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ABSTRACT

The Gore Canyon-Kremmling area is in the southwestern portion of
the Kremmling l5-minute quadrangle, Colorado.

Precambrian rocks are biotite gneiss, the Boulder Creek Granodiorite,
granophyre dikes, and quartz veins. The Boulder Creek intrudes the
biotite gneiss, and both of these units are cut by north-northwest-
trending granophyre dikes and quartz veins. Biotite gneiss contains
structure elements of a northwest and a northeast fold system. Linea~
tions and foliations in the Boulder Creek are generally concordant to
the northeast fold system of the gneiss.

Late Paleozoic to Mesozoic and Mesozoic sedimentary formations,
in ascending order and with their approximate thicknesses, are the
State Bridge Formation, 15 feet; the Chinle and Chugwater Formations
undivided, 0-95 feet; the Sundance Formation, 0?-100 feet; the Morrison
Formation, 250 feet; the Dakota Sandstone, 225 feet; the Benton Shale,
340 feet; the Niobrara Formation, 600 feet; and the Pierre Shale.
Quaternary deposits are terrace, landslide, and modern flood-plain
deposits.

3 Laramide rock deformation is related to the Park Range uplift and
includes faulting and, in the sediments, some folding. Some of the
faults, including the regional Gore fault, are Precambrian structures

reactivated in Laramide time,




INTRODUCTION
Location, Size, and Accessibility

The Gore Canyon-Kremmling area (fig. 1) lies just west of Kremmling,
a small ranching, sawmill, and railroad town on the Colorado River at
the west edge of Middle Park in the southwestern part of Grand County,
Colo. The south boundary of the area is lat 40°00' N., and the west
boundary is long 106°30' W.

The area comprises approximately 40 square miles in parts of T. 1
S., T. 1 N., and T. 15 N., R. 81 W., and T. 1 N., R. 80 W., sixth
principal meridian, in the southwest quarter of the Kremmling l5-minute
quadrangle, Colorado (U.S. Geol. Survey topographic map, 1956). In
addition, peripheral areas east of the Blue River and U.S. Highway 40
and north of T. 1% N. were mapped in reconnaissance.

- Kremmling is on the Denver and Rio Grande Western Railroad's main
line between Denver, Colo., and Salt Lake City, Utah, 120 miles west of
Denver, and on State Highway 9, 40 miles north of Dillon. From
Kremmling, access to the northern part of the area is by U.S. Highway 40
and ranch roads, and to the southern part by State Highway 9, by State
Highway 11, an improved gravel road that enters Highway 9 from the west
2 miles south of Kremmling, and by ranch roads. The Denver and Rio
Grande Western Railroad follows the Colorado River through Gore Canyon,

and the railroad grade provides access to the north wall of Gore Canyon.

Present Investigation

The Gore Canyon-Kremmling area was mapped as part of the U.S.
Geological Survey's mapping program in the Kremmling l15-minute quadrangle,
Colorado. Several square miles peripheral to the Gore Canyon-Kremmling
area were mapped in reconnaissance. Geologic investigations in the
Kremmling quadrangle were undertaken to (1) furnish a basis for classi-

fication of lands in the eastern part of the quadrangle, which were
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ure 21.--Lineations in the bhiotite gneiss unit,

nortiheastern part of its outcrop area.
oo:wo:ﬁ diacram of lower hemisphere of
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pole projections
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of pole projections

midt equal-area projection of 224 poles.
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Ficure Nw.ccww:rmmNOsm in the biotite gneiss unit,

southwestern part of its outcrop area.

Contour diagram of lower hemispiere of

mo:%wan equal-area projection of 110 poles,

Conkours, in percent: 1, 2, 3, 4, 5,11,15
}

ﬁMHuM Area containing 5-11 percent of
pole projections :

Area containing 11-15 percent of
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Area containiny over 20 percent
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 Ficure 42.--Zhear surfaces within the biotite gneiss
and “he Doulder Creek Granodiorite of

the southwestern part of the area.

Contour diagram of lower hemisphere of
Schmidt equal-area projection of 226 poles,
Contours, in percent: 1, 2, 3, 4

I Area containing over 5 percent of
pole projectiors
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] 4
northeast-northwest shear pattern seen in outcrop in the southwestern

part of the area. The higher concentration of poles in the northeast and
southwest quadrants is a reflection of the Gore fault zone. Most of the
faults that have extensive development of breccia or gouge are represented
by weak maxima of poles ofrorth-northwest planes and show a considerable
dip-value spread. Most of the epidote-encrusted shears are represented by
pole concentration in the northwest and southeast quadrants.

