
Phase I test wells, White Sands Missile Range, Dona Ana County, New Mexico Вy Gene C. Doty (Dory) CU



### UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Albuquerque, New Mexico

Phase I test wells, White Sands Missile Range,

Dona Ana County, New Mexico

By

Gene C. Doty

Prepared in cooperation with the U.S. Army, White Sands Missile Range, New Mexico

Open-file report

July 1968

### Contents

|                                 | Page           |
|---------------------------------|----------------|
| Introduction                    | 5 <sub>(</sub> |
| Methods and procedures          | 9.             |
| Results of drilling             | 11             |
| Conclusions and recommendations | 19             |
| References cited                | 22             |
| Basic data                      | 23             |

## Illustrations

|       |                                                     | Reference<br>page |
|-------|-----------------------------------------------------|-------------------|
| Figur | e 1White Sands Missile Range and Phase I project    | . •               |
|       | area, Dona Ana County, N. Mex                       | 5                 |
|       | 2Test wells drilled in Phase I project, White Sands |                   |
|       | Missile Range, Dona Ana County, N. Mex              | 5                 |
| -     | 3Gamma and neutron logs of test wells HTA-1 and     |                   |
|       | HTA-2                                               | 11<br>(in pocket) |
|       | 4 Drawdown in well HTA-1, Oct. 5, 1966              | 11                |
|       | 5Residual drawdown in well HTA-1, Oct. 5, 1966      | 11                |
|       | 6aInduction electric log of SMR-3                   | 13<br>(in pocket) |
| •     | bMicrolog of SMR-3                                  | 13                |
|       | cInduction electric log of MAR-4                    | 13                |
|       | dMicrolog of MAR-4                                  | 13                |
|       | eInduction electric log of NW30-1                   | 13                |
|       | f,Microlog of NW30-1                                | 13                |
|       | 7Drawdown in well SMR-3, Jan. 14, 1967              | 13                |
|       | 8Residual drawdown in well SMR-3, Jan. 14-15, 1967- | 13                |
|       | 9Drawdown in well MAR-4, Feb. 1, 1967               | 15                |
|       | 10Residual drawdown in well MAR-4, Feb. 2, 1967     | _ 15              |
| •     | 11Drawdown in well NW30-1, Feb 24, 1967             | 17 2              |
|       | 12Residual drawdown in well NW30-1, Feb. 24, 1967   | 17 2.             |
|       |                                                     |                   |

3

. \

Tables

Table 1.--Results of chemical analysis of water samples

| collected from Phase I test wells, White Sands |    |
|------------------------------------------------|----|
| Missile Range                                  | 24 |
| 2Record of test well HTA-1                     | 25 |
| 3Sample description log of test well HTA-1     | 26 |
| 4Record of test well HTA-2                     | 27 |
| 5Sample description log of test well HTA-2     | 28 |
| 6Record of test well SMR-3                     | 29 |
| 7Sample description log of test well SMR-3     | 30 |
| 8Record of test well MAR-4                     | 32 |
| 9Sample description log of test well MAR-4     | 33 |
| 10Record of test well NW30-1                   | 36 |
| 11Sample description log of test well NW30-1   | 37 |

4

Page

### Phase I test wells, White Sands Missile Range,

Dona Ana County, New Mexico

By

Gene C. Doty

#### Introduction

Five test wells were drilled during late 1966 and early 1967 to explore the water-producing potential of four areas uprange from the Post Area, White Sands Missile Range. These wells were drilled as part of a continuing program of water-resources investigation (Phase I) detailed in the White Sands Missile Range Water Master Plan. The location of White Sands Missile Range in New Mexico and the Phase I project area within the Missile Range is shown on figure 1; the

### Figure 1 (caption on next page) belongs near here.

location of the test wells on the Missile Range is shown on figure 2.

