf.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

24

Georges Bank trough

A long, canoe-shaped trough in the basement rocks off Cape Cod has been found by geophysical programs of oceanographic institutions (see Drake, Ewing, and Sutton, 1959, fig. 29). This trough is completely 5- enclosed by the 10,000-foot contour shown on the Tectonic map of the United States (U. S. Geol. Survey and Am. Assoc. Petroleum Geologists, 1962), and does not reach 15,000 feet in depth. It is about 215 miles long and 25 to 30 miles wide in places. Seismic velocities suggest that it also contains Mesozoic and Cenozoic rocks. The name "Georges Bank trough" has been used for identification (Maher, 1965, p. 6) because of its close proximity and subparallelism to Georges Bank, a submarine physiographic feature shown on U. S. Coast and Geodetic Survey Nautical Charts 1107 and 1108. 13 14 15-17 22

1. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Emerald Bank trough

As a result of their refraction seismic investigations, Officer and Ewing (1954, fig. 6) have reported an oval-shaped trough in the crystalline basement beneath the Continental Shelf about 120 to 150 miles off Halifax, Nova Scotia Its axis crosses the 62°W. long. meridian at approximately 43°15'N. lat. (pl. 4) near Emerald Bank, (See U. S. Hydrographic Chart 6610), for which it is herein named. The east end has not been defined by seismic work, but assuming that the 10,000-foot contour closes eastward about as it does westward, the trough may be as much as 120 miles long and 40 miles wide. The basement rocks off Halifax slope very gently from shore to a depth of 8.000 feet. then descend to 14,000 feet and rise to 10,000 feet before dropping abruptly to 20,000 feet beyond the Shelf edge. Seismic velocities suggest that this basin is filled with consolidated sediments that Officer and Ewing (1954, p. 664) regard as most likely to be Triassic in age. Woollard, Bonini, and Meyer (1957, p. 70) agree that the consolidated sediments could be Triassic, but believe that they are more likely Paleozoic in age. The overlying semiconsolidated and unconsolidated rocks thought to be Cretaceous and Cenozoic in age respectively do not seem to reflect the underlying structure or topography (Officer and Ewing, 1954, fig. 2).

13

16

17

18

19

21

22

23

24

25

Stratigraphy

by J. C. Maher and E. R. Applin

Regional setting

The Appalachian Mountain System, a highland of Paleozoic and older rocks, extends almost the full length of eastern North America (pl. 4). It consists of the Blue Ridge -- a narrow anticlinorium of early Paleozoic and Precambrian rocks extending from Pennsylvania to Georgia -- and the Crystalline Appalachians -- a long, broad belt of intensely deformed and intruded Paleozoic rocks extending from the Canadian Maritime Provinces to Alabama.

Triassic, Cretaceous, and Tertiary rocks flank the Crystalline Appalachians from New York southward and crop out roughly parallel to the present Atlantic toastline (pl. 4). Triassic outcrops are confined to scattered down-faulted basins within the piedmont. Lower Cretaceous outcrops are recognized in part of the Salisbury embayment (Geologie map of the United States, 1932) and may be represented farther south as thin clastic beds mapped with the basal Upper Cretaceous. Upper Cretaceous rocks crop out almost continuously along the Fall Line from eastern Alabama to the north flank of the Cape Fear arch in North Carolina, and from Virginia to New York. Tertiary rocks crop out in broad patterns throughout the Coastal Plain except on the Cape Fear arch and where masked by a veneer of alluvial deposits.

U. S. GOVERNMENT PROVING OFFICE: 1989 O + SILLY

ec.

11

12

13

14

16

17

18

19

21

23

The Cretaceous and Tertiary rocks exposed from southern Georgia northward to Long Island are mainly nearshore marine and continental clastics interspersed with some thin lignitic layers and marl beds.

Seaward, these rocks become marine in character and thicken to more than 10,000 feet at the coastline. Cretaceous rocks do not crop out in Flerida and southern Georgia and Florida, and only part of the Tertiary sequence is exposed in that area. Both are dominantly marine carbonates in the subsurface and exceed 15,000 feet in thickness in the Florida Keys and Bahama Islands. The marine carbonate units in southern Georgia and Florida, though less distinctly separable lithologically, are more uniform in character and thickness and more susceptible to paleontologic dating than the clastic beds farther north along the coast. In addition, much more subsurface control is available from the more than 300 wells drilled in Florida alone.

Little is known of the lithologic aspects of the rocks beneath the Continental Shelf, as no deep tests have been drilled offshore. However, refraction seismograph surveys indicate the possibility of thicknesses of more than 10,000 feet in several offshore negative features of the basement rocks. The Baltimore Canyon trough off New Jersey may contain more than 15,000 feet of sedimentary rocks. The Georges Bank trough off Cape Cod is thought to contain over 10,000 feet of sedimentary rocks. The fact that more than 10,000 feet of shelf-type sedimentary rock is present in the Cape Hatteras well suggests that similar types of rocks could be present farther out on the Shelf in these troughs.

The basement surface upon which Mesozoic rocks were deposited appears to be relatively smooth, having well-rounded topographic features and few structural irregularities. Not enough wells have been drilled to be certain of this, but the few well records available and published seismic work suggest a gentle slope of about 15 feet a mile from the outcrop to a about 3000 depth of 2,500 feet. Below this depth the slope steepens somewhat sharply to more than 100 feet a mile.

The basement rocks are primarily igneous and metamorphic rocks of Precambrian and Paleozoic age. These include a wide variety of granite, diorite, gneiss, schist, tuff, volcanic ash, rhyolite porphyry, gabbro, basalt, and diabase. The basic igneous intrusives are found in both Paleozoic and Triassic rocks, and in some wells the Triassic intrusives have been regarded incorrectly as pre-Mesozoic basement. Paleozoic sedimentary rocks ranging from Early Ordovician to Middle Devonian in age are present in the basement in northern and western Florida and southern Georgia (Applin, 1951, p. 11-15; Bridge and Berdan, 1951, 1952; Carroll, 1963).

20-

Submarine outcrops and bottom deposits

The first knowledge of submarine outcrops of the Coastal Plain strata along the Atlantic Coast came from rocks dredged by trawlers along the Grand Banks, Banquereau, and Georges Bank. These were collected in 1878 by Upham (Verrill, 1878, p. 324) in the service of the U. S. Fish Commission at Gloucester, Massachusetts, and were reported by Verrill (1878, p. 323) and Upham (1894, p. 127) to contain Tertiary fossils. Much later, Dall (1925) reviewed and revised the paleontology of these rocks and noted Late Cretaceous species in one boulder from Banquereau (p. 215). He expressed "little doubt that Late Cretaceous and Tertiary fossiliferous deposits originally existed along the northeastern coast from Newfoundland southward, as far as the area of glaciation extended, though in most cases the only evidence remaining is the presence in the glacial debris of fragmentary portions of the original deposits." (p. 213).

Bottom deposits along the Atlantic Coast were first known from ship soundings, storm deposits on the beaches, and sediments accidently dredged in fishing and anchoring operations. Pebbles and boulders of granite, gneiss, and schist found in nets and lobster traps gave early evidence of glacial debris on bottom in the fishing grounds. Pourtales (1850, 1854, 1871, 1872), and Bailey (1851, 1854) produced much of the early information about the sea bottom along the Atlantic Coast. As early as 1879, the U. S. Coast and Geodetic Survey (1879) published bottom studies of the Gulf of Maine pointing out the presence of pebbles and small stones on the top of Georges Bank.

Agassiz (1888, p. 260-293) discussed submarine deposits and presented a map (fig. 191) of bottom sediments in the Gulf of Mexico, Caribbean Sea, and western Atlantic Ocean. Later publications concerning bottom sediments along the Atlantic Coast are numerous and detailed. Some of the more recent ones that can supply further references and details not pertinent to the scope and purpose of this report are those written by Burbank (1929), Alexander (1934), Stetson (1938), Hough (1940), Hough (1942), Sanders (1958), Moore and Gorsline (1960), Wigley (1961a, 1961b), McMaster (1962), Moore and Curray (1963), Schlee (1964), Gorsline (1963), Pilkey (1964), Uchupi (1964), Stewart and Jordan (1964), Emery, Merrill, and Trumbull (1965), Emery, Wigley, and Rubin (1965), Nota and 11 Loring (1964), Merrill, Emery, and Rubin (1965), and Pratt and McFarlin 13 (1966).14 15-16 17 18 21 22 23 24

P. S GOVERNMENT PRINTING OFFICE 1959 O

U. S. GOVERNMENT

Systematic investigations of subbottom sediments and strata along the Atlantic Coast by means of dredging, coring, and undersea photography were begun about 1930 by several oceanographic institutions. Large quantities of data have been accumulated in these continuing programs. Data on the composition and age of samples and cores have been reported by many workers including Shepard, Trefethen, and Cohee (1934), Shepard and Cohee (1936), Bassler (1936), Cushman (1936, 1939), Stephenson (1936), Stetson (1936, 1938, 1949), Northrop and Heezen (1951), Ericson, Ewing, and Heezen (1952), and Heezen, Tharp, and Ewing (1959). The regional aspects of bottom sediment and submarine outcrop distribution in the Atlantic Ocean are discussed at length by Ericson, Ewing, Wollin, and Heezen (1961), and Uchupi (1963). Detailed studies of samples and photographs of the bottom of the Tongue of the Ocean in the Bahama Islands have been reported by the Marine Laboratory. University of Miami (1958), Busby (1962a, b, and c), and Athearn (1962a, b). The location and age of samples and cores listed in these publications are shown on plate 2.

13

17

18

24

Artesian submarine springs off the Florida coast have provided some stratigraphic and structural information about the upper strata of the Shelf. Rude (1925) described an oceanic spring about $2\frac{1}{2}$ miles east of Crescent Beach near St. Augustine (pl. 2). This spring and another in the Gulf of Mexico about 500 feet west of Crystal Beach in Pinellas County are the only ones that have been charted (U. S. Coast and Geodetic Survey Charts 3258, 1111, and 1257), although others have been reported along the east coast between lat 28°N. and 30°N. (Stringfield, 1964, written commun.). Stringfield and Cooper (1951) made a detailed report on the geological and hydrological features of the spring in the Atlantic Ocean off Crescent Beach. Sobieralski (in Rude, 1925) described the spring as follows:

"The ocean bed in the vicinity of the spring is comparatively level and about 55 feet deep, composed of fine gray sand. The spring emerges from a hole only about 25 feet in diameter and 125 feet deep or 69 feet below the bed * * *

"To the northeast of the center of this spring, the hole is enlarged to a diameter of about 300 feet; this shape of the enlarged hole probably directs the current from the spring in the northeasterly direction noted on the surface."

U. S. GOVERNMENT PRINTING OFFICE | 1959 O - 511171

12

14

Stringfield and Cooper (1951, p. 63) point out the similarity in shape of this submarine spring to those discharging through sink holes formed during Pleistocene time when the sea stood at lower levels. They conclude that the aquifer is the Ocala Limestone of upper Eocene age and the confining beds, about 100 feet thick at the spring, are the Hawthorn Formation of Miocene age and younger deposits. The artesian head at the spring cannot be measured, but must be in the order of 25 to 30 feet above sea level judging by the 30-foot head in Ocala wells at nearby Crescent Beach. The chloride content of the spring water has not been accurately determined because of sampling difficulties. It would be safe to assume it is in excess of 4,000 parts per million, the chloride content of water from wells at Crescent Beach. The temperature measured at a depth of 121 feet over the spring was 71.5°F; that at the ocean surface ranged from 62° to 64°F. Temperatures of water from Ocala wells onshore range from 74° to 82°F, which suggests that the reading at the bottom of the spring is low due to admixture of cooler sea water (Stringfield and Cooper, 1951, p. 69).

12

13

14

16

17

18

19

21

22

23

24

Shoals marking the seaward continuation of outcrops onshore also provide important clues to the structural attitude and stratigraphic sequence of beds forming the top of the Shelf. The Trenton Marlsof lower Miocene age crops out on the fishing banks known as "Black Rocks" off the coast of North and South Carolina (Pearse and Williams, 1951). These banks range from close inshore out to a depth of about 20 fathoms, or 120 feet, where the Cape Fear arch plunges seaward. They appear to represent the underwater continuation of Miocene strata around the nose of this structure.

An interesting limestone outcrop of unknown age has been photographed at a depth of 1,000 fathoms, or 6,000 feet, in the Tongue of the Ocean (see fig. 2) of the Bahama Islands (lat 24°41'49"N., long 77°35'01"W.). According to Busby (1962B, p. 5-12), this indurated limestone outcrop is 24 feet long with a sharp scarp three feet high striking northeast as a smooth vertical to concave wall. The limestone has depressions or cavities, two to 24 inches across and as much as 12 inches deep. In many instances, the bottom of the cavity is covered with unconsolidated sediment. Some cavities are interconnected to form a 10- network of channels, and most have sharp, angular rims. Busby concludes that the features of this outcrop have resulted from solution in a subaerial or littoral environment with subsequent lowering to its present depth. He mentions the possibility that this outcrop may be a slump block from the surrounding platform, but inclines toward the view 15- that the outcrop is in place and has been lowered about 6,000 feet to its present depth either by gradual subsidence or block faulting.

Busby (1962C, p. 61) reports also that an outcrop of well-lithified calcareous material or semilithified bottom material has been photographed at lat 23°27.4'N., long 76°58.8'W. in the cul-de-sac of the Tongue of the Ocean. The outcrop of indeterminable thickness strikes northeast at a depth of 4,020 feet. In one photograph, a slab of outcropping material appears to have moved, or is now moving, in a southerly direction. Steep-sided circular pits or depressions a few centimeters in depth and diameter are visible in other photographs.

U. S. GOVERNMENT PRINTING DEVICE - 1959 O - WITH

12

14

Pre-Mesozoic submarine outcrop

The oldest rock recovered from the sea bottom along the Atlantic
Pinnacles
Coast has come from the granite of late Paleozoic-to early Mesozoic(?)age (Toulmin, 1957, p. 914) at a depth of about five fathoms on Cashes
Ledge near the middle of the Gulf of Maine (pl. 2 and fig. 2). This
granite is similar in composition to the Quincy Granite exposed in large
areas of nearby eastern Massachusetts and Rhode Island. LaForge (1932,
p. 35) considered the Quincy Granite to be either Devonian or Mississippian
in age.

Cretaceous submarine outcrops

10-

Rocks of Cretaceous age have been dredged from the east walls of 11 Oceanographer and Gilbert Canyons off Georges Bank and from the escarpment 12 of the Blake Plateau opposite Cape Kennedy (pl. 2 and fig. 2). In addition, cobbles of chalk containing Cretaceous Foraminifera have been 15- found in a core from the floor of Northeast Providence Channel, 11,096 feet beneath the sea between the Bahama Islands, and reworked Cretaceous 17 Foraminifera have been identified in a core of coarse glauconitic sand on the continental rise, 155 miles southwest of Cape Hatteras (Ericson. 19 Ewing, and Heezen, 1952, p. 503, 505). The cobbles and sand containing Cretaceous Foraminifera suggest that Cretaceous beds crop out in the canyon walls in the Bahamas and possibly along the Shelf or slope in the vicinity of Cape Hatteras. The suggested presence of Cretaceous beds in the Bahama canyon walls is supported indirectly by the log of the 14,585 foot well (BA-2, pl. 1, table 1) drilled on Andros Island. This well was drilled only a few miles inland from Northeast Providence Channel. It penetrated Upper Cretaceous rocks at a depth of about 8,220 feet and Lower 25-Cretaceous rocks at about 10,760 feet. The latter depth is very close to the maximum depth (1,800 fathoms) of the canyon floor opposite the well

Rocks of Woodbine(?) age:--The oldest Cretaceous rock recovered from the sea bottom is a core from the escarpment of the Blake Plateau (lat 28°52'N., long 76°47'W.) opposite Cape Kennedy at a depth of 1,745 meters or 5,724 feet (Ericson, Ewing, Wollin, and Heezen, 1961, p. 236). This core consists of dark grayish-green slightly sandy lutite containing Foraminifera which, according to Loeblich (in Ericson, Ewing, Wollin, and Heezen, 1961, p. 236), are Cenomanian and a little younger than the surface Washita in Texas and Oklahoma. Inasmuch as the Cenomanian stage of Europe straddles the Lower and Upper Cretaceous boundary and includes rocks of both Washita and Woodbine age in North America, the lutite in the core appears to be Woodbine in age.

Rocks of Taylor age:--Rocks of Taylor age have been dredged by
Stetson (1949, p. 33) from depths between 599480 meters (1,955-1,574
feet) and 585-231 meters (1,919-758 feet) along the east wall of
Oceanographer Canyon (fig. 2). The dredged material consisted of poorly
sorted, coarse-grained, silty sandstone and friable coarse-grained
sandstone containing considerable amounts of glauconite and feldspar.
Stephenson (1936, p. 369-370) and Bassler (1936, p. 411) identified a
Cretaceous fauna from the sandstones, which Stephenson thought
corresponded to strata either in the upper part of the Matawan Group or
in the lower part of the Monmouth Group. He later (in Stetson, 1949,
p. 8) assigned the sandstones to the Matawan Group of New Jersey and
Maryland, which is equivalent to the Taylor rocks of the Gulf Coast.

Rocks of Navarro age: --Rocks of Navarro age were dredged by Stetson (1949, p. 33) from depths of 950 meters (3,116 feet) along the east side of Oceanographer Canyon and from 600-530 meters (1,968-1,738 feet) and 758 meters (2,486 feet) along the east side of Gilbert Canyon (fig. 2). The material dredged from Oceanographer Canyon consisted of a dark-colored, partly indurated, micaceous silty clay that contained a Late Maestrichtian or Navarro fauna that Cushman (in Stetson, 1949, p. 10) correlated with the Kemp clay of northeast Texas. The Navarro rocks from Gilbert Canyon consisted of a friable, coarse greensand and limonite-stained, micaceous, fine-grained sandstone containing Foraminifera characteristic of beds of Navarro age (Maestrichtian), according to Cushman (1936, p. 413, and in Stetson, 1949, p. 10).

14

16

10

Tertiary submarine outcrops

Shore cores and dredgings of Tertiary rocks have been recovered at more than three dozen localities concentrated for the most part between Georges Bank and the Hudson Canyon, and in the Blake Plateau-Bahama Banks region (pl. 2 and fig. 2). Recently Marlowe (1965) has reported probable Tertiary sediments from a submarine canyon off Nova Scotia. Paleocene rocks have not been recovered in short cores and dredge hauls along the Atlantic Coast, although they are known to be present beneath the Shelf and Blake Plateau off northeastern Florida (see Offshore test holes) and beneath the Bahama Islands (well BA-2, pl. 1, table 1).

Eocene rocks:--Five shore cores of Eocene marl and chalk have been recovered from the continental slope between Georges Bank and the Bahama Islands. Two cores were taken near the middle of the continental slope about 90 miles southeast of Marthas Vineyard. One by Stetson (1949, p. 33) from a depth of 880 meters or 2,886 feet at lat 39°50'00"N., long 70°48'00"W. contained Foraminifera of Jackson age. The second one nearby, taken by Northrop and Heezen from a depth of 1,000 meters or 3,280 feet at lat 39°50'N., long 70°50'W., was reported by Fox (in Northrop and Heezen, 1951, p. 397-398) to contain Foraminifera commonly found in upper Wilcox, Claiborne, and Jackson beds, but over-all resembling mostly the fauna of Jackson age. D. B. Ericson is quoted by Northrop and Heezen (1951, p. 398) as stating that "the assemblage is not as rich as that in Stetson's core and is slightly older."

P. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

11

13

16

Two Eocene cores have been taken from near the base of the continental slope in the vicinity of the Hudson Canyon. Stetson (1949, p. 33) reported that a core from a small gully southwest of Hudson Canyon (lat 38°58'00"N., long 72°28'30"W.) at a depth of 1,565 meters or 5,133 feet contained microfossils identified as an upper Eocene fauna by Cushman (1939, p. 49). This core was rich in Radiolaria as compared to those from the middle of the slope. A second Eocene core from the base of the slope near Hudson Canyon (lat 39°12'N., long 71°48'W.) was recovered from a depth of 2,167 meters or 7,108 feet about 25 miles from the Shelf edge. Ericson, Ewing, and Heezen (1952, p. 502) reported it to be upper Eocene in age and similar to that recovered by Northrop and Heezen (1951) from the continental slope.

A single Eocene core has been reported from the escarpment of the Blake Plateau (lat 29°49'N., long 76°35'W.) at a depth of 1,455 meters or 4,772 feet, by Ericson, Ewing, Wollin, and Heezen (1961, p. 236). They state that Bolli concluded the planktonic species of Foraminifera compare well with those of the upper Eocene Hospital Hill Marl and Mount Moriah Formation of Trinidad.

17

18

19

25

Oligocene rocks:--Oligocene chalk has been cored by Ericson, Ewing, Wollin, and Heezen (1961, p. 236) on the escarpment of the Blake Plateau (lat 29°12.5'N., long 76°49'W.) at a depth of 2,140 meters or 7,019 feet. Bolli (in Ericson, Ewing, Wollin, and Heezen, 1961, p. 236) compared the assemblage of Foraminifera to that in the Globigerina ciperoensis zone of the late or middle Oligocene Cipero Formation of Trinidad.

Miocene rocks: -- Miocene rocks have been recovered in 19 tows and cores along the Atlantic Coast. These have come from submarine canyons off Georges Bank, from shoals on the Cape Fear arch, and from the top and edge of the Blake Plateau.

Highly indurated, greenish, fine-grained sandstone containing a fauna similar to the Yorktown Formation of middle to upper Miocene age was found in place along the east wall of Lydonia Canyon (lat 40°23'00"N., long 67°38'30"W.) at a depth of 283 meters or 928 feet. This location is high on the continental slope, just beneath the edge of the Shelf. Similar sandstone with the same fauna has been dredged up as talus in two places along the east side of Hydrographer Canyon (lat 40°09'00"N., long 69°03'20"W., depth 319-410 meters or 1,319-538 feet), and in one place in Corsair Canyon (lat 40°21'20"N., long 66°08'20"W., depth 493-237 meters or 1,617-787 feet) (Stetson, 1949, p. 11, 33). The first two occurrences of Miocene talus are in the upper part of the continental slope, whereas the third is near the middle.

Stetson and Pratt (Uchupi, 1963, written commun.) dredged ten samples of semiconsolidated and consolidated Globigerina and Pteropod ooze from the top of the Blake Plateau. Four samples came from the area between lat 31°48'N. to 35°58'N. and long 77°18.5'W. to 77°34'W. in depths ranging from 639 to 828 meters (2,096 to 2,716 feet); six samples came from an area between lat 30°53.5'N. to 30°59.6'N. and long 78°13'W. to 78°47'W. in depths of 801 to 914 meters (2,427 to 3,089 feet). Three of these ten samples were found by Ruth Todd to contain foraminiferal assemblages that are either fossil or a mixture of fossil and Recent species. She tentatively classified these as Miocene. They are from Lat 31°58'N., long 77°18.5'W. at a depth of 801 meters (2.427 feet): lat 31°48'N., long 77°35'W. at a depth of 639 meters (2,096 feet); and Lat 30°58'N., long 78°31'W. at a depth of 810 meters (2.657 feet).

14

16

17

18

20-

21

23

24

15

Three cores of Miocene rocks have come from the edge of the Blake Plateau. One from lat 28°35.5'N., long 77°10'W. at a depth of 1,005 meters (3.296 feet) contained a fauna ranging in age from late Miocene at the bottom to Recent at the top, through a thickness of only 443 cms. (Ericson, Ewing, Wollin, and Heezen, 1961, p. 235). Late Miocene Foraminifera were found in abundance from 443 to 220 cms. and only rarely from 200 to 130 cms. Pliocene and Pleistocene Foraminifera were found in the upper 130 cms. The core bore no evidence of slumping, so it is assumed that sedimentation from late Miocene time to Recent is represented in this 443 cm. core. Another core at lat 30°04'N., long 76°57'W. at a depth of 1.080 meters (3.542 feet) consisted of 660 cms. of Miocene chalk and 155 cms. of Pleistocene and Recent ooze (Ericson, Ewing, Wollin, and Heezen, 1961, p. 236). The third core from lat 30°23'N., long 76°35'W. at a depth of 1,865 meters (6,117 feet) was made up of 326 cms. of pyritic clay of Miocene age and 54 cms. of Globigerina and Pteropod ooze of Pleistocene and Recent age. A single specimen of Miocene marl (Chipola Formation) has been by Bush (1951) reported/from the sea bottom in the western part of the Straits of Florida, which connect the Atlantic Ocean and Caribbean Sea. It was accidently dredged from a depth of 686 meters (2,250 feet) at lat 24°10 N., long 81°31'W. Bush (ibid., p. 102) believes this specimen to have come from a submarine outcrop. 23 24

U. S. GOVERNMENT PRINTING OFFICE - 1959 G - 511171

867-10-

Neogene rocks: -- Numerous samples recovered by Ericson, Ewing, Wollin, and Heezen (1961, p. 234-241) contained a mixed assemblage of Miocene and Pliocene microfossils. These rocks are thought most likely to be late Miocene in age, but are assigned the more inclusive Neogene age for lack of conclusive evidence. Four of these cores came from the Hudson Canyon near the base of the continental slope at depths of 3,330 to 3,820 meters (10,922 to 12,530 feet) and consisted of green marcasitic silt. Two cores from the escarpment of the Blake Plateau (lat 28°42'N. long 76°46'W., and lat 28°26'N., long 76°40'W.) at depths of 1,260 meters (4,133 feet) and 1,730 meters (5,674 feet) contained Neogene foraminiferal ooze beneath 70 to 105 cms. of Pleistocene foraminiferal sand. Three cores from the walls of Northeast and Northwest Providence Channels in the Bahamas found Neogene green marcasitic silt, hydrotroilite, and Globigerina ooze beneath 110 to 215 cms. of Pleistocene and Recent Globigerina ooze. The thin layers of ooze suggest very slow sediment accumulation on the lower continental slope since Miocene time.

Pliocene rocks:--Stetson (1936, p. 350; 1949, p. 12) dredged a friable very fine-grained greensand from depths of 640 to 512 meters (2,099-1,679 feet) up the east wall of Lydonia Canyon (lat 40°27'00"N., long 67°39'30"W.). According to Cushman (1936, p. 414), most of the species of Foraminifera in the greensand are similar to living species now confined to warmer southern waters, and seemingly indicate that they were deposited in late Tertiary time, before the northern Atlantic coastal waters were cooled by Pleistocene ice accumulations.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

11

12

13

14

Tertiary or Quaternary bottom deposits

Late Pliocene or Pleistocene deposits: -- Samples of hard green silt of either late Pliocene or Pleistocene age have been dredged by Stetson (1949, p. 13) from Oceanographer Canyon (lat 40°24'30"N., long 68°07'30"W.) at depths of 596-480 meters (2,055-1,574 feet); from Gilbert Canyon (lat 40°29'45"N., long 67°51'15"W.) at depths of 600-530 meters (1,968-1,738 feet), and from Lydonia Canyon (lat 40°27'00"N., long 67°39'00"W.) at depths of 640-512 meters (2,099-1,679 feet). Some Foraminifera in these samples had the same late Pliocene resemblances that were found in the greensand referred to the Pliocene, but the rest of the assemblage suggested a distinctly colder sea environment. In 11 addition, there was a greater proportion of living species in the green 12 silt than in the greensand. Cushman (1936), p. 414) expressed the 13 opinion that the green silt, representing a cold environment, is younger 14 than the greensand and it is therefore late Pliocene or Pleistocene in age. Ericson, Ewing, Wollin, and Heezen (1961, p. 234) thought it 16 improbable that the green silts from canyons on Georges Bank were 17 Pleistocene because the lithology and fauna differ strikingly from 18 sediments of known Pleistocene age found elsewhere in the Atlantic. A 19 similar green silt was cored by them near Hudson Canyon (lat 39°25'N., long 71°23'W.) at a depth of 1,400 meters (4,512 feet). 21

89

22

23

24

Quaternary bottom deposits

Pleistocene and Recent deposits:--Numerous samples of Pleistocene and Recent materials have been dredged by Stetson (1949, p. 15-21) from canyons ranging from Corsair Canyon on the north to Norfolk Canyon on the south (See pl. 2 and fig. 2). Phleger (in Stetson, 1949, p. 53) reported a subarctic foraminiferal fauna beneath the Recent temperate fauna and assigned a Wisconsin age to the lower sediments in the cores. Stetson (1949, p. 15) pointed out that the Wisconsin sediments consist mainly of clay and the finer grades of silt, and that these sediments are gray or pink while wet in contrast to the overlying Recent sediments, which are greenish while wet and consist mainly of the coarser grades of silt and very little clay.

Ericson, Ewing, Wollin, and Heezen (1961, p. 202-228) have presented much later information on the lithology, particle-size distribution, and areal distribution of Pleistocene and Recent sediments both in the Atlantic and Caribbean regions. They concluded from variations in the planktonic Foraminifera in 108 cores and by extrapolation of rates of sediment accumulation determined by 37 radiocarbon dates in 10 cores that the last period of climate comparable with the present ended about 60,000 years ago and that a faunal change caused by a warming climate, and probably corresponding to the beginning of postglacial time, began about 11,000 years ago.

23

11

12

13

14

16

17

19

15-

25

U. S. GOVERNMENT PRINTING OFFICE: 1959 G - 511171

In addition to the Pleistocene silts and clays found in cores, patches of Pleistocene gravel and boulders of glacial origin are present on the Shelf from Cape Hatteras northward to Nova Scotia (Uchupi, fig. 94.1, 1963). Shepard, Trefethen, and Cohee (1934), p. 294) reported that pebbles and granules of granite and gneiss predominate in the gravels on Georges Bank and that quartzite and felsite are common. They also noted many boulders with flat polished faces, and some with striations, from this area. Wigley (1961) made a detailed analysis of the bottom sediments of Georges Bank and presented maps showing 10- well-sorted sands on much of the Bank and less well-sorted gravel in the channels and on the northern and eastern parts (figs. 2 and 8, p. 11 183). Presumably the gravel and most of the sand is Pleistocene in age. Schlee (1964) recently pointed out the possible economic value of 13 another extensive gravel deposit off New Jersey, first noted by Shepard 14 (1932, fig. 1, p. 1020). 15-16 17 18 19 21 22 23 26

Recent sediments have been the subject of intensive investigations sponsored by the U. S. Navy in the Tongue of the Ocean (see fig. 2) of the Bahama Islands (Marine Laboratory, University of Miami, 1958; Athearn, 1962A, B; Busby, 1962A, B, C). Some general conclusions about the composition and origin of these Recent sediments have been drawn by Busby (1962C, p. 64, 65) from these studies. The channel floor is covered by a relatively featureless, poorly sorted, unconsolidated ooze composed largely of tests of planktonic Foraminifera and pteropods, and reef detritus. The ooze, almost wholly calcium carbonate, consists mainly of silt-size particles; samples from the central reaches of the channel exhibit more sand than those from the sides. More than 50 percent of the sediment column sampled in the central and cul-de-sac areas of the Tongue of the Ocean gave evidence of turbidity current deposition, whereas samples from the flanks of the platform suggested that the sediment particles there accumulated directly from the overlying water. It appears that turbidity currents originate on the upper flanks of the platform, flow down gullies at relatively high velocities, and spread the load locally on the lower channel floor. Bottom ripple marks photographed at a depth of 1,000 fathoms suggest a bottom current of at least 0.3 to 0.7 knot.

11

12

C. S. GOVERNMENT I RINTING OFFICE : 1984 th - WILLIAM

The areal distribution of bottom sediments of Quaternary age on the continental margin off the eastern United States has been compiled on a map and discussed in a report by Uchupi (1963). The complete list of references dating from 1850 through 1962 attached to the report can be useful for anyone seeking more detailed information. Uchupi (p. C132) summarizes the areal distribution as follows:

"Relict glacial sediments blanket most of the continental shelf
north of Hudson Canyon, and relict fluvial or nearshore quartzose sands
occur throughout most of the shelf from Hudson Canyon to Cape Hatteras.
Calcareous organic and authigenic sediments are the dominant sediment
types on the continental margin farther south. Present-day detrital
sediments are restricted to a narrow zone near shore, to the outer edge
of the shelf off Long Island, and to the continental slope of Cape
Hatteras. The predominance of relict and calcareous sediments indicates
that present rate of deposition of detritus derived from land is very
low over most of the continental shelf."

20-

U. S. GOVERNMENT FRINTING OFFICE (1988 U = 1/11)

Offshore test holes

Eight test holes penetrating Tertiary rocks from 171 to 1,050 feet have been drilled and cored off Georgia and northeastern Florida. Two were drilled by the U. S. Coast Guard at one location (GA-88, plate 1) about 10 miles offshore from Savannah (McCollum and Herrick, 1964). Six were drilled under the JOIDES (Joint Oceanographic Institutions Deep Earth Sampling) program at locations (FL-117-122, plate 1) ranging from 27 to 221 miles offshore from Jacksonville and Cape Kennedy (JOIDES, 1965).

U. S. Coast Guard test holes off Savannah, Georgia

The U. S. Coast Guard test holes were drilled in 1962 on the Shelf in 54 feet of water at lat 31°56′53.5N., long 80°41′00″W. to determine physical properties significant in foundation design for a proposed light tower to replace the Savannah lightship. Seismic surveys prior to the test drilling indicated a north-trending linear zone of slight structural disturbance and possible faulting, according to consulting engineering reports referred to by McCollum and Herrick (1964) in a paper from which the information in this discussion has been extracted.

The oldest formation reached in this drilling was the Ocala Limestone of upper Eocene age. Comparison of the test holes with water wells on land reveals that rather uniform thicknesses of Oligocene, lower Miocene, and middle Miocene strata extend from shore seaward for at least ten miles. However, both the upper Miocene rocks and the Pleistocene and Recent deposits decrease in thickness seaward, the most significant decrease being in the upper Miocene thickness, which ranges from about 145 feet inland to only 10 feet at the tower site. No facies changes were

E. A. GOVERNMENT PROVIDED DEVICE 1995 to - SILL I

reported in the upper part of the Ocala Limestone or in the Miocene rocks, but it was noted that the Oligocene rocks, which consist predominantly of fossiliferous limestone inland and sandy limestone at the coast, grade seaward into a limy sandstone facies at the proposed tower site.

11

12

13

14

17

18

19

21

23

24

15 16

Structurally, the U. S. Coast Guard test holes appear to lie on a gentle upwarp parallel to a broad shallow syncline that plunges southward beneath the Coastal Plain as mapped on the lower Miocene limestone by McCollum and Counts (1964, plate 1). McCollum and Herrick (1964, p. C63) conclude that downwarping of the shallow syncline may have begun in the Oligocene or possibly even earlier, but that the principal downwarping occurred during the late Miocene.

JOIDES test holes off Jacksonville, Florida The JOIDES group with the participation of the U. S. Geological

Joint Oceanographic Institutions Deep Earth Sampling program organized by Woods Hole Oceanographic Institution, Lamont Geological Observatory, the Institute of Marine Science of the University of Miami, and Scripps Institution of Oceanography.

10-

11

13

19

Survey conducted a shallow exploration program off northern Florida to ascertain the structure and stratigraphy of Cenozoic rocks beneath the Shelf, the Florida-Hatteras slope (as distinguished from the true Continental Slope beyond the Blake Plateau), and the Blake Plateau. Six test holes (FL-117-122, pl. 1) were drilled and cored in the alignment of a "Y" with the base about 27 miles offshore from Jacksonville, Florida, one extremity about 221 miles east of Brunswick, Georgia, and the other about 181 miles off Cape Kennedy (fig. 7). The test holes were drilled Figure 7 near here from the drilling vessel "Caldrill" to depths of 393 to 1,050 feet in water 15 to 648 fathoms deep. Two holes reached Paleocene rocks, three

U. S. GOVERNMENT PRINTING OFFICE 1966 G - HILL

U. S. GOVERNMENT PRINTING OFFICE 1959 Ct - 411

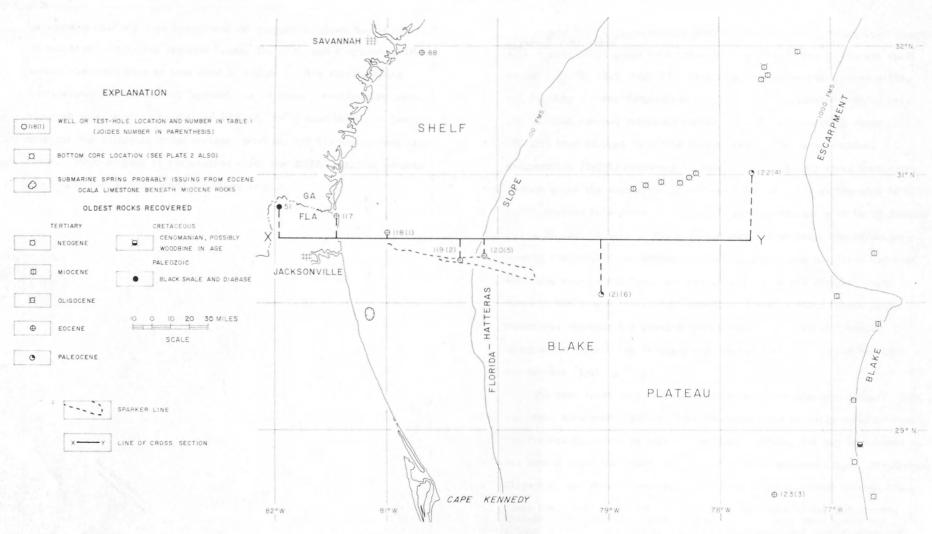


FIGURE 7. LOCATIONS OF JOIDES TEST HOLES, CROSS SECTION, AND SPARKER LINE OFF
SOUTHEASTERN GEORGIA AND NORTHEASTERN FLORIDA

penetrated middle Eocene rocks, and one stopped in upper Eocene rocks. In addition to drilling the test holes, the group ran a sparker profile across the Shelf edge as indicated on figure 7. The stratigraphic correlations and structural implications of these investigations were reported in an article in Science (JOIDES, 1965) from which the basic data for the following cross section, profile, and discussion have been taken. Other sources of information about the JOIDES drilling program are Schlee and Gerard (1965) and Charm (1965).

10

14

15

16

19

23

Figure 8 is a cross section made by projecting the JOIDES stratigraphic Figure 8 near here data from the test holes to a 253-mile-long line normal to the sea coast at lat 30°30'N. (X-Y, fig. 7). This line is tied to two onshore wells, the St. Mary's River Corporation No. 1 Hilliard Turpentine Company well (FL-51) that reached Paleozoic rocks, and a Fernandino Beach water well (FL-117) that stopped in middle Eocene rocks. The large vertical exaggeration (1:251) necessary to show the stratigraphy along this cross section gives the impression of a steep slope or cliff at the edge of the Shelf, whereas this slope is relatively gentle, declining 10 to 13 fathoms (60 to 84 feet) a mile in the steepest part. Similarly, the structure beneath the Shelf is accentuated. The syncline along the Coast and the anticline beneath the Shelf are gentle warps with the steepest dips, found in the Eocene rocks, not exceeding 15 feet a mile. These gentle structures resemble the parallel warps along the Coast at Savannah, Georgia, as reported by McCollum and Counts (1964, pl. 1) and McCollum and Herrick (1964, p. C63).

The test holes on this cross section and a bottom core (fig. 7) from the Blake escarpment indicate that Paleocene beds probably continue from the Coastal Plain to the edge of the Blake Plateau, but may be exposed as sea bottom along the lower part of the Florida-Hatteras slope. The Eocene, Oligocene, and Miocene beds appear to be prograded seaward beneath the outer Shelf and upper slope, absent from the lower slope, and greatly thinned on the Plateau. Bottom cores (fig. 7) show that Eocene and Oligocene strata crop out in the Blake escarpment and that Miocene and Neogene deposits blanket the outer Plateau and part of the escarpment. The absence of Eocene, Oligocene, Miocene, and post-Miocene deposits from the lower Florida-Hatteras slope corresponds rather closely to the axis of maximum velocity of the Gulf Stream.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - STITT

18

Figure 9 is an interpretation of the JOIDES sparker profile across Figure 9 near here
the Shelf and Florida-Hatteras slope as indicated in figure 7. The
velocity interfaces have been related as closely as possible to the age
assignments of rocks penetrated in test holes 1, 2, 5, and 6. In some
instances, the correspondence is very good; in others it is poor. However,
it is sufficient to give a general idea of the internal structure and
depositional shapes of the Tertiary beds.