The Gore fault has been a zone of weakness and recurring movement at
various intervals from Precambrian time to the Laramide orogeny. The
regional evidence for the antiquity of this fault zone has been summarized
by Tweto and Sims (1963, p. 1005-1006). Within and adjacent to the map
" area, ample evidence supports the long history of movement along the
fault. Some of the structures within the Precambrian rocks shown on the
geologic map (fig. 2) and represented on the plots of lineation data
within the biotite gneiss (figs. 21, 22) are interpreted as drag or drag-
related structures and suggest that the Gore fault zone was a zone of
movement at least as early as the later stages of the Precambrian defor-
mation that produced the northeast fold system. These drag or drag-
related structures are (l) a general swing in the strike of foliations
and the trend of lineations to a more southerly course as the Gore fault
is approached from the northeast (figs. 2, 21, 22); (2) an increase in the
percentage of southwest-plunging lineations in going from the northeastern
to the southwestern part of the biotite gneiss unit (figs. 2, 21, 22);
and (3) an apparent increase in the abundance of A lineatiomns of the
northeast fold system in the southwestern part of the area, a factor
which suggests a deflection or shortening of the axis of a proposed north-
eastward~-trending antiform.

There is also evidence of post-Boulder Creek Precambrian movement
along the fault. Within the Gore fault zone and the bordering shear
zone to the east, granulated and mylonitized biotite gneiss along north-
west- to north-trending shears is taken as evidence of Precambrian move-
ment (Tweto and Sims, 1963, p. ?98). Evidence which also tends to

support post~Boulder Creek Precambrian movement is an outcrop (fig. 35)
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within the Gore fault zone which shows a northeastward-dipping mylonitic
shear zone within Precambrian rocks beveled by red beds of the Late Paleo-
zoic and Mesozoic State Bridge Formation (fig. 32).

No record of movement during the Paleozoic was seen in the area, but
abrupt thinning and wedging out of thick Late Paleozoic Central Colorado
trough formations as the Gore fault is approached indicate a fault-line
scarp along the Late Paleozoic Front Range highland (Tweto and Sims, 1963,
P. 1006). Similar stratigraphic evidence in Triassic rocks suggests that
the scarp persisted into the Mesozoic.

Most of the observable displacement along the Gore fault occurred
during Laramide and later(?) time. The Gore Range is a Laramide and post-
Laramide feature of considerable relief and it is bounded along most of
its west side by the Gore fault. The Laramide and post-Laramide(?) Park
Range uplift produced more than 2,000 feet of structural relief across
the Gore fault zone in the area of the west portal of Gore Canyon. With-
in the fault zone itself, beds of the State Bridge Formation are broken
and displaced, east side up and several tens of feet, in more than one

place.

FOLDS

The dominant fold structure of the region is the broad north- to
north-northwest-trending anticlinal arch of post-Precambrian sedimentary
rocks over the Precambrian core of the Park Range uplift. In the map
area the axis of this uplift lies generally along the crest of the Gore
Range. In addition to this regional structure, outlined by the opposing
regional dips of the Late Paleozoic and Mesozoic sedimentary rocks on
either side of the Gore Range, folds of much smaller amplitude occur in
the sedimentary rocks on the east flanks of the Gore Range (fig. 2).

Most of the folds along the east flank of the Gore Range appear to
be folds associated with faults, chiefly the northeast faults described
in a previous section of this report. These fault~-related folds are

proximate and parallel to faults or fault projections and are most
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commonly monoclinal warps. The best exposed of these folds are the mono-
cline in sec. 32, T. 1 N., R. 80 W., and the monocline in sec. 11, T. 1
N., R. 81 W. Each of these two folds appears to be on the upthrown or in
‘the eastward displaced block of a fault projected from the west. The
clearest illustration of a fault-related fold is the monoclinal flexure
along. the northwest side of the Sheep Creek fault in the northern part of
the area.