Figure 2 (caption on next page) belongs near here. The letter prefix to the test-well number identifies the separate areas of investigation: HTA-1 and HTA-2 are in the Hazardous Test area; SMR-3 is in the Small Missile Range area; MAR-4 is in the MAR well field area and NW30-1 is near the NW30 tracking station. The suffix number is in the consecutive number of test wells drilled in the area.

Figure 1.--White Sands Missile Range and Phase I project area

Dona Ana County, N. Mex.

2.--Test wells drilled in Phase I project, White Sands

Missile Range, Dona Ana County, N. Mex.

The HTA wells were drilled to ascertain if small quantities, 5 to 10 gpm (gallons per minute), of potable water were available for domestic use. SMR-3 was drilled to explore the quality and quantity of water available to wells penetrating a prominent alluvial fan north of two test wells drilled previously in the Small Missile Range area. Well MAR-4 was drilled to determine if a larger yield could be obtained from wells drilled west of the MAR production wells. Well NW30-1 was drilled to determine the quality and quantity of water available to wells in the general area of NW30 tracking station. The U. S. Geological Survey, as a part of the continuing cooperative program with White Sands Missile Range, furnished technical advice for the location of the test wells and drilling specifications. During the drilling and testing operations the Survey advised the Corps of Engineers personnel administering the test-drilling contract, and collected geologic and hydrologic data. Geological Survey personnel involved in field-data collection included J. A. Basler, F. E. Busch, G. A. Dinwiddie, and the writer, supervised by J. B. Cooper, Hydrologist, and W. E. Hale, District Chief, Water Resources Division, Albuquerque, New Mexico.

The Phase I test wells were drilled into Quaternary and Tertiary and bolson deposits on the east side of the Organ and San Andres Mountains which flank the western edge of the Tularosa basin. Test wells HTA-1 and HTA-2 penetrated the intrusive igneous mass of the Organ Mountains; the other wells were completed in the bolson fill. The occurrence of potable water along the western flank of the Tularosa basin is dependent upon whether the water-bearing alluvial material was derived from older rocks containing gypsum and halite and whether surface water recharged to the aquifer has moved across rocks containing these minerals. The reader is referred to Dane and Bachman (1965) for background information on the geology of the area and to Davis and Busch (1968) for a discussion of ground-water occurrence.

### Methods and procedures

Test wells HTA-1 and HTA-2 were drilled by a cable-tool drilling rig. Samples of drill cuttings were collected from the bailer at 5-foot intervals. The quantity of water encountered as the well was deepened was estimated from periodic bailing tests; the quality was monitored by electrical conductivity determination. Gamma-neutron logs were made in each well by U.S. Geological Survey personnel after the wells were drilled to total depth. Well HTA-1 was developed by bailing and surging and was test pumped with a small submersible pump. HTA-2 was filled and abandoned because of insufficient yield.

Test wells SMR-3, MAR-4, and NW30-1 were drilled by a conventional hydraulic-rotary rig. Drilling time was recorded by an automatic drilling-rate recorder. Samples of drill cuttings were collected from the return-flow sluice after each 5 feet of penetration and were not corrected for time lag; the samples were classified primarily for particle-size range. Water samples were collected as drilling progressed, using an expansion packer. A commercial logging company made electric logs when the wells had been drilled to total depth. Electric logs, drilling-time logs, and drill cuttings were examined to determine where perforated casing should be placed. Mill-cut slots, 1/8-inch wide were used in all perforated-casing sections.

After casing, each well was developed with a tight-fitting bailer and, if needed, a closed-surge block. A test pump was then installed and the well further developed by pumping and surging. The water level in the well was allowed to recover for several hours after development. The well was then test pumped for eight hours at a specified rate to determine the coefficient of transmissibility of the aquifer. Depth to water was measured with an electric tape at intervals during pumping and for several hours after pumping stopped. Pump discharge from well HTA-1 was measured with a stopwatch and a container of known volume; discharge of SMR-3, MAR-4, and NW30-1 was determined by an orifice plate. Sand content of discharge water was determined by an Imhoff sediment cone. All the wells, except HTA-2, were fitted with removable caps and were retained as water-level observation wells.