The most consistent reflecting bed seems to be the hard, dense, cherty, fine-grained limestone at the top of the Paleocene rocks in test hole 6 (see fig. 8). This reflector extends beneath the Shelf and Florida-Hatteras slope and appears to form the sea bottom at the base of the slope. Beyond this, it is covered by a thin deposit of younger rocks to the edge of the Blake Plateau, where bottom cores (fig. 7) indicate that Paleocene rocks crop out in the steep Blake escarpment. Small faults in Paleocene rocks are suggested by discontinuous reflections beneath the Shelf between test hole 1 and 2 (fig. 9).

Another fairly consistent reflecting surface is present at or near the top of the thick Eocene limestone sequence beneath the Shelf and slope. This reflector indicates that Eocene rocks thin down the slope and probably crop out at places along the lower part of the slope.

Discontinuous internal reflections suggest that the Eocene deposits are prograded seaward beneath the slope.

18

25-

Less consistent reflections outline the Oligocene and Miocene rocks. From these, it appears that the thickest Oligocene sequence is present beneath the slope near the Shelf break and that Oligocene rocks may crop out at places midway down the slope. The Miocene beds apparently terminate near the Shelf edge as they are not present in test hole 5.

As early as 1947, Pressler (1947) suggested a regional fault of unspecified age along the Shelf edge from Cape Hatteras to southernmost Florida, mainly on the basis of submarine topography. Recently Sheridan (1964, and personal communituation, 1964) reported seismic evidence for a fault of late Eocene to early Miocene in age with a throw of 500 to 600 meters along the Shelf edge between lat 27°30' and 30°00'N. However, no major faults in Tertiary rocks at the Shelf edge are indicated by the JOIDES profile at approximately lat 30°20'N.

The JOIDES cross section (fig. 8) and sparker profile (fig. 9) indicate that the Shelf has been built seaward rather continuously during Tertiary time. Since Eccene time, the Shelf edge has been prograded about 9.3 miles by a mass of sediments 300 to 600 feet thick. Rates of deposition have been estimated (JOIDES, 1965, p. 715) for the Upper Eccene sequence as 1.6 cm/1,000 years on the Shelf and 0.3 cm/1,000 years on the Plateau.

U. S. GOVERNMENT PRINTING OFFICE: 1985 C - SILL"

##T-100

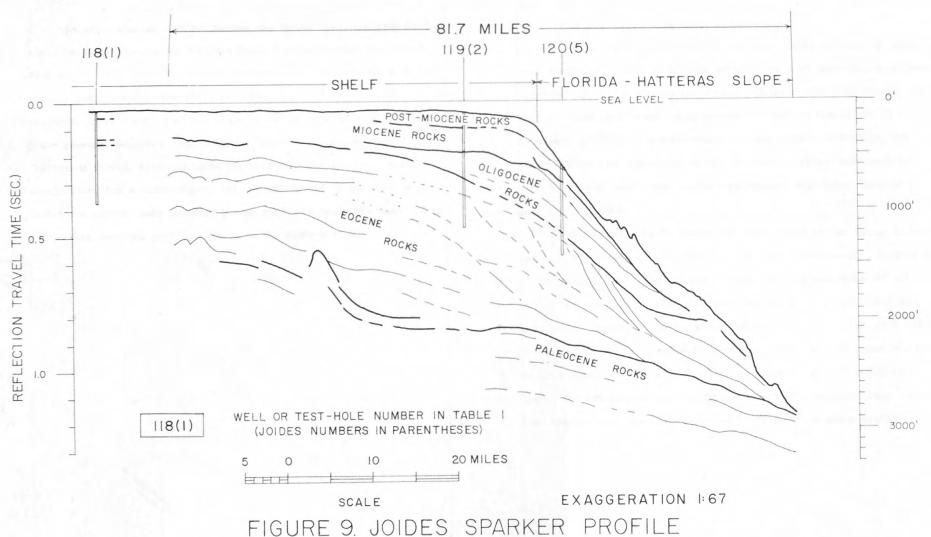
11

12

13

14

16


17

18

19

24

U. N. GOVERNMENT PRINTING OFFICE : 1949 O + 3111

ACROSS THE CONTINENTAL SHELF OFF JACKSONVILLE, FLORIDA

The data revealed seem to support the theory that some time during early Tertiary time the Gulf Stream began flowing through the Straits of Florida, and the Stream's velocity prevented much sedimentation on the ancient shelf, except near the Coast (Shepard, 1959, p. 116-117). In addition, local scouring of the slope by bottom currents may have taken place (Heezen, Hollister, and Ruddiman, 1966). The ancient shelf of Cretaceous strata, which included the present Blake Plateau, subsided slowly along the Atlantic Coast, but was maintained by matching Cenozoid deposition except where the Gulf Stream swept the sediments away. This left a deep residual shelf now known as the Blake Plateau. 11 12 13 14 15-16 17 18 19 20-21 22 23 24

Regional correlations

A regional stratigraphic study such as this is necessarily based upon published reports to a large extent. Many of these cannot present detailed supporting data in the form of measured sections, sample logs, electric logs, and paleontology because of lack of space. So it is necessary not only to examine the published reports critically, but also to search out the supporting detail in records, files, and unpublished reports. These basic data may be supplemented with later information and then restudied.

About 400 wells in 11 states and three wells in the Bahama Islands and vicinity (table 1) were selected for their stratigraphic significance in this study. Drilling records of some sort are available for all these wells, but sample logs with some paleontology are available for less than half. Electric logs for about 200 wells, most of them in Florida and Georgia, were obtained and correlated. The regional cross sections of this report show 49 electric logs, 9 sample logs, and 2 drillers logs. For the sake of uniformity and simplicity, electric logs, rather than sample logs, have been shown on cross sections where available.

24

19

22

23

25

20

11

12

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

17. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Both electric logs and sample logs are available for many of the deep wells along the coast. In general, the characteristics of rock units in the region are more distinctively and accurately recorded on the electric logs than on the available logs prepared from rotary samples by many different workers. Selectively, however, the sample logs and detailed paleontology of key wells provide the stratigraphic age assignments to which the electric log correlations must be reconciled. So the electric logs serve principally as objective records of relatively uniform value for selecting traceable rock-unit boundaries within paleontologic control, and for the tracing of these rock units through areas lacking substantial paleontologic and lithologic control.

Cenozoic rocks along the east coast: (1) from the Gulf Coast marine facies in Florida northward through deep wells at the coast line, and (2) from the outcrops at the Fall Line downdip through shallow wells to the same deep wells at the coast line. The first approach utilized the well-known and documented microfossil zones used in distinguishing both surface and subsurface rock units in the Gulf Coast region. The deep wells along the coast penetrate a greater proportion of marine rocks than those farther inland and, as a result, offer more paleontologic evidence 10- and stratigraphic uniformity. The second approach from the outcrops to the deep wells attempts to relate local rock units and names to those carried northward from the Gulf Coast. Numerous difficulties are involved in this. The rocks exposed at the Fall Line are predominantly clastic and relatively nonfossiliferous in character, with many 15 - subdivisions and contacts based entirely upon lithology. These rocks thicken and change facies downdip so that many of the distinguishing features on which local outcrop names are based become indistinct in the deep wells. Fossils are not sufficiently abundant nor definitive enough to delimit the rock units in many of the shallow wells.

Two approaches have been made to the correlation of the Mesozoic and

1', S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

The technique employed in correlating the electric logs has been to plot all paleontologic data and reported tops of geologic units on the electric-log strips. The principal subdivisions of the rocks and bounding unconformities are drawn in key wells with paleontologic control. These are extended to adjacent wells by zoning the electric logs with both a number and a color code into the smallest traceable units within the larger units. This permits the recognition of the addition of new beds downdip and the absence of rocks at unconformities updip. In effect, it requires an accounting for all changes from well to well within the larger units controlled by paleontology. In doing this, no electric log correlations have been made knowingly in violation of available paleontologic data, although numerous changes of earlier opinions based on lithology have been suggested.

In general, the boundaries of most rock units shown on these cross sections are drawn within fossil control on lithology as reflected by electric-log characteristics. These boundaries are not subject to exact agreement among geologists. Difference of opinion as to the top and bottom of units within thick sequences of clastic or carbonate rocks may be expected in the magnitude of a hundred feet or more in some of the areas without indicating significant disagreement on the regional history. This difference often arises as a result of new nonfossiliferous beds appearing downdip that can equally well be placed in the overlying or the underlying rock unit on the basis of current information. As a region is more thoroughly explored by the drill, better agreement on correlations develops, partly on more conclusive evidence, but also as accepted communication practice in day-to-day operations.

The subsurface stratigraphy of the Mesozoic and Cenozoic rocks is outlined diagrammatically in this report by eight regional cross sections, whose traces are shown in figure 6. Cross section AB (pl. 9) follows the Atlantic coastline, carrying the Gulf Coast equivalents 5- from the Florida Keys to Long Island. Cross sections CD, EF, GH, IJ, and KL (pls. 10, 11, 12, 13, and 14) attempt to tie these equivalents to the outcrops and local terminology in New Jersey, Maryland, North Carolina, and Georgia. Cross section MN (pl. 15) extends correlations across the Florida peninsula. Cross section OP (pl. 16) suggests correlations from the Florida Keys to Andros Island in the Bahamas and points out the possible relationship of stratigraphy to the sea bottom. The nomenclature used on these cross sections for subsurface rocks in different states is summarized in table 2. 14

Table 2 near here 15-20-25

21

23

24

U.S. GOVERNA

Principal reliance has been placed on assemblages of Foraminifera for age assignments of lithologic units in wells on these cross sections. The age relationships of these assemblages were first worked out and used extensively in the Gulf Coast region, where several hundred thousand wells have been drilled in the search for petroleum. The most significant Foraminifera in the assemblages found in cores and samples from the wells (In pocket) on the cross sections are listed in Table 3, prepared by E. R. Applin. Hundreds of additional microfossil identifications and many detailed lithologic descriptions for these wells and nearby wells have been 10 available from not only the published sources noted on each cross section but also from unpublished sources such as the files and collections of P. L. and E. R. Applin, state geological surveys, and some oil companies. Publication of complete fossil lists and lithologic descriptions for wells in this huge province is beyond the scope of this report.

15

Mesozoic rocks

Triassic(?) rocks

and basalt flows, in places intruded by diabase, are present in

Triassic rocks, which consist of red arkose, sandstone, shale, tuff,

5- down-faulted basins in the basement rocks of the piedmont. Similar Triassic-filled basins are thought to exist beneath the Coastal Plain on the basis of well and seismic data (Bonini and Woollard, 1960, p. 304. 305; Tectonic map of the United States, U. S. Geol. Survey and American Assoc. Petroleum Geologists, 1962), although the existence of one 10- postulated on seismic velocities alone at Fayetteville, North Carolina, seems to be in doubt (Bonini, 1964, p. 102; Schipf, 1964, p. 721-723). 11 Rocks lithologically similar to the exposed Triassic rocks have been penetrated by several wells on these cross sections and are referred to as Triassic(?). 14 Well GA-61 (Mont Warren No. 1 Chandler) and well GA-72 (Stanolind Oil and Gas Co. No. 1 Pullen) in southwestern Georgia, shown on cross 16 section KL (pl. 13), penetrated more than 900 feet of red and green shale and sandstone beds, with some diabase sills in well GA-72 that are generally regarded as representative of Triassic sequences. Well AL-3 (W. B. Hinton No. 1 Creel) in southeastern Alabama about 40 miles updip from well GA-61, penetrated a 700-foot thick sequence of basic igneous sills interspersed with thin clastic beds beneath Lower Cretaceous rocks. This dominantly igneous sequence may be Triassic(?) in age also, although

1. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

the lithology is less distinctive.

Rocks assigned to the Triassic(?) are present also in the subsurface of Maryland along the line of cross section EF (pl. 11). Well MD-6 (Washington Gas Light Co. No. 3 Mudd) near the Fall Line is reported (Ball and Winer, 1958) to have penetrated 237 feet of Triassic clastic beds beneath the Lower Cretaceous Patuxent Formation. The presence of these rocks close to the Fall Line suggests that they may be preserved in a graben-like feature similar to those downfaulted Triassic blocks more or less on strike in the piedmont of Virginia.

Well MD-12 (The Ohio Oil Co. No. 1 Hammond), well MD-13 (Socony 10- Vacuum Oil Co. No. 1 Bethards), and well MD-14 (Standard Oil Co. of New Jersey No. 1 Maryland Esso) near the coastline on cross section EF (pl. 10) penetrated rock sequences, 165 to 525 feet thick, that were assigned to the Triassic by Spangler (1950, p. 121). Anderson (1948, p. 100) regarded the same sequences in well MD-12 and MD-13 as Triassic, 15- and the sequence in well MD-14 as Lower Cretaceous Patuxent on the basis of differing hardness and color. This unit in wells MD-12 and MD-13 consists of beds of hard, dark gray shale and sandy shale with marcon mottling, quartz conglomerate with some white feldspars, and hard reddish-brown and green shale, sandy shale, and arkosic sandstone. In 20- well MD-14 farther downdip, the sequence consists of beds of coarsegrained sandstone containing pebbles, gravel, and kaolinized feldspars, beds of gray, green, and brown shale, and some calcareous layers.

12

13

14

16

17

18

19

22

23

24

The lithologies and electric-log curves for these nonfossiliferous sequences are not dissimilar enough to rule out the possibility that these sequences may be correlative facies. If so, they could be either Triassic(?) or equivalent to the Upper Jurassic or Lower Cretaceous 5- (Neocomian) rocks in the Cape Hatteras well NC-14 (pls. 9 and 12). For these reasons, the broad, relatively noncommittal term "Mesozoic rocks of uncertain age, possibly Neocomian" is used on both plates 9 and 11. 13 17 18 22 23 24

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Upper Jurassic or Lower Cretaceous (Neocomian) rocks Rocks of Late Jurassic or Early Cretaceous (Neocomian) age, which do not crop out in eastern North America, are present beneath southern Florida, where they have been partially penetrated by deep wells. Applin and Applin (1965, p.18-25) have described these rocks in the Amerada Petroleum Corp. No. 2 Cowles Magazine well in St. Lucie County, and have named the sequence the Fort Pierce Formation for a nearby city. The type sequence in this well is 2,220 feet thick and consists of a lower red clastic unit, 170 feet thick, that rests on highly altered igneous basement rock, and an upper carbonate unit, 2,050 feet thick. The upper carbonate unit is made up of alternating finely crystalline, partly politic and bioclastic limestone, dolomitic limestone, and dolomite beds interspersed with thin gray shale and anhydrite beds. The characterizing faunal assemblage of the Fort Pierce Formation contains fossils that are, in part, Late Jurassic and, in part, Early Cretaceous in age. The distinctive features of the microfaunal assemblage have been illustrated by Applin and Applin (1965, pls. 3,4), although the definitive species could not be described from thin sections. The fauna is characterized. mainly, by abundant specimens of Foraminifera belonging to the family Ataxophragmiidae, sub-family Verneuilininae, that are small and biserial throughout the larger part of their development. A large conical species of Cuneolina(?) is another definitive fossil, and several undescribed species of Pseudophragmina are moderately common. The Cuneolina-like form is known, also, in subsurface beds of equivalent age in Israel.

The Fort Pierce Formation has been penetrated by wells FL-104, FL-86, FL-111. and FL-109 on cross sections AB and OP (pls. 8 and 18). The deepest penetration (1,115 feet) was made by well FL-109 (Gulf Oil Corp. No. 1 State Lease 373) on Big Pine Key (pl. 15). The formation wedges 5- out northward along cross section AB and is absent from well FL-73 (Humble Oil and Refining Co. No. 1 Carroll) in Osceola County, Florida. where rocks of Trinity age rest upon biotite granite of pre-Mesozoic age. Rocks of Upper Jurassic and Lower Cretaceous (Neocomian) age are also present in well NC-14 (Standard Oil Co. of New Jersey No. 1 Hatteras Light) 10-on cross section GH (pl. 21) in North Carolina. There the sequence. 8.960 to 9,878 feet in depth, grades downward from finely crystalline, partly politic/ limestone and gray shale beds to red and green sandy shale layers and red-stained, fine-to-coarse-grained sandstone beds, partly conglomeratic and arkosic, at the base. The lower red clastic beds may correspond 15 roughly to those noted by the Applins in the Amerada Petroleum Corp. No. 1 Cowles Magazine well in Florida. Swain (1947, p. 2058) assigned the beds between 9,150 and 9,878 feet to pre-Trinity (Coahuila?) in 1947. Later. in 1952, he considered the beds from 8,500 to 9,878 feet as Upper Jurassic(?) and referred to them as "beds of Schuler(?) age" (Swain, 1952, 20-p. 66). E. R. Applin reports molds of Atopochara sp., suggestive of Early Trinity age, between 8,505 and 8,515 feet, and Anchispirocyclina henbesti Jordan and Applin in a core at the depth of 9,115-9,116 feet. Maync (1959, p. 66) considered the latter fossil to be closely similar to Ibernia lusitanica (Egger) that in Europe "straddles the Jurassic-Lower Cretaceous boundary,"/ It is possible that Anchispirocyclina henbesti is also indicative of beds of Late Jurassic or Early Cretaceous age. Therefore the base of rocks of Trinity(?) age may be at 8,800 feet, where it is

I .. GOVERNMENT PRINTING OFFICE : 1959 G - 511171

drawn tentatively in this report, or as deep as 8,960 feet.

The sequence of rocks termed "Mesozoic rocks of uncertain age. possibly Neocomian" in well MD-14 on cross section AB (pl. 9) may be equivalent to the Upper Jurassic or Lower Cretaceous (Neocomian) in well NC-14 at Cape Hatteras. The same rocks probably are represented in the lower part of the interval marked "rocks of Trinity(?) age and older" in well NJ-25 (Anchor Gas Co. No. 1 Dickinson) in New Jersey and wedge out updip between that well and well NJ-26 (U. S. Geological Survey No. 1 Island Beach). As pointed out in the discussion of Triassic (?) rocks. the relation of the hard, reddish clastic sequence resting on basement in wells MD-12 and MD-13 on cross section EF (pl. 11) to the lower. 11 soft gray clastic beds in well NC-14 is in doubt. 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lower Cretaceous rocks

The Cretaceous system in the Gulf Coast region is divided into the Commanche Series and the Gulf Series. The Commanche Series is subdivided into the Trinity, Fredericksburg, and Washita Groups. The lower two groups are entirely Early Cretaceous in age, but the Washita Group is regarded as mostly Early Cretaceous but partly Late Cretaceous in age by the U.S. Geological Survey (Imlay, 1944) on the basis of world-wide fossil zones. The boundary between Lower and Upper Cretaceous rocks on these cross sections is indefinite because of lack of paleontologic 10- detail and is shown diagrammatically with a query. The top of rocks of Washita age can be readily identified within a few tens of feet in most sets of drill cuttings. In discussion of distribution of Lower Cretaceous 12 rocks in this report, all rocks of Washita age are grouped with those of Trinity and Fredericksburg age.

Rocks of Lower Cretaceous age, several hundred feet of sandstone and shale beds, are recognized at the surface in part of the Salisbury embayment, as shown by the Geologic map of the United States (Stose. 1932). They may be represented at or near the surface in northern North Carolina, western Georgia, and Alabama by thin clastic beds inseparable lithologically from the basal Upper Cretaceous beds. Lower Cretaceous beds dip seaward from the Fall Line at rates that increase from about 15 feet a mile to more than 60 feet a mile (pl. 11). The thickness and marine constituents increase accordingly.

24

22

13

In southern Florida, the Lower Cretaceous rocks are dominantly carbonates and exceed 6,700 feet in thickness in the Florida Keys (well FL-109, pl. 15). Northward along cross section AB (pl. 8), the rocks wedge out on the Peninsular arch, then reappear as a thin clastic unit across parts of Georgia and South Carolina. They are missing from the higher parts of the Cape Fear arch in North Carolina but are present on the east flank as a thickening wedge of mixed clastic and carbonate rocks more than 2,800 feet thick at Cape Hatteras (well NC-14) as correlated on Foraminifera by E. R. Applin (written commun. to J. Reeside, 1957), and 2,600 feet thick in Maryland (well MD-14). Lower Cretaceous rocks probably extend into northern New Jersey but do not reach Long Island.

Considerable thicknesses of Lower Cretaceous rocks are present in southwestern Georgia. Cross section KL (pl. 13) shows more than 2,500 feet of dominantly clastic, undifferentiated, Lower Cretaceous beds in wells GA-61 and GA-72.

11

12

13

14

18

19

23

15.

The Lower Cretaceous is subdivided on these cross sections only in Florida, North Carolina, and Maryland, and in one well in New Jersey where the rocks are sufficiently thick, uniform, and fossiliferous to provide fairly reliable unit correlations. These subdivisions and their correlations from well to well are most reliable in the southern Florida carbonate section and least reliable in the mixed clastic and carbonate section in Maryland and New Jersey. Little fossil evidence suitable for subdividing the Lower Cretaceous rocks exists north of Cape Fear, and the dashed correlation lines on the cross sections represent an opinion based mainly on lithology and electric log data available in 1965.

The regional distribution of Lower Cretaceous rocks and the underlying rocks classed as Upper Jurassic or Lower Cretaceous (Neocomian) in age in this report is outlined on plate 16. These rocks are present at or near the Fall Line in New Jersey, Maryland, Virginia, northern North Carolina, western Georgia, and Alabama, but are absent beneath most of the Coastal Plain in southern North Carolina, South Carolina, and eastern Georgia, and on the crest of the Peninsular arch in northern Florida. Thicknesses of about 3,000 feet at Cape Hatteras and about 6,000 feet in the Florida panhandle and Keys are present beneath the Coastal Plain. Thick sequences are probably present also offshore on the Atlantic Continental Shelf, where geologic data are lacking and seismic data too sparse and contradictory to permit representation of thicknesses on plate 16. Form lines are used to suggest depositional shapes, and minimum estimates of maximum thicknesses are shown for general use in exploration planning. It seems probable that thicknesses may exceed, perhaps considerably, 5,000 feet in the Southeast Georgia embayment, 5,000 feet in the Baltimore Canyon trough, and 3,000 feet in the Georges Bank trough, judging by the rate of thickening onshore and the scattered seismic profiles offshore (pl. 5).

U. S. GOVERNMENT PRINTING OFFICE: 1959 to - 511171

t a boversman the ten aller to the

Rocks of Trinity age

Rocks of Trinity age along cross sections AB and OP (pls. 9 and 16) have a maximum thickness of 3,030 feet in well FL-111 (Gulf Oil Corp. No. 1 SFL 826-Y) at the western end of the Florida Keys, where they are principally anhydrite, limestone, and dolomite. The thickness decreases northeastward to 2.200 feet in well FL-104 (Sinclair Oil and Gas Co. No. Williams) on Key Largo, and continues to decrease northward along cross section AB (pl. 9) to a wedge edge of clastic rocks against the Peninsular arch (well FL-57). Rocks of Trinity age are absent from 10- wells on cross section AB (pl. 9) in northern Florida, Georgia, and South Carolina.

11

12

13

17

21

22

23 24

25

A sequence of mostly sandstone, siltstone, and shale beds in well NC-14 at Cape Hatteras, North Carolina, and in wells MD-12, MD-13, and MD-14 in Maryland (pls. 9, 11 and 12), has been assigned an age of 15- Trinity(?). This sequence is at least 1,150 feet thick, and may be as much as 1,455 feet thick if the overlying beds of Trinity(?) or Fredericksburg(?) age are included. It is present in well NJ-25 (Anchor Gas Co. No. 1 Dickinson) at Cape May, New Jersey, but has not been differentiated from underlying sedimentary rocks of Mesozoic age. In well NJ-26 at 20- Island Beach farther north in New Jersey, rocks of Lower Cretaceous age are thought to be about 518 feet thick, but no fossil evidence was

Many specimens of Atopochara trivolvis Peck were found at 8,505 feet in well NC-14, and at 4,430 feet in well NJ-25, indicating the presence of beds of early Cretaceous age in these wells. R. E. Peck, who checked the specific determination of these fossils, stated (1957, p. 21) that "Atopochara trivolvis is widely distributed in the Lower Cretaceous Aptian non-marine deposits of the Gulf Coast and Rocky Mountain regions, " and he (p. 21) considered it "an excellent guide fossil." In the Hatteras Light well (NC-14), Choffatella decipiens Schlumberger is present about 400 feet below the highest occurrence of A. trivolvis.

10-

14

16

19

21

22

23

25-

20-

Another type of microfossil, the megaspore Arcellites disconformis (Miner) Ellis and Tschudy (Ellis and Tschudy, 1964, p. 75) was identified by R. H. Tschudy in a sample of cuttings at 4,400-4,410 feet in the Anchor Gas Co. No. 1 Dickinson well. In his analysis of the sample, Tschudy (written commun., April 30, 1964) stated that "Arcellites disconformis is found in Lower Cretaceous samples. In eastern United States it has been found only in the Patuxent Formation. I am fairly confident of a pre-Albian, Early Cretaceous age determination..." Tschudy listed a number of other plant fossils in the sample and stated, "The absence of any Angiosperm pollen suggests pre-Albian."

U. S. GOVERNMENT PRINTING OFFICE: 1959 G - MILLYL

@ U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

reported from these beds and no subdivisions are apparent.

Rocks of early Trinity age

In Florida, rocks of Trinity age have been divided by Applin and Applin (1965, p. 36, 45) into rocks of early and late Trinity age within which two formational units have been defined. The rocks of early Trinity age are about 1,500 to 2,100 feet thick in wells along the Florida Keys (pl. 16). At the west end of the Keys (well FL-111), the 1,589-foot interval is composed primarily of thick anhydrite beds containing some lenses of salt. This evaporite facies has been termed the Punta Gorda anhydrite (Applin and Applin, 1965, p. 39). Eastward along the Keys, the evaporite facies continues to mark the top of rocks of early Trinity age, but gives way to thick colitic limestone and dolomite beds and thin dark shale layers in the lower half (see well FL-104, pl. 16). The Punta Gorda anhydrite is 783 feet thick in well FL-104, on Key Largo; no anhydrite was penetrated in well BA-2 on Andros Island in the Bahamas. Evaporite beds have been reported in well BA-1 drilled to a depth of 18,906 feet on Cay Sal (pl. 1 and fig. 3), but no samples have been available to confirm this or to suggest any 17 correlations. However, known thicknesses do suggest that a sizeable 18 evaporite basin existed in Early Cretaceous time to the south and 19 southwest of Florida. Northward from Key Largo along cross section AB (pl. 9), the rocks of early Trinity age grade from the evaporite and 21 carbonate facies (well FL-104) into nearshore marine and continental 22 clastic facies (wells FL-73 and FL-57), and wedge out against the Peninsular arch.

Rocks of early Trinity age in well FL-104 (Sinclair Oil and Gas Co. No. 1 Williams) on Key Largo are reported to have yielded two specimens of the ammonite Dufrenoya texana Burckhardt in a core taken about 120 feet above the top of the Fort Pierce Formation (Applin and Applin. 1965, p. 45). D. texana is a diagnostic fossil of the outcropping Cow Creek Limestone of early Trinity age in central Texas (Adkins, 1928, p. 252-253), and of the stratigraphically equivalent Pine Island Shale Member of the Pearsall Formation (Trinity) in the subsurface in the Coastal Plain in Texas, Louisiana, and Arkansas (Imlay, 1944). Choffatella decipiens Schlumberger also is a characterizing fossil in the marine beds of early Trinity age in southern Florida, and in this area one or more fossiliferous lenses generally contain many specimens. C. decipiens has a world-wide distribution, and Maync (1949, p. 535) records its stratigraphic range as "from the earliest Cretaceous to 15- somewhere in the Albian." It is present at depths of 11,200, 11,580, and 12,259 feet in well FL-86 (Humble Oil and Refining Co. No. 1 Tucson) and in several other wells in the southern part of the Florida peninsula. Orbitolina texana (Roemer) is usually well represented in beds of early Trinity age in southern Florida. The stratigraphic range of this species in Florida and in the western Gulf Coast is well described by Douglass (1960, P.6, fig. 2). Specimens were found at depths of 13,400 and 13,510 feet in well FL-109 (Gulf Oil Corp. No. 1 State of Florida) on Big Pine Key.

24

Rocks of late Trinity age

Rocks of late Trinity age in Florida, as defined by Applin and
Applin (1965, p. 46), range from 1,441 to 713 feet thick west to east
along cross section OP (pl. 18) in the Florida Keys. They wedge out
northward on the peninsula between wells FL-86 and FL-73 on cross section
AB (pl. 9). These rocks consist of lower unit of limestone, dolomite, and
shale beds termed the Sunniland Limestone (Pressler, 1947, p. 1859, and
fig. 3; Applin and Applin, 1960, p. B-209) and an upper, unnamed unit
composed of a thick anhydrite bed overlain by interbedded limestone,
dolomite, and shale.

11

14

17

18

23

The Sunniland Limestone, which is the oil reservoir in the three oil fields of southern Florida, is 496 feet thick in well FL-111 at the west end of the Florida Keys (cross section OP, pl. 1%). It decreases in thickness northeastward along the Keys and northward up the peninsula.

At most places it consists of dark, fine-grained argillaceous limestone and light-tan chalky limestone interbedded with lenses of brown, granular dolomite and dark-gray shale. Lenses of bioclastic limestone and porous algal limestones are interspersed in the unit. Many lenses contain closely/packed specimens of Dictyoconus floridanus Cole accompanied by many specimens of Orbitolina texana. Numerous specimens of both fossils are reported from wells FL-86, FL-104, FL-109, and FL-111 in table 3.

Dictyoconus floridanus was formerly called Coskinolina sunnilandensis
Maync, and its occurrence in Florida was believed to be restricted to the Sunniland Limestone. However, according to Douglass (1969, p. 258), this species, though widely distributed in the Comanche rocks in the

Gulf Coast, is conspecific with Dictyconus floridanus, a species common in and described from the Avon Park, middle Eocene rocks in Florida. The available data indicate that after its widespread Comanche occurrence, the species disappeared for several million years, but 5- returned to again become a characterizing fossil in the upper middle Eccene of Florida. 11 12 14 18 19

I, S. GAVERNMENT PROVING OFFICE 1999 II - 11

The upper, unnamed unit overlying the Sunniland Limestone is 988 feet thick at the western end of the Florida Keys (well FL-111, pl. 45), but decreases northeastward to less than 500 feet at Key Largo (well FL-104) and then wedges out northward up the peninsula between wells FL-86 and FL-73 as shown on cross section AB (pl. 8). Directly overlying the Sunniland Limestone is a sequence of interbedded anhydrite and argillaceous limestone that has been termed the "upper massive anhydrite" by oil geologists. It ranges from about 30 feet to 200 feet in thickness in southern Florida. Above the "upper massive anhydrite are dark-to-light-tan, fine-grained-to-chalky limestones, lenses of granular dolomite, and dark shale beds. Some anhydrite layers are interbedded with the carbonates in the southern wells, and oolitic limestones are present in wells on the southwest flank of the Peninsular arch.

Specimens of Orbitolina that are generally referred to Orbitolina minuta Douglass are commonly found near the top of the beds of late Trinity age, and also at one or more lower levels within the unnamed post-Sunniland unit. The specimens are not abundant, but are helpful in defining the upper and lower boundaries of the post-Sunniland beds of Trinity age. 'Specimens have been identified from wells FL-86, FL-104, and FL-109 on the cross sections (table 3).

21

3

7

9

11

12

13

14

16

17

18

19

15-

23

25-

& U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Rocks of Fredericksburg age

Rocks of Fredericksburg age are present beneath southern Florida and have been tentatively identified in wells in North Carolina and New Jersey (pl. 9). In southernmost Florida, the unit is composed mainly of dark-colored, fine-grained limestone and finely granular dolomite beds overlain by light-colored, chalky limestone beds. Bioclastic limestone beds, lenses of colitic limestone, and some anhydrite layers are also included. Numerous oil stains and tarry residues have been reported mostly in the upper part of the rocks of Fredericksburg age by Applin and Applin (1965, p. 59). The thickness of the unit ranges from 1.850 feet in well FL-111 at the western end of the Keys to its termination as a clastic wedge on the flank of the Peninsular arch (wells FL-57 and FL-52, pl. 9). 13 The beds of Fredericksburg age in southern Florida generally contain abundant specimens of Coskinolinoides texanus Keijzer. This species, which was described from the Walnut Clay (Fredericksburg) of Texas, is believed to be stratigraphically restricted to the Fredericksburg Group. Specimens are reported from wells FL-86, FL-104, FL-109, and FL-111 in table 3. Lituola subgoodlandensis (Vanderpool) is also restricted to the Fredericksburg in its recorded upward range, and is generally found

However, specimens of the species also occur at several lower levels

within the group. L. subgoodlandensis is generally found some distance

near the top of the beds of Fredericksburg age in the Florida peninsula.

above the highest occurrence of C. texanus, and has a wider areal

distribution in Florida than <u>C. texanus</u>. Specimens are reported in

25-table 3 from wells FL-57, FL-73, and FL-86.

U. S. GOVERNMENT PRINTING OFFICE: 1959 (1 - 5111)

Rocks tentatively assigned a Fredericksburg(?) age in wells in North Carolina and Maryland are 415 to 660 feet thick (pls. 8 and 10) and consist principally of sandstone and shale beds with some thin limestone and limy shale beds interspersed in the Cape Hatteras well (NC-14). About 300 feet of lithologically similar and unfossiliferous beds that overlie rocks assigned a Trinity(?) age may be either Trinity(?) or Fredericksburg(?) in age and are so indicated on the cross sections (pls. 8, 10, and 11) of this report. Specimens of Lituola subgoodlandensis (Vanderpool), known only from rocks of Fredericksburg age or older and generally present in the upper part of rocks of Fredericksburg age in Florida, were found by E. R. Applin at a depth of 6,770 feet in well NC-14 at Cape Hatteras. Little fossil evidence suitable for separating these rocks from those of Trinity(?) and Washita(?) age is available in this region, and the correlations suggested by lithologic and electric-log characteristics are highly uncertain. 20-

11

12

13

14

16

17

18

19

21

22

23

24

Rocks of Washita age

Rocks of Washita age range from 1,987 to 1,380 feet in thickness in wells on cross section OP (pl. 16) along the Florida Keys and wedge out northward against the Peninsular arch as shown on cross section AB (pl. 9). The lithology is dominantly very fine grained calcitic dolomite containing chalky limestone and anhydrite layers in the upper part in some wells. The evaporite constituents are thicker and more numerous in the southernmost wells in Florida. Traces of glauconite are present in the beds penetrated in wells on the flank of the Peninsular arch. Oil stains and tarry residues have been reported from both limestone and dolomites of Washita age in wells scattered over southern Florida (Applin and Applin, 1965, p. 63).

Nummoloculina heimi Bonet is the key fossil of beds of Washita age in the Florida peninsula. The Nummoloculina limestone at the top of the beds of Washita age is composed chiefly of large specimens of this fossil and the species is abundant at many lower levels within the unit. The fauna of the beds of Washita age in Florida is strikingly similar to that of the upper part of the El Abra Limestone of Mexico, and to the top foot of the Devils River Limestone (Georgetown) of Texas (Conkin and Conkin, 1956, fig. 3). Muir (1936, p. 41) reported "Pecten roemeri Hill was identified by L. W. Stephenson in limestone fragments blown from the Mexican Gulf Oil Company wells No. 3 Tepetate and No. 23

Zacamixtle *** The horizon at which the oil was found in these two wells can be referred to the top or close to the top of El Abra Limestone. P. roemeri is a diagnostic fossil for

13

16

1. S. GOVERNMENT PRINTING OFFICE: 1959 O - 51117

```
the top of the 'Buda' limestone of Texas." N. heimi is found in older
    units of the Comanche rocks, but its size and abundance in the beds of
    Washita age in southern Florida make it a dependable guide fossil for
    the late Comanche rocks in that area. Specimens have been found by
 5 E. R. Applin in wells FL-57, FL-73, FL-86, FL-104, FL-109, and FL-111
    (table 3).
12
14
 15-
16
17
18
19
 20-
21
22
23
24
 25
```

North of the Cape Fear arch, a sequence of rocks 320 to 600 feet thick in wells on cross sections AB, EF, and GH (pls. %, %, and %), and %) has been tentatively assigned a Washita(?) age. It consists mainly of thick beds of dark-gray sandy-to-limy shale and fine-grained sandstone with a few thin layers of lignite in wells farthest inland, and grades seaward into thinner-bedded alternations of sandstone, gray limy shale, and limestone in the upper two-thirds, and thick beds of siltstone, sandstone, and shale in the lower one-third (well NC-14). Rocks of Washita(?) age are not differentiated from underlying rocks northward into New Jersey and New York. Southward, they seem to extend high up the flank of the Cape Fear arch, overlapping older Lower Cretaceous rocks to rest on pre-Mesozoic igneous and metamorphic rocks. Correlations in this area are relatively uncertain, as few definitive fossils have been reported in any of the wells drilled to date. 15-

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

13

14

17

18

19

22

23

Upper Cretaceous rocks

Upper Cretaceous rocks of the Gulf Coast region include, in ascending order, the upper part of the Washita Group of the Comanche Series, and the Woodbine, Eagle Ford, Austin, Taylor, and Navarro Groups of the Gulf Series. The equivalents of these groups are shown on the cross sections; their distribution along the Atlantic Coast is discussed briefly. All rocks of Washita age are excluded from the discussion of Upper Cretaceous rocks because the paleontologic boundary drawn within the Washita Group cannot be identified in the drill cuttings.

Rocks of Upper Cretaceous age crop out almost continuously along the Fall Line from Alabama to North Carolina and from Maryland to Long Island. Upper Cretaceous rocks bordering the piedmont of northeastern North Carolina and Virginia are concealed by overlapping Tertiary deposits. The surface exposures, which range in thickness from a few hundred to more than 2,000 feet, are largely nearshore marine and continental clastics.

16

17

18

19

24

20

Submarine outcrops of Upper Cretaceous age are known in canyons along Georges Bank and in the lower part of the Blake escarpment (pl. 2) and may be present over considerable distances along the remainder of the continental slope. Cobbles of Cretaceous chalk have been found in the floor of Northeast Providence channel, 11,096 feet beneath the sea between the Bahama Islands. In the nearby Andros Island well (BA-2), Upper Cretaceous rocks were identified between depths of 8,220 and 10,760 feet. This suggests that Upper Cretaceous beds are exposed in the canyon walls which connect with the Blake escarpment on the continental slope. Reworked Cretaceous Foraminifera identified in a bottom core at a depth of about 15,000 feet on the continental rise, 155 miles southwest of Cape Hatteras, also indicate a good possibility that Upper Cretaceous outcrops are present along the continental slope near Cape Hatteras. The Hatteras Light well (NC-14), only 22 miles inland from the slope, penetrated Upper Cretaceous beds between depths of 3,033 and 6,100 feet. Assuming a regional dip of no less than 50 feet a mile as is common for Upper Cretaceous beds beneath the outer Coastal Plain, Upper Cretaceous strata might be expected to crop out or be thinly mantled by Cenozoic deposits between 650 and 1,550 fathoms, and possibly deeper. No test holes on the Shelf or Blake Plateau have reached Upper Cretaceous rocks.