Three small anticlinal folds and one small syncline were mapped south
of the Colorado River. Another small inferred anticline is north of the
river and is shown only on cross section A-A' (fig. 2). All these folds
plunge generally north-northwest, north-northeast, or southeast and have
crest lines or trough lines subparallel to the axis of the Park Range up-
1lift. These folds are shallow warps and buckles formed during Laramide
and late Tertiary(?) tilting of the sedimentary section on the east flank
of the Park Range gplift. At least two of these folds, those shown on
cross sections A-A' and B-B' on figure 2, may have been initiated by move-
ments along northward-trending faults and their amplitudes increased by

bedding~-plane slip down the flanks of the uplift.

JOINTS

Joint attitudes were measured in the biotite gneiss and the Boulder
Creek Granodiorite in all areas of their outcrop and in the Dakota Sand-
stone along the hogback which extends from the south edge of sec. 15, T.

1 N., R. 81 W., on the north side of the Colorado River to the north edge
of secs. 2 and 3, T. 1 S., R. 81 W., on the south side of the river. The
poles of joints of the biotite gneiss units in the northeastern and south-
western portions of the outcrop area and of joints in the Boulder Creek
Granodiorite were plotted on three separate projections of the upper hemis-
phere of a Schmidt equal-area net and the plots were contoured; the poles
of all the Dakota joints were plotted and contoured on a fourth projection.
The joint plots are shown in figures 43-46; the data-collection area for

each plot of joints in Precambrian rocks is shown in figure 20.
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Figure 44, Tnuop:wm of the riotite uneiss unit in the
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soutwestern part of its outcrop area,
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Fivure 45.--Joints in the Boulder Creek Granodiorite.
Cortour diagram of upper hemisgphere of
Scimidt equal-area projection of 784 poles.
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Joints of Precambrian Rocks

Interpretation of the Precambrian joint data is difficult owing to the
complex history of tectonism in the rocks, but a few gencralizations are
given below,

The plot of joints measured in the northeastern outcrop area of the
biotite gneiss (fig. 43) shows a strong maximum representing a near-vertical
N. 17° W. joint set, a weak maximum representing a steep nearly east-west
joint set, and a strong maximum representing a near-vertical N. 42° W, set.

In the southwestern biotite gneiss unit (fig. 34) all the joint sets
present in tle northeastern part of the biotite gneiss unit are represented;
there are a strong maximum representing a near-vertical set that strikes
N. 7° W. and two weaker maxima representing near-vertical sets which strike
N. 88° E. and N. 55° W. 1In addition, there is a weak maximum representing
a N. 14° W. - 50°-55° E. joint set.

The contour diagram for joints in the Boulder Creek Granodiorite (fig.
45) shows a strong maximum in the position of a near-vertical N. 19° W.
set and a weaker maximum in the position of a N. 50° W. set.

Most of the joint sets in Precambrian rocks are near-vertical and strike
northwest to north-northwest. Joints included in these sets are cross
joints perpendicular to the regional foliation and B lineations of a north-
east Precambrian fold system and joints related to the uplift of the Park

Range and the concomitant fracturing and faulting subparallel to the Gore

fault.

Joints in the Dakota Formation

A plot of poles of joints measured in the Dakota Sandstone show maxima
at N. 18° E. and N, 78° W. and dips within 5° of the vertical (fig. 46). The
set at N. 18° E. is at a small angle to the axis of the Park Range uplift
and is a longitudinal joint set that probably formed during uplift of the
Gore Range. Dips of the joints indicate that there was rotation of pre-
viously formed joint planes as uplift continued. The N. 78° W. joint set
are probably cross joints formed at approximately right angles to the axis
of the uplift. Field observations along the Dakota hogback near Gore Can-
yon revealed that some surfaces with attitudes near the orientation of the
N. 78° W. joint set served as planes of movement for Laramide and later(?)

fault movements.
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GEOLOGIC HISTORY