### Results of drilling

Ground water in the Hazardous Test area is contained in the lowermost part of the alluvium, and in the fractured and weathered upper part of the underlying igneous bedrock. Well HTA-1 penetrated intrusive igneous bedrock of granitic composition, probably of Precambrian age, at a depth of 80 feet; well HTA-2 penetrated similar bedrock at a depth of about 60 feet (tables 2,3,4, and 5). At depth the material became increasingly harder to drill and the drilling of well HTA-2 was stopped before the planned depth of 250 feet was reached.

The material overlying the bedrock in both wells was an arkosic sand gravel. Gamma logs and neutron logs of the wells are shown in figure 3 (in pocket). Well HTA-2 could be bailed dry at a bailing rate

Figure 3 (caption on next page) belongs near here. of about a half gpm. The low yield did not justify casing and development of the well so it was plugged and abandoned. Well HTA-1 was pumped for eight hours at 25 gpm with 18 feet of drawdown. (figs. 4 and 5). Water from both wells was potable to total depth (table 1).

Figures 4 and 5 (captions on next page) belongs near here.

Figure 3.--Gamma and neutron logs of test wells HTA-1 and HTA-2

(in pocket)

4.--Drawdown in well HTA-1, Oct. 5, 1966.

5.--Residual drawdown in well HTA-1, Oct. 5, 1966.

The near-surface material explored by test well SMR-3 in the prominent alluvial fan north of the Small Missile Range was well cemented with calcium carbonate and drilling therefore was slow until adequate weight could be added to the tool string; the remainder of the drilling was accomplished routinely. The well penetrated fan deposits of sand, gravel, and some clay (tables 6 and 7). The first water sample was collected by bailing when the well had been drilled to 392 feet; 150 feet of temporary surface pipe was placed in the well to prevent caving of incompetent beds during sampling. The other two samples were collected as drilling progressed by installing a small submersible pump inside the pipe of the packer string. All the water samples collected were potable (table 1). Electric logs of the well are shown in figure 6 (in pocket).

Figures 6a-f (captions on next page) helongs near here.

The well was developed by bailing and surging, and by surging with the test pump. The coefficient of transmissibility determined from an 8-hour aquifer test was 350,000 gpd/ft (gallons per day per foot) (figs. 7 and 8). The well produced considerable sand during development

Figure 7 and 8 (captions on next page) belongs near here.

but produced very little sand during the aquifer test.

Fgire 6a.--Induction electric log of SMR-3.

b.--Microlog of SMR-3.

c.--Induction electric log of MAR-4.

d.--Microlog of MAR-4.

e.--Induction electric log of NW30-1.

f.---Microlog of NW30-1.

7.--Drawdown in well SMR-3, Jan. 14, 1967.

8.--Residual drawdown in well SMR-3, Jan. 14-15, 1967.

Test well MAR-4 was drilled into the upper part of the alluvial fan on which the MAR well field is situated. The well penetrated bolson and fan deposits of sand, gravel, and clay of Quaternary and Tertiary age (tables 8 and 9). Water samples were collected as drilling progressed. The shallowest sample was collected by bailing in an open hole in which approximately 200 feet of temporary surface casing had been set; the other two samples were collected by installing a submersible pump inside the pipe of the packer string. The water sample from total depth was nonpotable, and the well was completed in the potable water zone (table 1). Electric logs of the well are shown in figure 6 (in pocket). The well was developed by bailing and surging, and surging with the test pump. The coefficient of transmissibility, as determined from an eight-hour aquifer test, is 295,000 gpd/ft. (figs. 9 and 10). The well produced very little sand

Figures 9 and 10 (captions on next page) belongs near here.

during test pumping.