 $U_{\rm s}$ S. GOVERNSENT PROVING OFFICE 11995 $\psi_{\rm s} = \psi_{\rm s} + \tau$

12

14

16

17

18

19

23

24

129

U. S. GOVERNMENT PROPERTY OF PICE 19 10 1 31 117

Upper Cretaceous rocks, 1,235 to 3,067 feet thick, in wells along the line of cross section AB (pl. \$\mathbb{g}\$) are predominantly marine carbonates and clastics. In Florida, they are almost entirely marine carbonates and range in thickness from about 2,900 feet in the Florida Keys to less than 1,250 feet on the Peninsular arch (well FL-52, pl. \$\mathbb{g}\$). In wells along the coast of Georgia and South Carolina, the rocks are mixed marine carbonates and clastics about 2,000 feet thick. They are only 1,286 feet thick in well NC-58 on the Cape Fear arch, but northward range from 3,000 feet in thickness in well NC-14 at Cape Hatteras, North Carolina, to 1,800 feet in well NY-6 on Long Island. The percentage of clastics is higher in wells in Maryland, New Jersey, and Long Island than in the Cape Hatteras well. This is due in part to the fact that the Cape Hatteras well is considerably farther down the regional dip than the other wells.

The Upper Cretaceous rocks in southern Florida, where they consist of a thick succession of similar carbonate beds, are not subdivided on cross sections AB and OP (Pls. 8 and 15). They are subdivided in central Florida on cross sections AB and MN (Pls. 8 and 15), and northward on the remainder of the cross sections.

13

14

17

19

24

The regional thickness and distribution of Upper Cretaceous rocks of Gulf age in the Atlantic Coastal Plain is outlined on plate 18. These rocks are present at or near the Fall Line from Alabama to New York and dip seaward in much of the region at rates increasing from 10 feet a mile near the outcrop to more than 30 feet a mile at the coast (pls. 40 and M). The thickness increases accordingly, reaching an onshore maximum of about 3,000 feet at Cape Hatteras and along the southern coast of Florida, as shown on plate 17. Form lines on plate 17 suggest minimum thicknesses to be expected offshore, not total thicknesses. Such form lines have a general or directional usefulness in selecting or comparing large areas for exploration but are not suitable for local predictions. Thicknesses considerably in excess of 3,000 feet may be present offshore in the Baltimore Canyon trough and the Southeast Georgia embayment. In western Georgia, more than 2,000 feet of Upper Cretaceous rocks lie in a trough-like pattern parallel to the outcrops. A short distance to the south, a thinner sequence, 1,000 to 1,500 feet thick, reflects the influence of the Peninsular arch on deposition in Upper Cretaceous time (pl. 8, well FL-52). A wide platform of carbonate deposition extending across the southern one-third of Florida and the Bahama Islands is suggested by the large area of uniform thicknesses between 2,500 and 3.000 feet.

U. S. GOVERNMENT PRINTING OFFICE 179-5 U - - 117 1

12

18

19

.14

Rocks of Woodbine and Eagle Ford age

2

10-

11

12

13

14

16

17

18

19

21

22

23

24

20-

Rocks of Woodbine and Eagle Ford age cannot be separated consistently from other Upper Cretaceous rocks in southern Florida, but can be traced from central Florida northward to Long Island along the line of cross section AB (pl. \$). They are reported to be missing in some wells on the crest of the Cape Fear arch (Brown, 1958, p. 38, 43), but may be represented by a 200-foot thick sequence of coarse, nonfossiliferous clastics at the bottom of well NC-58 at Fort Caswell, North Carolina. In central and northern Florida, rocks of Woodbine and Eagle Ford age are represented by the Atkinson Formation, 115 to 266 feet of limestone, sandstone, and shale, which is subdivided into a lower member of Woodbine age and an upper member of Eagle Ford age. Northward, they are represented by the Tuscaloosa and overlying pre-Austin rocks, 563 to 1,850 feet of sandstone and shale, in Georgia, South Carolina, and North Carolina; and by the Raritan Formation, 810 feet of coarse clastics, or Long Island. No formation names are applied here to the correlatives in deep wells in Maryland and New Jersey, although a general equivalence to the Patapsco and Raritan Formations, undifferentiated, is indicated. Considerable confusion and overlap exists in the use of the terms "Patapsco" and "Raritan" on the outcrops between the two states, and somewhat more may exist in the subsurface, as rocks as young as Austin age seem to have been termed "Raritan" in the records of some deep wells. It seems best not to use local terms in the deep wells until problems of correlation along the outcrops are resolved and more deep wells offer paleontologic evidence.

Definitive species of Foraminifera that have been described from the Woodbine Formation in Texas are present in wells along the Atlantic Coast (see table 3). Widely distributed species, Ammobaculites comprimatus Cushman and Applin, Ammobaculites advenus Cushman and Applin, Ammotium braunsteini Cushman and Applin, and Trochammina rainwateri Cushman and Applin, occur in wells in Alabama, Florida, Georgia, and South Carolina. Cuneolina walteri Cushman and Applin, and Trocholina floridana Cushman and Applin, have been identified from depths of 5,090 feet in well FL-57 (Sun Oil Company No. 1 Powell Land Co.) in Volusia County, Florida, and 5,790 feet in well NC-14 (Standard Oil Co. No. 1 Hatteras Light) in Dare County, North Carolina. Abundant specimens of Acruliammina longa (Tappan), Placopsilina langsdalensis Applin, and Haplophragmoides langsdalenis Applin were found at 5,310 feet in beds assigned to the part of the Tuscaloosa Formation that is of Woodbine age in the latter well.

10-

15-

16

18

20-

21

23

24

25

DU. S. GOVERNMENT PRINTING OFFICE: 1959 O + 511171

A microfauna closely related to that of the Chispa Summit Formation (Adkins, 1932, p. 437) of Eagle Ford age in Texas is present in wells along the Atlantic Coast (table 3). The species of Foraminifera by which rocks of Eagle Ford age can be most readily identified are Planulina eaglefordensis (Moreman), Valvulineria infrequens var. (Applin, 1955, p. 196), and Hastigerinella moremani Cushman. The occurrence of these species in cores at depths of 3,195 to 3,205 feet in well GA-75 (Sun Oil Co. No. 1 Doster-Ladson), Atkinson County, Georgia, is noted on cross section KL (pl. 13). The interval from 3,155 to 3,387 feet is the type sequence for the upper member of the Atkinson Formation (Applin and Applin, 1947, sheet 3) of Eagle Ford age. Herrick (1961, p. 13) assigned part of this sequence to the Blufftown Formation and part to the Eutaw Formation (Restricted), both of which he considered as Austin in age. However, he identified no fossils below a depth of 3,050 feet. and believes the species named support an Eagle Ford age for the interval (written commun., 1964).

7

11

12

13

14

16

17

18

19

20-

21

22

24

25

15-

Rocks of Woodbine and Eagle Ford age crop out almost continuously along the Fall Line from Alabama to New Jersey. They rest directly upon basement rocks at the surface and in the subsurface in a wide area of southern North Carolina, South Carolina, and eastern Georgia (see pls. 15 and 18). Woodbine strata may crop out in the Blake escarpment, opposite Cape Kennedy. A core of dark grayish-green, slightly sandy clay from a depth of 954 fathoms, or 5,724 feet, yielded Foraminifera that Loeblich (in Ericson, Ewing, Wollin, and Heezen, 1961, p. 236) regarded as Cenomanian and a little younger than the surface Washita in Texas and Oklahoma (fig. 7). Inasmuch as the Cenomanian Stage of Europe straddles the Lower and Upper Cretaceous boundary and includes rocks of both Washita and Woodbine age in North America, the clay probably is Woodbine in age. It seems likely that rocks of Woodbine and Eagle Ford age may be at or near the bottom surface at many places along the continental slope.

The thickness of rocks of Woodbine and Eagle Ford age penetrated by wells in the Coastal Plain ranges from a few feet to a maximum of 1,812 feet in well NC-14 (Standard Oil Co. No. 1 Hatteras Light) as correlated by Spangler (1950, p. 113, 114) and E. R. Applin (written commun. to J. Reeside, 1957). Offshore (pl. 18), thicknesses may be expected to exceed 1,000 feet in the Southeast Georgia embayment and 2,000 feet in the Ealtimore Canyon trough, perhaps by a considerable amount. Uniform thicknesses of less than 250 feet are present over much of the Florida peninsula, perhaps a result of a stable platform in the Florida-Bahama region during Upper Cretaceous time. Rocks of Woodbine and Eagle Ford age are absent on the Peninsular arch in northern Florida and the Cape Fear arch in North Carolina, where rocks of Austin age rest directly upon basement rocks.

☆ U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Rocks of Austin age

2

7

11

12

16

17

21

22

23

24

25

Rocks of Austin age can be separated fairly consistently from overlying rocks of Taylor age in deep wells from central Florida northward to southern New Jersey (pl. 8). Along the line of cross section AB, they range in thickness from 225 to 457 feet between central Florida and the Cape Fear arch, and from 550 to 638 feet between the Cape Fear arch and southern New Jersey. The lithology of the unit changes northward from light-colored limestone beds/that cannot be delimited in the dominantly carbonate sequence of Upper Cretaceous rocks in southern Florida, to dark-gray shale, siltstone, and sandstone in southern New Jersey. Chalk, marly limestone, and limy sandstone characterize the unit at intermediate points in Georgia and the Carolinas. In well NC-14 at Cape Hatteras, the entire 628-foot sequence is composed of fine- to coarse-grained sandstone with some beds of conglomerate. 15-This represents the lower part of the Black Creek Formation (pls. 8 and 1/1), a North Carolina unit that encompasses sandstone and shale beds of Austin and Taylor age. In Maryland and New Jersey (pls. 9 and 10), rocks of Austin age, mainly dark-gray shale and sandstone in deep wells. are equivalent to the Magothy Formation, which is dominantly sandstone in shallow wells near the outcrop. They cannot be separated easily from the overlying Matawan Group of Taylor age in deep wells of northern New Jersey and Long Island.

Citharina texana Cushman is the diagnostic species of Foraminifera that most commonly distinguishes the beds of Austin age in Georgia, Alabama, and South Carolina (table 3). In North Carolina, some question seems to exist about the upward range of this species. Spangler (1950, p. 116) stated "*** a macrofauna 'younger than the Austin, perhaps Taylor', was identified by L. W. Stephenson from these beds in the John Wallace well No. 12. As a result, it is thought that Vaginulina regina (now Citharina texana) ranges into younger beds along the east coast than in the Gulf Coast." Spangler (1950, fig. 5) recorded the occurrence of C. texana in several wells from the Black Creek Formation, and he (1950, p. 116, table 2) correlated the Black Creek in North Carolina with the Taylor in the Gulf Coast. However, Spangler and Peterson (1950, p. 8, fig. 4) correlated the Black Creek in North Carolina with both the Austin and the Taylor in the Gulf Coast, and this usage is followed in this report.

In the Florida peninsula, Citharina texana Cushman and other time-restricted foraminiferal species, Globorotalites umbilicatus Morrow, Darbyella brownstownensis Cushman and Deaderick, and Planulina austiniana Cushman, are rare, and certain distinctive and widely distributed lithologic features are generally used for recognition of the beds of Austin age.

Kyphopyxa christneri Carsey is present in and frequently recorded from beds of Austin age, but this species is present, also, in the lower part of the beds of Taylor age.

Rocks of Taylor age

The stratigraphic boundaries above and below rocks of Taylor age are discernible in deep wells along the coast in the same area in which rocks of Austin age can be delimited from central Florida to southern New Jersey, except on the Cape Fear arch, where inadequate well records make this uncertain (pl. 8). Along cross section AB (pl. 8), they are thickest in well FL-57 (Sun Oil Co. No. 1 Powell Land Co.) in central Florida, where 860 feet of light-colored limestone beds have been assigned a Taylor age. Applin and Applin (1944, p. 1715) have reported a thickness of more than 1,200 feet in southernmost Florida (Peninsular Oil and Refining Co. No. 1 Cory, Monroe County), but the unit could not be identified readily in the wells used for the cross sections in this report. Thicknesses ranging from 368 to 482 feet are present between central Florida and the Cape Fear arch. North of the Cape Fear arch, the thickness decreases from 585 feet in North Carolina (well NC-49) to 176 feet in Maryland (well MD-14). The composition of the unit changes from limestone in southern Florida to marly limestone and limy shale in central Florida to sandstone and shale in northern Florida and Georgia. Northward, in the deep wells, it is predominantly gray marl, limy shale, and siltstone. In North Carolina, it is represented by the upper part of the Black Creek Formation (pl. 1) and in southern New Jersey by the Matawan Group (pls. 9 and 10). The limits of this group are not apparent in deep wells in northern New Jersey and Long Island (pl. 9), although rocks of Taylor age are most likely present.

Rocks of Taylor age crop out someplace between depths of 758 and 1,955 feet in a submarine canyon in Georges Bank (See Submarine outcrops and bottom deposits). Material dredged from the wall consisted of poorly sorted, glauconitic and feldspathic, in part silty, coarse-grained sandstone assigned to the Matawan Group. Strata of Taylor age may be exposed or under a thin drape of Cenozoic materials at other places along the continental slope from Georges Bank southward to the Bahama Islands.

U. A. GOVERNMENT PRINTING OFFICE: 1959 Q - 511171

14

19

28

24

20-

15

U. S. GOVERNMENT PRINTING OFFICE: 1989 to - SITTE

Planulina dumblei (Applin) is the diagnostic species of the beds of Taylor age in the Atlantic Coastal Plain from Georgia northward to Long Island, and it generally occurs near the top of the unit. The highest occurrence of the beds of Taylor age in the Florida peninsula, however, is generally indicated by many specimens of Stensioina americana Cushman and Dorsey, and Bolivinoides decorata (Jones). S. americana and B. decorata are present in the upper part of the beds of Taylor age throughout the report area except at the southern end of the peninsula. In southern Florida, rocks of Taylor age are present in a thick sequence of very sparsely fossiliferous chalk, but are not differentiated in this report. Planulina dumblei has not been reported from the Florida peninsula, but another species of the Anomalinidae, Anomalina sholtzensis Cole, is fairly common in the peninsula but rare in the part of the Atlantic Coastal Plain north of Florida. Pseudogaudryinella capitosa Cushman is usually found in the lower part of the beds of Taylor age in the northern part of the Florida peninsula and in more northern portions of the report area.

Rocks of Navarro age

Rocks of Navarro age, which mark the top of the Cretaceous rocks,

can be traced in deep wells from central Florida northward to Long Island

along cross section AB (pl. 9). They have not been separated from the

underlying rocks of Taylor age in well NC-58 on the Cape Fear arch, but

this is partly because of the inadequate well records in that area. They

range in thickness from a maximum of 798 feet in well FL-73 (Humble Oil

Co. No. 1 Carroll) in central Florida to a minimum of 70 feet in well

NJ-25 (Anchor Gas Co. No. 1 Dickinson) at Cape May, New Jersey.

In northeast and central Florida, rocks of Navarro age are represented by a carbonate facies, 410 to 798 feet thick along cross section AB (pl. 9) and 485 to 900 feet thick along cross section MN (pl. 15). This facies has been termed the Lawson Limestone, and divided into upper and lower members by Applin and Applin (1944, p. 1708). The lower limit of the Lawson Limestone is not distinct in wells in southern Florida, where the entire Upper Cretaceous sequence is composed of lithologically similar carbonates.

18

17

2

22

23

24

25-

V. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

U. S. GOVERNMENT PRINTING OFFICE; 1959 O - 51117

Northward from Florida, the rocks of Navarro age grade into chalk. marl, and fine-grained clastics containing large amounts of glauconite. The Peedee Formation in North Carolina, which is Navarro in age, is 114 to 212 feet thick along cross section AB and consists primarily of marl. s calcareous and siliceous shale, and fine-grained sandstone. The Monmouth beds, 70 to 170 feet thick, in wells along cross section AB in Maryland. New Jersey, and New York, are Navarro in age. They are primarily darkcolored silty and sandy clay, and greenish glauconitic clay and sandy clay at the extremity of cross section AB in Long Island (Perlmutter and 10- Fodd, 1965, p. I-7). Submarine outcrops of Navarro age are present in two canyons cut in Georges Bank (see Submarine outcrops and bottom deposits). Fragments of dark-colored micaceous silty clay, coarse greensand and micaceous fine-grained sandstone, characteristic Navarro Foraminifera, were dredged 15- from the walls someplace between depths of 1,738 and 3,116 feet. Similar putcrops probably exist in other canyons along the continental slope.

11

12

13

16

17

18

19

21

22

23

24

25

20-

The fauna of the lower member of the Lawson Limestone is characterized by several species of Lepidorbitoides found also in the Maestrichtian of Europe, the Madruga Chalk of Cuba, and the Cardenas beds of Mexico. Sulcoperculina cosdeni Applin and Jordan is another definitive species. Specimens of Globotruncana cretacea are present but rare, and specimens of Anomalina cosdeni Applin and Jordan are common in some wells. The upper member of the Lawson Limestone is generally highly altered chemically, and specifically determinable fossils are rare. Rudistid fragments are commonly found near the top of the member and are fairly common at irregularly spaced lower levels. Specimens of a small, undescribed Rotalid are also fairly common in the upper Lawson.

12

The reported stratigraphic ranges of most of the Cretaceous species of smaller Foraminifera mentioned in this report are given by Cushman (1946).

Published reports on planktonic species of Foraminifera show that

occurrences of the genus Globotruncana are restricted to beds of Cretaceous

age. Consequently, the highest indigenous occurrence of the genus in a set

of well samples is prima facie evidence of the Cretaceous age of the

containing beds. Globotruncana arca Cushman, and Globotruncana cretacea

are shown on the cross sections in this report. Because these species

Cushman are the species generally found in the samples from the wells that

range downward into beds older than Navarro, and are not always present at

the top of the unit, other species, as Anomalina pseudopapillosa Carsey,

Cibicides harperi (Sandidge), and Robulus navarroensis Cushman reported

in lithologic character and in microfaunal population from the clastic

only from the Navarro, have been used to delimit the rocks of Navarro age.

beds of equivalent age in the Coastal Plain of the Middle Atlantic States.

The Lawson Limestone of Navarro age in the Florida peninsula differs

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

L = GOVERNMENT PRINTING OFFICE: 1959 O - 311171

Cenozoic rocks

Outcrops of Cenozoic rocks parallel the Fall Line from Georgia to

New Jersey except in South and North Carolina where the outcrops swing

seaward around the flanks of the Cape Fear arch. Cenozoic deposits are

thickest in the southern Florida-Bahamas region, as shown on plate 19.

Thicknesses in excess of 4,000 feet are present in wells in the southern

half of the Florida peninsula, and a thickness of 8,220 feet is present in

well BA-2 (Bahamas Oil Co., Ltd. No. 1 Andros Island) in the Bahamas

[6

(pl. 15). Along cross section AB (pl. 2), which parallels the Atlantic

Coast, the thickness of Cenozoic rocks ranges from 4,307 feet in southern

Florida (well FL-86) to 254 feet on the Cape Fear arch (well NC-58); and

from 3,020 feet at Cape Hatteras (well NC-14) to 130 feet on Long Island

(well NY-6). Beneath the Continental Shelf, Cenozoic thicknesses well

in excess of 4,500 feet and 6,000 feet may be present in the Southeast

Georgia embayment and the Baltimore Canyon trough respectively, judging

by the rate of thickening onshore and scattered seismic profiles (pl. 6).

14

17

18

13

The Cenozoic rocks have been subdivided into Paleocene, Eocene,
Oligocene, Miocene, and post-Miocene units in this report. In some wells,
mostly in Florida and Georgia, rocks of Wilcox, Claiborne, and Jackson
age have been recognized within the Eocene. The Miocene rocks are
partially subdivided in wells in North Carolina, Maryland, and New
Jersey. Rocks of Pliocene, Pleistocene, and Recent age are not separated
and are grouped together as post-Miocene rocks in this report.

Tertiary rocks

In general, the Tertiary rocks are dominantly carbonates in Florida but grade northward into heterogeneous sequences of limestone, marl, limy shale, sandstone, and clay. Thick beds of limestone and sandstone characterize the sequence in well NC-14 at Cape Hatteras, which is farther down the regional dip than the other wells. The faunal assemblages in the carbonate rocks of Tertiary age in the Florida peninsula are most closely related to faunal groups of equivalent age in Cuba, Panama, and other parts of the Caribbean and Central American region. The faunal groups of the northern part of the report area resemble most closely those of west Florida and the central and western Gulf Coast. A few of the distinctive Florida species are reported, also, from Tertiary beds in the subsurface in Georgia.

1. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

1 - GOVERNMENT PRINTING OFFICE: 1989 O - SILLT

Paleocene rocks

Paleocene rocks, equivalent to the Midway Group of the Gulf Coast. are present along the lines of all cross sections of this report, but are absent or indistinguishable from Eocene rocks in some wells near the Fall Line and on the Cape Fear arch. They are apparently overlapped by younger Tertiary rocks toward the Fall Line in northern Georgia (pl. 13). A maximum thickness of 2,270 feet has been tentatively assigned to rocks of Midway age in well BA-2 on Andros Island (pl. 16).

Along cross section AB (pl. 9), the Paleocene rocks range in 10- thickness from 1,210 feet in well FL-104 in southern Florida to a wedge edge on the flanks of Cape Fear arch. They are relatively thin, less than 190 feet thick, and less readily identified north of the Cape Fear arch. The Paleocene rocks in Florida are represented by the Cedar Keys Limestone, a light-colored limestone containing Borelis as a common 15- fossil. The equivalent formation in Georgia and South Carolina is the Clayton Formation, which is composed mainly of marl, sandy limestone, and limy sandstone beds. This correlates with the Beaufort Formation in North Carolina, a sequence of gray glauconitic shale interbedded with thin limestone and chert beds. Farther north, identification of Paleocene 20- rocks is difficult. The sequence tentatively assigned to this age in well NJ-26 at Island Beach, New Jersey, is composed mostly of dark greenish-gray fossiliferous limy clay and gray glauconitic siltstone. The underlying beds of Navarro age (Monmouth Formation) have a similar appearance and the two units can be separated only by means of fossils.

11

12

13

14

17

18 19

22 23

24 25

The foraminiferal species Borelis gunteri Cole and Borelis floridanus Cole are key species of the Cedar Keys Limestone (Cole, 1944, p. 28) of Paleocene age in the Florida peninsula. These species, and additional ones that have been described (Applin and Jordan, 1945) from the Cedar Keys, were present in many Florida wells used on cross sections herein (table 3).

Species described from and generally restricted to rocks of Paleocene age were found in Georgia, South Carolina, Maryland, and New Jersey. The most common species are Robulus pseudo-mamilligerus (Plummer) Cushman. Vaginulina longiforma (Plummer) Cushman, Anomalina midwayensis (Plummer) Cushman, and Robulus midwayensis (Plummer). The latter species has also been reported from the Salt Mountain Limestone and from the Nanafalia Formation, both of lower Wilcox, lower Eocene age in Alabama (Toulmin, 1941, p. 579).

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Beneath the sea off Georgia and Florida, Paleocene strata are known to extend under the Shelf and Blake Plateau (See Offshore test holes).

JOIDES test hole 4 (FL-122) on the Blake Plateau penetrated 263 feet of these beds between depths of 322 and 585 feet, where drilling ceased.

Cores from this hole consisted principally of hard, cherty, very fine-grained limestone interbedded with gray limey clay. JOIDES test hole 6 (FL-121), also on the Blake Plateau, was drilled only 10 feet into Paleocene strata.

Paleocene strata may crop out for considerable distances along the Blake escarpment. Dolomitic limestone and limestone beds from 5,950 to 8,220 feet deep beneath Andros Island in the Bahamas (well BA-2, pl. 15) have been assigned a Paleocene age. Judging by the close proximity of the Northeast Providence channel and Tongue-of-the-Ocean (5 to 10 miles), which descend to depths of about 10,000 feet, similar thicknesses of Paleocene strata may crop out or be thinly mantled along these canyon walls, which connect to the Blake escarpment.

10

12

13

14

16

17

18

19

21

23

24

20-

15

Eocene rocks

Eocene rocks crop out as a continuous band in the Coastal Plain from Alabama to the Cape Fear arch. They are absent from the crest of the arch, and somewhat intermittently exposed through overlying Miocene rocks northward to Long Island. Eocene rocks are present in most of the wells on the cross sections. They are thickest in wells off southern Florida (pl. 15), where they range from 2,000 to 4,000 feet in thickness, and are thinnest in Maryland (pl. 16), where they are 100 to 350 feet thick.

Along cross section AB (pl. 8), the Eocene rocks range in thickness from 2,328 feet in well FL-86 to 176 feet in well NC-58 on the Cape Fear arch, and from 1.132 feet in well NC-14 at Cape Hatteras to less than 500 feet in New Jersey. The Eccene rocks are mostly limestone in Florida. In central and northern Florida, they are subdivided in ascending order into the Oldsmar Limestone of Wilcox age, the Lake City and Avon Park Limestones of Claiborne age, and the Ocala Limestone of Jackson age. The Eccene rocks in Georgia and South Carolina consist of limestone. marl, and sandstone beds for the most part. Rocks of Wilcox, Claiborne (Lisbon and Talahatta Formations), and Jackson age are readily separable in this area. Farther northward, Eocene rocks exhibit a gradual change from sandy limestone and sandstone beds in North Carolina into a shale and sandstone sequence in Maryland and New Jersey. Limestones of middle and Upper Eocene age can be separated from Lower Eocene rocks in North Carolina wells, but in Marvland and New Jersev wells on cross section AB (pl. 8) the Eocene rocks are neither readily subdivided nor easily distinguished from the overlying Miocene rocks.

U. S. GOVERNMENT PRINTING OFFICE: 1939 G - SILLYI

867 - 100

11

12

13

1. 5. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Several of the species of Foraminifera that characterize lower

Eocene rocks (Oldsmar Limestone) found in wells in northern and central

Florida are Pseudophragmina cedarkeysensis Cole, Coskinolina elongata

Cole, Miscellania nassauensis Applin and Jordan, and Helicostegina

gyralis Barker and Grimsdale. The latter species is known to occur in

the basal part of the middle Eocene (Cole and Applin, 1964, p. 14), as

well as in the lower Eocene. Foraminiferal species that have been

described from outcropping sediments of Wilcox, lower Eocene age were

recovered from samples from wells drilled in the Coastal Plain in the

Middle Atlantic States (table 3). Among these species are Eponides dorfi

Toulmin, Spiroplectammina wilcoxensis Cushman and Ponton, Alabamina

wilcoxensis Toulmin, and Pseudophragmina stevensoni (Vaughan).

The middle Eccene rocks in the report area contain many foraminiferal species that are stratigraphically restricted to the unit, but differ in their geographic distribution. Species that have been reported from wells in both Florida and Georgia are: Asterocyclina monticellensis Cole and Ponton, Discorbis inornatus Cole, Gyroidina nassauensis Cole, Discorinopsis gunteri Cole, Amphistegina lopeztrigoi D. K. Palmer, Asterigerina texana (Stadnichenko), Cibicides westi Howe, and Lepidocyclina antillea Cushman. The well-known definitive species Eponides mexicanus Cushman is present in middle Eocene beds at the depth of 2,572 feet in the Gulf Oil Corp. No. 1 State of Florida Lease 826-G, in Florida Bay, Monroe County, Florida, and is common in middle Eocene beds at the depth of 2,610 feet in the Anchor Gas Co. No. 1 Dickinson well at Cape May, New Jersey. A few species that have been reported only from Florida are: Dictyoconus americanus (Cushman), Fabularia vaughani Cole and Ponton, Lockhartia cushmani Applin and Jordan, Lepidocyclina cedarkeysensis Cole, Dictyocomus floridamus (Cole), Lituonella floridana Cole, Spirolina coryensis Cole, and Flintina avonparkensis. The recurrence of Dictyoconus floridanus in the middle Eccene rocks in the Florida peninsula has been mentioned in the discussion of rocks of late Trinity age.

1. S. GOVERNMENT PRINTING OFFICE: 1959 G - 511171

Definitive species reported from upper Eocene rocks in Florida and Georgia, and found in wells on the cross sections of this report are: Lepidocyclina ocalana Cushman, Heterostegina ocalana Cushman, Operculinoides floridensis (Heilprin), Operculina mariannensis Vaughan, Camerina moodysbranchensis Gravell and Hanna, Amphistegina cosdeni Applin and Jordan, Sphaerogypsina globula (Reuss), Asterocyclina nassauensis Cole, and Eponides jacksonensis Cushman and Applin. In addition, Bulimina jacksonensis Cushman and Uvigerina cocoaensis Cushman are present in samples from wells in Florida and from the Anchor Gas Co. No. 1 Dickinson well at Cape May, New Jersey. Additional upper Eccene species in the Anchor Gas Co. well are: Marginulina cooperensis Cushman at 1,420 feet, Eponides cocoaensis Cushman at 1,520 feet, and Robulus virginianus Cushman and Cederstrom at 1,520 feet. Cushman (1948, p. 228, 234. and 240) also reported the occurrence of M. cooperensis, E. cocoaensis, and B. jacksonensis in the Ohio Oil Co. L. G. Hammond well, No. 1. Wicomico County, Maryland, and on the basis of Foraminifera, upper Eocene strata have been reported from several additional wells in Maryland (Anderson, 1948, p. 85-86, and p. 94; Shifflet, 1948, p. 25-26).

12

23

The wide distribution of rocks of Eocene age beneath the Shelf and Blake Plateau has been established by bottom cores along the continental slope from Georges Bank southward to the Bahama Islands, by a deep well on Andros Island, and the test holes drilled offshore from Georgia and Florida. Two bottom cores of probable Jackson age were taken from the middle of the continental slope 90 miles southeast of Marthas Vineyard, two of upper Eocene age from the lower continental slope near Hudson Canyon, and one of upper Eocene age from the Blake escarpment. Limestone, dolomitic limestone, and dolomite beds present in the Andros Island well (BA-2) between depths of 1,950 and 5,950 feet very likely are represented in the nearby canyon wall of Northeast Providence channel and the Tongue-of-the-Ocean.

The U. S. Coast Guard test hole (well GA-88) off Georgia penetrated only 5 feet of upper Eocene rocks, the Ocala Limestone (McCollum and Herrick, 1964, p. C61-62). In onshore wells in Chatham County, the Ocala is about 400 feet thick and consists of gray to buff fossiliferous limestone. It is the principal aquifer throughout much of eastern Georgia. No facies change was noted in the Ocala between the coastal wells and the offshore test hole.

The JOIDES test holes (FL-118-123, fig. 7) off Jacksonville, Florida, penetrated 48 to 550 feet of Eocene rocks. Only two test holes, 6 and 4 (FL-121 and 122), drilled completely through the Eocene sequence. Test hole 6 (FL-121) about 136 miles offshore near the middle of the Blake Plateau penetrated 63 feet of lower Eocene beds, 35 feet of middle Eocene beds, and 95 feet of upper Eocene beds. Test hole 4 (FL-122), located about 221 miles offshore near the edge of the Blake Plateau, found only 53 feet of Eocene beds, all of which were assigned an early Eocene age.

U. S. GOVERNMENT PRINTING OFFICE: 1959 C - 511171

19

T. S. DAVERDARM PRINTED LIVER I 1998 D. WILL

OCT-THE

Thicknesses in excess of 550 feet were penetrated in test holes 1 and 2 (FL-118 and 119), about 27 and 64 miles respectively offshore on the Continental Shelf. These included only beds of late and middle Eccene age, mainly porous medium-to-coarse clastic limestones and dolomitic limestones. Early Eocene beds are present in onshore wells and in test holes 6, 3, and 4 (FL-121, 122 and 123) farther out on the Blake Plateau. which suggests that the two test holes on the Shelf would have reached early Eocene rocks if drilling had continued. Test hole 3 (FL-123) about 181 miles offshore on the outer Blake Plateau opposite Cape Kennedy penetrated 85 feet of middle and lower Eocene rocks, composed mainly of limy sand, fine-grained limestone, chert, and clay. About 75 miles north on the outer Blake Plateau, test hole 4 (FL-122) drilled 55 feet of lower Eocene ooze and chert. The lithology and thickness of lower, middle, and upper Eocene units in the JOIDES test holes suggest that Eocene rocks 15- became less porous and thin seaward both internally and by loss of beds at the top.

13

14

16

17

18

19

23

24

20-

Oligocene rocks

Oligocene rocks are present both at the surface and in the subsurface from Florida northward to the Cape Fear arch. They are not known at the surface north of the Cape Fear arch, but may be present in the interval marked "Rocks of uncertain age, possibly Oligocene in part" in wells NC-7 and NC-14 in North Carolina (pls. 8 and 11). The Oligocene rocks are composed of limestone beds from 35 to 250 feet thick south of the Cape Fear arch. The rocks of uncertain age, possibly Oligocene in part, in wells NC-14 and NC-7 in North Carolina include sandy limestone, shale, and sandstone beds. Considerable additional study of this interval is needed.

The Oligocene rocks in Florida and Georgia contain closely similar faunal populations. Among the larger Foraminifera, Heterostegina antillea Cushman, and Miogypsina gunteri Cole are probably the most important faunal elements in southern Florida, and L. undosa and M. gunteri have also been reported from wells in the Georgia Coastal Plain. Of the smaller foraminiferal species, Streblus mecatepecensis (Nuttall) and Streblus byramensis (Cushman) are probably the most abundant and the most widely distributed. Specimens of Asterigerina subacuta Cushman and Nonionella leonensis Applin and Jordan are common.

An unusual but characteristic feature of the Oligocene rocks in

Florida and Georgia is the common occurrence of specimens of Dictyoconus floridanus and Discorinopsis gunteri. Both are diagnostic fossils of the

upper middle Eocene Avon Park Limestone in the Florida peninsula. Their recurrence in the Oligocene of Florida and Georgia has been attributed to secondary deposition by Cole (1941, p. 12-16), although Applin and Applin (1944, p. 1682-1683), among others, suggest that these fossils may be indigenous. Because they are generally accompanied by many specimens of Streblus mecatepecensis and other typical Oligocene species, the age of the containing beds is readily determinable. OVERNMENT PRINTING OFFICE : 1959 D - 511151

U. S. GOVERNMENT PRINTING OFFICE: 1919 O - 1111

offshore, the Oligocene rocks have been recovered from the Blake escarpment and penetrated by test holes on the Shelf and Blake Plateau (fig. 7). The U. S. Coast Guard test holes (well GA-88) off Georgia drilled through about 76 feet of limy sand of Oligocene age between depths of 90 and 166 feet below sea bottom. Oligocene rocks appear to grade from fossiliferous limestone in inland wells to sandy limestone in coastal wells and then into limy sandstone offshore. This facies change may be related to the development of the upwarp along shore mapped on a Miocene limestone by McCollum and Counts (1964, pl. 1).

Considerable thicknesses of Oligocene rocks were drilled in the six JOIDES test holes off Jacksonville, Florida (figs. 7 and 8). The thicknesses recorded increase from 30 feet in test hole 1 (FL-118) about 27 miles offshore to 532 feet in test hole 5 (FL-120) about 76 miles offshore and then decrease to 170 feet in test hole 3 (FL-123), 181 miles from shore, and only 94 feet in test hole 4 (FL-122), 221 miles from the coast. The maximum thickness is near the edge of the present-day Shelf.

20-

Miocene rocks

Only a few large patches of Miocene deposits are exposed on the surface of the Coastal Plain south of the Cape Fear arch. These include areas the size of one-to-three counties in South Carolina, and along the Gulf side of Florida. North of the Cape Fear arch, broad, flat-lying Miocene deposits blanket the Coastal Plain from North Carolina across the Salisbury embayment to the northeastern tip of New Jersey.

Salisbury embayment to the northeastern tip of New Jersey.

Subsurface Miocene rocks along the line of cross section AB (pl. 9)

are about 800 feet thick in the Florida Keys (well FL-104), less than 60

feet thick at the Peninsular arch (well FL-57), and about 350 feet thick

in the Southeast Georgia embayment (well GA-87). They wedge out in South

Carolina on the flank of Cape Fear arch. In this interval the lithology

changes gradually from chalky, coquinoidal limestone to dark sandy limestone

and claystone. North of the Cape Fear arch, the Miocene rocks reach a

15- thickness in excess of 1,300 feet at Cape Hatteras (well NC-14) and about

1,400 feet in the center of the Salisbury embayment (well MD-14). Miocene

rocks are not delimited in the Tertiary sequence in well NJ-26 in

northeastern New Jersey, and are not present in well NY-6 on Long Island.

The lithology grades northward from sandy limestone and sandstone to clay,

Lower Miocene rocks are separated from middle and upper Miocene rocks in wells NC-14 and NC-7 in North Carolina on cross section AB (pl. 9), but are not identified in well MD-14 in Maryland and well NJ-25 in New Jersey. Lower, middle, and upper Miocene rocks are separated on cross section GH (pl. 12) in North Carolina. Local formation names -- Calvert, Choptank, St. Marys, and Yorktown -- are applied to the shallow subsurface Miocene rocks in Maryland on cross section EF (pl. 11).

U. S. GOVERNMENT PRINTING OFFICE: 1959 O = 511171

The foraminiferal faunas of the Miocene rocks of the Atlantic and eastern Gulf Coastal Plain have been described in several comprehensive reports. Pertinent references to Miocene Foraminifera that are useful in connection with the present report are by Cushman and Cahill (1933), Puri (1953), and in paleontological reports by J. A. Cushman (1948, p. 214-225) and by Ann Dorsey (1948, p. 268-321). Only a few of the most common diagnostic species of Miocene Foraminifera are shown in table 3 in this report, and most of these faunal data relate to wells in the southern part of the Florida peninsula. However, a few data are available on Miocene Foraminifera from a well in Maryland, and from the Anchor Gas Co. No. 1 Dickinson well in New Jersey.

A few of the species of smaller Foraminifera present in wells in Florida are: Globoratalia menardii (d'Orbigny), Buccella mansfieldi (Cushman), Robulus americanus (Cushman), Hazawaia concentrica (Cushman), Elphidium chipolense (Cushman), Peneroplis bradyi Cushman, Amphistegina chipolensis Cushman and Ponton, Textulariella barretti (Jones and Parker), Archaias floridanus (Conrad), and Sorites(?) sp.(?) Cushman and Ponton.

Several species of larger Foraminifera that are important elements in the fauna are: Miogypsina antillea (Cushman), Miogypsina staufferi Koch, and Lepidocyclina (Eulepidina) yurnagunensis Cushman.

Cole and Applin (1961, p. 130-131) discussed the stratigraphic distribution of some larger Foraminifera in Florida, and showed that certain species of Miogypsina are confined to the upper Oligocene, certain other species are confined to the lower Miocene, possibly the basal Tampa Limestone, and some species are common in both the upper Oligocene and lower Miocene. Consequently, the occurrence of the genus Miogypsina, alone, is not indicative of either stratigraphic unit.

Common species of smaller Foraminifera present from 920 to 1,080 feet in the Anchor Gas Co. well at Cape May, New Jersey, are:

Cipicides floridanus (Cushman), Nonion mediocostatum (Cushman), Nonion pizarrense W. Berry, Spiroplectammina mississippiensis (Cushman),

Textularia mayori Cushman, and Uvigerina subperegrina Cushman and Kleinpell.

U. S. GOVERNMENT PRINTING OFFICE: 1959 G - 511171

The sea bottom off the Atlantic Coast has yielded cores and samples of Miocene deposits at many places (see Submarine outcrops and bottom deposits). Miocene strata beneath the Shelf, Blake Plateau, and Bahama Islands have been penetrated and sampled by the test holes off Georgia and Florida, and by wells drilled on the Bahama Islands (BA-2 and 3).

Greenish, fine-grained sandstone probably from the Yorktown Formation of middle-to-upper Miocene age was found in place along the east wall of Lydonia canyon in Georges Bank at a position high on the continental slope. Talus of Miocene age has been recovered from nearby Hydrographer and Corsair canyons at positions on the upper and middle continental slope.

Nearshore shoals called "Black Rocks" at Cape Fear arch have been identified as marl of Miocene age. Ooze of Miocene age has been dredged from numerous locations on the top of the Blake Plateau, and three cores of Miocene deposits have been recovered from the edge of the Blake Plateau and escarpment (fig. 7).