The geologic history of the area begins in Precambrian time with the
deposition of a thick sedimentary sequence consisting chiefly of slightly
pelitic clastic rocks~--probably sandstone, siltstone, and shale--and minor
amounts of interbedded impure carbonate rocks. A few basalt sills and
flows may have been intercalated with the sedimentary pile. This sequence
of rocks was regionally metamorphosed into a series of high-rank biotite
gneisses and associated amphibolitic rocks which are similar to gneisses
found in the Front Range and other parts of Middle Park and were referred
to in the past as the Idaho Springs Formation. The gneisses were deformed
under catazonal conditions into northwest~ to north-northwest=-trending
folds. Continued tectonism=-~or a later separate period of tectonism--
produced northeast=- to east-northeast-trending folds. During the later
stages of the formation of northeasterly folds, the biotite gneisses were
synkinematically invaded by granodioritic to quartz monzonitic rocks
similar to the Boulder Creek Granodiorite of the Front Range. Retrograde
metamorphic effects were superposed on the gneiss, and deuteric altera-
tion occurred in the granodiorite-quartz monzonite. Some cataclasis and
later shearing and associated rock alteration occurred in zones parallel
to the regional northeasterly foliation. Drag structures preserved in
the Precambrian rocks northeast of the Gore fault suggest that there may
have been some movement along the Gore fault before the end of the Pre=-
cambrian deformation that produced the northeast fold system.

The metamorphism, folding, and plutonism is correlated with the
Boulder Creek orogeny of Hutchinson and Hedge (1967). They have dated
the orogeny in the Front Range as beginning about 1.74 billion years ago
and ending at about 1.69 billion years.

Additional deformation appears to have occurred in Precambrian time
subsequent to the emplacement of the Boulder Creek Granodiorite., This
later deformation consisted of northwest to north=-northwest faulting--
principally within and immediately east of the Gore fault zone--,

dilation and intrusion of granophyre or quartz along northwest to
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north-northwest fractures on the east and upthrown side of the Gore fault
zone, and northeast- to east-northeast shearing. The radiogenic age of
the granophyre associated with this post-Boulder Creek deformation is
1.13+ 0.15 billion years, and the emplacement of the granophyre may be
related to the Pikes Peak Plutonic Event according to C. E. Hedge (written
commun., 1967).

During most of the Paleozoic the area east and northeast of the Gore
fault zone from Vail Pass on the south to beyond the Colorado River was
part of the Eront Range highland (Lovering and Johnson, 1933). The area
to the southwest and west was the site of the northern part of the Late
Paleozoic Central Colorado trough. On the east side of the Gore Range,
red beds which may be of later Permian age in part are present on the
Precambrian in the northern part of the area and thicken irregularly to
the north. Thin deposits of similar red beds are locally present on the
Precambrian in other areas of Middle Park. Evidently the Front Range
highland had been worn down sufficiently by latest Permian time to permit
at least local deposition of flood-plain deposits on an irregular Pre-
cambrian surface. On the west side of the Gore Range, the featheredge of
a red-bed formation which is Late Permian and perhaps also Early Triassic
laps onto the Precambrian gneiss and is overlain by Late Jurassic marginal
marine rocks. To the west this formation thickens abruptly and is under-
lain by Pennsylvanian rocks and overlain by Upper Triassic rocks. Abrupt
thinning and wedging out of Paleozoic formations as the Gore fault zone
is approached from the west indicates that the west side of the Paleozoic
highland was steep. Tweto and Sims (1963, p. 1006) suggested that a
scarp parallel to the Gore fault zone was present along at least part of
the west side of the Front Range highland.

By the beginning of Mesozoic time marine deposition in the Central
Colorado trough had ceased. The Front Range highland was considerably
worn down but still probably a much dissected positive area so that
Early Triassic flood-plain deposits and Late Triassic flood-plain and

stream-channel deposits are more irregularly distributed and generally
much thinner where they occur below Jurassic rocks on the old highland

than they are to the west.
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The Early and Middle Jurassic time is not represented in the depo-
sitional history of the area, but the Late Jurassic time brought the
incursion of the Sundance sea from the north and west. During Sundance
time, thick marginal marine and marine sandstones and siltstones were
deposited on the west side of the old highland while similar but thinner
and more irrcgularly distributed deposits formed on the old highland it-
self. The deposits related to the Sundance sea are everywhere blanketed
by Late Jurassic continental deposits of the Morrison Formation. In many
areas east of the old scarp line of the Front Range highland, the Morrison
lies directly on the Precambrian, which suggests that positive areas were
still in existence on the highland at the beginning of Morrison time. The
variegated claystones to siltstones, thin fresh~water limestones, and
lenticular sandstones of this formation suggest a swampy flood plain or
lake-dotted savannah cut by meandering channels. Pyroclastic material
has been reported (Wahlstrom, 1966) in beds of the upper part of the
Morrison and is evidence of volcanism during Morrison time.