Figure 9.--Drawdown in well MAR-4, Feb. 1, 1967

10.-- Residual drawdown in well MAR-4, Feb. 2, 1967

Well NW30-1 penetrated bolson and fan deposits of sand, gravel, and clay of Quaternary and Tertiary age (tables 10 and 11). The materials became finer at depth and more clay beds were penetrated in well NW30-1 than in wells SMR-3 or MAR-4. Water samples were collected as drilling progressed. The shallower sample was collected by bailing in an open hole with no surface casing; the deeper sample was obtained by setting a submersible pump inside the drill pipe or the packer string. Neither of the water samples were potable (table 1). Electric logs of the well are shown in figure 6 (in pocket). The well was completed so as to yield the best quality of water present in the section penetrated, as determined from the electric logs. It was developed by bailing and surging and by surging with the test pump. The coefficient of transmissibility, as determined from aquifer-test data, is about 130,000 gpd/ft (figs. 11 and 12). The well produced a slight amount of sand

Figures 11 and 12 (captions on next page) belongs near here. and the water was still slightly hazy at the close of the aquifer test.

## Figure 11.--Drawdown in well NW30-1, Feb. 24, 1967

12.--Residual drawdown in well NW30-1, Feb. 24, 1967

### Conclusions and recommendations

Wells that yield small amounts (5 to 10 gpm) of potable water can be drilled in the Hazardous Test area. These wells should be drilled near surface drainage channels to obtain recharge, as the storage in the fractured igneous rock is small. The dependability of a well in the area is questionable because of the small amount of water in storage. The fracture pattern in the rock is not everywhere the same and it may be impossible to obtain a satisfactory yield at a given location.

Wells that yield several hundred gallons per minute of potable water can be constructed near well SMR-3. The quality of the water from well SMR-3 was higher in sulfate (200 ppm) than water from the Post Area well field but is within the limits recommended for human consumption. The area is topographically higher than the Small Missile Range and MAR facilities, and construction of pipelines for distribution of water by gravity flow to these areas would be feasible. Geographically, the SMR-3 well is well situated for uprange haulage. It is adjacent to a paved road and is several miles north of the present SMR water supply point. A ready supply of water for uprange haulage is available simply by equipping the test well with a pump and building a storage tank nearby.

Test well SMR-3 achieved the primary purpose of exploration in a most gratifying manner: Test results indicate that highyield wells can be constructed in this area, and that the quality of the water is satisfactory. For planning and engineering purposes, however, important questions pertaining to the availability and permanence of a water supply in the area remain unanswered. Test well SMR-3 did not penetrate the saline-water interface, or bedrock, and the saturated thickness of the potable water-bearing beds is unknown. The areal extent of the potable water is unknown except in the direction of the two SMR wells to the south. Additional exploration by test drilling and geophysical methods is needed to determine the quantity of water available to a well field in this area.

Well MAR-4 vindicated previous opinions expressed by the Survey that wells with yields larger than that obtained from the wells in the present MAR well field could be constructed in the MAR-4 locality. The coefficient of transmissibility of wells in the present MAR well field is not larger than 20,000 gpd/ft; the coefficient of transmissibility of well MAR-4 was computed to be 295,000 gpd/ft (fig. 10). Specifications for production wells to be drilled near well MAR-4 should include provisions for drilling the pilot hole to at least 1,500 feet, and collecting a water sample from total depth to determine the change in water quality at depth. Pipelines should not be constructed prior to the drilling and testing of a proposed production well because the bolson and fan deposits are hetergeneous and the yield of wells a short distance apart may range widely.