16

22

A Miocene sequence, 80 feet thick, was drilled in the U. S. Coast
Guard test hole (GA-88, fig. 7) off Georgia. McCollum and Herrick (1964,
p. C63) subdivided this into lithologic units of lower, middle, and upper
Miocene age. They report the lower Miocene unit to be a fossiliferous

20-phosphatic sandy conglomeratic limestone, 12 feet thick. This limestone
persists over a wide area inland and has been used by McCollum and Counts

(1964, pl. 1) for structural mapping in ground-water investigations.
Unconformably overlying this limestone are beds of pale-green phosphatic sandy clay and clayey sand, 50 feet thick, that are considered middle Miocene in age. The upper Miocene unit, 18 feet thick, consists of sand, clay, and a layer of sandy dolomitic limestone. The Miocene sequence thins seaward to the test hole, mainly at the expense of the upper Miocene

Miocene rocks, consisting mainly of phosphatic silt and clay with phosphate pebbles, were drilled and cored in four of the six JOIDES test holes off Jacksonville, Florida (fig. 7). Test holes 1 (FL-118) and 2 (FL-119), about 27 and 63 miles offshore on the Shelf, recorded 238 and 258 feet of Miocene rocks, respectively. Middle Miocene deposits are missing at test hole 2 (FL-119) on the outer Shelf but marked by a phosphate pebble zone. Test hole 5 (FL-120), 77 miles offshore near the top of the continental slope, and test hole 6 (FL-121) about 136 miles offshore near the middle of the continental slope, did not record any Miocene rocks but went from post-Miocene deposits directly into a thick Oligocene sequence. Miocene sequences, 260 to 115 feet thick, were logged in test holes 3 (FL-123) and 4 (FL-122), 181 and 221 miles offshore on the outer Blake Plateau. Only lower Miocene rocks were recognized in test hole 4 (FL-122).

A vuggy-to-cavernous limestone and dolomite sequence, 1,420 feet
thick, is present in well BA-2 on Andros Island in the Bahamas. A water
(BA-3)
wellAon the nearby Eleuthera Island is reported to have drilled 250 to
300 feet into similar rocks of Miocene age. In general, the Miocene deposits
seem to be at or near the top of the Shelf, outer Blake Plateau and
escarpment. They are absent from the Florida-Hatteras slope and the
innermost Blake Plateau where the JOIDES test holes were drilled off
Jacksonville.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

14

23

Tertiary and Quaternary deposits

Post-Miocene deposits

Pliocene, Pleistocene, and Recent deposits along the Atlantic Coast are represented by beds of marl, clay, sand, and gravel that cannot be readily separated on an age basis in the scattered wells of these cross sections. These are treated as undifferentiated post-Miocene rocks.

The thickest sequence of post-Miocene rocks, 530 feet thick, on these cross sections is present on Andros Island (well BA-2, pl. 16). Thicknesses in excess of 250 feet are present in wells on the Florida Keys (wells FL-109 and FL-111, pl. 16). The rocks are predominantly marl in Florida and the Bahamas. Along cross section AB (pl. 9), the thickness exceeds 200 feet only in the Salisbury embayment (well NC-7 and well MD-14). Sand and gravel beds predominate in this area.

15--

13

14

17

16

19

21

23

25

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

The U. S. Coast Guard test holes (GA-88) off Georgia revealed very thin, undifferentiated post-Miocene deposits on the Shelf there. Fossiliferous sand, only 10 feet thick and possibly all Recent in age, was logged above the Miocene rocks. The six JOIDES test holes off Jacksonville, Florida, penetrated thicknesses of post-Miocene deposits ranging from 20 feet in test hole 6 (FL-121), 136 miles offshore on the Blake Plateau, to 220 feet in test hole 5 (FL-120), 76 miles offshore near the edge of the Shelf. The maximum deposition of sediments in this offshore area in post-Miocene time appears to have been at or near the edge of the present-day Shelf. 11 12 13 14 24

U. S. GOVERNMENT PHINTING OFFICE; 1959 O - 511(1)

Petroleum potential

Hydrocarbons and source beds

2

12

13

18

21

25-

Oil and gas have not been discovered in commercial quantities in the Atlantic Coastal Plain and Continental Shelf, but three accumulations have been found along the eastern edge of the Gulf Coastal Plain in the southwestern part of the Florida peninsula. These are the Sunniland field in Collier County, the Forty-Mile Bend field in Dade County, and the Felda field in Hendry County (pl. 1).

Sunniland field, Collier County, Florida, was discovered in 1943

after intensive exploration with seismograph, gravity meter, and core
drilling (Hughes, 1944, p. 804). The early history of this field has
been described by Gunter (1946, p. 1-4; 1949, p. 310-312; 1950, p. 1-5),
Puri and Banks (1959), and Roberts and Vernon (1961, p. 218). The
discovery well, the Humble Oil and Refining Co. No. 1 Gulf Coast Realties
Corp., in sec. 29, T.48S., R.30E., produced 110 barrels of 20° A.P.I.
gravity oil and 475 barrels of salt water a day by pumping from depths of
11,613 to 11,626 feet in the Sunniland Limestone of Trinity age (Lower
Cretaceous). The field was developed by drilling a total of 20 wells
between 1943 and 1950. Thirteen wells were successful, with initial
production tests ranging from 97 to 527 barrels of oil a day.

The reservoir, the Sunniland Limestone, lies "above the thick anhydrite bed in the Trinity, which is equivalent to some part of the Glenrose formation of Texas" (Jordan, 1954, p. 375). Puri and Banks (1959, p. 123) state that the trap is formed by a small fold not evident in the rocks above 5,000 feet. They ascribe 150 feet of relief to the structure at a depth of 11,500 feet, but explain that tilting to the northeast by 50 feet a mile has reduced the fold closure to only 36 feet.

According to Roberts and Vernon (1961, p. 218), two of the producing wells had been abandoned by 1960, and the remaining 11 wells pumped an average of 96 barrels a day. They state that the cumulative production for the Sunniland field was 6,089,470 barrels at the close of 1960, and that the best well had produced over 800,000 barrels, and the average well over 400,000 barrels. On March 1, 1965, Sunniland field was producing 1,800 barrels of oil and 3,600 barrels of salt water a day by pumping, and the cumulative production reached 8,475,830 barrels of oil (Kornfeld, 1965, p. 173). Pumping costs have been relatively low because of an efficient water drive.

11

12

13

14

16

19

24

25

Forty-Mile Bend field, Dade County, Florida, was discovered in 1954 about 50 miles southeast of the Sunniland field after both reflection and refraction seismic surveys had been made in the area (Powell and Culligan, 1955, p. 1008). The discovery well, the Gulf Refining Company No. 1
Wiseheart-State of Florida, Sec.16, T.54S., R.35E., reached a total depth of 11,557 feet and was completed in the Sunniland Limestone of Trinity age (Lower Cretaceous). The initial production was 76 barrels of 20°
A.P.I. gravity oil and 96 barrels of salt water from depths of 11,322 to 11,339 feet. A second producing well completed with an initial production of 112 barrels a day was followed by three dry holes that delimited the small field. The field produced a total of 32,888 barrels of oil before being abandoned (Roberts and Vernon, 1961, p. 218).

U. S. GOVERNOUS

Felda field, Hendry County, Florida, about 15 miles northwest of the Sunniland field, was discovered in 1964 near the Town of Felda. The discovery well was the Sun Oil Company No. 2 Red Cattle Company in Sec. 32. T.45S., R.29E. Its initial flow was 111 barrels of 24.5° A.P.I. gravity oil from the interval of 11,471 to 11,485 feet in the Sunniland Limestone (Gardner, 1964, p. 175). A second producing well was drilled to a total depth of 11,495 feet about $1\frac{1}{h}$ miles southeast of the discovery, and a third successful well was drilled about \(\frac{1}{4} \) mile southeast of the first well. The third well, which is the best so far, had an initial pumping potential of 336 barrels of oil and one barrel of salt water. The cumulative production of Felda field reached 42,903 barrels of oil on March 1, 1965 (Kornfeld, 1965, p. 173). 17 18 19 23

Although petroleum has been produced in three counties of southern Florida, little evidence of hydrocarbons has been found in the many wells drilled in northern Florida. The St. Mary's River Oil Corporation No. 1 Hilliard well (Well' 51, Pable 1) in Nassau County was reported to have asphaltic staining in the Cedar Keys Limestone of Paleocene (Tertiary) age, in limestones of Taylor (Upper Cretaceous) age, and in the lower part of the Atkinson or Tuscaloosa Formation of Woodbine (Upper Cretaceous) age. However, these shows must be regarded as doubtful in view of the State Geologist's statement (Vernon, 1951, p. 238) that "shows of oil and gas are unknown throughout the northern Peninsula".

Indications of hydrocarbons have been reported in two wells in southwestern Georgia, an adjacent part of the Gulf Coastal Plain. Shows of both oil and gas were reported without confirmation at unspecified depths in the J. R. Sealy No. 3 Spindle Top well (Well)65, Fable 1) in least total depth of 7,620 feet. Records of the second well, the J. R. Sealy No. 1 Fee well (Well)67, Fable 1), Decatur County, show that an unknown quantity of gas and hot water flowed from an Upper Cretaceous sandstone at a depth of 3,005 feet. The calculated heating value for this gas was only 754 B.T.U. per cubic foot. Results of the analysis are given below:

Methane	74.2%	
Nitrogen	24.1%	
Carbon dioxide	0.6%	
Argon	0.4%	
Helium	0.3%	
Oxygen	0.2%	
Hydrogen	0.1%	
Ethane	0.1%	
Cyclopentane	trace	

t_5 GOVERNMENT PRINTING OFFICE: 1999 O+511

167-1-

11

20-

Seeps and shows of oil have been reported in central Georgia. The seeps occur in the vicinity of Scotland. Telfair County, where oil of about 30° A.P.I. gravity and gas come to the surface in a swampy area (Hull and Teas, 1919). The surface beds are sands and clays of probable Oligocene age in an area that may be structurally high, according to Hull and Teas (1919, p. 11). The oil shows have been reported, without confirmation, in Coffee and Telfair Counties. A show of oil in a sandstone of Taylor age was reported in a Carpenter Oil Company well about 20 miles north of Douglas in Coffee County, and fluorescence and staining was reported in sidewall cores taken from sandstones of Lower Cretaceous (?), Woodbine, and Austin age in the Parsons and Hoke No. 1 Henry Spurlin well 11 12 (well GA-33, table 1) in Telfair County. A few oil seeps and surface indications of gas have been reported in 13 North Carolina, but none have been substantiated. Subsurface evidence for 15- the presence of hydrocarbons is also very meager. Scattered shows of oil were reported by the driller in cuttings and sidewall cores of the F. L. Karsten No. 1 Laughton well (well NC-47, table 1) located near the coastline in Carteret County, but were not confirmed by later studies of the samples and cores. "Showings of a gas" of unspecified composition in Lower 20- Cretaceous or possibly Triassic rocks between depths of 3,170 and 4,050 21 feet in the Du Grandlee Exploration Co. No. 1 Foreman well (well NC-12, 22 table 1) in Camden County were reported to Richards (1954. p. 2565). 23 24

A minor amount of gas was produced from shallow wells in the Coastal Plain of Maryland and used as fuel for a period of two years near the turn of the century. These wells, located in the vicinity of Parsonburg and 4 Pittsville in Wicomico County, were less than 100 feet deep. The gas 5- produced had a high nitrogen content (77.96 percent) and a low methane content (19.86 percent). It was concluded that this gas was marsh gas and had its origin in a buried swamp. No gas was reported below these shallow depths. Reference to well MD-12 on cross section EF (pl. 10) of this report suggests that the gas came from Pleistocene or Pliocene 10- alluvium. Traces of hydrocarbons were detected at a depth of 300 feet in a water well at Cape May, New Jersey, and in another water well at Atlantic City, by F. J. Markewicz of the New Jersey Geological Survey, according to M. E. Johnson (Petroleum Week, 1958, p. 23). A similar occurrence in 15- another water well near Cape May was reported to him by an oil company 16 geologist. Source beds for hydrocarbons, generally regarded to be marine shales, marls, and limestones in about that order of importance, are scattered throughout the stratigraphic sequence beneath the Coastal Plain, but only 20 reach considerable thicknesses beneath the Florida peninsula and in a 21 harrow band along the coast from New Jersey to North Carolina. Thick limestone, marl, and dolomite beds make up most of the Cretaceous and Tertiary rocks in Florida and southern Georgia; shale, marl, and limestone 23 beds make up more than half of the sequence at Cape Hatteras and in coastal Maryland. Offshore, much thicker marine deposits, particularly in the Lower Cretaceous and older rocks, may be expected beneath the Continental Shelf. Inland, the rocks with more continental aspects 25 probably are more likely to be sources of dry gas than of oil.

Emery (1963, p. 6; 1965, p. C159-C160) has suggested that fine-grained organic-rich source beds may be interbedded with coarse-grained turbidites at the base of the continental slopes of the world and that possibly large reserves of petroleum will be found there 5- When cheap and effective methods of drilling and extraction at such water depths are developed. If this is established, a band of sediments along the slope and rise from Newfoundland to Florida will deserve consideration for petroleum exploration. 10 11 12 13 14 15-16 17 18 19 20-21 22 23 24 25

Reservoirs and fluids

Reservoirs are thick and numerous beneath the Atlantic Coastal Plain. Sandstones of Upper Cretaceous age and sandstones and limestones of Tertiary age supply fresh water to most of the communities on the Coastal Plain. The Upper Cretaceous sandstones, especially those of Woodbine and Austin age that are several hundred feet thick, yield large quantities of potable water for several tens of miles downdip from their outcrops. Sandstones of the Raritan (Woodbine age) and Magothy (Austin age) Formations cropping out along the Fall Line in New Jersey have porosities as large as 46 and 40 percent respectively (Barksdale and others, 1958, p. 98). Generally, the Upper Cretaceous sandstones contain salt water near the coast, although fresh-to-brackish water is present in the Raritan Formation along the New Jersey coast (Gill, Seaber, Vecchioli, and Anderson, 1963, p. 20) and the southern shore of Long Island (Perlmutter and Crandell, 1959, p. 1068). The Raritan sands yield from 200 to 2,000 gallons a minute in wells on Long Island (Perlmutter and Crandell, 1959, p. 1069, 1072), which suggests excellent porosity and permeability. The shallow Tertiary sandstones and limestones, particularly those of Upper Eocene, Oligocene, and Miocene age, yield potable water from their outcrops to the sea coast. The Ocala Limestone (upper Eocene) is an especially extensive fresh-water artesian aquifer in Florida and Georgia and is known to discharge fresh water in submarine springs off Florida, where indicated on plate 2 (Stringfield and Cooper, 1951, p. 61). 24

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 51117

At present, no wells have been drilled on the Atlantic Continental Shelf, so the probability of adequate reservoirs for petroleum accumulations can be judged only from the wells drilled along the coast and in the Bahama Islands. Two wells, the Standard Oil Company No. 1 Hatteras Light at Cape Hatteras, North Carolina, and the Bahama Oil Company, Ltd. No. 1 Andros Island on Andros Island, B. I., are particularly significant. The first penetrated 9.878 feet of dominantly marine clastics with some thick limestone sequences; the latter penetrated 14,585 feet of marine limestone and dolomite beds. Thick sandstone reservoirs are present in the Cape Hatteras well, whereas thick porousto-cavernous limestone and dolomite beds are reservoirs in the Andros 11 Island well. 12 13 14 15-16 17 18 20-21 23 24 25

Hatteras Light well

The drilling and testing of the Standard Oil Co. No. 1 Hatteras 2 Light well (well NC-14, table 1) has been reported by Spangler (1950. p. 104-108). This well penetrated ten major sandstone bodies, numerous 5- thin sandstone beds, and a few porous limestone and dolomite beds. The major sandstone bodies, ranging from 93 to 728 feet in thickness, are present at depths of (1) 9,150-9,878 feet [Basal Upper Jurassic or Lower Cretaceous (Neocomian) age], (2) 8,585-8,750 feet [Lower Cretaceous, Trinity(?) age], (3) 8,240-8,500 feet [Lower Cretaceous, Trinity(?) 10- age], (4) 7,665-7,758 feet [Lower Cretaceous, Trinity(?) age], (5), 7,018-7,360 feet [Lower Cretaceous, Fredericksburg(?) age]. (6) 6,475-6,585 feet [Lower Cretaceous, Washita(?) age], (7) 4,800-5,580 feet [Upper Cretaceous, Woodbine age], (8) 3,660-4,288 feet [Upper Cretaceous, Austin age], (9) 2,385-2,755 feet [Tertiary, lower Eocene 15- age], and (10) 575-995 feet [Tertiary, Miocene age]. The three most promising reservoirs for petroleum -- sandstones of Fredericksburg(?). Washita(?), and Austin age -- were cored and tested. The porosity and 17 permeability determinations are given in table 4, which is adapted from 18 Spangler (1950, p. 107). 19 Table 4 near here 21 22 23

U. S. GOVERNIE

24

Table 3 - Porosity and permeability determinations for reservoirs in the Standard Oil Company No. 1 Hatteras Light well

Age of rocks	Core No.	Depth (Feet)	Recovery (Feet)	Porosity (Percent)	Permeability (Millidarcys)
Upper Cretaceous	51	3,657-66	1.5	41.2	Undet.
Austin	52	3,693-3,703	3	27.6	5.7
(Sandstone)	53t	3,827-37	3	31.8	4.5
V	53b	3,827-37	3	15.9	5.7
	54	3,930-40	0.8	39.2	Undet.
	55	4,042-52	4.5	32.2	5.0
	56	4,152-62	10	40.9	Undet.
	57	4,275-85	4	28.0	5.4
Lower Cretaceous	77	6,487-97	10	27.0	65.0
Washita	77	6,487-97	10	33.7	73.6
(\$andstone)	77	6,487-97	10	33.2	70.0
(pands cone)	77 78	6 107 6 507		01. 7	
	(0	6,497-6,507	9	24.7	Undet.
	78	6,497-6,507	9	30.2	184
	78	6,497-6,507	9 5	3.1	0
	79	6,507-12	5	27.2	58.3
	79	6,507-12	5	26.9	Undet.
	80	6,512-22	7.5	29.3	Undet.
	80			27.8	Undet.
		6,512-22	7.5	21.0	
	80	6,512-22	7.5	32.1	Undet.
	81	6,522-32	4	19.8	118
	81	6,522-32	4	25.9	191
	82	6,532-42	3	27.8	247
	83	6,542-52	3 7	28.9	1,546
	84	6,552-62	10	26.4	
		0,552-02			999
	84	6,552-62	10	33.6	Undet.
	84	6,552-62	10	33.9	2,103
	85	6,562-72	10	28.0	142
	85	6,562-72	10	31.4	1,024
	86	6,572-81	7	30.8	605
	86	6,572-81	7	2.5	0
Lower Cretaceous	91	7,021-26	2.1	32.6	2,080
Fredericksburg	92	7,034-39	2.7	31.4	Undet.
(Zandstone)	93	7,076-81	4	22.0	58.3
4	94	7,081-91	4	19.3	391
	94	7,081-91	24	16.5	
	24				11.7
	95	7,091-96	2.5	24.1	Undet.
	96	7,096-7,106	10	27.3	301
	96	7,096-7,106	10	29.1	537
	97	7,106-7,113	7	28.4	386
	98	7,113-23	9	29.0	810
	08				
	98	7,113-23	9	31.5	943
	99	7,123-33	10	26.8	205
	99	7,123-33	10	12.8	2.1
	100	7,191-7,201	10	25.4	Undet.
	100	7,191-7,201	10	26.1	Undet.
	100				

1	The principal potential petroleum reservoir of Fredericksburg age,
2	7,018 to 7,360 feet in depth, consists mainly of light-gray,
3	fine-to coarse-grained sandstone, with some thin beds of light-gray,
4	fine-grained, silty sandstone and white, slightly colitic, finely-
5-	crystalline limestone. The upper part, 7,018 to 7,201 feet in depth, wa
6	cored and tested. The porosities range from 12.8 to 32.6 percent and th
7	permeabilities from 2.1 to 2,080 millidarcys (table 4). A drill-stem
8	test (No. 2, pl. 12) taken opposite the interval between 7,018 and 7,027
9	feet with the tool open 10 minutes recorded a bottom-hole pressure of
10 –	3,100 pounds per square inch and yielded seven barrels of mud and muddy
11	salt water, and 51 barrels of salt water. The analysis of water from
12	this test is given below:
13	Parts per million
14	Sodium 42,858
15-	Calcium 5,856
10	Magnesium 1,258 Sulphate 840
16	Chloride 79,460
	Bicarbonates 47
17	Carbonates 0
18	
19	
20-	
21	
22	
23	
24	

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

The principal potential petroleum reservoir of Washita age, 6,487 to 6.581 feet in depth, is a 96-foot sequence of sandstone beds grading from medium grained at the top to fine grained and silty at the bottom. The porosities of these beds range from 2.5 to 33.9 percent and the permeabilities from 0 to 2,103 millidarcys. A drill-stem test (No. 1, pl. 12) with packers set at 6,474 and 6,483 feet and the tool open ten minutes recovered six barrels of mud and muddy salt water, and 55 barrels of salt water. Total depth was 6,512 feet during the test and the bottom-hole pressure was recorded as 2,900 pounds per square inch. The 10- analysis of water from this test is given below: 11 Parts per million Sodium 36,097 12 Calcium 7,100 1,302 13 Magnesium Sulphate 840 14 Chloride 71,335 Bicarbonates 99 15 Carbonates 16 17 18 19 20-21 22 23 24

Rocks of Woodbine age, which include the more or less equivalent Atkinson, Tuscaloosa, and Raritan fresh-water aquifers of the Coastal Plain, have poor reservoir characteristics in the Hatteras Light well. This interval is made up of thin, silty, fine-grained sandstones interbedded 5- with sandy shale and a few fossiliferous limestone layers. Updip in the Standard Oil Co. No. 2 North Carolina Esso well (well NC-7) in Pamlico Sound, the interval is about the same thickness, roughly 1,300 feet, but consists of thick sandstone beds interbedded with thin layers of gray shale and some limestone lenses. Generally, the sandstone beds are very fine-to medium-grained, limy, and slightly carbonaceous with scattered conglomeratic layers composed mostly of chert and pebbles. Examination of a core between depths of 4,377 and 4,387 feet revealed a fine-to mediumgrained, slightly limy, glauconitic sandstone that is extremely porous. This comparison suggests that rocks of Woodbine age may be considerably 15- less porous and permeable a short distance offshore than they are beneath the Atlantic Coastal Plain. Such a condition is not necessarily a negative factor in the evaluation of the petroleum potential of the Shelf, as clean, Well-sorted sandstones are not common among the oil reservoirs 19 in the United States. The principal potential petroleum reservoir of Austin age. 3.660 to 4,288 feet in depth, is composed of fine-to coarse-grained, calcareous glauconitic sandstone with thin conglomeratic layers. Some coarse sandstones are very loosely cemented and the individual sand grains break free in the drilling. Porosities range from 15.9 to 40.9 percent and permeabilities from 4.5 to 5.7 millidarcys (table 4). Drill stem tests were not made in this interval. 25-

The possibility of carbonate reservoirs beneath the Shelf in the vicinity of the Hatteras Light well is suggested by porous zones in limestone and dolomite beds in pre-Upper Cretaceous rocks. The upper part of a 100-foot carbonate sequence at the top of rocks of Upper Jurassic or Lower Cretaceous (Neocomian) age (8,750 feet) contains colitic limestone, conglomeratic limestone, dolomitic limestone, porcus granular dolomite, and anhydrite. The porosity of these beds is slight compared to the sandstones discussed previously, but it bears on the probability that thicker units of porous dolomite and oolitic limestone 10 beds may be expected offshore. Another porous carbonate bed was drilled 11 in the lower part of rocks of Trinity (?) age between depths of 8500 and 12 8585 feet. This one is composed of light-brown, sandy, coarsely-13 crystalline dolomite and dolomitic limestone. The upper part was 14 described as cavernous by Swain (1952, p. 66). No drill-stem tests or porosity tests were made for this interval. 16 17 18 19 20-21 22 23 24 25

The Bahamas Oil Co., Ltd. No. 1 Andros Island well (well BA-2) in the Bahama Islands penetrated 14,585 feet of carbonate rocks ranging from Lower Cretaceous to Tertiary in age. This sequence included many porous, 5- fragmental and fossiliferous limestones in differing stages of recrystallization and dolomitization. Circulation of drilling mud was lost at depths of 70, 540, 2,689, 9,604, 10,020, 12,965, 13,230, and 13.383 feet before the drill pipe was lost in the hole at a depth of 14,585 feet. The well was abandoned at that depth with 11,960 feet of 10-drill pipe not recovered. Especially viscous muds with fibre added were used to regain circulation. Cavities were reported by the driller at 10,663-685, 10,687-696, 12,963-965, 13,202-206, 13,208-210, 13,214-215, 13 13,225-230, and 13,312-313 feet; all of which are in early Upper Cretaceous and late Lower Cretaceous rocks. Sample and core studies 15- indicate considerable fracture and intergranular porosity in the rocks as well as cavernous porosity. Carbonate reservoirs are so thick and

open as to create drilling problems in this area, but more suitable

in the Bahama and Blake Plateau regions.

conditions may be present at other places beneath the Continental Shelf

Andros Island well

U. S. GOVERNMENT PRINTING OFFICE 1989 C - STEET

867.7

17

20

21

22

23

24

25

1. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Traps

20-

25-

Traps for petroleum have been grouped by Levorsen (1954, p. 142-148) into three basic types; (1) structural traps, (2) stratigraphic traps, and (3) combination traps.

- (1) Structural traps are those that have been formed primarily by local deformation of the reservoir and sealing beds. The deformation may involve either folding or faulting, or both, and sometimes produces fracturing of the reservoir as an important element of the trap.
- (2) Stratigraphic traps are those that have been formed primarily by stratigraphic variations and discontinuities. Primary stratigraphic traps are those that are effective mainly because of original depositional characteristics, such as composition, shape, and attitude of the reservoir. These are related mainly to lateral variations of lithology, or lithofacies in the broadest sense of that term. Secondary stratigraphic traps are those that are effective primarily because of discontinuities in stratigraphic succession. Such traps may be associated with either local unconformities present in a few townships or regional unconformities present throughout a sedimentary basin or province.
- (3) Combination traps are those that combine both structural and stratigraphic elements of subequal importance. Combinations of unconformities and anticlines with different modifications due to faults, lithofacies, and hydrodynamic conditions are probably the most common.

This general classification is based on the relative importance of the different geological components of the trap. These components are sealing beds, folds and faults, unconformities, lithofacies, and hydrodynamic conditions. The following discussion attempts to identify each component in the Mesozoic rocks along the Atlantic Coast and suggest areas in which certain combinations of components may have formed traps for petroleum.

T. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

U. S. GOVERNISS

Sealing beds

25-

Sealing beds of some kind are necessary for the entrapment of petroleum, except in traps sealed with asphaltic residue and any possibly created by hydrodynamic conditions alone. The sealing beds are usually the more plastic beds of clay, shale, and salt, but also may be anhydrite, limestone, and dolomite beds that have escaped fracturing or whose fractures have been closed by chemical precipitates.

Clay and shale beds act as aquacludes in the artesian system of the Coastal Plain north of Florida, and could serve readily as sealing beds over petroleum accumulations. Some that extend seaward an unknown distance beneath the Shelf, judging by the Hatteras Light (well NC-14) in North Carolina, include shale beds of Trinity(?) or Fredericksburg(?) age, of Eagle Ford age, of Taylor and Navarro age, and of Paleocene age.

age, of Eagle Ford age, of Taylor and Navarro age, and of Paleocene age.

Anhydrite, which is not only a cap rock in salt-dome fields but

also a common seal throughout the World in oil fields with carbonate

reservoirs, overlies the oil-producing Sunniland Limestone of Lower

Cretaceous Trinity(?) age in the oil fields of southern Florida. This

unit has been called informally the "upper anhydrite" by oil geologists

of this area. A short distance below the oil-producing beds is a

massive anhydrite bed once referred to as the "lower massive anhydrite"

and now known as the Punta Gorda anhydrite (Applin and Applin, 1965, p.
39). Thinner beds of anhydrite are interspersed with limestone and
shale in other parts of the Lower Cretaceous rocks, in the late Upper
Cretaceous rocks, and in the early Tertiary rocks (Cedar Keys Limestone

of Paleocene age and Oldsmar Limestone of Eocene age). Similar
lithologies are present in southern Florida wells and have been reported
orally in the deep well on Cay Sal (well 1, table 1) about 80 miles
southeast of the Florida Keys.

Massive anhydrite beds were not found in the Andros Island well

(well BA-2, table 1) in the Bahamas, and only a few thin anhydrite beds
have been reported along the Atlantic Coast in the vicinity of Cape
Hatteras (Spangler, 1950, p. 123; Swain, 1952, p. 66 and 67). This
suggests that conditions suitable for deposition of evaporites may have
been more prevalent in the eastern Gulf of Mexico than northward along
the Atlantic Coast. In general, however, it seems that sealing beds of
clay, shale, and impervious chemical precipitates may be common enough
beneath the Atlantic Continental Shelf to provide the vertical
discontinuities necessary for trapping petroleum.

U. S. GOVERNUE

Folds and faults

Although the Coastal Plain deposits flank the much-folded and faulted Appalachian Mountains, they have not been involved in any major tectonic movements. As a result, they do not exhibit the abrupt folds and numerous faults commonly associated with the flanks of mountain systems. This suggests that few traps of a purely structural nature should be expected. Nevertheless, the basement structural features buried by Coastal Plain deposits are reflected to different degrees by gentle warping and normal faulting in the younger rocks, and these gentle folds and faults, along with stratigraphic components, may be sufficient to provide combination traps.

The major positive features are the Cape Fear arch, the Peninsular arch, the Bahama uplift, and a long basement ridge at the Shelf edge off

New England (see pl. 4). Both the Cape Fear arch and the Peninsular arch (including the offsetting Ocala arch) show evidence of recurrent movement along older lines of weakness and an overlap of Lower Cretaceous beds by Upper Cretaceous beds. The Bahama uplift, as far as known from published data, is still in the category of a logical, but unproved, structural inference. If the inference is valid, a thick marine sequence favorable to the generation of petroleum has been involved in warping and faulting, possibly with reef growth, that may have created traps for petroleum. The long ridge at the edge of the Continental Shelf off New England (pl. 4) is completely unknown except for its expression in the basement rocks as recorded by seismic surveys. Whether or not this basement ridge is reflected in sedimentary rocks of suitable character for petroleum accumulation cannot be surmised at present.

Several long faults or fault zones along the edge of the

Continental Shelf and along the continental margin at the eastern edge

of the Blake Plateau have been suggested by Pressler (1947, fig. 1, p.

1858). The presence and placement of these faults, inferred from

bottom topography, are highly speculative, as little seismic evidence

for or against their existence has been presented. Sheridan, Drake,

Nafe, and Hennion (1964, p. 183) reported recent seismic profiles off

Florida and off Georgia favor some faulting at the edge of the Shelf,

but the amount and direction is uncertain. Recent investigations of

Tertiary strata off Jacksonville, Florida (JOIDES, 1965), do not

indicate the presence of a post-Cretaceous fault along the Shelf edge

there, but no information is available on the older beds.

A transcurrent fault in the basement beneath the Shelf has been postulated along the 40th parallel about 50 miles south of New York by Drake, Heirtzler, and Hirshman (1963, p. 5270) on the basis of a linear magnetic anomaly (see fig. 6). Emery (1965, p. C159, and fig. 1) has suggested that suitable petroleum-bearing structures may be associated with this "major strike-slip fault." No data suggesting the time of the major fault movements or the presence of smaller associated structures has been published.

1

In a property on the party of the party of

Lithofacies

Lateral variations in lithology within a stratigraphic unit that may form primary stratigraphic or combination traps are difficult to predict in relatively unexplored regions such as the Atlantic Coastal Plain and Continental Shelf. Such traps may include offshore bars, channel fillings, reefs, and porosity changes between two carbonate facies or carbonate and clastic facies. Offshore bars and channel fillings might be expected in dominantly shale and marl sequences of Upper Cretaceous age along the Coastal Plain north of Florida. Reefs and porosity changes at dolomite-limestone transitions may be present in Florida and along the Continental Shelf, particularly beneath the Bahama and Blake Plateau platforms. Limestone-shale and sandstone-limestone transitions probably are present beneath the Shelf at many places. One of the likely places is the Southeast Georgia embayment. There Coastal Plain well data are adequate to show a clastic-carbonate transition in Cretaceous rocks trending northeasterly across the inner Shelf. This in conjunction with faults or folds offers possibilities for combination traps.

11

12

13

14

16

17

18

19

22

23

24

20-

15-

Unconformities

Numerous unconformities subdivide the Coastal Plain deposits, but only a few extend far enough downdip and laterally to be important as avenues of migration or loci of hydrocarbon traps. However, these few have provided excellent opportunities for the accumulation of petroleum in both secondary stratigraphic and combination traps.

Little is known of the nature of possible unconformities separating sequences assigned to Upper Jurassic or Lower Cretaceous (Neocomian), Trinity(?), Fredericksburg(?), and Washita(?) ages, as only a few wells at the coastal extremities have been drilled this deep. These rocks do wedge out against the Peninsular arch (pls. \$9, 14), the Cape Fear arch (pls. \$9, 14), and northward from New Jersey (pl. \$9). They may wedge out landward beneath the Continental Shelf all along the coast similar to the way they do west of the Hatteras Light well (well NC-14, pl. 21).

Probably the most important unconformity occurs at the top of the beds of Washita(?) age, essentially the top of the Lower Cretaceous rocks. The structure of the Lower Cretaceous rocks is somewhat different from that of the overlying beds. The marine Lower Cretaceous rocks not only lap out landward against the basement rocks but are overlapped by Upper Cretaceous (Woodbine) reservoirs as indicated in plates \$8, \$10, and \$11. One of the places where this unconformity and others within Lower Cretaceous and older beds may supply the component necessary for a combination traps is on the seaward nose of the Cape Fear arch.

T. S. GOVERNMENT PRINTING OFFICE: 1959 (1 - Sell?)

13

14

16

17

18

19

21

22

23

24

15-

U. S. GOVERNMENT PRINTING OFFICE 1999 (1 - 5)1.

The unconformity at the top of the Cretaceous rocks probably is less important as a trapping component than the deeper major ones. Thinning of Upper Cretaceous rocks and overlap by Tertiary beds as exemplified in Georgia on plate 12 takes place at relatively shallow depths and rather close to the outcrops. Possibly it could be a more important factor on structures beneath the Continental Shelf. 10-15-

Hydrodynamic conditions

The accumulation of petroleum in all traps may be modified considerably by the hydrostatic or hydrodynamic forces of the water in the reservoir (Hubbert, 1953, p. 1954-2026). Under hydrostatic conditions, the water is essentially at rest and the impelling force on the petroleum is upward. The boundaries of the trap alone determine the location and shape of the accumulation. Under hydrodynamic conditions, a potential exists from areas of higher pressure to those of lower pressure and this force modifies the location and shape of the accumulation by inclining it in the direction of flow. The effect of hydrodynamics may be sufficient to cause trapping in or near lithologic, depositional, and structural features that would be ineffective under hydrostatic conditions.

Fresh-water reservoirs beneath the Coastal Plain alluvium are under artesian pressure downdip from their outcrops, and flowing wells are not uncommon in lower areas. The artesian head of fresh water in the Ocala Limestone (Eocene) beneath the Shelf is as much as 30 feet at a distance of 27 miles off Jacksonville, Florida (JOIDES, 1965, p. 710; Schlee and Gerard, 1965, p. 37). Submarine springs of large volume issue from the Ocala Limestone through sink holes near the shore in the same area (Stringfield and Cooper, 1951; Stringfield, 1964, written commun.).

P. S. GOVERNMENT PRINTING OFFICE: 1959 G - SILVE

U. S. GOVERNA ENT PRINTING OFFICE: 1959 G - 51111

Although water-level and pressure records are available for many wells in the fresh-water part of the reservoirs, little is known about pressures where the waters become brackish or salty at depth. The one deep well for which drill-stem test pressures have been published is the Hatteras Light well (well NC-14. pl. 21) in North Carolina. In this well. drill-stem tests opposite intervals from 6,474 to 6,583 and 7,018 to 7.027 feet in depth recorded bottom-hole pressures of 2,900 and 3,100 pounds per square inch respectively. The reservoirs tested are Lower Cretaceous sandstones of Washita(?) and Fredericksburg(?) age that do not crop out along the Fall Line in North Carolina because of Upper Cretaceous and Tertiary overlap. These recorded bottom-hole pressures, which may not be very accurate because of the difficulties in setting packers tightly above and below the interval tested, are equivalent to a head of 6,670 and 7,130 feet respectively. These approximate the hydrostatic head of the reservoirs at depths of 6,583 and 7,027 feet plus the land elevation (80 feet) at the Cretaceous outcrop more than 100 miles westward, and suggest that only gentle pressure gradients exist in these reservoirs in this area. Until many more drill-stem tests are available, little can be done to determine the regional effects of hydrodynamics.

14

21

23

24

Summation of petroleum potential

Pre-Cretaceous rocks have few characteristics of petroleum-producing beds. Paleozoic rocks in the pre-Mesozoic basement are highly metamorphosed except in southwestern Georgia (pl. 14) and central Florida (pls. 9 and 15), where they are not metamorphosed but so highly indurated and folded as to have doubtful reservoir characteristics. Triassic(?) rocks (pls. 11 and 14) exhibit many continental aspects, such as red beds and conglomerate, and numerous igneous intrusions, which are not generally regarded as indicative of good source rocks.

10-Lower Cretaceous rocks and those classed tentatively as Upper Jurassic or Lower Cretaceous (Neocomian) in age in this report (pls. 12 and 16) offer the most promising prospects for oil and gas production in the Atlantic coastal region. Their combined thickness probably exceeds 5,000 feet beneath the Continental Shelf in the Baltimore Canyon trough and in the Southeast Georgia embayment. Even greater thicknesses may exist beneath the Blake Plateau and Bahama Islands. These rocks, where penetrated along the coastal extremities, exhibit many characteristics of petroleumproducing beds. Marine beds generally regarded as potential sources of petroleum are predominant, and the environment of their deposition, at least in the southern areas, probably favored reef growth. Thick, very porous, salt-water bearing reservoirs, both sandstone and carbonate, are numerous. Although not many thick shale beds have been drilled in the sequence as yet, adequate sealing beds may be provided by dense limestone and anhydrite beds. The structural attitude of these rocks is considerably different from that of the Upper Cretaceous (Woodbine) rocks that overlap them. Important unconformities are present not only at the top but within the sequence. These suggest the possibility of not only structural

but combined structural and stratigraphic traps.