Continental deposition--but with a much greater abundance of high-
energy deposits--continued into the Early Cretaceous with deposition of
the conglomerate, sandstone, and subordinate siltstone of the lower part
of the Dakota Sandstone. A shift to marginal marine conditions began
with the deposition of the evenly bedded siltstone and sandstone of the
upper part of the Dakota Sandstone, and the Cretaceous sea was introduced
into the area. Marine siltstone and shale of the lower part of the Benton
Shale of Early and Middle Cretaceous age were conformably deposited on
the Dakota Sandstone, although there is local evidence for some “"winnow-
ing" on top of the Dakota preceding deposition of the Benton. Beginning
with the Benton Shale, the record of marine deposition in the region is
uninterrupted until latest Cretaceous time and is represented by approx-
imately 6,000 feet of shale which contains subordinate beds of siltstone,
sandstone, and limestone, and near the top thick sandstone sequences.
Some shoaling of the Cretaceous sea occurred in Middle Cretaceous time as
evidenced by the presence of sandstone and recrystallized arenaceous

clastic limestone near the top of the Benton Shale and in Late Cretaceous
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time as evidenced by thick sandstones in the upper part of the Pierre
Shale.

Regionally, Laramide deformation began by the end of Pierre deposi-
tion (Lovering and Goddard, 1950, p. 58) or in post-Pierre latest Creta-
ceous time (G. A. Izett, oral commun., 1967) and lasted into the Eocene.
The Laramide in this region was marked by uplift of the Park and Front
Ranges, formation of the synclinal depression known as Middle-North Park
basin, intrusion of small hypabyssal plugs, and filling of the basin with
several thousand feet of coarse clastics of the Middle Park Formation
and, in North Park, of the Coalmont Formation. In the area of this report
none of the deposits of this tectonically active time are present, and
the record of the Laramide orogeny is displayed only in the faulting,
tilting, and folding of the flanks of the Gore Range.

Regional uplift along the Park and Front Ranges and faulting occurred
again in the Late Tertiary and was accompanied in some areas by volcanism
and deposition of epiclastic volcanic rocks. During this time the topo-
graphic North and Middle Park basins were formed by volcanic construction
of the Rabbit Ears Range. No rock record of these events is preserved
in the report area but it is abundant toc the east (Izett, 1968). 1In
response to continued uplift near-surface deformation of Mesozoic rocks--
chiefly the Dakota Sandstone=--may have been initiated along the east
flank of the Gore Range at this time and probably included bedding-plane
slip and shallow folding.

Uplift of the Park and Front Ranges probably continued into the
Pleistocene (Lovering and Goddard, 1950, p. 63), and near-surface and
surface (landslide) deformation of sediments along the east flanks of
the Gore Range was probably widespread. No evidence of glaciation is in
the area but evidence of alpine and valley glaciation is locally abundant

to the north and south along other segments of the Park Range. Several
terrace levels in the valleys of Muddy Creek and the Colorado and Blue
Rivers and a pediment surface in the Muddy Creek drainage can be correl-
ated with Pleistocene glacial deposits to the south.

Post-Pleistocene time is represented by low terraces and flood-plain
alluvium along the major drainages and by extensive landslide deposits,

some of which were probably formed during the Pleistocene.
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ECONOMIC GEOLOGY

Geologic investigations in the southwestern part of the Kremmling
quadrangle were done as part of a larger mapping program to furaish a
basis for classification of land withdrawn for coal. No coal beds were
seen in the map area nor is the Middle Park Formation--the coal-bearing
formation of the eastern parﬁ of the quadrangle--exposed in the area. The
only coaly material seen was in thin discontinuous seams of carbon trash

in a clay lens near the base of the Dakota Sandstone.

Gold

Several abandoned prospect pits, a shallow prospect shaft, and a
short caved prospect adit are located along some of the northwest to
north~northwest fracture zones within the Precambrian rocks of the area.
Commonly, the prospected fracture zones contain indirect evidence of
possible metal mineralization. This evidence consists of clay alteration,
silicification, and iron-staining of the crystalline rocks. Direct
evidence of mineralization was seen only in the fracture zone occupied
discontinuously by quartz veins in secs. 17, 20, and 29, T. 1 N., R. 81 W.