2

13

18

19

25

U. S. GOVERNMENT PRINTING OFFICE: 1959 O + S11171

Rocks of Upper Cretaceous age have good possibilities for oil and gas production beneath the Continental Shelf, but only fair possibilities. chiefly for gas, in the Coastal Plain. Although the thickness of these rocks does not exceed 3.500 feet onshore and may be only a few thousand feet more beneath the Shelf (pl. 18), the beds are buried sufficiently beneath the Tertiary rocks to provide ample opportunity for the accumulation of petroleum. Reservoir rocks are thick and numerous in the Upper Cretaceous rocks of the Coastal Plain and seem to extend beneath the Shelf where thick marine source rocks may be expected. Rocks of 10- Woodbine and Eagle Ford age appear to be a favorable reservoir-source rock combination whose thickness probably exceeds 2,000 feet offshore 11 (pl. 19). Unconformities at the top and base are extensive; the basal 12 13 unconformity may be the more important from the standpoint of petroleum accumulation, as it permits the basal Upper Cretaceous sandstones of 15- Woodbine age to overlap the underlying, more marine Lower Cretaceous rocks. Depending upon the juxtaposition of lithologies, this unconformity 16 17 may be either a trap or an avenue of migration in different places. It appears to mark an extremely porous zone in the carbonates of the Andros 18 Island well. 20 21 22 23 24

Tertiary rocks exhibit very good reservoir and fair source rock characteristics. They are less promising than Cretaceous rocks for a number of reasons (1) they probably are less than 4,000 feet thick in most of the area north of southern Florida and the Bahama Islands 5- (pl. 19), and contain fresh-to-brackish artesian water in much of that area; (2) they crop out in part along the Shelf and Blake Plateau (see pl. 2 and figs. 7 and 8), and in other places give rise to submarine springs in sink holes (Stringfield and Cooper, 1951, p. 61); (3) structural features are reflected less distinctly in the Tertiary rocks 10- than in the older rocks, as they have been subject to less tectonic adjustment; (4) unconformities within the Tertiary rocks are less significant regionally than those in older rocks. Tertiary (Paleocene and lower Eccene) beds at the basal unconformity wedge out against Upper Cretaceous rocks in places (pl. 13). However, this wedge-out occurs at 15- depths too shallow to offer much hope for trapping commercial quantities of petroleum. 17 18 20-23 24 25

The Continental Shelf offers more promise as a potential petroleum province than the Coastal Plain because it has a thicker sedimentary column with better source beds and trapping possibilities. Thicknesses of 10,000 feet and more are present beneath the Coastal Plain only in 5- southern Florida, whereas thicknesses beneath the Continental Shelf exceed 10,000 feet in the Southeast Georgia embayment and Georges Bank trough, 12,500 feet in the Emerald Bank basin, and 15,000 feet in the Baltimore Canyon trough (pl. 4). Comparable thicknesses may be present beyond the Shelf beneath the Blake Plateau and Bahama platform. Extreme 10-thicknesses of 25,000 feet underlie the continental slope in water 5,000 to 10,000 feet deep, not within present economic limits for commercial exploration. Different views as to the most favorable areas of the Shelf for petroleum exploration have been expressed by Pepper (1958, p. 51, 52, 15- and 55), Johnston, Trumbull, and Eaton (1959, p. 439-441, Richards (1963, 150, 151), and Emery (1965, fig. 6). These are based mainly on considerations of basement structure and gross thickness of sediments without regard to age or unconformities. According to Pepper (1958, p. 55), the results of an airborne 20- magnetometer survey of the Bahamas "are said to indicate that structures are present which may be favorable for the accumulation of oil". He points out favorable thicknesses of sediments at places only 60 miles offshore between Florida and New Jersey, but states (p. 51, 52) rather flatly that "the possibility of finding oil in commercial quantities in

11

12

13

14

17

19

21

23

In discussing structural factors related to petroleum possibilities, Johnston, Trumbull, and Eaton (1959, p. 440, 441) give favorable mention to the Cape Fear arch and its seaward extension, a high at Fort Murroe, Virginia, and the basement ridge mapped at the Shelf edge off New England by Drake, Ewing, and Sutton (1959, p. 176, fig. 29). Somewhat earlier, a brackish ground-water anomaly on the Cape Fear arch, a few miles inland from Wilmington, had been cited by LeGrand (1955, p. 2020) as deserving attention "if oil-prospecting becomes more active on the Atlantic Coast". Richards (1963, p. 151, 152) in discussing the oil prospects offshore New Jersey mentioned Five Fathom Bank, about 10 miles off Cape 11 May, and several landward shoals as likely places for an oil test. These 12 locations were selected for their convenience in drilling operations 13. rather than for geological considerations of a local nature. Most recently, Emery (1965, p. C159, and fig. 1) has stated that suitable petroleum-bearing structures may be associated with the seaward extension of the Cape Fear arch, the basement ridge at the Shelf edge 17 off New England, and a "major strike-slip fault" just southeast of New 18 York City. The latter is the transverse fault deduced by Drake, Heirtzler, and Hirshman (1963, p. 5270) from magnetic anomalies in the basement rocks (see pl. 8). 23. 24 25

this evaluation of the Shelf north of New Jersey.

any of the shelf areas between New Jersey and Newfoundland is not considered 25 to be favorable." Later writers, including this one, do not agree with

All the published suggestions for areas in which to conduct exploration operations for petroleum seem to have merit. However, the Bahama platform, the seaward extension of the Cape Fear arch, the long basement ridge at the Shelf edge off New England, and the Southeast

Georgia embayment appear to this writer to be the most favorable areas for initial operations in waters controlled by the United States. The outer Shelf in Canadian waters off Nova Scotia and Newfoundland offers just as good possibilities but, with the exception of the possible extension of the outer Shelf basement ridge near Sable Island, no basis exists for comparing different parts of this huge area that includes the Grand Banks extending 120 miles from land.

In summary, more stratigraphic and seismic data on the older rocks

9

11

12

13

14

16

17

18

19

21

22

23

24

25-

20

15-

In summary, more stratigraphic and seismic data on the older rocks are needed before additional areas for exploration are suggested.

However, the probabilities for discovery of commercial accumulations of petroleum in the Atlantic coastal region seem to favor rocks classed herein as Upper Jurassic or Lower Cretaceous (Neocomian), and Lower Cretaceous in stratigraphic or combination traps beneath the Continental Shelf.

24

25-

U. S. GOVERNMEN ...

Adkins, W. S., 1928, Handbook of Cretaceous fossils: Texas Univ. Bur. Econ. Geology Bull. 2838, 385 p. _1933, The Mesozoic systems in Texas, Pt. 2 in The geology of Texas: Texas Univ. Bur. Econ. Geology Bull. 3232, p. 239-518. Agassiz, Alexander, 1888, Three cruises of the U. S. Coast and Geodetic Survey steamer "Blake": Boston and New York, Houghton, Mifflin and Co., v. 1, p. 125-139, 260-293. Alexander, A. E., 1934, A petrographic and petrologic study of some continental shelf sediments: Jour. Sed. Petrology, v. 4, p. 12-22 Anderson, J. L., 1948, Cretaceous and Tertiary subsurface geology [Md.], with appendix, Description of well samples: Maryland Dept. Geology, Mines and Water Resources Bull. 2, p. 1-113; app., p. 385-441. Amtoine, J. W., and Harding, J. L., 1963, Structure of the Continental Shelf, northeastern Gulf of Mexico: Texas Agr. and Mech. Coll. Dept. Oceanography and Meteorology Prelim. Rept., May 1963, 18 p. Antoine, J. W., and Henry, V. J., Jr., 1965, Seismic refraction study of 14 shallow part of Continental Shelf off Georgia coast: Am. Assoc. 15-Petroleum Geologists Bull., v. 49, no. 5, p. 601-609. Applin, E. R., 1955, A biofacies of Woodbine age in southeastern gulf 17 coast region: U.S. Geol. Survey Prof. Paper 264-I, p. 187-197. Applin, E. R., and Jordan, Louise, 1945, Diagnostic Foraminifera from subsurface formations in Florida: Jour. Paleontology, v. 19, no. 2, p. 129-148. 20-Applin, P. L., 1951, Preliminary report on buried pre-Mesozoic rocks in 22 Florida and adjacent states: U.S. Geol. Survey Circ. 91, 28 p. Applin, P. L., and Applin, E. R., 1944, Regional subsurface stratigraphy

and structure of Florida and southern Georgia: Am. Assoc.

Petroleum Geologists Bull., v. 28, no. 12, p. 1673-1753.

```
Applin, P. L., and Applin, E. R., 1947, Regional subsurface
          stratigraphy, structure and correlation of middle and early Upper
          Cretaceous rocks in Alabama, Georgia, and north Florida: U.S.
          Geol. Survey Oil and Gas Inv. Ser. Prelim. Chart 26.
          _1965, The Comanche Series and associated rocks in the subsurface
 5
         in central and south Florida: U.S. Geol. Survey Prof. Paper 447,
         86 p.
     Athearn, W. D., 1962a, Bathymetry and sediments, Pt. 1 of Bathymetric
          and sediment survey of the Tongue of the Ocean, Bahamas: Woods
 10-
         Hole Oceanog. Inst. Final Rept. to U.S. Naval Underwater Ordnance
          Sta., Newport, R. I., July 1962, Ref. no. 62-25.
11
          _1962b, Bottom photographs, Pt. 2 of Bathymetric and sediment
12
          survey of the Tongue of the Ocean, Bahamas: Woods Hole Oceanog.
13
          Inst. Final Rept. to U.S. Naval Underwater Ordnance Sta., Newport,
         R. I., July 1962, Ref. no. 62-27.
 15-
     Bailey, J. W., 1851, Microscopical examination of soundings, made off
          the coast of the United States by the Coast Survey: Smithsonian
17
          Contr. Knowledge, v. 2, art. 2, 15 p.
18
           _1854, Examination of some soundings from the Atlantic Ocean: Am.
19
          Jour. Sci., 5th ser., v. 17, p. 176-178.
 20-
     Ball, Douglas, and Winer, A. S., 1958, Brandywine structure [Maryland]
21
          and underground natural gas storage for Washington, D. C. [abs.]:
22
          Washington Acad. Sci. Jour., v. 48, no. 4, p. 133.
23
24
```

```
Barksdale, H. C., and others, 1958, Ground-water resources in the
         tri-state region adjacent to the lower Delaware River [Delaware-
         New Jersey-Pennsylvania]: New Jersey Dept. Conserv., Div. Water
         Policy and Supply Spec. Rept. 13, 190 p.
 5- Bassler, R. S., 1936, Cretaceous bryozoan from Georges Bank, Pt. 3,
         Geology and paleontology of the Georges Bank Canyons: Geol. Soc.
         America Bull., v. 47, no. 3, p. 411-412.
    Bentley, C. R., and Worzel, J. L., 1956, Continental slope and
         continental rise south of the Grand Banks, Pt. 10, Geophysical
 10-
         investigations in the emerged and submerged Atlantic Coastal Plain:
         Geol. Soc. America Bull., v. 67, no. 1, p. 1-18.
11
    Berger, J., Blanchard, J. E., Keen, M. J., McAllister, R. E., and Tsong,
         C. F., 1965, Geophysical observations on sediments and basement
         structure underlying Sable Island, Nova Scotia: Am. Assoc.
         Petroleum Geologists Bull., v. 49, no. 7, p. 959-965.
 15-
    Birch, W. B., and Dietz, F. T., 1962, Seismic refraction investigations
         in selected areas of Narragansett Bay, Rhode Island: Jour. Geophys.
         Research, v. 67, no. 7, p. 2813-2821.
    Blaik, M., Northrop, J., and Clay, C. S., 1959, Some seismic profiles
         onshore and offshore Long Island, New York: Jour. Geophys.
 20-
         Research, v. 64, no. 2, p. 231-239.
    Bonini, W. E., 1955, Seismic-refraction studies of geologic structure in
         North Carolina and South Carolina [abs.]: Geol. Soc. America
         Bull., v. 66, no. 12, pt. 2, p. 1532-1533.
 25-
```

12

13

17

18

21

23

24

U. S. GOVERNO

```
Bonini, W. E., 1957, Subsurface geology in the area of the Cape Fear
 1
          arch as determined by seismic-refraction measurements: Wisconsin
 2
          Univ., Medison, Ph.D. thesis, 218 p.; Univ. Microfilms, Inc., Ann
          Arbor, Mich., Pub. no. 20,225.
           _1964, Is there a Fayetteville "Buried Triassic Basin"?: Am.
 5-
          Assoc. Petroleum Geologists Bull., v. 48, no. 1, p. 102.
6
     Bonini, W. E., and Woollard, G. P., 1960, Subsurface geology of North
          Carolina-South Carolina Coastal Plain from seismic data: Am.
          Assoc. Petroleum Geologists Bull., v. 44, no. 3, p. 298-315.
 10- Bower, M. E., 1962, Sea magnetometer surveys off southwestern Nova
11
          Scotia, from Sable Island to St. Pierre Bank, and over Scatari
12
          Bank: Canada Geol. Survey Paper 62-6, 13 p.
13
     Bridge, Josiah, and Berdan, J. M., 1951, Preliminary correlation of the
14
          Paleozoic rocks from test wells in Florida and adjacent parts of
 15-
          Georgia and Alabama: U.S. Geol. Survey open-file report, Jan.,
16
         1951, 8 p.; 1952 in Florida Geol. Survey Guidebook, Assoc. Am.
17
          State Geologists 44th Ann. Mtg., Field Trip 1952, p. 29-38.
18
     Brown, M. V., Worthrop, John, Frasetto, Roberto, and Grabner, L. H.,
19
          1961, Seismic refraction profiles on the continental shelf south of
 20-
          Bellport, Long Island, New York: Geol. Soc. America Bull., v. 72.
21
          no. 11, p. 1693-1706.
22
     Brown, P. M., 1958, Well logs from the Coastal Plain of North Carolina:
23
          North Carolina Dept. Conserv. and Devel. Div. Mineral Resources
24
          Bull. 72, 68 p.
```

```
Bucher, W. H., 1940, Submarine valleys and related geologic problems of
          the North Atlantic: Geol. Soc. America Bull., v. 51, no. 4, p.
         489-511.
     Burbank, W. S., 1929, The petrology of the sediment of the Gulf of Maine
         and Bay of Fundy: U.S. Geol. Survey open-file report, 74 p.
     Busby, R. F., 1962a, Preliminary data reports of bottom sediments from
          the Tongue of the Ocean, Bahamas: U.S. Navy Hydrog. Office Unpub.
         Ms. No. 0-31-62, 21 p.
          _1962b, Subaerial features on the floor of the Tongue of the Ocean,
          Bahamas: U.S. Navy Hydrog. Office Unpub. Ms. No. 0-48-62, 13 p.
 10-
11
          1962c. Submarine geology of the Tongue of the Ocean, Bahamas:
          U.S. Navy Oceanog. Office Tech. Rept. No. 108, 84 p.
12
     Bush, James, 1951, Rock from straits of Florida: Am. Assoc. Petroleum
13
14
          Geologists Bull., v. 35, no. 1, p. 102-107.
     Carlson, R. O., and Brown, M. V., 1955, Seismic-refraction profiles in
          the submerged Atlantic coastal plain near Ambrose lightship: Geol.
16
          Soc. America Bull., v. 66, no. 8, p. 969-976.
17
     Carroll, Dorothy, 1963, Petrography of some sandstones and shales of
18
          Paleozoic age from borings in Florida: U.S. Geol. Survey Prof.
19
          Paper 454-A, p. 1-15.
 20-
     Cederstrom, D. J., 1943, Deep wells in the Coastal Plain of Virginia:
21
          Virginia Geol. Survey Reprint Ser. 6, Apr., 1943, 13 unnumbered p.
22
           1945, Selected well logs in the Virginia Coastal Plain north of
23
          James River: Virginia Geol. Survey Circ. 3, 82 p.
24
 25-
```

```
Chadwick, G. H., 1949, Glacial molding of the Gulf of Maine [abs.]:
          Geol. Soc. America Bull., v. 60, no. 12, pt. 2, p. 1967; 1950 in
 2
          Earth Sci. Digest, v. 4, no. 6, p. 15.
 3
     Charm, W. B., 1965, JOIDES, new inner space probe: Sea Frontiers, v.
         11, no. 6, p. 368-378.
 5-
     Cloud, P. E., Jr., 1962, Environment of calcium carbonate deposition
         west of Andros Island, Bahamas: U.S. Geol. Survey Prof. Paper 350
         138 p.
    Cole, W. S., 1941, Stratigraphic and paleontologic studies of wells in
         Florida; [No. 1] United Brotherhood of Carpenters and Joiners of
 10-
         America, Power House well No. 2; Peninsular Oil and Refining
11
         Company's J. W. Cory No. 1, with a description of a species of
12
         Foraminifera from another well: Florida Geol. Survey Bull. 19.
13
         91 p.
14
           _1944, Stratigraphic and paleontological studies of wells in
 15-
         Florida -- No. 3: Florida Geol. Survey Bull. 26, 168 p.
16
     Cole, W. S., and Applin, E. R., 1961, Stratigraphic and geographic
17
         distribution of larger Foraminifera occurring in a well in Coffee
18
         County, Georgia: Cushman Found. Foram. Research Contr., v. 12,
19
         pt. 4, p. 127-135.
 20-
           _1964, Problems of the geographic and stratigraphic distribution
21
         of American middle Eocene larger Foraminifera: Am. Paleontology
22
         Bulls., v. 47, no. 212, 48 p.
23
24
```

```
Conkin, J. E., and Conkin, B. M., 1956, Nummoloculina in Lower Cretaceous
          of Texas and Louisiana: Am. Assoc. Petroleum Geologists Bull., v.
         40, no. 5, p. 890-896.
     Cooke, C. W., 1936, Geology of the Coastal Plain of South Carolina:
         U.S. Geol. Survey Bull. 867, 196 p.
          _1939, Scenery of Florida interpreted by a geologist: Florida
         Geol. Survey Bull. 17, 118 p.
          _1945. Geology of Florida: Florida Geol. Survey Bull. 29, 339 p.
     Cooke, C. W., and Munyan, A. C., 1938, Stratigraphy of Coastal Plain of
          Georgia: Am. Assoc. Petroleum Geologists Bull., v. 22, no. 7, p.
 10-
          789-793.
11
     Cushman, J. A., 1936, Cretaceous and Late Tertiary Foraminifera, Pt. 4
         of Geology and paleontology of the Georges Bank Canyons: Geol.
          Soc. America Bull., v. 47, no. 3, p. 413-440.
          _1939, Eocene Foraminifera from the submarine cores off the
          eastern coast of North America: Cushman Lab. Foram. Research
          Contr., v. 15, pt. 3, no. 210, p. 49-76.
          1946. Upper Cretaceous Foraminifera of the Gulf coastal region
          of the United States and adjacent areas: U.S. Geol. Survey Prof.
          Paper 206, 241 p.
 20-
          _1948, Foraminifera from the Hammond well [Maryland]: Maryland
          Dept. Geology, Mines and Water Resources Bull. 2, p. 213-267.
22
     Cushman, J. A., and Cahill, E. D., 1933, Miocene Foraminifera of the
          Coastal Plain of the eastern United States: U.S. Geol. Survey
24
```

U. S. GOVERNMEN

Prof. Paper 175, p. 1-50.

U. S. GOVERNOR

```
Dall. W. H., 1925. Tertiary fossils dredged off the northeastern coast
 1
          of North America: Am. Jour. Sci., 5th ser., v. 10, no. 57, p.
 2
          213-218.
    Daly, R. A., 1936, Origin of submarine canyons: Am. Jour. Sci., 5th
         ser., v. 31, no. 186, p. 401-420.
 5-
    Davis, W. M., 1934, Submarine mock valleys: Geog. Rev., v. 24, no. 2,
         p. 297-308.
7
    Dietz, R. S., 1963a, Origin of continental slopes -- preprint for
         presentation at American Association of Petroleum Geologists
 10-
          symposium, "Composition, structure, and history of continental
11
          shelves and slopes", Houston, Texas, March 25, 1963: U.S. Navy
         Electronics Lab. Preprint, 23 p.
12
          _1963b, Collapsing continental rises -- an actualistic concept of
13
14
         geosynclines and mountain building: Jour. Geology, v. 71, no. 3,
 15-
          p. 314-333.
    Dorsey, A. L., 1948, Miocene Foraminifera from the Chesapeake group of
16
          southern Maryland: Maryland Dept. Geology, Mines and Water
17
          Resources Bull. 2, p. 268-321.
18
     Douglass, R. C., 1960a, The foraminiferal genus Orbitolina in North
19
          America: U.S. Geol. Survey Prof. Paper 333, 52 p.
 20-
           _1960b, Revision of the family Orbitolinidae: Micropaleontology
21
22
         v. 6, no. 3, p. 249-270.
23
24
 25-
```

```
Drake, C. L., Ewing, Maurice, and Sutton, G. H., 1959, Continental
          margins and geosynclines -- the east coast of North America north
         of Cape Hatteras, in Aherns, L. H., and others, eds., Physics and
         chemistry of the earth: New York, Pergamon Press, v. 3, p. 110-199.
    Drake, C. L., Heirtzler, J., and Hirshman, J., 1963, Magnetic anomalies
         off eastern North America: Jour. Geophys. Research, v. 68, no. 18
         p. 5259-5275.
     Drake, C. L., Worzel, J. L., and Beckmann, W. C., 1954, Gulf of Maine,
         Pt. 9 of Geophysical investigations in the emerged and submerged
 10-
         Atlantic Coastal Plain: Geol. Soc. America Bull., v. 65, no. 10,
11
         p. 957-970.
    Du Toit, A. L., 1940, An hypothesis of submarine canyons: Geol. Mag.
13
         [Great Britain], v. 77, no. 5, p. 395-404.
     Eardley, A. J., 1962, Structural geology of North America: New York
         and Evanston, Harper and Row, 2d ed., 624 p., 2d ed., 1962, 743 p.
     Ellis, C. H., and Tschudy, R. H., 1964, The Cretaceous megaspore genus
17
         Arcellites Miner: Micropaleontology, v. 10, no. 1, p. 73-[79].
18
     Emery, K. O., 1950, A suggested origin of continental slopes and of
19
          submarine canyons: Geol. Mag., [Great Britain], v. 87, p. 102-104.
          _1963, Oceanographic factors in accumulation of petroleum: World
21
         Petroleum Cong., 6th, Frankfort 1963, Proc., sec. 1, p. 1-7.
22
           _1965a, Geology of the continental margin of eastern United States,
         in Whittard, W. F., and Bradshaw, R., eds., Submarine geology and
23
24
         geophysics: London, Butterworth's Sci. Pub., Colston Papers no.
```

U. S. GOVFRE

U. S. GOVPBERRE

17, p. 1-17.

```
Emery, K. O., 1965b, Characteristics of continental shelves and slopes:
         Am. Assoc. Petroleum Geologists Bull., v. 49, no. 9, p. 1379-1384.
          1965c. Some potential mineral resources of the Atlantic
         continental margin: U.S. Geol. Survey Prof. Paper 525-C, p.
         C157-C160.
5-
   Emery, K. O., Merrill, A. S., and Trumbull, J. V. A., 1965, Geology and
         biology of the sea floor as deduced from simultaneous photographs
         and samples: Limnology and Oceanography, v. 10, no. 1, p. 1-21.
   Emery, K. O., and Schlee, J. S., 1963, The Atlantic continental shelf
         and slope, a program for study: U.S. Geol. Survey Circ. 481, p.
10-
        1-11.
    Emery, K. O., and Uchupi, Elazar, 1965, Structure of Georges Bank:
         Marine Geology, v. 3, no. 5, p. 349-358.
   Emery, K. O., Wigley, R. L., and Rubin, Meyer, 1965, A submerged peat
        deposit off the Atlantic coast of the United States: Limnology
15-
        and Oceanography, supp., v. 10, [no. 4], p. $97-R102.
    Engelen, G. B., 1963, Indications for large scale graben formation along
         the continental margin of eastern United States: Geologie en
         Mi.jnbouw, v. 42, no. 3, p. 65-75.
    Ericson, D. B., Ewing, Maurice, and Heezen, B. C., 1951, Deep-sea sands
         and submarine canyons [Atlantic Ocean]: Geol. Soc. America Bull.,
        v. 62, no. 8, p. 961-965.
          1952. Turbidity currents and sediments in North Atlantic: Am.
         Assoc. Petroleum Geologists Bull., v. 36, no. 3, p. 489-511.
```

2

3

7

8

11

12

13

14

16

17

18

19

21 22

23

24 25-

```
Ericson, D. B., Ewing, Maurice, Wollin, Goesta, and Heezen, B. C., 1961
          Atlantic deep-sea sediment cores: Geol. Soc. America Bull., v. 72
          no. 2, p. 193-286.
     Ewing, John, Luskin, B., Roberts, A., and Hirshman, J., 1960,
          Sub-bottom reflection measurements on the Continental Shelf,
          Bermuda Banks, West Indies arc, and in the west Atlantic basins:
         Jour. Geophys. Research, v. 65, no. 9, p. 2849-2859.
     Ewing, W. M., Crary, A. P., and Rutherford, H. M., 1937, Methods and
          results, Pt. 1 of Geophysical investigations in the emerged and
          submerged Atlantic Coastal Plain: Geol. Soc. America Bull., v. 48
 10-
         no. 6, p. 753-802.
11
     Ewing, W. M., Woollard, G. P., and Vine, A. C., 1939, Barneget Bay, New
          Jersey, section, Pt. 3 of Geophysical investigations in the emerged
13
          and submerged Atlantic Coastal Plain: Geol. Soc. America Bull., v.
14
         50, no. 2, p. 257-296.
 15-
          _1940, Cap May, New Jersey, section, Pt. 4 of Geophysical
16
         investigations in the emerged and submerged Atlantic Coastal Plain:
17
         Geol. Soc. America Bull., v. 51, no. 12, pt. 1, p. 1821-1840.
18
     Ewing, W. M., Worzel, J. L., Steenland, N. C., and Press, F., 1950,
19
          Woods Hole, New York, and Cape May, sections, Pt. 5 of Geophysical
 20-
         investigations in the emerged and submerged Atlantic Coastal Plain:
21
22
          Geol. Soc. America Bull., v. 61, no. 9, p. 877-892.
     Fenneman, N. M., 1938, Physiography of the eastern United States: New
         York, McGraw-Hill Book Co., 714 p.
24
 25
```

D. S. GOVERNOR

U. S. GOVERNMENT

```
Field, R. M., and others, 1931, Geology of the Bahamas: Geol. Soc.
          America Bull., v. 42, no. 3, p. 759-784.
     Flint, R. F., 1957, Glacial and Pleistocene geology: New York, John
         Wiley and Sons, Inc., 553 p.
    Gardner, F. J., 1964, Sun enhances Florida chances: Oil and Gas Jour.,
         v. 62, no. 43, p. 175.
     Gill, H. E., Seaber, P. R., Vecchioli, John, and Anderson, H. R., 1963,
7
         evaluation of geologic and hydrologic data from the test-drilling
8
         program at Island Beach State Park, New Jersey: New Jersey Dept.
         Conserv. and Econ. Devel. and U.S. Geol. Survey open-file report,
         55 p.
     Gilluly, James, 1964, Atlantic sediments erosion rates, and the
12
          evolution of the Continental Shelf -- some speculations: Geol.
13
14
          Soc. America Bull., v. 75, no. 6, p. 483-492.
     Gorsline, D. S., 1963, Bottom sediments off the southern United States:
          Jour. Geology, v. 71, no. 4, p. 422-440.
16
     Groot, C. R., and Groot, J. J., 1964, The pollen flora of Quaternary
17
          sediments beneath Nantucket Shoals: Am. Jour. Sci., v. 262, no. 3
18
19
          p. 488-493.
     Gunter, Herman, 1946. Prospecting for petroleum in Florida: Florida
          Univ. Bur. Econ. and Business Research Econ. Leaflet, v. 5, no. 7,
22
          4 p.
23
          1949, Oil and gas developments in Florida, Georgia, and Alabama
24
          during 1948: Oil and Gas Jour., v. 47, no. , p.
 25-
```

```
Gunter, Herman, 1950, Oil exploration in Florida during 1949: Oil and
         Gas Jour., v. 49, no. 7, p. 310-312.
    Heezen, B. C., 1962, The deep sea floor, in Runcorn, S. K., ed.,
         Continental drift: New York, Academic Press, p. 235-288.
    Heezen, B. C., Hollister, C. D., and Ruddiman, W. F., 1966, Shaping of
         the continental rise by deep geostrophic contour currents: Science.
         v. 152, no. 3721, p. 502-508.
    Heezen, B. C., Tharp, Marie, and Ewing, W. M., 1959, The North Atlantic --
         text to accompany the physiographic diagram of the North Atlantic,
         Pt. 1 of The floors of the oceans: Geol. Soc. America Spec. Paper
         65, 122 p.
    Herrick, S. M., 1961, Well logs of the Coastal Plain of Georgia: Georgia
         Geol. Survey Bull. 70, 462 p.
    Herrick, S. M., and Vorhis, R. C., 1963, Subsurface geology of the
         Georgia Coastal Plain: Georgia Geol. Survey Inf. Circ. 25, 78 p.
    Hersey, J. B., Bunce, E. T., Wyrick, R. F., and Dietz, F. T., 1959.
         Geophysical investigation of the continental margin between Cape
17
         Henry, Virginia, and Jacksonville, Florida: Geol. Soc. America
18
         Bull., v. 70, no. 4, p. 437-466.
 20- Hess, H. H., 1933, Interpretation of geological and geophysical
         observations: U.S. Navy Hydrog, Office, Navy-Princeton gravity
         expedition to the West Indies in 1932, p. 27-54.
22
          __1960. The origin of the Tongue of the Ocean and other great valleys
         of the Bahama Bank, in Talwani, Manik, Worzel, L. J., and Ewing,
24
         Maurice. Gravity anomalies and structure of the Bahamas: Caribbean
         Geol. Conf., 2d, Mayaguez, Puerto Rico, 1959, Trans., p. 160-161.
```

208

U. S. GOVERNOON-

Hoskins, H., and Knott, S. T., 1961, Geophysical investigation of Cape Cod Bay, Massachusetts, using the continuous seismic profiler: Jour. Geology, v. 69, no. 3, p. 330-340. Hough, J. H., 1940, Sediments of Buzzards Bay, Massachusetts: Jour. Sed. Petrology, v. 10, no. 1, p. 19-32. 1942, Sediments of Cape Cod Bay, Massachusetts: Jour. Sed. Petrology, v. 12, no. 1, p. 10-30. Hubbert, M. K., 1953, Entrapment of petroleum under hydrodynamic conditions: Am. Assoc. Petroleum Geologists Bull., v. 37, no. 8, p. 1954-2026. 10- Hughes, U. B., 1944, Developments in southeastern United States in 1943: Am. Assoc. Petroleum Geologists Bull., v. 28, no. 6, p. 801-805. 12 Hull, J. P. D., and Teas, L. P., 1919, A preliminary report on the oil prospect near Scotland, Telfair County, Georgia: Georgia Geol. 13 14 Survey, 23 p. 15- Imlay, R. W., 1944, Correlation of Lower Cretaceous formations of the Coastal Plain of Texas, Louisiana, and Arkansas, 1944: U.S. Geol. 16 Survey Oil and Gas Inv. Prelim. Chart No. 3. 17 International Hydrographic Bureau, 1958, Carte bathymetrique des oceans: 19 Internat. Hydrog. Bur. Map, sheet Al, 4th ed.; 1937, sheet Bl, 3d ed. 20 - Jenny, W. P., 1934, Ergebnisse der magnetischen vektorenmethode in den 21 Staaten Alabama und Florida, U. S. A.: Gerlands Beitrage zur 22 Geophysik, v. 42, no. 4, p. 413-422. 23 Johnson, D. W., 1925, The New England-Acadian shoreline: New York, John 24 Wiley and Sons, 608 p. 25-

Johnson, D. W., 1938, Origin of submarine canyons: Jour. Geomorphology, v. 1, no. 2, p. 111-129; no. 3, p. 230-243; no. 4, p. 324-340; 1939, v. 2, no. 1, p. 42-58; no. 2, p. 133-156 and 234-236. _1939, The origin of submarine canyons, a critical review of hypotheses: New York, Columbia Univ. Press, 126 p. Johnson, W. R., Jr., and Straley, H. M. 3d, 1935, An attempt to locate the boundaries of the Durham [North Carolina] Triassic basin with a magnetometer: Am. Geophys. Union Trans., pt. 1, p. 176-181. Johnston, J. E., Trumbull, J., and Eaton, G. P., 1959, The petroleum 10potential of the emerged and submerged Atlantic Coastal Plain of the United States: World Petroleum Cong., 5th, New York 1959. Proc., sec. 1, p. 435-445. Joint Oceanographic Institutions' Deep Earth Sampling Program (JOIDES), 1965, Ocean drilling on the continental margin: Science, v. 150, no. 3697, p. 709-716. Jordan, Louise, 1954, A critical appraisal of oil possibilities in Florida: Oil and Gas Jour., v. 53, no. 28, p. 370-375. 18 Katz, Samuel, and Ewing, Maurice, 1956, Atlantic Ocean basin, west of Bermuda, Pt. 7 of Seismic refraction measurements in the Atlantic 20 -Ocean: Geol. Soc. America Bull., v. 67, no. 4, p. 475-509. Kay, Marshall, 1951, North American geosynclines: Geol. Soc. America Mem. 48. 193 p. Keller, Fred, Jr., Meuschke, J. L., and Alldredge, L. R., 1954, Aeromagnetic surveys in the Aleutian, Marshall, and Bermuda Islands: Am. Geophys. Union Trans., v. 35, no. 4, p. 558-572.

1. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

```
King, E. R., 1959, Regional magnetic map of Florida: Am. Assoc. Petroleum
 2
          Geologists Bull., v. 43, no. 12, p. 2844-2854.
    King, E. R., Zietz, Isidore, and Dempsey, W. J., 1961, The significance
         of a group of aeromagnetic profiles off the eastern coast of North
         America: U.S. Geol. Survey Prof. Paper 424-D, art. 396, p. D299-D303.
    King, P. B., 1950, Tectonic framework of southeastern United States: Am.
         Assoc. Petroleum Geologists Bull., v. 34, no. 4, p. 635-671.
          1959. The evolution of North America: Princeton. N. J., Princeton
         Univ. Press, 190 p.
          1964, Further thoughts on tectonic framework of the southeastern
 10
17
         United States, in Lowry, C. D., ed., Tectonics of the southern
12
         Appalachians: Virginia Polytech. Inst. Dept. Geol. Sci. Mem. 1, p.
13
         5-31.
14
    Kornfeld, J. A., 1965, Sunoco-Felda discovery puts South Florida in the
         spotlight: World Oil. v. 160, no. 6, p. 172-[176].
 15-
    Kuenen, P. H., 1950, Marine geology: New York, John Wiley and Sons, 568 p.
17
    LaForge, Laurence, 1932, Geology of the Boston area, Massachusetts: U.S.
18
         Geol. Survey Bull. 839, 105 p.
19
    Laguna, Wallace de, 1963, Geology of Brookhaven National Laboratory and
 20-
         vicinity, Suffolk County, New York: U.S. Geol. Survey Bull, 1156-A.
21
         p. Al-A35.
22
    Lee, C. S., 1951, Geophysical surveys on the Bahama Banks: Inst.
23
         Petroleum Jour., v. 37, no. 334, p. 633-657.
    Lee, F. W., Swartz, J. H., and Hemburger, S. J., 1945, Magnetic survey of
         the Florida Peninsula: U.S. Bur. Mines Rept. Inv. 3810, 49 p.
```

LeGrand, H. E., 1955, Brackish water and its structural implications in the Great Carolina Ridge: Am. Assoc. Petroleum Geologists Bull., v. 39, no. 10, p. 2020-2037. 1961, Summary of geology of Atlantic Coastal Plain: Am. Assoc. Petroleum Geologists Bull., v. 45, no. 9, p. 1557-1571. Levorsen, A. I., 1954, Geology of petroleum: San Francisco, Calif., W. H. Freeman and Co., 703 p. Livingstone, D. A., 1964, The pollen flora of submarine sediments from Mantucket Shoals: Am. Jour. Sci., v. 262, no. 3, p. 479-487. MacCarthy, G. R., 1936, Magnetic anomalies and geologic structures of the 11 Carolina Coastal Plain: Jour. Geology, v. 44, no. 3, p. 396-406. MacCarthy, G. R., and Alexander, J. A., 1934, What lies under the Coastal Plain? [abs.]: Elisha Mitchell Sci. Soc. Jour., Chapel Hill, N. C., v. 50, no. 1/2, p. 50. 15- MacCarthy, G. R., Prouty, W. F., and Alexander, J. A., 1933, Some 16 magnetometer observations in the Coastal Plain area of South Carolina 17 [abs.]: Elisha Mitchell Sci. Soc. Jour., Chapel Hill, N. C., v. 49, 18 no. 1, p. 20-21. McCollum, M. J., and Counts, H. B., 1964, Relation of salt-water encroachment to the major aquifer zones, Savannah area, Georgia, and 21 South Carolina: U.S. Geol. Survey Water-Supply Paper 1613-D, p. D1-D26. 22 McCollum, M. J., and Herrick, S. M., 1964, Offshore extension of the upper Eccene to Recent stratigraphic sequence in southeastern Georgia: U.S. 23 Geol. Survey Prof. Paper 501-C, p. C61-C63. McMaster, R. L., 1962, Petrography and genesis of Recent sediments in Narragansett Bay and Rhode Island Sound, Rhode Island: Jour. Sed.

U. S. GOVERNMENT PRINTING OFFICE: 1959 O - 511171

Petrology, v. 32, no. 3, p. 484-501.

```
Maher, J. C., 1965, Correlations of subsurface Mesozoic and Cenozoic
          rocks along the Atlantic Coast: Tulsa, Okla., Am. Assoc.
          Petroleum Geologists, 18 p.
           1966, Atlantic offers oil promise: Oil and Gas Jour., v. 64, no.
          30, p. 246-252.
     Marlowe, J. I., 1965, Probable Tertiary sediments from a submarine canyor
          off Nova Scotia: Marine Geology, v. 3, no. 4, p. 263-268.
 5
     Maync, Wolf, 1949, The foraminiferal genus Choffatella Schlumberger in
         the Lower Cretaceous (Urgonian) of the Caribbean region (Venezuela
         Cuba, Mexico, and Florida): Eclogae Geol. Helvetiae, v. 42, no.
         2, p. 529-547.
          _1959, The foraminiferal genera Spirocyclina and Iberina:
         Micropaleontology, v. 5, no. 1, p. 33-68.
11
     Merrill, A. S., Emery, K. O., and Rubin, Meyer, 1965, Ancient oyster
12
         shells on the Atlantic Continental Shelf: Science, v. 147, no.
         3656, p. 398-400.
14
 Meyer, R. P., 1957, The geologic structure of the Cape Fear axis as
         revealed by refraction seismic measurements: Madison, Wis..
16
         Wisconsin Univ. Ph.D. thesis, 176 p.; Ann Arbor, Mich., Univ.
17
18
         Microfilms, Inc., Pub. 21,861.
     Meyer, R. P., and Woollard, G. P., 1956, Seismic evidence for basement
19
         uplift in the Georgia-South Carolina Coastal Plain [abs.]: Geol.
 20-
          Soc. America Bull., v. 67, no. 12, pt. 2, p. 1721.
    Miami University Marine Laboratory, 1958, Oceanographic survey of the
         Tongue of the Ocean: Miami Univ. Marine Lab. Tech. Rept., Sept.
23
         26, 1958, v. 1, [24] p., [unpub. ms.].
24
```

25-

```
Miller, B. L., 1936, Geological significance of the geophysical data, Pt.
         2 of Geophysical investigations in the emerged and submerged Atlantic
         Coastal Plain: Geol. Soc. America Bull., v. 48, no. 6, p. 803-812
    Miller, E. T., and Ewing, Maurice, 1956, Geomagnetic measurements in the
         Gulf of Mexico and in the vicinity of Caryn Peak [Atlantic Ocean]:
         Geophysics, v. 21, no. 2, p. 406-432.
    Mitchell, Henry, 1879, Physical hydrology of the coast of Maine, App. 10
         of Report of the Superintendent of the U. S. Coast and Geodetic
         Survey showing progress of the work during 1879: U.S. Coast and
         Geod. Survey Rept., p. 175-190.
 10-
    Moore, D. G., and Curray, J. R., 1963. Sedimentary framework of
11
12
         continental terrace off Norfolk, Virginia, and Newport, Rhode
13
         Island: Am. Assoc. Petroleum Geologists Bull., v. 47, no. 12, p.
14
         2051-2054.
 15- Moore, J. E., and Gorsline, D. S., 1960, Physical and chemical data for
         bottom sediments, south Atlantic coast of the United States: U.S.
16
17
         Fish and Wildlife Service Spec. Sci. Rept. 366, 84 p.
    Muir, J. M., 1936, Geology of the Tampico region, Mexico: Tulsa, Okla.
19
         Am. Assoc. Petroleum Geologists, 280 p.
 20- Murray, G. E., 1961, Geology of the Atlantic and gulf coastal province
21
         of North America: New York, Harper and Row, 692 p.
    Murray, H. W., 1947, Topography of the Gulf of Maine: Geol. Soc.
23
         America Bull., v. 58, no. 2, p. 153-196.
24
     Newell, N. D., 1955, Bahamian platforms, in Crust of the earth: Geol.
         Soc. America Spec. Paper 62, p. 303-316.
```

U. S. GOVERNMENT PRINTING OFFICE: 1959 G - 511171

```
Northrop, John, 1953, A bathymetric profile across the Hudson submarine
          canyon and its tributaries: Jour. Marine Research, v. 12, no. 2,
         p. 223-232.
    Northrop, John, and Heezen, B. C., 1951, An outcrop of Eocene sediment
         on the continental slope: Jour. Geology, v. 59, no. 4, p. 396-399.
 5-
    Nota, D. J. G., and Loring, D. H., 1964, Recent depositional conditions
         in the St. Lawrence River and Gulf -- a reconnaissance survey:
         Marine Geology, v. 2, no. 3, p. 198-235.
8
    Officer, C. B., Jr., and Ewing, Maurice, 1954, Continental Shelf, slope
         and rise south of Nova Scotia, Pt. 7 of Geophysical investigations
 10-
         in the emerged and submerged Atlantic Coastal Plain: Geol. Soc.
11
         America Bull., v. 65, no. 7, p. 653-670.
12
    Oglesby, W. R., 1965, Folio of South Florida basin -- a preliminary
13
14
         study: Florida Geol. Survey Map, ser. 19, 3 p.
    Oliver, J. E., and Drake, C. L., 1951, Long Island area, Pt. 6 of
         Geophysical investigations in the emerged and submerged Atlantic
16
         Coastal Plain: Geol. Soc. America Bull., v. 62, no. 11, p.
         1287-1296.
18
    Patton, J. L., 1954, Southeastern states hold promise for tomorrow: 011
         and Gas Jour., v. 53, no. 14, p. 160-161.
 20-
    Pearse, A. S., and Williams, L. G., 1951, The biota of the reef off the
21
         Carolinas: Elisha Mitchell Sci. Soc. Jour., Chapel Hill, N. C., v.
22
         67, no. 1, p. 133-161.
23
    Peck, R. E., 1957, North American Mesozoic Charophyta: U.S. Geol. Survey
24
         Prof. Paper 294-A, p. 1-44.
```

```
Perlmutter, N. M., and Crandell, H. C., 1959, Geology and ground-water
         supplies of the south-shore beaches of Long Island, New York:
          New York Acad. Sci. Annals, v. 80, art. 4, p. 1060-1076.
     Perlmutter, N. M., and Geraghty, J. J., 1963, Geology and ground-water
         conditions in southern Nassau and southeastern Queens Counties,
         Long Island, New York: U.S. Geol. Survey Water-Supply Paper
         1613-A, p. Al-A205.
     Perlmutter, N. M., and Todd, Ruth, 1965, Correlation and Foraminifera
         of the Monmouth Group (Upper Cretaceous), Long Island, New York:
         U.S. Geol. Survey Prof. Paper 483-I, 24 p.
     Petroleum Week, 1958, Will offshore drilling come to the Atlantic Coast?:
11
         Petroleum Week, v. 6, no. 6, p. 22-23.
     Pilkey, O. H., 1964, Size distribution and mineralogy of the carbonate
          fraction of the United States South Atlantic Shelf and upper slope
          sediments: Marine Geology, v. 2, nos. 1/2, p. 121-136.
     Pooley, R. N., 1960, Basement configuration and subsurface geology of
          eastern Georgia and southern South Carolina as determined by
18
          seismic refraction measurements: Wisconsin Univ., Madison, Ms.
          thesis, 47 p.
     Pourtales, L. F., 1850, On the distribution of the foraminifera on the
          coast of New Jersey, as shown by the off-shore soundings of the
21
          Coast Survey: Am. Assoc. Adv. Sci. Proc., 2d Mtg., Charleston,
          S. C., p. 84-88.
23
 25-
```

U. S. GOVERNMENT

U. S. GOVERNOON

```
Pourtales, L. F., 1854, Extracts from letters of assistant L. F.
 1
          Pourtales upon examination of specimens of bottom obtained in the
2
          Gulf Stream by Lieutenants Commander Craven and Maffit: U.S. Coast
3
         Survey Rept. of Superintendent, 1853, p. 82-83.
4
          _1871, Constitution of the bottom of the ocean off Cape Hatteras:
 5-
         Boston Soc. Nat. History Proc., v. 14, p. 58-59.
6
          _1872. The characteristics of the Atlantic sea bottom off the
         coast of the United States: U.S. Coast Survey, Rept. of
         Superintendent, 1869, App. 11, p. 220-225.
    Powell, L. C., and Culligan, L. B., 1955, Developments in southeastern
 10-
          states in 1954: Am. Assoc. Petroleum Geologists Bull., v. 39, no.
11
         6, p. 1004-1014.
12
     Pratt. R. M., 1963. Bottom currents on the Blake Plateau: Deep-Sea
13
         Research, v. 10, p. 245-249.
14
          _1966. The Gulf Stream as a graded river: Limnology and
 15-
         Oceanography, v. 11, no. 1, p. 60-67.
     Pratt. R. M., and Heezen, B. C., 1964, Topography of the Blake Plateau:
17
         Deep-Sea Research, v. 11, p. 721-728.
18
     Pratt, R. M., and McFarlin, P. F., 1966, Manganese pavements on the
19
          Blake Plateau: Science, v. 151, no. 3714, p. 1080-1082.
 20-
     Pratt, W. E., 1947, Petroleum on continental shelves: Am. Assoc.
21
22
          Petroleum Geologists Bull., v. 31, no. 4, p. 657-672.
23
     Press, Frank, and Beckmann, W. C., 1954, Grand Banks and adjacent
24
          shelves, Pt. 8 of Geophysical investigations in the emerged and
          submerged Atlantic Coastal Plain: Geol. Soc. America Bull., v.
          65, no. 3, p. 299-314.
```

```
Pressler, E. D., 1947, Geology and occurrence of oil in Florida: Am.
         Assoc. Petroleum Geologists Bull., v. 31, no. 10, p. 1851-1862.
    Prouty, W. F., 1946, Atlantic Coastal Plain floor and continental slope
         of North Carolina: Am. Assoc. Petroleum Geologists Bull., v. 30,
         no. 11, p. 1917-1920.
    Puri, H. S., 1953, Cenozoic Ostracoda, Pt. 1 of Ostracoda from wells in
         North Carolina -- taxomic comment: Jour. Paleontology, v. 27, no.
         5, p. 750-752.
    Puri, H. S., and Banks, J. E., 1959, Structural features of the
 10-
         Sunniland oil field, Collier County, Florida: Gulf Coast Assoc.
11
         Geol. Socs. Trans., v. 9, p. 121-130.
    Puri, H. S., and Vernon, R. O., 1959, Summary of the geology of Florida
13
         and a guidebook to the classic exposures: Florida Geol. Survey
14
         Spec. Pub. no. 5, 255 p.
    Richards, H. G., 1945, Subsurface stratigraphy of Atlantic Coastal Plain
16
         between New Jersey and Georgia: Am. Assoc. Petroleum Geologists
         Bull., v. 29, no. 7, p. 885-995.
18
          1948, Studies of the subsurface geology and paleontology of the
19
         Atlantic Coastal Plain: Acad. Nat. Sci. Philadelphia Proc., v. 10d.
         p. 39-76.
           1950, Geology of the Coastal Plain of North Carolina: Am. Philos.
22
         Soc. Trans., v. 40, pt. 1, 83 p.
           1954, Subsurface Triassic in eastern North Carolina: Am. Assoc.
23
         Petroleum Geologists Bull., v. 38, no. 12, p. 2564-2565.
           1963, How good are New Jersey offshore oil prospects?: World
         Oil, v. 156, no. 6, p. 149-152.
```

25

U. S. GOVERNMENT --

```
Roberson, M. I., 1964, Continuous seismic profiler survey of
          Oceanographer, Gilbert, and Lydonia submarine canyons, Georges
          Bank: Jour. Geophys. Research, v. 69, p. 4779-4789.
     Roberts, W. L., and Vernon, R. O., 1961, Florida -- more extensive
          drilling might uncover big oil and gas-producing areas: Oil and
 5.
          Gas Jour., v. 59, no. 11, p. 215-219.
     Rona, P. A., and Clay, C. S., 1966, Continuous seismic profiles of the
          continental terrace off southeast Florida: Geol. Soc. America
          Bull., v. 77, no. 1, p. 31-43.
     Rude, G. T., 1925, St. Augustine [Florida] and its oceanic spring:
          Geog. Soc. Philadelphia Bull., v. 23, no. 3, p. 85-91.
11
     Sanders, H. L., 1958, Benthic studies in Buzzards Bay; I, Animal-
12
          sediment relationship: Limnology and Oceanography, v. 3, p. 245-
13
          258.
14
     Schipf, R. G., 1964, Fayetteville "buried Triassic basin": Am. Assoc.
 15-
          Petroleum Geologists Bull., v. 48, no. 5, p. 721-723.
16
     Schlee, John, 1964, New Jersey offshore gravel deposit: Pit and Quarry,
17
          v. 57, no. 6, p. 80-81, 95.
18
     Schlee, John, and Gerard, Robert, 1965, Cruise report and preliminary
19
          core log M/V Caldrill I, 17 April to 17 May, 1965: JOIDES Blake
 20-
          Panel Unpub. Rept., 64 p.
21
     Schuchert, Charles, 1935, Historical geology of the Antillean-Caribbean
22
          region: New York, John Wiley and Sons, Inc., p. 26-27, 243-248,
23
24
          528-540.
 25
```

1 5	Seaber, P. R., and Vecchioli, John, 1963, Stratigraphic section at Island
2	Beach State Park, New Jersey: U.S. Geol. Survey Prof. Paper 475-B
3	art. 26, p. Bl02-Bl05.
4 8	Shaler, N. S., 1885, Report on the geology of Martha's Vineyard: U.S.
5	Geol. Survey 7th Ann. Rept., 1885-1886, p. 304-306, 325-330, 340-347,
6	352-353.
7 _	1889, The geology of Nantucket: U.S. Geol. Survey Bull. 52, p.
8	28-47.
9	1898, Geology of the Cape Cod district: U.S. Geol. Survey 18th
10-	Ann. Rept., pt. 2, p. 497-593.
11	Chepard, F. P., 1932, Sediments of the Continental Shelves: Geol. Soc.
12	America Bull., v. 43, no. 4, p. 1017-1039.
13	1933, Submarine valleys: Geog. Rev., v. 23, no. 1, p. 77-89.
14	1934, Canyons off the New England coast: Am. Jour. Sci., 5th ser.,
15-	v. 27, p. 24-36.
16	1948, Submarine geology, 1st ed.: New York, Harper and Brothers,
17	348 p.; 1963, 2d ed., 557 p.
18	1951a, Composite origin of submarine canyons: Jour. Geology, v.
19	60, no. 1, p. 84-96.
20-	1951b, Submarine canyons a joint product of rivers and
21	submarine processes: Science, v. 114, no. 2949, p. 7-9.
22	1959, The earth beneath the sea: Baltimore, Md., The Johns
23	Hopkins Press, 275 p.
24	
25 -	

```
Shepard, F. P., and Cohee, G. V., 1936, Continental Shelf sediments off
          the mid-Atlantic states: Geol. Soc. America Bull., v. 47, no. 3,
          p. 441-457.
    Shepard, F. P., Trefethen, J. M., and Cohee, G. V., 1934, Origin of
         Georges Bank: Geol. Soc. America Bull., v. 45, no. 2, p. 281-302.
    Sheridan, R. E., Drake, C. L., Nafe, J. E., and Henion, J., 1964, Seismic
         refraction measurements of the continental margin east of Florida:
7
         Geol. Soc. America Program, 1964 Ann. Mtg., p. 183.
    Shifflett, F. E., 1948, Eocene stratigraphy and Foraminifera of the Aguia
         Formation [Maryland and Virginia]: Maryland Dept. Geology, Mines
 10-
         and Water Resources Bull. 3, 93 p.
11
    Siple, G. E., 1946, Progress report on ground-water investigations in South
12
         Carolina: South Carolina Resources, Plan. and Devel. Board Bull.
13
         15, 116 p.
 15- Skeels, D. C., 1950, Geophysical data on the North Carolina Coastal Plain:
         Geophysics, v. 15, no. 3, p. 409-425; Oil and Gas Jour., v. 48, no.
16
         51, p. 120.
17
18
    Southeastern Geological Society, Mesozoic Committee, 1949. Mesozoic cross
         section A-A', Walton County to Monroe County, Florida; B-B', Beaufort
19
         County, South Carolina, to Highlands County, Florida; C-C', Toombs
 20-
21
         County, Georgia, to Volusia County, Florida; D-D', Dixie County to
22
         Nassau County, Florida; E-E', Bullock County, Alabama, to Franklin
         County, Florida: Southeastern Geol. Soc., Mesozoic Comm., cross
23
         sections, scale 1" to 10 miles.
    Spangler, W. B., 1950, Subsurface geology of Atlantic Coastal Plain of
         North Carolina: Am. Assoc. Petroleum Geologists Bull., v. 34, no.
24
         1, p. 100-132.
```

Spangler, W. B., and Peterson, J. J., 1950, Geology of Atlantic Coastal Plain in New Jersey, Delaware, Maryland, and Virginia: Am. Assoc. Petroleum Geologists Bull., v. 34, no. 1, p. 1-99. Stephenson, L. W., 1926, Major features in the Atlantic and Gulf Coastal Plain: Washington Acad. Sci. Jour., v. 16, no. 17, p. 460-480. _1928. Structural features of the Atlantic and Gulf Coastal Plain: Geol. Soc. America Bull., v. 39, no. 4, p. 887-899. __1936, Upper Cretaceous fossils from Georges Bank, Pt. 2 of Geology and paleontology of the Georges Bank canyons: Geol. Soc. America Bull., v. 47, no. 3, p. 367-410. Stetson, H. C., 1936, Geology, Pt. 1 of Geology and paleontology of the Georges Bank canyons: Geol. Soc. America Bull., v. 47, no. 3, p. 12 339-366. 13 14 _1938, The sediments of the Continental Shelf off the east 15coast of the United States: Massachusetts Inst. Technology and Woods Hole Oceanog. Inst., Papers on physical oceanography and 16 17 meteorology, v. 5. no. 4, 48 p. 18 1949. The sediments and stratigraphy of the east coast 19 continental margin, Georges Bank to Norfolk Canyon: Massachusetts 20-Inst. Technology and Woods Hole Oceanog. Inst., Papers on physical oceanography and meteorology, v. 11, no. 2, 60 p. Stetson, T. R., Squires, D. F., and Pratt, R. M., 1962, Coral banks in 23 deep water on the Blake Plateau: Am. Mus. Novitates, no. 2114, p. 24 1-39.

```
Stewart, H. B., Jr., and Jordan, G. F., 1964, Underwater sand ridges on
         Georges Shoal, in Miller, R. L., ed., Papers in Marine Geology,
         Shepard Commemorative Volume: New York, MacMillan and Co., p. 102-
         114.
 5- Stose, G. W., compiler, 1932, Geologic map of the United States: U.S.
         Geol. Survey Map, scale 1:2,500,000.
    Stringfield, V. T., and Cooper, H. H., Jr., 1951, Geologic and
         hydrologic features of an artesian submarine spring east of Florida:
         Florida Geol. Survey Inv. Rept. no. 7, pt. 2, p. [61]-72.
9
 10- Suter, Russell, Laguna, W. de, and Perlmutter, N. M., 1949, Mapping of
         geologic formations and aquifers of Long Island, New York: New
11
         York Water Power and Control Comm. Bull. GW-18, 212 p.
12
    Swain, F. M., Jr., 1947, Two recent wells in Coastal Plain of North
13
         Carolina: Am. Assoc. Petroleum Geologists Bull., v. 31, no. 11, p.
14
         2054-2060.
 15-
            __1951, Cenozoic Ostracoda, Pt. 1 of Ostracoda from wells in North
16
17
         Carolina: U.S. Geol. Survey Prof. Paper 234-A, p. 1-58.
18
             1952, Mesozoic Ostracoda, Pt. 2 of Ostracoda from wells in
19
         North Carolina: U.S. Geol. Survey Prof. Paper 234-B, p. 59-93.
    Swick, C. H., 1937, Gravity in southeastern Virginia: Am. Assoc.
         Petroleum Geologists Bull., v. 21, no. 3, p. 333-339.
    Talwani, M. J., Worzel, J. L., and Ewing, Maurice, 1960, Gravity anomalies
21
         and structure of the Bahamas: Puerto Rico Univ. Caribbean Geol.
22
         Conf., 2d, Trans., p. 156-161.
23
    Torphy, S. R., and Zeigler, J. M., 1957, Submarine topography of Eastern
24
         Channel, Gulf of Maine: Jour. Geology, v. 65, p. 433-441.
 25 -
```

```
Toulmin, L. D., 1941, Eocene smaller Foraminifera from Salt Mountain
          Limestone of Alabama: Jour. Paleontology, v. 15, no. 6, p. 567-611.
            -1955, Cenozoic geology of southeastern Alabama, Florida, and
          Georgia: Am. Assoc. Petroleum Geologists Bull., v. 39, no. 2, p.
    Toulmin, D., 1957, Notes one peralkaline granite from Cashes Ledge, Gulf of Maine:
Am. Mineralogist, v.42, nos. 11-12, p. 912-915
Trowbridge, A. C., and Shepard, F. P., 1932, Sedimentation in Massachusetts
          Bay: Jour. Sed. Petrology, v. 2, no. 1, p. 3-37.
    Trumbull, J. V., Lyman, J., Pepper, J. F., and Thomasson, E. M., 1958,
          An introduction to the geology and mineral resources of the
          continental shelves of the Americas: U.S. Geol. Survey Bull. 1067,
11
          92 p.
12
    Tuttle. C. R., Allen, W. B., and Hahn, G. W., 1961, A seismic record of
13
          Mesozoic rocks on Block Island, Rhode Island: U.S. Geol. Survey
          Prof. Paper 424-C, art. 240, p. C254-C256.
 15- Tyler, S. A., 1934, A study of sediments from the North Carolina and
          Florida coasts: Jour. Sed. Petrology, v. 4, no. 1, p. 3-11.
     Uchupi, Elazar, 1963, Sediments on the continental margin off eastern
18
          United States: U.S. Geol. Survey Prof. Paper 475-C, art. 94, p.
          C132-C137.
               _1964. Unusual hauls from Georges Bank: Oceanus, v. 10, no. 4,
21
          p. 20-22.
22
              1965, Map showing relation of land and submarine topography,
23
          Nova Scotia to Florida: U.S. Geol. Survey Misc. Geol. Inv. Map
24
          I-451, scale 1:1,000,000.
```

U. B. GOVERNMENT PRINTING OFFICE | 19-1 C - 4 | 1

```
Uchupi, Elazar, 1966, Topography and structure of northeast channel,
          Gulf of Maine: Am. Assoc. Petroleum Geologists Bull., v. 50, no.
          1, p. 165-167.
     Uchupi, Elazar, and Tagg, A. R., 1966, Microrelief of the continental
          margin south of Cape Lookout, North Carolina: Geol. Soc. America
          Bull., v. 77, no. 4, p. 427-430.
6
     Umbgrove, J. H. F., 1946, Origin of continental shelves: Am. Assoc.
          Petroleum Geologists Bull., v. 30, no. 2, p. 249-253.
8
             1947, The pulse of the earth, 2d ed .: The Hague, Martinus
          Nijhoff, p. 97-143.
 10
     U. S. Coast and Geodetic Survey, 1945, Nautical charts: U.S. Coast and
11
          Geod. Survey Chart no. 1107; 1957, no. 5617; 1959, no. 1113; 1961,
12
          nos. 1000, 1003, 1109 and 1111; 1962, nos. 1001, 1002, 1108, 1110
13
          and 1112.
14
     U. S. Geological Survey and American Association of Petroleum Geologists
 15-
          prepared by a Committee, Cohee, G. V., chm., 1962, Tectonic map of
16
          the United States, exclusive of Alaska and Hawaii, scale
17
          1:2,500,000.
18
     U. S. Navy Hydrographic Office, 1948, Nautical chart: U.S. Navy Hydrog.
19
          Office Chart no. 1411; 1952, no. 5617; 1949, no. 6610.
 20
              1951. Contoured position plotting sheets: U.S. Navy Hydrog.
21
          Office Sheet BC-0510N, BC-0608N, BC-0609N, BC-0610N, BC-0706N,
22
          BC-0707N. BC-0708N. BC-0805N. BC-0806N. and BC-0807N; 1952.
23
          BC-0611N and BC-0612N; 1955, BC-0804N; 1962, BC-0904N and
24
          BC-0905N.
 25
```

```
U. S. Navy Hydrographic Office, 1962, Catalog of nautical charts and
         publications: U.S. Navy Hydrog. Office, Washington, D. C., Pub. no.
         I-N, pt. 1, 20 p.; pt. 2, 52 p.
    U. S. Navy Oceanographic Office, 1962, A marine magnetic survey off the
         east coast of the United States: U.S. Navy Oceanog. Office Tech.
         Rept. Proj. N-20, 29 p.
    Upham, W., 1894, The fishing banks between Cape Cod and Newfoundland:
         Am. Jour. Sci., 3d ser., v. 47, p. 123-129.
    Van Bemmelen, R. W., 1956, The geochemical control of tectonic activity:
 10-
         Geologie en Mijnbouw, n.s., v. 18, no. 4, p. 113-144.
    Veatch, A. C., and Smith, P. A., 1939, Atlantic submarine valleys of
         the United States and Congo submarine valley: Geol. Soc. America
13
         Spec. Paper 7, 101 p.
14
    Vernon, R. O., 1951, Geology of Citrus and Levy Counties. Florida:
         Florida Geol. Survey Bull. 33, 256 p.
    Verrill, A. E., 1878, Occurrence of fossiliferous Tertiary rocks on the
17
         Grand Banks and Georges Bank: Am. Jour. Sci., 3d ser., v. 16, p.
18
         323-324.
    Watkins, J. S., and Geddes, W. H., 1965, Magnetic anomaly and possible
20-
         orogenic significance of geologic structure of the Atlantic Shelf:
21
         Jour. Geophys. Research, v. 70, no. 6, p. 1357-1361.
    Wegener, Alfred, 1924, The origin of continents and oceans: New York,
         E. P. Dutton and Co., 212 p.
23
    White, W. A., 1958, Some geomorphic features of central peninsular
```

25

Florida: Florida Geol. Survey Geol. Bull. 41, 92 p.

1.	Wigglesworth, Edward, 1934, Geology of Marthas Vineyard, in Woodworth,
2	J. B., and Wigglesworth, Edward, Geography and geology of the
	region including Cape Cod, the Elizabeth Islands, Mantucket,
4	Marthas Vineyard, No Mans Land, and Block Island: Harvard Coll.
5	Mus. Comp. Zoology Mem., v. 52, p. 117-209.
6	Wigley, R. L., 1961a, Benthic fauna of Georges Bank: North Am.
7	Wildlife Nat. Resources Conf., 26th, Trans., p. 310-317.
8	1961b, Bottom sediments of Georges Bank: Jour. Sed.
9	Petrology, v. 31, no. 2, p. 165-188.
10 -	Willmore, P. L., and Tolmie, R., 1956, Geophysical observations on the
11	history and structure of Sable Island: Royal Soc. Canada Trans.,
12	3d ser., v. 50, p. 13-20.
13	Woods Hole Oceanographic Institution, 1965, Deep ocean drilling, and
14	the JOIDES program: Oceanus, v. 11, no. 4, p. 10-15.
15-	Woodworth, J. B., 1934a, Geology of Cape Cod, in Woodworth, J. B., and
16	Wigglesworth, Edward, Geography and geology of the region
17	including Cape Cod, the Elizabeth Islands, Nantucket, Marthas
18	Vineyard, No Mans Land, and Block Island: Harvard Coll. Mus. Comp.
19	Zoology Mem., v. 52, p. 237-306.
20 -	1934b, Geology of Block Island, in Woodworth, J. B., and
21	Wigglesworth, Edward, Geography and geology of the region including
72	Cape Cod, the Elizabeth Islands, Nantucket, Marthas Vineyard, No
23	Mans Land, and Block Island: Harvard Coll. Mus. Comp. Zoology
24	Mem., v. 52, p. 209-219.

```
Woodworth, J. B., 1934c, Geology of Nantucket and adjacent islands, in
         Woodworth, J. B., and Wigglesworth, Edward, Geography and geology
         of the region including Cape Cod, the Elizabeth Islands, Nantucket,
         Marthas Vineyard, No Mans Land, and Block Island: Harvard Coll.
         Mus. Comp. Zoology Mem., v. 52, p. 93-116.
    Woodworth, J. B., and Wigglesworth, Edward, 1934, Geography and geology
         of the region including Cape Cod, the Elizabeth Islands, Nantucket,
         Marthas Vineyard, No Mans Land, and Block Island: Harvard Coll.
         Mus. Comp. Zoology Mem., v. 52, 338 p.
    Woollard, G. P., 1939, The geological significance of gravity
         investigations in Virginia: Am. Geophys. Union Trans., v. 20, pt.
         3, p. 317-323.
12
            _1940a, A comparison of magnetic, seismic, and gravitational
13
14
         profiles across the Atlantic Coastal Plain: Am. Geophys. Union
         Trans., v. 21, pt. 2, p. 301-309.
 15-
            1940b, Gravitational determination of deep-seated crustal
16
17
          structure of continental borders: Am. Geophys. Union Trans., v.
          21, pt. 3, p. 808-815.
18
            __1941. Geophysical methods of exploration and their application
19
 20-
         to geological problems in New Jersey: New Jersey Dept. Conserv.
         and Devel. Geol. Ser. Bull. 54, 89 p.
21
22
            1943. Geologic correlation of areal gravitational and magnetic
23
          studies in New Jersey and vicinity: Geol. Soc. America Bull., v.
24
         54, no. 6, p. 791-818.
 25-
```

GOVERNMENT PRINTING OFFICE (1904 to - 3)

```
Woollard, G. P., 1944, Gravity observations in northern New England:
           Am. Geophys. Union Trans., v. 25, pt. 2, p. 254-258.
             _1948, Gravity and magnetic investigations in New England: Am.
          Geophys. Union Trans., v. 29, no. 3, p. 306-317.
             1949, Regional gravity study in the Appalachian Mountain
          System [abs.]: Geol. Soc. America Bull., v. 60, no. 12, pt. 2,
          p. 1932.
     Woollard, G. P., Bonini, W. E., and Meyer, R. P., 1957, A seismic
9
          refraction study of the sub-surface geology of the Atlantic
 10-
          Coastal Plain and Continental Shelf between Virginia and Florida:
11
          Wisconsin Univ., Madison, Wis., Dept. Geology Tech. Rept., Office
12
          Naval Research Contract. no. N7ONR-285la, 95 p.
     Woollard, G. P., Ewing, Maurice, and Johnson, M., 1938, Geophysical
14
          investigations of the geologic structure of the Coastal Plain:
 15-
          Am. Geophys. Union Trans., v. 19, pt. 1, p. 98-107.
16
     Woollard, G. P., chm., and Joesting, H. R., coordinator, 1964, Bouguer
          gravity anomaly map of the United States (exclusive of Alaska and
          Hawaii): U.S. Geol. Survey Spec. Map, scale 1:250,000.
19
     Worzel, J. L., Ewing, Maurice, and Drake, C. L., 1953, The Bahamas
 20-
          Islands region, Pt. 1 of Gravity observations at sea: Geol. Soc.
          America Bull., v. 64, no. 12, pt. 2, p. 1494-1495.
     Worzel, J. L., and Shurbet, G. L., 1955a, Gravity interpretations from
23
          standard oceanic and continental crustal sections: Geol. Soc.
24
          America Spec. Paper 62, p. 87-100.
 25.
```

```
Worzel, J. L., and Shurbet, G. L., 1955b, Gravity anomalies at
        continental margins: Natl. Acad. Sci. Proc., v. 41, no. 7, p.
        458-469.
   Zeigler, J. M., Hoffmeister, W. S., Giese, G., and Tasha, H., 1960,
        Discovery of Eocene sediments in subsurface of Cape Cod: Science,
        v. 132, no. 3437, p. 1397-1398.
   Zeigler, J. M., Tuttle, S. D., Tasha, H. J., and Giese, G. S., 1964,
        Pleistocene geology of outer Cape Cod, Massachusetts: Geol. Soc.
        America Bull., v. 75, no. 8, p. 705-714.
           _1965, The age and development of the Provincelands Hook,
        Outer Cape Cod, Massachusetts: Limnology and Oceanography, Supp.,
        v. 10, [no. 4], p. R298-R311.
15-
```

11

12 13

17

18

23

TABLE 1. -- RECORDS OF SELECTED WELLS ALONG THE ATLANTIC COAST $\label{eq:ALABAMA} \textbf{ALABAMA}$

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
AL-1	Capital Oil & Gas Co. No. 1 Gholston	Sec. 18, T. 14N., R. 22E. Bullock Co.	310	1725	Pre-Mesozoic	Electric log available Top of pre-Mesozoic granite 1700 ft.
AL-2	Capital Oil & Gas Co. No. 1 Pickett	Sec. 22, T. 13N., R. 21E. Bullock Co.	430	2523	Pre-Mesozoic	Electric log available Top of pre-Mesozoic granite 2495 ft.
AL-3	W. B. Hinton No. 1 Creel	Sec. 14, T. 9N., R. 26E Barbour Co.	504	5546	Triassic(?) or pre-Mesozoic	Electric log available Top of pre-Cretaceous rocks 4395 ft.

BAHAMAS

No.	Well name	Location Al	t.	Total depth	Oldest rocks reported	Notes
BA-1	Bahama California Oil Co. No. 1 Cay Sal 4	Lat. 23°49'24" N., long 80°12'24" W.		18906		Offshore No data released, May, 1968
BA- 2	Bahama Oil Co., Ltd. No. 1 Andros Island	Lat. 24°52'37.2" N.; long.78°01' 54.7" W., Stafford Creek, 20 Andros Island		145 8 5	Lower Cretaceous	Electric log from 6503 to 10670 ft. only
8A-3	Harrisville Co. No. 2 Eleuthera Island	Hatchet Bay, approx. lat 25° 123 20'45" N.; long 76°28'30" W., Eleuthera Island		730	Miocene (?)	No electric log available Tested salt water 200-490 ft in Miocene. Water level 123 ft. below surface.

DELAWARE

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
)L-1	C. R. Casson No. 1 Water Well	About 4.5 mi. NW of Newcastle on Hy. 41, Newcastle Co.	65	365	Pre-Mesozoic	Top of crystalline rock 352 ft.
DL-2	U. S. Army Fort Dupont Water Well	Near Delaware City Newcastle Co.	10	762	Lower Cretaceous	
DL-3	Town of Middletown Water Well	Middletown Newcastle Co.	65	1478	Pre-Mesozoic(?)	Probably reached bedrock at total depth
)L-4	Deakyneville N. 1 Test Well	About 1.5 mi. NE of Smyrna Newcastle Co.		2312	Pre-Mesozoic	Top of pre-Mesozoic rocks 2290 ft.
DL-5	U. S. Air Force Base No. JE 32-4 Test Well	Near Dover Kent Co.	27	1422	Upper Cretaceous	
DL-6	Town of Lewes Water Well	Lewes Sussex Co.	10	1080	Miocene	
)I-7	Sun Oil Co. No. D-6 Townsend (Apple Orchard)	4 mi. SE of Bridgeville Sussex Co.	43	2600	Upper Cretaceous	Electric log available
8-10	Continental Oil Co. No. 1 Townsend	4 mi. SE of Bridgeville Sussex Co.	42	3012	Upper Cretaceous	
DL-9	Sun Oil Co. No. 1 R. Russell	5.2 mi. SE of Bridgeville Sussex Co.	36	2674	Upper Cretaceous	

No.	Well Zame	Location	Alt.	Total depth	Oldest Rocks reported	Notes
Z-1	Jeffreys No. 1 Abbott	Sec. 19, T. 3 N., R. 32 W., Escambia Co.	202	7513	Lower Cretaceous	Electric log available
L-2	Zach Brooks Drilling Co. No. 1 Caldwell-Garvin Unit	Sec. 31, T. 2 S., R. 31 W., Escambia Co.	33	12512	Lower Cretaceous	Electric log available
1-3	Mobil Oil Co. No. 1 St. Regis Paper	Sec. 35, T. 4 N., R. 30 W., Santa Rosa Co.	120	12523	Lower Cretaceous	Electric log available
- L-4	Sunnyland Oil Co. No. 1 Nowling	Sec. 24, T. 5 N., R. 29 W., Santa kosa Co.	250	6665	Lower Upper or Lower Cretaceous (?)	Electric log available
FL- 5	Humble Oil & Refining Co. No. 1 F. S. L. 833	Sec. 17, T. 2 S., R. 28 W., Pensacola Bay, Santa Rosa Co.	26	7505	Lower Cret aceous	Electric log available
2-6	Sinclair Oil & Gas Co. No. 1 Boland	Sec. 7, T. 1 N., R. 27 W., Santa Rosa Co.	35	6950	Lower Cretaceous(3)	Electric log available
L-7	Haden No. 1 McCort	Sec. 30?, T. 4 N., R. 24 W., Okaloosa Co.	254?	6326	Lower Upper or Lower Cretaceous	Electric log available
7-8	Hawkins No. 1 Kelly	Sec. 18, T. 2 S., R. 22 W., Cobbs Point, Okaloosa Co.	27	6250	Lower Cretaceous	No electric log available
Z-9	Hawkins No. 1 Coffeein	Sec. 12, T. 2 S., R. 21 W., Fourmile Point, Walton Co.	14	6010	Lower Cretaceous	No electric log available
-10	Sun Oil Co. No. 4 Belcher	Sec. 25, T. 4 N., R. 21 W. Walton Co.	244	5220	Lower Cretaceous	Electric log available
!-11	Pan American Petroleum Corp. No. 1 Sealy	Sec. 9, T. 1 S., R. 18 W., Walton Co.	111	11947	Pre-Mesozoic Lower Cretaceous	Electric log available Top of pre-Mesozoic thyolite //930 th

No.	Well name	Location	Alt.	Total Depth	Oldest Rocks Reported	Notes
-L-12	Byers Oil Co. No. 1 Sealey	Sec. 12, T. 2 S., R. 18 W., Walton Co.	37	5475	Lower Cretaceous	Electric log available
FL-13	Hunt Oil Co. No. 1 Linton	Sec. 30, T. 3 N., R. 17 W., Walton County	104	6503	Lower Cretaceous	Electric log available
2-14	Southeastern Exploration Co. No. 1 Hobbs-Gillis	Sec. 18, T. 6 N., R. 17 W., Holmes Co.	159	8521	Lower Cretaceous	Electric log available
-1- 15	Breeding No. 1 Coats	Sec. 25, T. 7 N., R. 15 W., Holmes Co.	202	4107	Lower Cretaceous	Electric log available
FL- 16	Magnolia Petroleum Co. No. 1 State Block 4 B	Sec. 21, T. 3 S., R. 15 W., Bay Co.	7	7003	Lower Cretaceous	Electric log available
7-17	Temple Oil Co. No. 1 Moore	Sec. 27, T. 1 S., R. 15 W., Bay Co.	60	6021	Lower Cretaceous	Electric log available
7-18	Chipley Oil & Gas Co. No. 1 Dekle	Sec. 27, T. 4 N., R. 13 W., Washington Co.	198	4912	Lower Cretaceous	No electric log run
7 - 19	Humble Oil & Refining Co. No. 1 Tindel	Sec. 8, T. 5 N., R. 11 W., Jackson Co.	128	9245	Paleozoic sandstone and shale	Electric log available Top of Paleozoic rocks sandstone and shall 8440 ft.
7-20	Hammond No. 1 Granberry	Sec. 15, T. 5 N., R. 9 W., Jackson Co.	107	5022	Triassic (?) red	No electric log run
FI- 21	Pure Oil Co. No. 2 International Paper Co.	Sec. 31, T. 1 S., R. 10 W., Calhoun Co.	107	5096	Lower Cretaceous	Electric log available
FL-21A		Sec. 4, T. 5S., R. 7W., Liberty Co.	49	10,011	Lower Cretaceous	Electric log available

No.	Well name	Location	Alt.	Total Depth	Oldest Rocks Reported	Notes
L- 22	Pure Oil Co. No. 1 Hopkins	Sec. 22, T. 6 S., R. 9 W., Gulf Co.	32	8708	Lower Cretaceous	Electric log available
7- 23	Magnolia Petroleum Co. No.1745=8 State 81K.5-8	Lat 29°41'18" N., long \$5° 07'13" W. Sec. 2, T. 9 S., R. 9 W., Franklin Co.	10	7021	Lower Cretaceous	Electric log available
- L - 24	California Co. No. 1 F. S. L. 224-A	Sec. 7, T. 9 S., R. 5 W., St. George Sound, Franklin Co.	26	7031	Lower Cretaceous	Offshore Electric log available
2- 25	California Co. No. 2 F. S. L. 224-A	Lat 29 ⁰ 47'03" N.; long 84 ⁰ 22'5 W., Franklin Co.	1" 35	10566	Lower Cretaceous	Offshore Electric log available
Z- 26	Pure Oil Co. No. 2 St. Joe Paper	Sec. 35, T. 6 S., R. 4 W., Franklin Co.	21	4787	Lower Cretaceous	Electric log available
1 - 27	Hughes Oil Co. No. 1 McDonald	Sec. 6, T. 2 N., R. 5 W., Gadsden Co.	296	4222	Lower Cretaceous	Electric log available
Z- 28	Oles-Nayler No. 1 Florida Power	Sec. 26, T. 2 N., R. 3 W., Gadsden Co.	177	4240	Lower Cretaceous	Electric log available
FL-29	Central Florida Oil & Gas Co. No. 1 Rhodes	Sec. 11, T. 2 S., R. 1 E., Leon Co.	50	3755	Upper Cretaceous	No electric log run
FL-30	Ravelin-Brown No. 1 Philips	Sec. 14, T. 3 S., R. 1 E., Wakulla Co.	28	5766	Triassic (?) red	Electric log available
Z-31	Coastal Petroleum Co. No. 1 Larsh	Sec. 1, T. 2 S., R. 3 E., Jefferson Co.	51	7913	Triassic (?) red beds and sills	Electric log available Top of Triassic (?) red beds and sills rocks 7909 ft.