The fracture zone or quartz vein along the crest of the Gore Range
has been extensively prospected by shallow pits and, in the SE% sec. 20,
T. 1 N., R. 81 W., by a shallow (approximately 15 ft deep) shaft where
the zone contains thick quartz veins. Part of the fracture zone in the
SEY sec. 20 and the NE% sec. 29, on either side and including the area
of the shaft, was covered by two unpatented lode claims, the Blue Mon-
day(?) claims, in May 1961. No evidence of assessment work on the claims
in the area was seen by the author since June 1963, and the claims have
probably lapsed. Two samples were taken from the quartz veins exposed in
the shallow shaft in the SE% sec. 20. Each sample was crushed in a jaw
crusher, ground on ceramic plates to 80-100 mesh, and panned. The 6~ to
7-pound sample yielded no gold; the 2~ to 3-pound sample yielded a flake

of gold less than 0.1 mm across.
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In June 1965 a placer operation on a gravel fan at the mouth of
Canyon Creck on the Colorado River in the SWYSEYZ sec. 32 was being done
by a prospector. Local reports indicate that only a small amount of gold
was recovered,

The northwest to north-northwest quartz veins and associated (rare)
gold mineralization of the southwestern part of the area seemingly are
related to the Gore fault zone and, specifically, to dilation and filling
of subparallel fractures within and just to the east of this zone.

Fracture fil{;ng not only included quartz but also granophyre. The grano-
phyre and probably the quartz veins that contain gold are approximately
Pikes Peak in age. The Pikes Peak batholith of the Colorado Front Range
and its satellite plutons were emplaced 1.04-1.01 billion years ago accord-
ing to Hutchinson and Hedge (1967).

The placer gold on the Colorado River at the mouth of Canyon Creek
is probably derived from northwest to north-northwest mineralized fractures
and quartz veins up the Canyon Creek drainage and the northwest to north-
northwest mineralized fractures and quartz veins up the Canyon Creek
drainage and the northwest to north-northwest shear zone which is exposed
to the east along the railroad cut from Canyon Creek almost to the first

tunnel.

Uranium

In the NE% sec. 26, T. 1 N., R. 81 W., an adit approximately 30 feet
long has been driven into the sandstones and conglomerates at the contact
of Morrison Formation and Dakota Sandstone, and a small stope was developed
in a clay bed inthe conglomerate at the back. Henry Yust of Kremmling,
Colo., worked the prospect and reported that he mined rock that contained
uranium oxide. The host for the mineralization is a zone of thin (2-4 in.)
discontinuous seams of coal in a lenticular clay bed (3 ft thick in the
adit area) in the basal chert-pebble conglomerate of the Dakota Sandstone.

R. U. King and R. R. Guilinger of the U.S. Geological Survey looked
at this prospect for the Atomic Energy Commission during May 1954. They
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reported (unpub. report, 1954) that "uranium is chiefly confined to vein-
lets of black hydrocarbon and secondary mineralization as fracture coat-

" and "The hydrocarbon veinlets contain 0.5-1

ings in the gray mudstone,
percent uranium and make up possibly 5 percent of the mudstone lens. The
mudstone itself contains 0.05 percent uranium."

This prospect was not worked during the field investigation for this

report.

Pegmatites

Concordant and crosscutting pegmatite bodies of Precambrian age are
widespread in the Precambrdan biotite gneiss unit, Commonly, these
bodies are 3-5 feet thick, but one which crops out just south of the San
Toy Mountain fault and west of the beacon access road is estimated to be
about 30 feet thick. Pegmatites were not mapped or sampled by the
author, but the pegmatites should be considered as possible sources of
feldspar and perhaps rare earths and metals.

Sand and Gravel Deposits

Quaternary terrace deposits associated with the major drainages of
the area are local sources of sand and gravel. Most deposits are between
5 and 15 feet thick, but one deposit whose thickest and most extensive

remnants lie across secs. 29, 30, and 19, T. 1 N., R. 80 W., and sec. 24,
T. 1 N., R. 81 W., and under the Kremmling townsite is locally more than

50 feet thick. This level is currently being quarried at the south edge
of Kremmling.

0il and Gas Deposits

Although no deposits of oil and gas have been found in the area,
most of that part of the area east of the Benton and Niobrara contact is
underlain by a sedimentary section of more than 1,000 feet of predomin-
antly marine Mesozoic rocks and should be considered potentially interest-
ing for oil and gas prospecting. The nearest exploration by drilling was
a 1,205-foot dry hole into the Precambrian basement in the SEY% sec. 26,
T. 2 N., R. 81 W., on the Martin Ranch,
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