No.	Well name	Location	Alt.	Total Depth	Oldest Rocks Reported	Notes
- 32	South State Oil Co. No. 1 Miller & Gossard	Sec. 17, T. 2 N., R. 5 E., Jefferson Co.	220	3838	Upper Cretaceous	No electric log available
33	Hunt Oil Co. No. 2 Gibson	Sec. 6, T. 1 S., R. 10 E., Madison Co.	107	5385	Paleozoic black shale	Electric log available Top of igneous rock 4589 ft. Top of Paleozoic shale 4628 ft.
1-34	Humble Oil & Refining Co. No. 1 Hodges	Sec. 12, T. 5S., R. 6 E., Taylor Co.	36	6254	Triassic (?)	Electric log available Top of Triassic (?) 6153 ft.
L- 35	Gulf Oil Corp. Brooks-Scanlon No. 1 Block 33	Sec. 18, T. 4 S., R. 9 E., Taylor Co.	96	5243	Triassic (?)	Electric log available Top of Triassic (?) rocks 5200 ft.
36	Gulf Oil Corp. Brooks-Scanlon No. 1 Block 42	Sec. 9, T. 8 S., R. 9 E., Taylor Co.	41	5517	Triassic (?)	Electric log available Top of Triassic (?) rocks 5438 ft.
2-37	Gulf Oil Corp. Brooks-Scanlon No. 1 Block 49	Sec. 36, T. 5 S., R. 10 E., Lafayette Co.	87	4512	Paleozoic quart -	Electric log available Top of Paleozoic rocks 4505 ft.
Z- 38	Sun Oil Co. No. 1 Crapps	Sec. 25, T. 6 S., R. 12 E., Lafayette Co.	70	4133	Paleozoic quert- zitic sandstone and shale	Electric log available Top of Paleozoic rocks 4030 ft.
z -39	Stanolind Oil & Gas Co. No. 1 Perpetual Forest, Inc.	Sec. 5, T. 11 S., R. 11 E., Dixie Co.	33	7510	Paleozoic quart- zitic sandstone	Electric log available Top of Paleozoic rocks 5228 ft.
Z-40	Sun Oil Co. No. 1 Adams	Sec. 15, T. 9 S., R. 15 E., Gilehrist Co.	93	3753	Paleozoic quart- zitie sandstone & shale	Electric log available Top of Paleozoic rocks 3588 ft. Lquartzitic sandstone and shale

No.	Well name	Location	Alt.	Total Depth	Oldest Rocks Reported	Notes
2-41	Sun Oil Co. No. 1 Odom	Sec. 31, T. 5 S., R. 15 E., Suwannee Co.	73	3161	Paleozoic black shale	Electric log available Top of Paleozoic rocks 3040 ft.
7-42	Fields-Randall No. 1 Crawley	Sec. 6, T. 2 S., R. 13 E., Suwannee Co.	119	3833	Paleozoic	Electric log available
4- 43	Sun Oil Co. No. 1 Tillis	Sec. 28, T. 2 S:, R. 15 E., Suwannee Co.	162	3572	Paleozoic black shale	Electric log available Top of Paleozoicyroeks 3500 ft.
L - 44	Sun Oil Co. No. 1-A Sapp	Sec. 24, T. 2 S., R. 16 E., Columbia Co.	138	3311	Paleozoic black shale	Electric log available Top of Paleozoic rocks 3303 ft.
L -45	Humble Oil & Refining Co. No. 1 Cone	Sec. 22, T. 1 N., R. 17 E., Columbia Co.	141	4444	Paleozoic black shale	Electric log available Top of Paleozoic rocks 3482 ft.
L -46	Hunt Oil Co. No. 1 Hunt	Sec. 21, T. 1 N., R. 20 E., Baker Co.	130	3349	Paleozoic quart- zitic sandstone	Electric log available Top of Paleozoic rocks 3342 ft. L quartzitic sandsto.
2-47	Tidewater Associated Oil Co. No. 1 Wiggins	Sec. 15, T. 6 S., R. 20 E., Bradford Co.	141	3167	Paleozoic quart- zitic sandstone & shale	Electric log available Top of Paleozoic rocks 3167 ft.
- 48	Tidewater-Associated Oil Co. No. 1 Parker	Sec. 33, T. 7 S., R. 19 E., Alachua Co.	168	3220	Paleozoic quart- zitic sandstone & shale	and shale Electric log available Top of Paleozoic rocks 3170 ft. Lquartzitic sandstan and shale
7-49	The Texas Co. No. 1 Creighton	Sec. 16, T. 11 S., R. 19 E., Alachua Co.	77	3527	Lower Cretaceous	Electric log available

No.	Well name	Location	Alt.	Total Depth	Oldest rocks Reported	Notes
- 50	Tidewater-Associated Oil Co. No. 1 Phifer	Sec. 24, T. 9 S., R. 21 E., Alachua Co.	132	3228	Paleozoic quart zitic sandstone & shale	Electric log available Top of Paleozoic rocks 3217 ft. Lagortzitic sand stone
1-51	St. Mary's River Cil Corp. No. 1 Hilliard Turpentine Co.	Sec. 19, T. 4 N., R. 24 E., Nassau Co.	110	4824	Paleozoic black shale & diabase	No electric log run Top of Paleozoic rocks 4636 ft. *Lock Shale and diabo.**
2-52	Humble Oil & Refining Co. No. 1 Foremost Properties Corp.	Sec. 4, T. 6 S., R. 25 E., Clay County	115	5862	Paleozoic quart- zitic sandstone & shale	Electric log available Top of Paleozoic rocks 3725 ft. I quantzitic sandstone and shale
2- 53	Sun Oil Co. No. 1-A Roberts	Sec. 19, T. 9 S., R. 25 E., Putnam Co.	206	3328	Paleozoic quart- zitic sandstone	Electric log available Top of Paleozoic rocks 3320 ft. Leguertzitic sandstone
2 - 54	Sun Oil Co. No. 1 Westbury	Sec. 37, T. 11 S., R. 26 E., Putnam Co.	32	3892	Pre- Mesozoic Volcanic ash & tuff	Electric log available Top of pre-Mesozoic/rocks 3873 ft.
L- 55	Humble Oil & Refining Co. No. 1 Campbell	Sec. 8, T. 11 S., R. 28 E., Flagler Co.	31	4632	Prc- Mesozoic Rhyolite tuff & agglomerate	Electric log available Top of pre-Mesozoic rocks 4588 ft.
L- 56	Grace Drilling Co. No. 1 Retail Lumber Co.	Sec. 2, T. 15 S., R. 30 E., Volusia Co.	45	5424	Pre-Mesozoic Rhyolite (?)	Electric log available Top of pre-Mesozoic rocks 5403 ft.
-2-57	Sun Oil Co. No. 1 Powell Land Co.	Sec. 11, T. 17 S., R. 31 E., Volusia Co.	48	5958	Pre-Mesozoic Hornblende diorite	Electric log available Top of pre-Mesozoic recks 5910 ft.

No.	Well name	Location	Alt.	Total Depth	Oldest rocks reported	Notes
L- 58	Coastal Petroleum Co. No. 1 Ragland	Sec. 16, T. 15 S., R. 13 E., Levy Co.	14	5850	Paleozoic black shale	Electric log available Top of Paleozoic rocks 5810 ft.
2- 59	Sun Cil Co. No. 1 Goethe	Sec. 31, T. 14 S., R. 17 E., Levy Co.	34	3997	Paleozoic quart- zitic sandstone	Electric log available Top of Paleozoic rocks 3960 ft.
2-60	Humble Oil & Refining Co. No. 1 Robinson	Sec. 19, T. 16 S., R. 17 E., Levy Co.	58	4609	Lower Cretaceous	Electric log available
7-61	J. S. Cosden No. 1 Lawson	Sec. 25, T. 13 S., R. 20 E., Marion Co.	195	4334	Paleozoic quart- zitic sandstone	No electric log run Top of Paleozoic rocks 3660 ft. (guertzitic sandstone
2-62	Ocala Oil Corp. No. 1 York	Sec. 10, T. 16 S., R. 20 E., Marion Co.	80	6180	Paleozoic quart- zitic sandstone	No electric log run 4/00? Top of Paleozoic rocks 6180 ft.
2-63	Sun Oil Co. No. 1 Parker	Sec. 24, T. 14 S., R. 22 E., Marion Co.	79	3845	Lower Ordovician (?)	Electric log available
L·64	Sun Oil Co. No. 1 Camp	Sec. 16, T. 16 S., R. 23 E., Marion Co.	74	4637	Pre-Mesozoic Tuff or agglomer- ate of rhyolite composition.	Electric log available rocks Top of pre-Mesozoic rocks 4615 ft.
7 - 65	Dundee Petroleum Co. No. 1 Bushnell	Sec. 24, T. 20 S., R. 22 E., Sumter Co.	77	3090	Upper Cretaceous	No electric log available
7-66	Ohio Oil Co. No. 1 Hernasco Corp.	Sec. 19, T. 23 S., R. 18 E., Hernando Co.	47	8472	Paleozoic quart- zitic sandstone	Electric log available Top of Paleozoic rocks 7720 ft.

No.	Well name	Location	Alt.	Total Depth	Oldest rocks reported	Notes
- 67	Oil Development Co. of Florida No. 1 Arnold	Sec. 17, T. 24 S., R. 25 E., Lake Co.	120	6120	Pre-Mesozoic Granite	Electric log available Top of pre-Mesozoic rocks 6103 ft.
<u>1</u> - 68	Warren Petroleum Corp. No. 1 Terry	Sec. 21, T. 23 S., R. 31 E., Orange Co.	100	6589	Pre-Mesozoic igneou≤rock	Electric log available
L-69	Hill No. 1 Oldsmar	Sec. 19, T. 28 S., R. 17 E., Hillsborough Co.	8	3255	Paleocene	No electric log run
L-70	Coastal Petroleum Co. No. 1 Wright	Sec. 7, T. 30 S., R. 17 E., Pinellas Co.	13	11507	Lower Cretaceous	Electric log available
L-71	Humble Oil & Refining Co. No. 1 Jameson	Sec. 7, T. 31 S., R. 22 E., Hillsborough Co.	112	10129	Pre-Mesozoic Volcanic agglomer- ate & rhyolite	Electric log available Top of pre-Mesozoic, rocks 10010 ft.
L-72	Pioneer Oil Co. No. 1 Herscher-Yarnell	Sec. 28, T. 30 S., R. 25 E., Polk Co.	88	4540	Upper Cretaceous	No electric log available
72-73	Humble Oil & Refining Co. No. 1 Carroll	Sec. 10, T. 27 S., R. 34 E., Osceola Co.	62	8049	pre-Mesozoic Altered & veined biotite granite	Electric log available Top of pre-Mesozoic Focks 8035 ft.
Z-74	Humble Oil & Refining Co. No. 1 Hayman	Sec. 12, T. 31 S., R. 33 E., Osceola Co.	86	8798	Pre-Mesozoic Rhyolite	Electric log available Top of pre-Mesozoic rocks 8740 ft.
1-75	Amerada Petroleum Corp. No. 1 Mitchell	Sec. 28, T. 31 S., R. 35 E., Indian River Co.	60	9488	Pre-Mesozoic	Electric log available

No.	Well name	Location	Alt.	Total Depth	Oldest rocks reported	Notes
L-76	Magnolia Petroleum Corp. No. 1 Schroeder-Manatee	Sec. 11, T. 35 S., R. 19 E., Manatee Co.	70	11228	Lower Cretaceous	Electric log available
L-77	Humble Oil & Refining Co. No. 1 Keen	Sec. 23, T. 35 S., R. 23 E., Hardee Co.	83	11934	Pie-Mesozoic Lava & pyroclas- ties	Electric log available Top of pre-Mesozoic rocks 11828 ft.
L-78	Amerada Petroleum Corp. No. 1 Swenson	Sec. 5, T. 36 S., R. 34 E., Okeechobee Co.	54	10838	Pre-Mesozoic	Electric log available
FL-79	Amerada Petroleum Corp. No. 2 Cowles Magazine Co.	Sec. 19, T. 36 S., R. 40 E., St. Lucie Co.	32	12748	Pre-Meso zoic Altered igneous rocks	Electric log available Top of pre-Mesozoic, rocks 12680 ft. Top of Fort Pierce fm. of U. Jurassic or L. Cretaceous age 10460 ft.
7-80	Humble Oil & Refining Co. No. 1 Carlton Estate	Sec. 34, T. 38 S., R. 29 E., Highlands Co.	114	12985	Pre- Mesozoic Rhyolite porphyry & amygdaloidal basalt	Electric log available the Top pre-Mesozoic rocks and basalf 12618 ft.
7-81	Gulf Oil Corp. No. 1 Vanderbilt	Sec. 35, T. 41 S., R. 21 E., Charlotte Co.	22	12725	Lower Cretaceous	Electric log available
FL-82	Humble Oil & Refining Co. No. 1-A, Lowndes-Treadwell	Sec. 17, T. 42 S., R. 23 E., Charlotte Co.	20	13304	Lower Cretaceous	Electric log available
7-83	Amerada Petroleum Corp. No. 1 Lykes Bros., Inc.	Sec. 1, T. 41 S., R. 30 E., Glades Co.	?	10993	Lower Cretaceous	Electric log available
72-84	Coastal Petroleum Co. No. 1 Tiedke	Sec. 25, T. 42 S., R. 33 E., Glades Co.	14	13440	Up? Turassic (?) or Invo Cretaceous	Electric log available Top of Ft. Pierce fm. of U. Jurassic(?) or L. Cretaceous (?) age 12933 ft.

No.	Well name	Location	Alt.	depth	Oldest rocks reported	Notes
L- 85	Amerada Petroleum Corp. No. 1 Southern States Lse.34	Sec. 34, T. 41 S., R. 39 E., Palm Beach Co.	36	11030	Lower Cretaceous	Electric log available
2-86	Humble Oil & Refining Co. No. 1 Tucson Corp.	Sec. 35, T. 43 S., R. 40 E., Palm Beach Co.	34	13375	University (?) or Ly Cretaceous (?)	Electric log available retaceous (?) Top of Jurassic(?) rocks 13180 ft.
Z-87	Humble Oil & Refining Co. No. 1 F. S. L. 1004	Sec. 2, T. 48 S., R. 35 E., Broward Co. PALM REACH CO	31	12800	Lower Cretaceous	Oil staining in upper part of Lower Cretaceous
Z-88	California Co. No. 1 F. S. L. 224-B	Lat 26 ⁰ 41'07" N.; long 82 ⁰ 19'0 W., Boca Grande area, Lee Co.		13975	Lower Cretaceous	Electric log run
Z-89	California Co. No. 2 F. S. L. 224-B	Lat 26 ⁰ 43'06" N.; long 82 ⁰ 17': W., Boca Grande area, Lee Co.	L2"	12600	Lower Cretaceous	Electric log run Top U. Cretaceous 5379 ft. Top L. Cretaceous 8350 ft.
7-90	Humble Oil & Refining Co. No. 1 Kirchoff	Sec. 23, T. 45 S., R. 24 E., Lee Co.	24	12877	Lower Cretaceous	Electric log available Oil show at 11819-11928 ft.
7 - 91	Gulf Refining Co. No. 1 Consolidated Naval Stores	Sec. 27, T. 45 S., R. 26 E., Lee Co.	45	12865	Lower Cretaceous	Tested 28°API gravity oil (at 11748-799 ft. Electric log available
Z -92	Humble Oil & Refining Co. No. 1 Consolidated Naval Stores	Sec. 16, T. 46 S., R. 27 E., Lee Co.	?	11893	Lower Cretaceous	Electric log available
Z-93	Commonwealth Sun Oil Co. No. 2 Red Cattle Co.	Sec. 13, T. 45 S., R. 29 E., Hendry Co. Felda Field	49	11 485 6098	Lower Upper Cretaceous	Electric log available oil produced from 11,471 to 11,485 ft.

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
Z-94	Humble Oil & Refining Co. No. 2 Gulf Coast Realties Corp.	Sec. 30, T. 48 S., R. 30 E., Collier Co. Sunniland Field	34	13512	Lower Cretaceous	Electric log available Oil produced from 11,613 to 11,626 ft.
(- 95	Humble Oil & Refining Co. No. 1 Collier	Sec. 27, T. 50 S., R. 26 E., Sunniland Field, Collier Co.	25	12516	Lower Cretaceous	Electric log available
1-96	McCord Oil Co., Inc. No. 1 Damoco	Sec. 31, T. 53 S., R. 35 E., Dade Co.	17	11885	Lower Cretaceous	Electric log available
Z-97	Commonwealth Oil Co. No. 1 Wiseheart	SE_{+}^{1} Sec. 16, T. 54 S., R. 35 E. Forty Mile Bend Field, Dade Co.		11557	Lower Cretaceous	Electric log available Oil produced from 11322 to 11339 ft. Abandoned 1955
Z-98	Humble Oil & Refining Co. No. 1 1. I. F.	Sec. 30, T. 55 S., R. 36 E., Dade Co.	15	11794	Lower Cretaceous	Electric log available
Z-99	Coastal Petroleum Co. No. 1 I. I. F.	Sec. 25, T. 55 S., R. 37 E., Dade Co.	25	11520	Lower Cretaceous	Electric log available
- 100	East Coast Oil & Natural Gas Co. No. 1 Warwick	Sec. 12, T. 55 S., R. 40 E., Dade Co.	13	5535	Paleocene	No electric log
-101	Gulf Oil Corp. No. 1 State Model Land "C"	Lat 25°13'35"; long 80°40'55", T. 60 S., R. 35 E., Dade Co.	12	6030	Upper Cretaceous	Electric log available
-102	Peninsular Oil & Refining Co. No. 1 Cory	Sec. 6, T. 55 S., R. 34 E., Monroe Co.	14	10006	Lower Cretaceous	Electric log available
-103	Republic Oil Co Robinson No. 1 State	Sec. 29, T. 59 S., R. 40 E., Monroe Co.	23	12051	U. Jurassic (?) or Lower Cretaceous(?)	Electric log available Top of Ft. Pierce fm. of U. Jurassic(?) or L. Cretaceou (?) age 11878 ft.

245

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
- 104	Sinclair Oil & Gas Co. No. 1 H. R. Williams	Sec. 24, T. 59 S., R. 40 E., Key Largo, Monroe Co.	20	11968	Unassic(?) or Lower Cretaceous(?)	Electric log available
- 105	Gulf Oil Corp. No. 1 F. S. L. 826-G	Lat 25°0'53" N.; long 81°5'54", Oxfoot Bank, Monroe Co.	. ₂₁	12631	Lower Cretaceous	Offshore Electric log available
Y-106	Coastal Petroleum Co. No. 1 F. S. L. 363	Sec. 32, T. 62 S., R. 38 E., Plantation Key, Monroe Co.	15	7559	Lower Cretaceous	Electric log available Live oil shows at 6702 ft.
Z-107	Florida East Coast Railway No. 1 Marathon	Sec. 10, T. 66 S., R. 32 E., Key Vaca, Monroe Co.		2310	Lower Eocene	No electric log run
7-108	California Co. No. 1 F. S. L. 1011, Tract 2	Sec. 1, T. 67 S., R. 29 E., Big Pine Key, Monroe Co.	24	6033	Upper Cretaceous	Electric log not released, May, 1963
7-109	Gulf Oil Corp. No. 1 F. S. L. 373	Sec. 2, T. 67 S., R. 29 E., Big Pine Key, Monroe Co.	23	15455	UpperJurassic (?) or Lower Cretaceous	Electric log available Top of Ft. Pierce fm. of U. Jurassic(?) or L.Cretaceous age at 14340 ft.
7-110	Gulf Refining Co. No. 1 F. S. L. 374	Sec. 15, T. 67 S., R. 27 E., Sugar Loaf Key, Monroe Co.	23	6100	Upper Cretaceous	Electric log available
7-111	Gulf Oil Corp. No. 1 F. S. L. 826-Y	Lat 24 ⁰ 37' N.; long 82 ⁰ 02'21" Warquesas Keys, Monroe Co.	N., 52	15475	Upper Jurassic(?) or Low Cretaceous (?)	Offshore Electric log available
Z-112-A	California Co. No. 2 F. S. L. 1011, Tract 1	Lat 24 ⁰ 32'10" N.; long 82 ⁰ 06'40 W., Marquesas Keys, Monroe Co.	0"	7723	Upper Cretaceous(?)	Offshore No data released, May, 1963
Z-112 - B	California Co. No. 3 F. S. L. 1011, Tract 1	Lat 24 ⁰ 32'1" N.; long 82 ⁰ 06'31' W., Marquesas Keys, Monroe Co.	ı	12 85 0	Lower Cretaceous()	Offshore No data released, May, 1963

No.	Well name	Location Alt.	Total Depth	Oldest rocks reported	Notes
FL-113	Gulf Oil Corp. No. 1 O.C.S. Blk. 28	Lat 24°27'00"N.; long 82°21'45"W. Marquesas Keys, Monroe Co.	15294		Offshore No data released, March, 1966
FL-114	California Co. No. 1 O.C.S. Blk. 46	Lat 24°26'10"N., long 82°29'37"W. Marquesas Keys, Monroe Co.	7871	Upper Cretaceous	Offshore Twisted off 7871 - abandoned
FL-115	California Co. No. 1 O.C.S. Blk. 44	Lat 24°25'17"N., long 82°36'02"W. Marquesas Keys, Monroe Co.	4687	Eocene	Offshore Twisted off 4687 - abandoned No data released, May, 1963
FL-116	California Co. No. 3 F.S.L. 224-B	Lat.28°05'31.5"; long 82°52'49.9"W Honeymoon Island, Pinellas Co.	10524	Lower Cretaceous	Offshore
FL-117 .	Fernandina Beach No. 1 Water Well	Fernandina Beach, Flavassac Co. 10	2130	Middle Eocene	See Fla. Geol. Survey Inf. Circ. 27, p. 9
FL-118	JOIDES group site No. 1	Lat 30°33.2'N., long 80°59.5'W. 27 miles offshore from Jacksonville, Fla90	910	Middle Eocene	Composite of offshore core holes Gamma log run, Artesian head of 30- 35 ft. reported in Eocene aquifer
FL-119	JOIDES group site No. 2	Lat 30°20.5'N., long 80°20'W. 63.5 miles offshore Jacksonville, Fla136	1050	Middle Eocene	Offshore core hole Gamma and velocity log run
FL-120	JOIDES group site No. 5	Lat 30°22.7'N., long 80°07.5'W. 76.5 miles offshore Jacksonville, Fla581	804	Upper Eocene	Composite of offshore core holes Gamma log run
FL-121	JOIDES group site No. 6	Let 30°04.8N., long 79°14.5W 136 miles offshore Jacksonville, Fla2710	393	Paleocene	Offshore core hole No geophysical log run
FL-122	JOIDES group site No. 4	Lat 31°02.5'N., long 77°43"W. 221 miles offshore from Brunswick, Ga2945	585	Paleocene	Composite of offshore core holes No geophysical log run
FL-123	JOIDES group site No. 3	Let 28°30'N., long 77°30.5'W. 181 miles offshore Jacksonville, Fla3886	585	Middle Eocene	Composite of offshore core holes Gamma log run
		. >47.			

.247

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
5A·1	Town of Groveton No. 1 Water Well	l mile N. of Hy. 12, Groveton, Columbia Co.	500	300	Pre-Cretaceous	No electric log run Top of pre-Cretaceous rocks 135 ft.
GA-2	Georgia Training School No. 1 Water Well	Near Gracewood, Richmond Co.	136	1200	Pre-Cretaceous taleose schist	No electric log run Top of pre-Cretaceous 305 ft. 5 chist 305 ft.
GA-3	U. S. Geological Survey No. 1 Test Hole	0.25 mile E. of McBean- Waynesboro Rd., Burke Co.	129	620	Pre-Cretaceous	No electric log available Top of pre-Cretaceous rocks 602 ft.
GA-4	Three Creeks Oil Co. No. 2	2.5 miles E. of Greens Cut Burke Co.		1033	Pre-Cretaceous erystalline rock	No electric log run Top of pre-Cretaceous 1002 ft. crystalline rocks loo2 ft.
GA-5	U. S. Geological Survey No. 2 Test Hole	Wrens, Jefferson Co.	445	549	Upper Cretaceous	No electric log available
GA- 6	A. F Lucas & Georgia Petr.Co.	3.5 miles SW of Louisville, Jefferson Co.		1143	Pre-Cretaceous	No electric log run
GA-7	Middle Georgia Oil & Gas Co. No. 1 Lillian-B	12 miles NW of Sandersville, Washington Co.		395	Pre-Cretaceous	No electric log run Top of pre-Cretaceous rocks 395 ft.
GA- 8	Town of Sandersville No. 51 Water Well	1.4 miles SW of junction Hys. 15 & 24 in Sandersville, Washington Co.	465	872	Pre-Cretaceous biotite gneiss	No electric log run quantite and gneis Top of pre-Cretaceous rocks 871 ft.
GA-9	Strietmann Biscuit Co. No. 1 Water Well	1.5 miles E. of Hy. 11 in SW Macon, Bibb Co.	364	303	Pre-Cretaceous	No electric log available Top of pre-Cretaceous rocks 301 ft

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
54 - 10	U. S. Government No. 2 Cochran Flying Field	Avondale, 8 miles S. of Macon, Bibb Co.	358	509	Pre-Cretaceous	No electric log available Top of pre-Cretaceous rocks 496 ft.
A-11	Town of Swainsboro No. 3 Water Well	0.9 mile SW of courthouse, Swainsboro, Emanuel Co.	330	873	Middle Eocene	No electric log available
A- 12	Town of Sylvania No. 3 Water Well	Sylvania Screven Co.	202	490	Middle Eocene	No electric log available
FA- 13	Gray Drilling Co. No. 1 W. M. McRae	0.2 mil ^e NW of junction Hys. 1 & 85, 0.5 mile N of main gate, Ft. Benning, Muscogee Co.	250	445	Pre-Cretaceous	No electric log available Top of pre-Cretaceous rocks 439 ft.
A- 14	Town of Cusseta No. 1 Water Well	0.25 mile S. of junction Hys. 26 & 280, Chattahoochee Co.	550	1205	Pre-Cretaceous	No electric log available Top of pre-Cretaceous rocks 1185 ft.
A-15	Lee Oil & Natural Gas Co. No. 1 Burgin	Land Lot 207, Land Dist. 31 4 miles SE of Buena Vista, Marion Co.	600	1770	Pre-Cretaceous	No electric log available Top of pre-Cretaceous rocks 1590 ft.
GA-16	Lee Oil & Natural Gas Co. No. 2 Winkler	7 miles SW of Putnam, Marion Co.		3990	Lower Cretaceous(?) and older rocks(?)	Electric log run but not available
7A-17	Merica Oil Co. No. 1 Forhand	Land Lot 182, Land Dist. 1 3 miles NE of Ideal, Macon Co.	290	2140	Pre-Cretaceous schist	Electric log available schist Top of pre-Cretaceous rocks 2139 ft.
FA-18	Tricon Minerals, Inc. No. 1 Duke	Land Lot 26, Land Dist. 13, 5 miles SW of Perry, Houston Co.	419	1494	Pre-Cretaceous biotite gneiss	No electric log available Top of pre-Cretaceous gneiss 1490 f

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
FA-19	Tricon Minerals, Inc. No. 1 Gilbert	Land Lot 266, Land Dist. 137 7 miles SW of Elko, Houston Co.	367	1698	Pre-Cretaceous	Electric log available gneiss Top of pre-Cretaceous rocks 1685 ft.
2 4-20	Merica Oil Co. No. 1 Hill	Land Lot 74, Land Dist. 1 1 mile NW of Byromville, Dooly Co.	371	2319	Pre-Cretaceous Quartzite	Electric log available. Top of Bre-Cretaceous rocks 231744.
GA-21	Georgia-Florida Drilling Co. No. 1 Walton	Land Lot 163, Land Dist. 6, 9 miles SE of Vienna, Dooly Co.	442	3748	Pre-Cretaceous rocks	No electric log available Top of pre-Cretaceous rocks 3512 ft.
JA-22	Ainsworth, Inc. No. 1 Tripp	Land Lot 306, Land Dist. 21, 4 miles S. of Pulaski-Beckley Co. line, near Hawkinsville, Pulaski Co.	280	2710	Pre-Cretaceous(?)	Electric log run to 2457 ft. available Top of serpentinized diabase 2488 ft.
A -23	R. O. Leighton No. 1 Dana	Land Lot 280, Land Dist. 12 near Hawkinsville, Pulaski Co.	290	6035	Pre-Cretaceous	Electric log available
A - 24	Calaphor Manufacturing Corp. No. 1 McCain	0.5 mile S. of Minter, Laurens Co.	280	2548	Triassic (?)	Electric log available diabase Top of Triassic (?) rocks 2532 ft
FA-25	Glen Rose Oil Co. No. 1 Fowler	Land Lot 221, Ga. Mil. Dist. 1386, 6 miles W. of Soperton, Treutlen Co.	291	2125	Upper Cretaceous	No electric log available
GA-26.	McCain & Nicholson No. 1 J. Gillis & H. Gillis	3 miles A. of Soperton, Ga. Mil. Dist. 1386 Treutlen Co.	351	3168	pre- Cretaceous Granite	Electric log available granite Top of pre-Cretaceous rocks 3158 ft.

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
4 - 27	Barnwell Drilling Co. J. L. Gillis	3 miles E. of Soperton Ga. Mil. Dist. 1386 Treutlen Co.		3239	Pre-Cretaceous recks	Electric log available Top of pre-Cretaceous rocks 3053 ft.
FA-28	Town of Statesboro No. 3 Water Well	SW part of Statesboro Bulloch Co.	219	921	Middle Eocene	No electric log available
FA - 29	Flynn-Austin No. 1 Stephens	Land Lot 210, Land Dist. 17 9.5 miles SW of Americus, Sumter Co.	431	5240	Lower Cretaceous(?) and older rocks(?)	No electric log available
GA-30	Town of Dawson No. 3 Water Well	E. side of Main St., Dawson, Terrell Co.	347	1028	Upper Cretaceous	No electric log available
A- 31	Kerr-McGee No. 1 Pate	Land Lot 144, Land Dist. 13 3 miles NW of Arabi, Crisp Co.	364	5008	Lower Cretaceous	Electric log available
A-32	Dixie Oil Co. No. 1 Wilcox	7.5 miles SW of Alamo, Wheeler Co.	240	3384	Lower Cretaceous	No electric log run
1- 33	Parsons & Hoke No. 1 Spurlin	Land Lot 260, Land Dist. 7 1 mile S. of Scotland, Telfair Co.	242	4008	Lower Cretaceous	Electric log available
A-34	Paul Parsons No. 1 Hinson	Land Lot 288, Land Dist 10 4 miles NE of Lumber City, Telfair Co. Wheeler	205	3630	Triassic(?) or Lower Cretaceous(?)	Electric log available
4-35	Meadows Development Co. No. 2 Moses	Near Uvalda, Ga. Mil. Dist. 1810, Montgomery Co.	199	1619	Eocene	Electric log available
:A-36	J. E. Weatherford No. 1 Wilkes	l mile N. of Higgston, Ga. Mil. Dist 1567, D.F.293 Montgomery Co.	293	3433	Triassic (?)	Electric log available Top of Triassic(?) rocks diabas 3415 ft.

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
- 37	Tropic Oil & Gas Co. No. 1 Gibson	6.5 miles SW of Lyons, Toombs Co.	198	3681	Triassic (?)	Electric log available sondstone Top of Triassic(?) rocks, 3663 ft.
1-38	Felsenthal-Weatherford No. 1 Bradley	Land Lot 522, Land Dist. 2, 6 miles NE of Pine Grove, Appling Co.	229	4106	Triassic(?) altered amygdaloidal basalt	Electric log available Top of Triassic rooks 4095 ft.
I- 39	Savannah Oil Co. No. 1 Cherokee Hill	$2\frac{1}{2}$ miles SW of Port Wentworth, Chatham Co.	21	2131	Upper Cretaceous	No electric log run
9-40	U. S. Geological Survey No. 1 Test Well	Fort Pulaski on Cockspur Island, Chatham Co.	8	1435	Paleocene	No electric log available
9-41	U. S. Army Camp Stewart Water Well	1.6 miles NW of Hinesville Liberty Co.	91	816	Upper Eocene	No electric log available
4 -42	E. B. LaRue No. 1 Jelks & Rodgers	6 miles SE of Riceboro, Liberty Co.	26	4264	Pre-Cretaceous Rhyolite porphyry	Electric log available Top of pre-Cretaceous rocks 4250 ft.
1- 43	Sowega Minerals Expl. Co. No. 1 West	Land Lot 328, Land Dist. 4, 4.2 miles NW of Edison, Calhoun Co.	345	5275	Triassic (?)	Electric log available Top of Triassic(?) rocks 5190 ft.
g- 44	Sealy No. 1 Reynolds Lumber Co.	Land Lot 2, Land Dist. 116, 6 miles NE of Pretoria, Dougherty Co.	209	5012	Lower Cretaceous	Electric log available
1- 45	J. R. Sealy No. 2 Reynolds Lumber Co.	Land Lot 374, Land Dist. 2, 5.4 miles SW of Pretoria, Dougherty Co.	192	5310	Lower Cretaceous	Electric log available
4-46	Carpenter Oil Co. No. 1-A Nina McLean	Land Lot 275, Land Dist. 1 Coffee Co.	193	1903	Upper Cretaceous	No electric log available

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
-47	Carpenter Oil Co. No. 1 Thurman	Land Lot 189, Land Dist. 1, 3.8 miles SE of Relee, Coffee Co.	317	4130	Lower Cretaceous	Electric log available
-48	Carpenter Oil Co. No. 1 Knight	Land Lot 144, Land Dist. 1, 5 miles NE of Broxton, Coffee Co.	•	4151	Pre- Lower Cretaceous (?)	Electric log available Basement 4138 ft. Top of pre-Cretaceous rocks 4/38 ft.
- 49	Rowland L. Taylor No. 1 Knight	Land Lot 327, Land Dist. 6, 6 miles NE of Douglas, Coffee Co.	238	1210	Eccene	
No.	Operator unknown Byars	7 miles NW of Jesup, Wayne Co.	175	1965	Eocene sandstone	No electric log available
- 51	Humble Oil Co. No. 1 Union Bag-Camp Paper	12.5 miles SE of Jesup, Land Lot 54, Ga. Mil. Dist. 333, Wayne Co.	65	4554	Pre-Cretaceous Metamorphie rocks	Electric log available retamorphic Top of pre-Cretaceous, rocks 4358 ft.
- 52	The California Company No. 1 Brunswick Peninsular Corp.	Land Lot 7, Ga. Mil. Dist 333, 7.5 miles E. of McKinnon, Wayne Co.	73	4620	Pre-Cretaceous Quartzite	Electric log available quartzite Top of pre-Cretaceous rocks 4570 ft.
1- 53	U. S. Biological Survey No. 4 Water Well	Boat landing, W. side Blackbeard Island, McIntosh Co.	9	711	Upper Eocene	No electric log available
1- 54	Pan-American Prod. Co. No. 1 Adam-McCaskill	Land Lot 329, Land Dist. 4, 2 miles SE of Offerman, Pierce Co.	75	4376	Pre-Cretaceous Granite	Electric log available granite Top of pre-Cretaceous rocks 4348 ft.

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
)- 55	W. B. Hinton (Clark) No. 1 Adams-McCaskill	Land Lot 332, Land Dist. 4, 3 miles NE of Offerman, Pierce Co.	75	4355	Pre-Cretaceous	Electric log available gracite Top of pre-Cretaceous rocks 4345 ft.
1-56	Humble Oil Co. No. 1 W. F. Hellem	Land Lot 95, Land Dist. 2, 5.3 miles N. of Nahunta, Brantley Co.	52	4512	Lower Cretaceous	Electric log available
1 - 57	Humble Oil Co. No. 1 W. C. McDonald	Ga. Mil. Dist. 1499, SW of Brunswick, Glynn Co.	25	4737	pre-Cretaceous Cranite	Electric log available granite Top of pre-Cretaceous rocks 4737 ft.
4-58	Humble Oil Co. No. ST-1 Union Bag-Camp Paper	Ga. Mil. Dist. 27, Spring Bluff area, Glynn Co.	24	4632	Lower Cretaceous	Electric log available
1-59	E. B. LaRue No. 1 Massey	Colonels Island, 5 miles SW of Brunswick, Glynn Co.	20	4614	Lower Cretaceous	Electric log available
4 - 60	State of Georgia No. 1 Jekyll Island Water Well	About middle of Jekyll Island, Glynn Co.	12	706	Upper Eocene	No electric log available
4 -61	Mont Warren No. 1 Chandler	Land Lot 406, Land Dist. 26, 3.5 miles W. of Cedar Springs, Early Co.	186	7320	Pre-Cretaceous Paleozoic black Shale	Electric log available Top of Triassic(?) rocks 5677 ft Top of Paleozoicyrocks 6600 ft.
A-62	Sun Oil Co. No. 1 Ellis	Land Lot 341, Land Dist. 26, Early Co.	163	3175	Upper Cretaceous	No electric log available
A -63	Mont Warren No. 1 Harlow	Land Lot 82, Land Dist. 27, 5 miles E. of Donalsonville, Seminole Co.	145	3572	Lower Cretaceous	Electric log available

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
FA-64	Mont Warren Co. No. 1 Grady Bell	Land Lot 61, Land Dist. 27, 12 miles SE of Donalsonville, Seminole Co.	114	3810	Lower Cretaceous	Electric log available
GA- 65	J. R. Sealy No. 3 Spindle Top (Seminole Naval Stores)	Land Lot 142, Land Dist. 21, 16 miles SE of Donalsonville, Seminole Co.		7620	Lower Cretaceous	Electric log run
GA- 66	Humble Oil Co. No. 1 J. R. Sealy	Land Lot 42, Land Dist. 14 18 miles W. of Bainbridge, Seminole Co.	96	4500	Lower Cretaceous(?)	Electric log available
GA-67	J. R. Sealy No. 1 Fee	6.5 miles W. of Recovery, Decatur Co.		3007	Upper Cretaceous	No electric log available Slight gas show reported
74 - 68	Hunt Oil Co. No. 1 Metcalf	Land Lot 260, Land Dist. 21, 5 miles E. of Recovery, Decatur Co.	104	6152	Lower Cretaceous	Electric log available
GA- 69	Hughes et al No. 1 Martin	Land Lot 189, Land Dist. 15 4.8 miles N. of Bainbridge, Decatur Co.	132	3718	Lower Cretaceous	Electric log available
9A-70	Renwar Oil Co. No. 1 G. E. Dollar	Land Lot 111, Land Dist. 15, Decatur Co.	129	4995	Lower Cretaceous	Electric log available
71-71	Calvary Development Co. No. 1 Scott	Land Lot 25, Land Dist. 22, $2\frac{1}{2}$ miles SE of Amsterdam, Decatur Co.	277	4195	Lower Cretaceous	Electric log available
GA-72	Stanolind Oil & Gas Co. No. 1 Pullen	Land Lot 133, Land Dist. 10 l mile S. of Cotton, Mitchell Co.	338	7490	Triassic (?) diabase sills	Electric log available diabase Top of Triassic(?) 5677 ft. Top of Paleozoic rocks ft.

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
FA-73	Adams Drilling Co. No. 1 Arrington	Land Lot 270, Land Dist. 8, 2 miles SW of Funston, Colquitt Co.	270	4910	Lower Cretaceous	Electric log available
FA-74	D. E. Hughes No. 1-B Rodgers	Land Lot 454, Land Dist. 12, 7 miles W. of Morven, Brooks Co.	136	3850	Upper Cretaceous	Electric log available
GA-75	Sun Oil Co. No. 1 Doster-Ladson	Land Lot 71, Land Dist. 7, 5 miles SW of Kirkland, Atkinson Co.	222	4296	fre-Cretaceous Volcanic tuff or agglomerate	Flectric log available volcanic Top of pre-Cretaceous rocks
GA-76	Wiley P. Ballard, Jr. No. 1-B Timber Prod. Co.	Land Lot 306, Land Dist. 7, 8.5 miles NW of Homerville, Clinch Co.	215	4232	Pro - Crotaccous Ordovician(?) orystalline rocks	#182 Electric log available Top of Ordovician(?) rocks 4010 ft.
A-77	Hunt Oil Co. No. 2 Musgrove	Land Dist. 12, Land Lot 523, 5.5 miles SE of Homerville, Clinch Co.	171	3513	Upper Cretaceous	
GA-78	Sun Oil Co. No. 1 Barlow	Land Lot 373, Land Dist. 12, 9 miles SW of Homerville, Clinch Co.	177	3847	Pre - Cretaceous Quartzitic sandston	Top of pre-Cretaceous 3840 ft.
GA- 79	Hunt Oil Co. No. 1 Musgrove	Land Lot 198, Land Dist. 12, 15 miles S. of Homerville, Clinch Co.	147	4088	Pre-Cretaceous Paleozote black shale	Electric log available shale Top of Paleozofc, rocks 3953 ft.
GA-80	Luke Grace Drilling Co. No. 1 Griffis	Land Lot 36, Land Dist. 13, 8.4 miles NE of Fargo, Clinch Co.	176	4588	Pre-Cretaceous Phyolite	Electric log available Top of Paleozoic rocks 3843 ft.
GA-81	Humble Oil & Refining Co. No. 1 Bennett & Langsdale	Land Lot 146, Land Dist. 12, 4 miles NW of Haylow, Echols Co.	181	4185	Prc-Cretaceous Paleozoic rock s	Electric log available Top of Paleozoic rocks 4108 ft.

No.	Well name	Location	Alt.	Total Depth	Oldest rocks reported	Notes
GA-82	Hunt Oil Co. No. 4 Superior Pine Prod. Co.	Land Lot 219, Land Dist. 13, 5 miles NE of Statenville, Echols Co.	156	3916	Pre-Cretaceous	Electric log available Top of Paleozoic(?) red silty shale 3911 ft.
GA-83	Hunt Oil Co. No. 1 Superior Pine Prod. Co.	Land Lot 364, Land Dist. 13, 5 miles E of Statenville, Echols Co.	148	3865	Pre-Cretaceous	Electric log available Top of Paleozoic(?) black shale 3782 ft.
GA-84	Hunt Oil Co. No. 3 Superior Pine Prod. Co.	Land Lot 532, Land Dist. 13, 13 miles SE of Statenville, Echols Co.	143	4003	Pre-Cretaceous	Electric log available Top of Paleozoic(?) black shale 3657 ft.
GA-85	Hunt Oil Co. No. 2 Superior Pines	Land Lot 317, Land Dist. 13, 10 miles SW of Colon, Echols Co.	142	4062	Pre-Cretaceous	Electric log available Top of Paleozoic(?) quartzitic sandstone 3710 ft.
GA-86	No. W-7 Waycross Well	6 miles SE of Ruskin, Ware Co.	130	3045	Upper Cretaceous	No electric log
GA-87	The California Co. No. 1 Buie	4.5 miles NW of Tarboro, Camden Co.	65	4955	Pre-Cretaceous	Electric log available Top of pre-Cretaceous volcanic rocks 4674 ft.
GA-88	U. S. Coast Guard No. 1 tower site	Lat 31°56'53.5"N., long 41°00' 10 miles offshore from Savanna Ga.		161	Upper Eocene	Penetrated 5 ft. of Ocala Ls. Composite of two offshore core holes

MARYLAND

No	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
D-1	Anne Arundel Co. Sanitary Commission Water Well	l mile N. of Glen Burnie Anne Arundel Co.	35	530	Pre-Mesozoic Granite	Top of pre-Mesozoic granite 525 ft.
D- 2	Bethlehem Steel Co. No. 10 Water Well	Near Sparrows Point Baltimore Co.	10	711	Pre-Mesozoic	Top of pre-Mesozoic granite 658 ft.
40 -3	Chestertown Water Board No. 1 Water Well	Chestertown Kent Co	22	1135	Lower Cretaceous	
10-4	City of Centerville Water Well	Centerville Queen Annes Co.	59	655	Upper Cretaceous	
MD- 5	Maryland Oil and Development Co. Camp Springs Elementary School No. 1 Water Well Ed-9 Oil Test	Andrews Air Base Camp Springs Prince Georges Co.	240 260	784	Upper Cretaceous	
nD- 6	Washington Gas Light Co. No. 3 Mudd	Near Brandywine Prince Georges Co.	124	1727	Triassic (?)	Electric log run. Top of Triassic (2) rocks 1492 ft
1D-7	Washington Gas Light Co. No. 2 Thorne	Near Brandywine Prince Georges Co.	65	1478	Pre-Mesozoic	Electric log run Top of pre-Mesozoic gneiss 1430 ft.
MD-8	Washington Gas Light Co. No. 2 Moore	Near Brandywine Prince Georges Co	178	1523	Upper Cretaceous	Electric log run
10- 9	Coastal Petroleum Co.	Near Pomonkey Charles Co.	?	492	Upper Cretaceous	
p- 10	Pan American Refining Corp. Water Well	Wades Point Talbot Co.	13	1520	Upper Cretaceous	

MARYLAND

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
MD-11	Dorchester Water Co. No. CE-3 Cambridge	Cambridge Dorchester Co.	15	977	Upper Cretaceous	
MD- 12	The Ohio Oil Co. No. 1 Hammond	6 miles E. of Salisbury Wicomico Co.	70	5568	Pre-Mesozoic	Electric log available Top of pre-Mesozoic quartzite or gneiss 5498 ft.
MD- 13	Socony-Vacuum Oil Co. No. 1 Bethards	4.5 miles SW of Berlin Worcester Co.	45	7178	Triassic (?)	Electric log available Top of Triassic (?) gabbro 7130 ft.
MD-14	Standard Oil Co. of New Jersey No. 1 Maryland Esso	4.5 miles N. of Ocean City Worcester Co.	13	7710	Lower Cretaceous	Electric log available
MD-15	City of Crisfield Water Well	Crisfield Somerset Co.	?	1302	Upper Cretaceous	
MD-16	Washington Suburban Sanitary District No. Eb-2 Water Well	Near Forest Heights, Prince Georges Co.	22	630	Lower Cretaceous	

MASSACHUSETTS

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
ms-1	W. Manning No. 1 Water Well	Gays Head on Marthas Vineyard, Dukes Co.	125	175	Probably Pleistocene	Tertiary and Cretaceous rocks crop out along coast.
M5 - 2	Town of Tisbury No. 1 Water Well	NE part of Marthas Vineyard, Dukes County	115	262	Probably Pleistocene	
Ms-3	U. S. Coast Guard No. 1 Coskata Life Saving Station	Northern tip of Nantucket Island, Nantucket Co.	10	301	Pleistocene	
Ms-4	U. S. Air Force No. 1 Harwich	8500 ft. N. 86°W. of South & Main Sts., Harwich, Barnstable Co.	25	1000		Top of pre-Mesozoic schist 435 ft.
MS-5	Operator unknown	Holden Pond near Provincetown, Barnstable Co.		264	Eocene	Tertiary rocks also reported in shallow wells at Duxbury on mainland.

NEW JERSEY

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
<i>y-</i> 1	Harold Kuhn No. 1 Water Well	Near Fords Middlesex Co.	175	235	Triassic	Top of Triassic red shale 160 ft.
U- 2	Clifford Stultz No. 1 Water Well	Cranbury Middlesex Co.	95	263	Mesozoic Pre- demortar	Top of Wissahickon schist 200 ft.
11-3	Van Horn Oil Company No. 1 Oil Test	Millstone, Somerset Co.	100	2382	Triassic	Well started in Triassic red shale.
VJ-4	New Jersey Highway Authority No. 1 Test Hole	Telegraph Hill, Holmdel Township, Monmouth Co.	215	1039	MeSozoic Pre- Cambrian	Top of Wissahickon schist 965 ft.
W-5	Monmouth Consolidated Water Co. West End Station Water Well	Long Branch Monmouth Co.		981	Upper Cretaceous	Electric log run
VJ- 6	Monmouth Consolidated Water Co. No. 1 Whitesville Station Water Well	Asbury Park Monmouth Co.	30	1053	Upper Cretaceous	Electric log run
NJ-7	The New Jersey Oil & Gas Fields Company	Prospertown Mormouth Co. Occas Co.		1100	Lower Cretaceous	
V J-8	Hamilton Square Water Co. No. 1 Water Well	About 4 miles E. of Trenton, Mercer County	100	235	Pre-Combrian	Top of Wissahickon schist 215 ft.
NJ-9	Maguire Air Base No. 2 Water Well	Ft. Dix, near Wrightstown, Burlington Co.	160	1139	<i>Mesozoic</i> Pre- Cembrian	Top of Wissahickon schist 1100 ft.
U- 10	The N. J. Oil & Gas Fields Co. and W & K Oil Co. No. 2 Mathews	Jacksons Mills Ocean Co.	110	5022	Pre-Mesozoic	Top of pre-Mesozoic schist
V- 11	American Water Works Water Well	Lakewood Ocean Co.		638	Upper Cretaceous	Electric log run

NEW JERSEY

No.	Well name	Location	Alt.	Total Depth	Oldest rocks reported	Notes
IJ-12	Ocean County Water Dept. No. 6 Water Well	Mantoloking Ocean Co.		1052	Upper Cretaceous	Electric log run
IJ - 13	Transcontinental Gas Pipeline Corp. No. 19 Test hole	About 2 mi. NW of Garden St. Parkway, Hy. 530, Ocean Co.	39	1805	Upper Cretaceous	Electric log run
J - 14	Transcontinental Gas Pipeline Corp. No. 17 Test hole	About 6 mi. NW of Garden St. Parkway, Hy. 72, Ocean Co.	156	1741	Upper Cretaceous	Electric log run
J-14A	Transcontinental Gas Pipeline Corp. No. 13 Test hole	About 2.5 mi. E of Speedwell Burlington Co.	90	1519	Upper Cretaceous	Electric log run
J - 15	Town of Beach Haven Water Well	Beach Haven Ocean Co.	5	575	Middle Miocene	
J - 16	Transcontinental Gas Pipeline Corp. No. 15 Test hole	Near Harrisville Burlington Co.	19	1701	Upper Cretaceous	Electric log run
J-17	New Jersey Water Co. No. 15 Water Well	Near Barrington Camden Co.		634	Upper Cretaceous	Electric log run
J - 18	Borough of Berlin Water Well	Berlin Camden Co.		955	Lower(?) Cretaceous	Electric log run
J-19	President Hotel No. 2 Water Well	Atlantic City Atlantic Co.	15	860	Middle Miocene	Electric log run
J-20	Borough of Clayton No. 2 Water Well	Clayton Gloucester Co.		1010	Upper Cretaceous	Electric log run
J-21	Town of Salem No. 1 Water Well	Near Standpipe in Salem, Salem Co.	12	1440	Pre-Mesozoic	Top of pre-Mesozoic granite 1376 ft.

NEW JERSEY

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
NJ-22	Town of Bridgetown No. 1 Water Well	On Cumberland Ave. in Northern Bridgetown Cumberland Co.	85	1651	Пррек Стеtaceous	See N.J. Gool. Survey Gool Rept. No. 3, p.54
NJ-23	The East Coast Oil Co.	1.5 miles E of Newport Cumberland Co.	15	1200	Upper Cretaceous	
NJ-24	Town of Sea Isle City Water Well	Sea Isle City Cape May Co.		897	Middle Miocene	Electric log run
NJ-25	Anchor Gas Co. No. 1 Dickinson	Higbee Beach Road on Cape May Cape May Co.	10	6408	Pre-Mesozoic	Electric log run Top of pre-Mesozoic gneiss 6344 ft.
NJ-26	U. S. Geological Survey No. 1 Island Beach	South end of Island Beach	10	3891	Pre-Mesozoic	Electric log run Top of pre-Mesozoic biotite gneiss 3798 ft.
NJ-27	U. S. Geological Survey No. 1 New Brooklyn Park	Let 39°42'N., long 74°57'W. Camden Co.	110	2080	Pre-Mesozoic	Electric log run Top of Paleozoic metamorphic rocks 1943 ft.

NEW YORK

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
y- 1	City of New York No. 7 Boulevard Station	Emmett & Hylan Blvd., Richmond County, Staten Island	10	319	Pre-Cambrian	Top of pre-Cambrian soapstone 319 ft.
'y- 2	Water Well No. K514	Near East New York Kings Co., Long Island	26	560	Pre-Mesozoic	Top of pre-Mesozoic gneiss or schist 466 ft.
<i>y</i> -3	City of New York No. 2 Rockaway Beach	Rockway Park Pumping Station, Rockaway Beach, Borough of Queens	10	1049	Pre-Mesozoic	Top of pre-Mesozoic granite rock 991 ft.
14-4	U. S. Naval Receiving Station No. 1 Water Well	Long Beach, Nassau Co.	10	1471	Pre-Mesozoic	Top of pre-Mesozoic rocks 1468 ft.
y - 5	Port Washington Water District No. 2 Water Well	Port Washington, Nassau Co.	24	369	Pre-Mesozoic	Top of pre-Mesozoic rocks 365 ft.
'y- 6	Columbia University (Delliport Coast Guard Station) No. 1- Rest Hale Schwenke Est.	Lat. 40° X., Long. 72 56', on Fire Island opposite Bellport, Suffolk Co.		1956	Pre-Mesozoic	Electric log available Top of pre-Mesozoic rocks 1915 ft.
y -7	Brookhaven National Laboratory	Lat.40°51.5' N., long 72° 53.9' W., Suffolk Co. Long Island	113	1568	Pre-Mesozoic	Floatric /og run Top of weathered pre-Mesozoic igneous rock about 1540 ft.
y -8	Brookhaven National Laboratory Water Well 6434	Lat.40°52.4' N., long 72° 52.3' W., Suffolk Co. Long Island	85	1600	Pre-Mesozoic	Top of pre-Mesozoic igneous rock about 1493 ft.
14-9	Water Well No. 189	Near Orient Suffolk Co., Long Island	5	668	Pre-Mesozoic	Top of pre-Mesozoic gneiss or schist 668 ft.

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
c-1	City of Murfreesboro Water Well	Murfreesboro Hertford Co.	64	432	Upper Cretaceous	
c- 2	Pam-Beau Drilling Co. No. 1 Basnight	2 miles NW of Harrelisville Hertford Co.	?	1278	Pre-Cretaceous	No electric log available
/c- 3	N. C. State Highway Commission Water Well	Gates Co. Prison Camp Gates Co.	29	615	Upper Cretaceous	
VC - 4	DuGrandlee Expl. Co. No. 1 Foreman	10 miles NE of Elizabeth City Camden Co.	16	6421	Mesozoic Pre- Cretaceous	Top of Triassic (?) rocks 3520 ft. Top of pre-Mesozoic rocks 4900 ft. Gas show 3170-4050 ft.
'C- 5	U. S. Navy No. 1 Harvey Point Seaplane Base	Harvey Point Perquimans Co.	8	77	Upper Miocene	
C-6	Town of Windsor Water Well	Windsor Bertie Co.	46	405	Upper Cretaceous	
C-7	Esso Standard Oil Co. No. 2 North Carolina Esso	Pamlico Sound Dare Co.	21	6410	Lower Cretaceous	Electric log available
c-8	Town of Tarboro Water Well	Tarboro Edgecombe Co.	50	349	Pre-Cretaceous	Top of pre-Cretaceous rocks 328 to 328 to top basement
t-9	Town of Williamston Water Well	Williamston Martin Co.	60	500	Upper Cretaceous	
-10	Operator unknown No. 1 Roper	4 miles NW of Wenona Washington Co.		2223	Lower Cretaceous	

No.	Well name	Location	Alt.	Total Depth	Oldest rocks reported	Notes
NC-11	Davidson Oil & Devel. Co. No. 1 Furbee	2 mi. NE of Wenona Washington Co.	36	2660	Lower Cretaceous	Electric log available
NC-12	Davidson Oil & Devel. Co. No. 1 Rhem	1 mi. N. of Ponzer Hyde Co.	9	3123	Lower Cretaceous	
NC-13A	Coastal Plains Oil Co. No. 1 J. M. Ballance	5.9 mi. E of Hy. 94 on N side Lake Mattamuskeet, Hyde Co.	10 est.	2005	Upper Cretaceous	No electric log run
NC-13B	Coastal Plains Oil Co. No. 1 F. F. Spencer, Jr.	2.4 mi. E of Hy. 94 on N side Lake Mattamuskeet, Hyde Co.	10 est.	1635	Upper Cretaceous	No electric log run
NC-13C	Coastal Plains Oil Co. No. 1 David Q. Holton	0.4 mi. N of Fairfield P. O. Hyde Co.	10 est.	2005 \	Upper Cretaceous	No electric log run
NC-13D	Coastal Plains Oil Co. No. 1 J. L. Simmons, Jr.	4.5 mi. W of Hy. 94 along N side Lake Mattamuskeet, Hyde Co.	10 est.	1685	Upper Cretaceous	No electric log run
NC-13E	Coastal Plains Oil Co. No. 2, J. L. Simmons, Jr.	8.3 mi. W of Hy. 94 along N side Lake Mattamuskeet, Hyde Co.	10 est.	2005	Upper Cretaceous	No electric log run
NC-13F	Coastal Plains Oil Co. No. 1 Walton Williams	2.3 mi. NW of Swindell Fork and Hy. 264 on SW side Lake Mattamuskeet, Hyde Co.	10 est.	2005	Upper Cretaceous	No electric log run
NC-13G	Coastal Plains Oil Co. No. 1 M. M. Swindell	2.4 mi. NE of Swindell Fork and Hy. 264 on SE side Lake Mattamuskeet, Hyde Co.	10 est.	2005	Upper Cretaceous	No electric log run

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
NC-14	Esso Standard Oil Co.	Cape Hatteras				Electric log available
	No. 1 Hatteras Light	Dare Co.	24	10054	Pre-Cretaceous	Top of pre-Cretaceous granite 9878 ft.
NC-15	Dr. A. B. Williams	9 mi. E of Wilson				Top of pre-Cretaceous
1,0 1,	Water Well	Wilson Co.	123	335	Pre-Cretaceous	rocks 330 ft.
NC-16	Town of Farmville	Farmville				Top of pre-Cretaceous
	Water Well	Pitt Co.	80	472	Pre-Cretaceous	granite 470 ft.
NC-17	Don Langston	2 mi. N of Winterville				
	Water Well	Pitt Co.	63	378\	Upper Cretaceous	
NC-18	American Metal Co.	2.4 mi. NE of Washington				
	Test Hole	Beaufort Co.	30	310	Upper Cretaceous	
NC-19	Town of LaGrange	LaGrange				
0.000	Water Well	Lenoir Co.	105	404	Pre-Cretaceous	Top of pre-Cretaceous granite 392 ft.
						5)

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
- 20	Owner unknown Water Well	5 miles W. of Loftins Lenoir Co.	64	120	Upper Cretaceous	
21	Carlton Ward Water Well	2 miles NW of Cove City Craven Co.	46	180	Upper Cretaceous	
- 22	Carolina Petroleum Co. No. 1 Atlas Plywood	2 miles E. of Merritt Pamlico Co.	11	3425	Pre-Cretaceous	Electric log available Top of pre-Cretaceous granite 3414 ft.
- 23	Carolina Petroleum Co. No. 1 N. C. Pulp Wood	l mile SW of Pamlico Pamlico Co.	11	3667	Pre-Cretaceous	Electric log available Top of pre-Cretaceous granite 3657 ft.
- 24	Carolina Petroleum Co. No. 1 Linley	l mile E. of Merritt Pamlico Co.	16	2897	Lower Cretaceous	Electric log available
-25	Seymour Johnson Air Field Water Well	Goldsboro Wayne Co.	64	180	Pre-Cretaceous	Top of pre-Cretaceous rocks 180 ft.
26	Town of Mt. Olive Water Well	Mt. Olive Wayne Co.	155	310	Upper Cretaceous	
- 27	Town of Calypso Water Well	Calypso Duplin Co.	157	215	Upper Cretaceous	,
28	Warsaw Dress Co. Water Well	Warsaw Duplin Co.	158	153	Upper Cretaceous	
- 29	J. O. Smith Water Well	6 miles SW of Kornegay Duplin Co.	85	111	Upper Cretaceous	

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
/c-30	Henry Vann No. 1 Water Well	5 miles W. of Faison Sampson Co.	166	271	Pre-Cretaceous	Top of pre-Cretaceous schist 245 ft.
t- 31	Town of Roseboro Water Well	Roseboro Sampson Co.	134	470	Pre-Cretaceous	Top of pre-Cretaceous granite gneiss 353 ft.
/c- 32	Town of Garland No. 2 Water Well	Garland Sampson Co.	139	348	Upper Cretaceous	
C-33	American Mining & Devel. Co. No. 1 Corbett	2 miles SE of Kelly Bladen Co.	23	765	Pre-Cretaceous 690 ft.	Radioactivity log available Top of pre-Cretaceous rocks 690 ft.
'C- 34	American Mining & Devel. Co. No. 1 Keith	7 miles N. of Acme and 8 miles SW of Currie Pender Co.	23	730	Pre-Cretaceous	Top of pre-Cretaceous rocks 695 ft.
/c- 35	Mueller Farms Water Well	Rocky Point Pender Co.	35	580	Upper Cretaceous	
<i>IC-</i> 36	Town of Richlands Water Well	Richlands Onslow Co.	50	535	Upper Cretaceous	
C-37	Peter Henderson No. 1 Hoffman Forest	Sec. 21, Blk. 4, Hoffman Forest, Onslow Co.		1232	Pre-Cretaceous (?)	Well No. 2 drilled to 1239 ft. 2.5 miles N. Well No. 3 drilled 2 miles SE No data available.
<i>lc</i> -38	Gilbert and Seay No. 1 Hoffman Forest	10 miles N. of Jacksonville Onslow Co.		1430	Pre-Cretaceous	Well No. 2 drilled nearby to pre-Cretaceous rocks at 1335 ft
/c-39	Burton Drilling Co. No. 1 Hofmann Forest	Sec. 8, Blk. 10, Hoffman Forest 5 miles S. of Belgrade Onslow Co.		1570	Pre-Cretaceous	Electric log available Top of basement 1562 ft.

269.

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
NC-40	U. S. Government No. 1 Camp Lejeune Water Well	l mi. SE of Jacksonville Onslow Co.	30	567	Upper Cretaceous	
NC-41	Operator unknown No. 2 Cadco	4 mi. SW of Verona Onslow Co.	?	1493	Pre-Cretaceous	Top of pre-Cretaceous rocks 13434tt.
NC-42	Operator unknown No. 1 Cadco	Hollyridge Onslow Co.	30	1497	Pre-Cretaceous	Top of pre-Cretaceous rocks 1422 ft.
NC-43	Carolina Petroleum Co. No. 1 Bryan	l mi. E of Ellis Lake Craven Co.	15	2435	Pre-Cretaceous	Electric log available Top of pre-Cretaceous granite 2408 ft.
NC-44	Great Lakes Drilling Co. No. 1 Havelock	5 mi. W of Havelock Craven Co.	30	2351	Pre-Cretaceous	Top of pre-Cretaceous granite 2318 ft.
NC-45	Carolina Petroleum Co. No. 1 G. Carraway	Merrimon Carteret Co.	15	4069	Pre-Cretaceous	Electric log available Top of pre-Cretaceous granite 4054 ft.
NC-46A	Carolina Petroleum Co. No. 1 N. Carraway	2 mi. S of Merrimon Carteret Co.	15	4126	Pre-Cretaceous	Electric log available Top of pre-Cretaceous granite 4120 ft.
NC-46B	Carolina Petroleum Co. No. 1 G. Yeatman	2 mi. S of Merrimon Carteret Co.	20	4097	Lower Cretaceous(?	Electric log available
NC-47	F. L. Karsten No. 1 Laughton	3 mi. NW of Morehead City Carteret Co.	17	4044	Pre-Cretaceous	Electric log available Slight oil shows (?) Top of pre-Cretaceous granite 4030 ft.

No.	Well name	Location	Alt.	Total Depth	Oldest rocks reported	Notes
NC-48	Coastal Plains Oil Co. No. 1 Huntley-Davis	0.5 mi. N Harkers Island Bridge, Carteret Co.		4975	Pre-Cretaceous(?)	Electric log available Top of pre-Cretaceous rocks 4954 ft.
NC-49	Coastal Plains Oil Co. No. 1 Baylands	2.5 mi. N of Atlantic Carteret Co.		5607	Pre-Cretaceous(?)	Electric log available Top of pre-Cretaceous rocks 5561 ft.
NC-50A	Carolina Petroleum Co. No. 1 Salter	l mi. N of Merrimon Carteret Co.	13	3963	Pre-Cretaceous	Electric log available Top of pre-Cretaceous rocks 3954 ft.
NC-50B	Carolina Petroleum Co. No. 1 Phillips-State	1.5 mi. N of Merrimon Carteret Co.	10	3964	Pre-Cretaceous	Electric log available Top of pre-Cretaceous rocks 3930 ft.
rc-50C	Carolina Petroleum Co. No. 1 Wallace	W side Jerry Creek Merrimon Township Carteret Co.	11	4020	Pre-Cretaceous(?)	Electric log available Top of pre-Cretaceous(?) 4016 ft.
IC-51	North Carolina Sanitorium No. 1 Water Well	2 mi. E of McCain Hoke Co.	510	401	Pre-Cretaceous	Top of pre-Cretaceous schist 380 ft.
IC-52	U. S. Army No. 1 Maxton Glider School Water Well	3 mi. NW of Maxton Scotland Co.	208	448	Pre-Cretaceous	Top of pre-Cretaceous schist 363 ft.
IC-53	Carolina Power & Light Co. No. 2 Water Well	Lumberton Robeson Co.	165	310	Upper Cretaceous	
VC-54	Virginia Machine & Well Co. Water Well	Tabor City Columbus Co.	105	675	Upper Cretaceous	
NC-55	Town of Whiteville Water Well	Whiteville Columbus Co.	59	260	Upper Cretaceous	

No.	Well name	Location	Alt.	Total Depth	Oldest rocks reported	Notes
NC-56	Brunswick County Leland Colored High School	Leland Brunswick Co.	25	300	Upper Cretaceous	
NC-57	U. S. Army Ammunition Depot No. 6 Water Well	Sunny Point Brunswick Co.	35	198	Upper Cretaceous	
NC-58	U. S. Army Fort Caswell Water Well	Fort Caswell Brunswick Co.	11	1543	Pre-Cretaceous	Top of pre-Cretaceous metamorphic rock 1540 ft.
NC-59	Clarendon Waterworks Co. No. 1 Hilton Park	Wilmington New Hanover Co.	9	1330	Pre-Cretaceous	Top of pre-Cretaceous granite 1109 ft.
NC-60	Town of Wrightsville Beach Stratigraphic Test Hole	Wrightsville Beach New Hanover Co.	5	412	Upper Cretaceous	
NC-61	E. I. DuPont de Nemours No. 1 Water Well	1.5 mi. W of Grifton Lenoir Co.	53	823	Lower Cretaceous	Electric log available
NC-62	U. S. Geological Survey No. CR-T2-62 Test Hole	2.5 mi. W of Wilmar Craven Co.	50 est.	959	Upper Cretaceous	Electric log available
NC-63A	Coastal Plains Oil Co. No. 1 Rodman	1.5 mi. W of intersection co. rds. 1609 and 1619 Beaufort Co.	15 est.	2012	Lower Cretaceous	Electric log available
NC-63B	Coastal Plains Oil Co. No. 2 Rodman	2.5 mi. S of Terra Cia Beaufort Co.	18 est.	2113	Lower Cretaceous	Electric log available
NC-63C	Coastal Plains Oil Co. No. 1 Ratcliff	1.9 mi. E of Townsite Acre Beaufort Co.	18 est.	1963	Lower Cretaceous	Electric log available

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
NC-63D	Coastal Plains Oil Co. No. 1 West Dismal	4.2 mi. N of Acre Station Beaufort Co.	30 est.	1938	Lower Cretaceous	Electric log available
NC-63E	Coastal Plains Oil Co. No. 1 H. M. Jackson	1.7 mi. N of RR in Pinetown Beaufort Co.	40 est.	1526	Lower Cretaceous	Electric log available
NC-64	Socony-Mobil Oil Co. No. 1 State	Lat 35°59.8'N., long 75°51.8 Albemarle Sound, Dare Co.	3'W.	5255	Pre-Cretaceous	Electric log run Top of pre-Cretaceous granite gneiss 5166 ft.
NC-65	Socony-Mobil Oil Co. No. 2 State	Lat 35°27.3'N., long 75°35'W Pamlico Sound, Dare Co.	T.	8382	Pre-Cretaceous	Electric log run Top of pre-Cretaceous gabbro(?) 8372 ft.
NC-66	Socony-Mobil Oil Co. No. 3 State	Lat 35°15'N., long 75°52'W. Pamlico Sound, Hyde Co.		7266	pre-Cretaceous	Electric log run. Top of pre-Chetaceous rack 7221 ft.

RHODE ISLAND

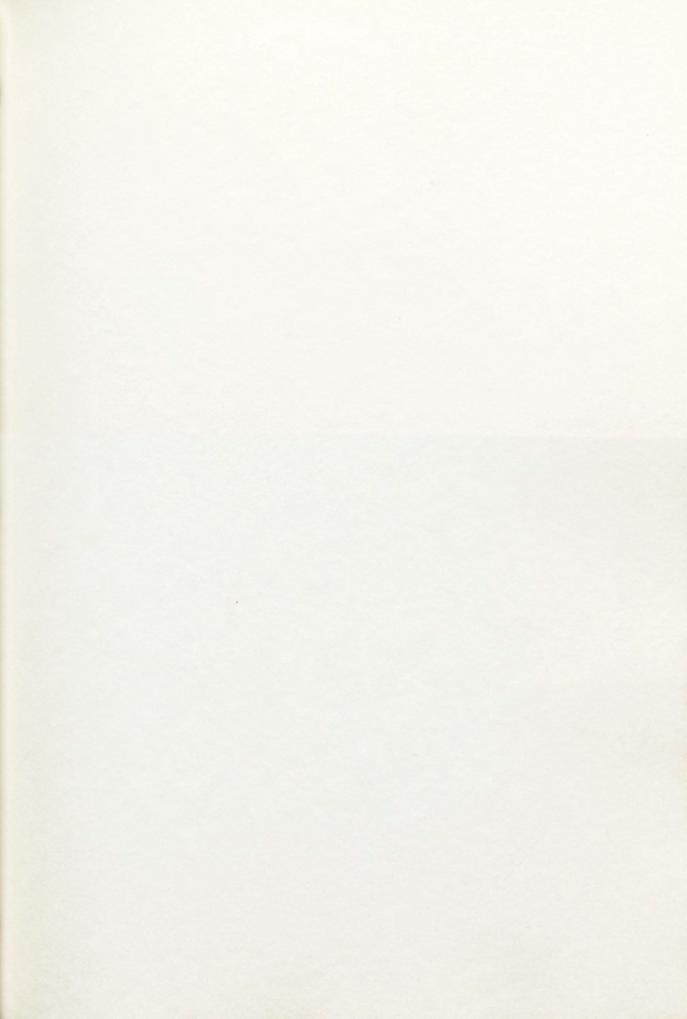
No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
R1-1	Block Island Water Co. Nsh 33 Water Well	Cen. So. part Block Island, Town of New Shoreham	80	165	Pre-Mesozoic(?)	Pleistocene om pre-Mesozoic granite(?), "Rotten granite" reported by Drake, Ewing and Sutton (1959,p. 152) at -80 ft. below sea level in this or near- by well.
R1-2	U. S. Corps of Engineers No. 46 Test Well	Fort Greene, Ocean Road and Old Point Judith Road	28	109	Pre-Mesozoic	Pleistocene om pre-Mesozoic granite at 95 ft.

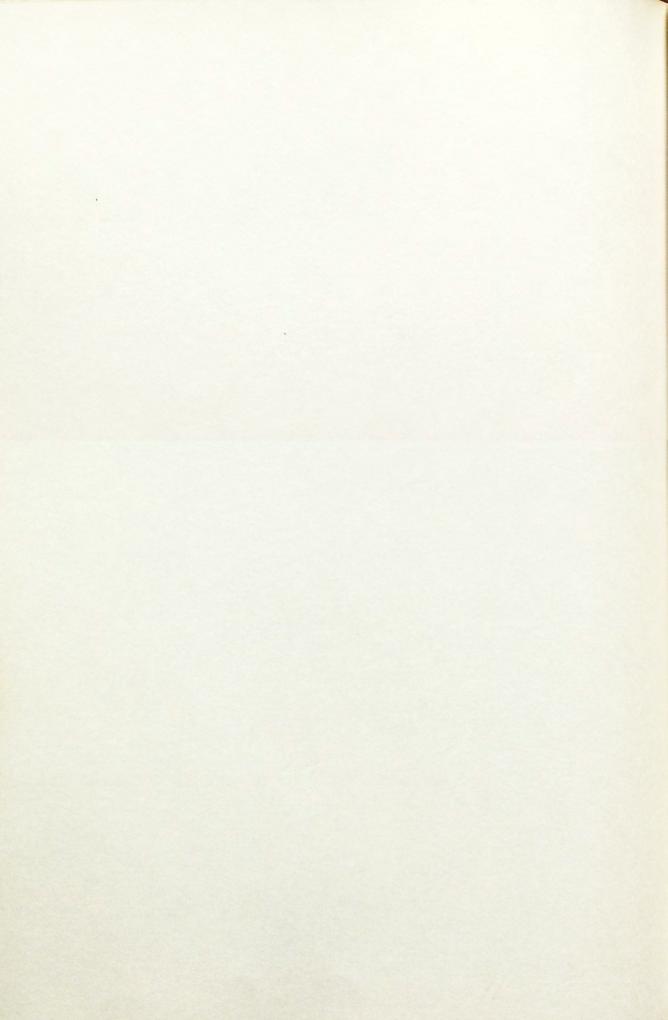
SOUTH CAROLINA

No.	Well name	Location	Alt	Total Depth	Oldest rocks reported	Notes
c-1	Town of Hartsville Water Well	Hartsville Darlington Co.	170	432	Pre-Cretaceous	Top of pre-Cretaceous schist 428 ft.
:- 2	Town of Dillon Water Well	Dillon Co.	114	595	Pre-Cretaceous	Top of pre-Cretaceous rhyolite breccia 594 ft.
c-3	Town of Florence Water Well	Florence Co.	142	715	Triassic (?)	Top of Triassic (?) olivine diabase 710 ft.
C-4	Town of Marion Water Well	Marion Marion Co.	68	1244	Pre-Cretaceous	No electric log available Top of pre-Cretaceous schist 700 ft.
c-5	Palmetto Drilling Co. No. 1 Allsbrooks	l mile N. of Allsbrooks Horry Co.	107	1150	Pre-Cretaceous	No electric log available Top of pre-Cretaceous rocks 1150 ft.
:- 6	Pioneer Oil Co. No. 1 Smart	12 miles SW of Conway Horry Co.	31	1429	Pre-Cretaceous	Electric log available Top of pre-Cretaceous rocks 1400 ft.
7 -7	A. B. Cruse Drilling Co. No. 1 Fannie Collins	12 miles SW of Conway Horry Co.	15	1440	Upper Cretaceous	
c- 8	Southern States Drilling Co. No. 1 Williams	28 miles N. of Georgetown Georgetown Co.	46	1397	Upper Cretaceous	No electric log available
c- 9	Town of Georgetown Water Well	Georgetown Georgetown Co.	15	1870	Upper Cretaceous	No electric log available
-10	Southern States Drilling Co. Oil Test	Near Rhems Williamsburg Co.	40	825	Upper Cretaceous	No electric log available

SOUTH CAROLINA

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
-11	Town of Sumter Water Well	Sumter Sumter Co.	162	784	Pre-Cretaceous	No electric log available Top of pre-Cretaceous granite 782 ft.
- 12	Survey Drilling Co. Oil Test	5 miles SW of Aiken Aiken Co.	315	492	Pre-Cretaceous	Top of pre-Cretaceous granite 450 ft.
-13	Town of Aiken No. 266 Water Well	l mile S. center of Aiken Aiken Co.	480	519	Pre-Cretaceous	Top of pre-Cretaceous rocks 519 ft. Electric log run
- 14	Oil Test	Between Perry and Wagner Aiken Co.	450	1000	Pre-Cretaceous	Top of pre-Cretaceous granite 642 ft.
-15	U. S. Government Savannah River Project Water Well	Savannah River area Aiken Co.		1185	Pre-Cretaceous	Top of pre-Cretaceous schist 999 ft.
-16	Town of Vance Water Well	26 miles SE of Orangeburg Orangeburg Co.	131	839	Upper Cretaceous	No electric log available
-17	U. S. Government Intransit Depot Water Well	Moncks Corners Berkeley Co.	53	177	Eocene	No electric log available
-18	Oil Test	Near Summerville Dorchester Co.	71	2470	Pre-Cretaceous	Top of pre-Cretaceous diabase 2450 ft.
:-19	Town of Walterboro No. 3 Water Well	Walterboro Colleton Co.	65	1500	Upper Cretaceous	
- 20	Charleston Consolidated Railway & Lighting Co. No. 1 Water Well	Charleston Charleston Co.	10	2015	Upper Cretaceous	
;-21	U. S. Government No. 2 Water Well	Parris Island Marine Base Beaufort Co.	18	3454	Lower Cretaceous	Electric log available


.216


No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
/A-1	Spotsylvania Co. Water Well	l mile SW of Fredericksburg Spotsylvania Co.		263	Pre-Mesozoic	Top of pre-Mesozoic granite 229 ft.
VA- 2	U. S. Navy Proving Ground Water Well	Dahlgren King George Co.	20	780	Upper Cretaceous	
/A -3	Town of Dogue Water Well	Dogue King George Co.		385	Upper Cretaceous	
VA-4	Town of Colonial Beach Water Well	Colonial Beach Westmoreland Co.		654	Upper Cretaceous	
YA- 5	Westmoreland State Park Water Well	Westmoreland State Park Westmoreland Co.		631	Upper Cretaceous	
V4 -6	E. Henneson Water Well	Oak Grove Westmoreland Co.	180	530	Upper Cretaceous	
V4 -7	Port Royal Tomato Cannery Water Well	Port Royal Caroline Co.		240	Lower Eocene	
VA -8	Town of Bowling Green No. 23 Water Well	Bowling Green Caroline Co.	215	1550	Pre-Mesozoic	Top of pre-Mesozoic granite 1160 ft.
VA- 9	Town of Warsaw Water Well	Warsaw Richmond Co.		653	Upper Cretaceous	
4-10	Benford Trice Water Well	St. Stephens Church King & Queen Co.		470	Upper Cretaceous	

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes ,	
4- 11	A. R. Beane Water Well	Lancaster Lancaster Co.		438	Lower Eccene		
A- 12	T. A. Treakle Water Well	Palmer Lancaster Co.		740	Upper Cretaceous		
A -13	Peaks Industrial School Water Well	l mile SE of Peaks Hanover Co.	190	240	Lower Eocene		
14-14	V. E. Portwood Water Well	6 miles NE of Mechanicsville Hanover Co.		350	Lower Cretaceous		
/A- 15	Roberts Drilling Co. No. 1 Hugh Townsend	18 miles NE of Richmond and 3 miles SW of Manquin King William Co.	37	3278	Pre-Mesozoic	Red clastic rocks 834-2609 f Igneous and metamorphic frag abundant 2083-2609 ft. Schist, quartzite and gneiss low 2609 ft. (top of pre-Mes rocks).	ments be-
14- 16	W. S. Reynolds Water Well	Cohoke King William Co.		555	Upper Cretaceous		
14 -17	chesapeake Corp. West Point No.1 West Point	West Point King William Co.	30	1689 -1284	Triassic (?)	Top of Triassic(?) rocks 128	4 ft.
/A- 18	Elkins Oil & Gas Co. No. 1 Marchant and Minter	Mathews Co.	15	2325	Pre-Mesozoic	Top of pre-Mesozoic granite 2307 ft.	
VA- 19	Tidewater Oil & Gas Corp. No. 1 Johr	Approx. lat 37°30' N.; long 77°15' W., Henrico Co.	145	860(?)			

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
1-20	V. R. Shepherd Water Well	5 miles SE Highland Springs Henrico Co.		236	Lower Eocene	,
1-21	Riverview Farm Water Well	Malvern Hill Charles City Co.	42	204	Lower Eccene	
- 22	Charles City School Water Well	Charles City Co.		205	Upper Cretaceous	
1-23	U. S. Navy Mine Depot Water Well	2 miles NW of Yorktown York Co.	80	620	Upper Cretaceous	
9-24	Philadelphia & Norfolk RR Co. Water Well	Cape Charles Northampton Co.	20	1810	Lower Cretaceous	
4- 25	Disputanta School for Colored Water Well	Disputanta Prince George Co.	114	219	Lower Cretaceous	
14 -26	City of Newport News No. 1 Water Supply Well	3 miles S. of Bacons Castle Surry Co.	97	1060	Lower Cretaceous	
A-27	Newport News Gas Co.	Newport News Warwick Co.		1065	Upper Cretaceous	
- 28	U. S. Army Fort Monroe Water Well	Fort Monroe Elizabeth Co.	10	2255	Pre-Mesozoic	Top of pre-Mesozoic granite 2246 ft.
4-29	Town of Wakefield Water Well	Wakefield Sussex Co.		399	Upper Cretaceous	

No.	Well name	Location	Alt.	Total depth	Oldest rocks reported	Notes
V4- 30	Monogram Farm Water Well	Driver Nansemond Co.	20	540	Lower Cretaceous	
YA 31	Nestle Company Water Well	l mile N. of Suffolk Nansemond Co.		1006	Lower Cretaceous	
YA-32	Town of Whaleyville Water Well	Whaleyville Nansemond Co.		320	Lower Eccene	
YA- 33	Town of Franklin Water Well	Franklin Southampton Co.		601	Lower Cretaceous	
VA -34	Town of Norfolk Water Well	5 miles E. of Norfolk Princess Anne Co.	12	1740	Lower Cretaceous	

POCKET CONTAINS

17 ITEMS.