The quantity of water yielded by well NW30-1 was average, or better, for a well completed in bolson materials. The coefficient of transmissibility was 130,000 gpd/ft (fig. 12). The quality of water ranged widely with depth. The specific conductance of a sample collected when the well was 352 feet deep was 1,490 micromhos at 25°C; the specific conductance of a sample collected from the interval 620 to 635 feet was 61,600 micromhos. The deterioration of water quality with depth is shown by the conductivity curve on the induction-electric log. From the water level to 300 feet the quality is nearly the same; from 300 to 350 feet the water quality worsens slightly; from 350 feet to total depth, the quality of water becomes steadily worse. The well was cased to 670 feet and the specific conductance of the pumped water was 16,700 micromhos, which suggests that more water was entering the well from the upper perforated sections than from the lower sections. The range in quality with depth also suggests that potable or near-potable water may be obtained from wells drilled higher on the fan slope nearer the recharge If wells are drilled in this area for production, exploration of area. the fan area for water of better quality, and careful selection of producing sections in the wells may result in obtaining water of a quality 10 to 60 times better than that obtained by indiscriminate and arbitrary well-location and completion methods.

References cited

Dane, C. H., and Bachman, G. O., 1965, Geologic map of New Mexico:

U. S. Geol. Survey, scale 1:500,000, 2 sheets.

Davis, L. V., and Busch, F. E., 1968, Summary of hydrologic investigations by the United States Geological Survey at White Sands Missile Range, New Mexico: U. S. Geol. Survey open-file rept., 146 p., 27 figs. BASIC DATA

Table 1.--Results of chemical analysis of water samples collected from Phase I test wells, White Sands Missile Range.

į

Analyses by Geological Survey, United States Department of the Interior

| 4                                           | Anelyses (     | твотовлсат     |                | Survey, United States<br>(parts per million) | tted sta<br>per mill  | tes Lepa<br>ion) | io ineminadau  | the .       | Interior .    | 2           | ÷              |             | :               |
|---------------------------------------------|----------------|----------------|----------------|----------------------------------------------|-----------------------|------------------|----------------|-------------|---------------|-------------|----------------|-------------|-----------------|
| Well number                                 | HTA-1          | HTA-2          | SMR-3          | SMR-3                                        | SPER-3                | SMR-3            | MAR-4          | MAR-4       | MAR-4         | MAR-4       | N-430-1        | T-OSWI      | NJ30-1          |
| Semple interval                             | Total<br>depth | open to<br>169 | open to<br>392 | 707 -<br>742                                 | <i>9</i> 73-<br>1,010 | total<br>screen  | open to<br>430 | 705-<br>740 | 965-<br>1,016 | 436-<br>740 | open to<br>352 | 620-<br>735 | Total<br>screen |
| Date of collection                          | . 8            | 99/91/11       | ,<br>12/16/66  | 99/12/21                                     | 12/30/50              | 1/14/67          | 1/21/67        | 1/23/67     | 1/26/67       | 2/1/67      | 2/12/67        |             |                 |
| Temperature °F                              | 72             | '              | 47             | 51                                           | <u>61</u>             | 79               | 74             | SS          | 92<br>92      | 22 .        | 73             | ŝ           | 78              |
| Silica (SiO <sub>2</sub> )                  | 34             | 24             | <b>1</b>       | 1                                            | 1                     | 24<br>2          | ı              | 1           | 1             | 54          | t              | ١           | 23              |
| Iron (Fe)in.solution                        | ö<br>ö         | .02            | ı              | •                                            | 1                     | 00               | •              | 1           | 1             | .13         | 1.             | ,           | то <b>.</b>     |
| Manganese (Mn)                              | 13             | 1              | '              | 1                                            | 1                     | ١                | ı              | 1           | 1             | . 1         | 1              | 1           | 1               |
| Calcium (Ca)                                | 92             | SS             | <b>1</b>       | ı                                            | T                     | 36<br>8          |                |             |               | 85<br>      | 1              | ۴           | 611             |
| Magnesium (Mg)                              |                | 13             | •              | 1                                            | 1                     | <del>ا</del> تح  | 1              | 1           | T             | 0†          | -              | 1           | 264             |
| Sodium (Na)                                 | .) 53          | ξQ             | 1              | I                                            | 1                     | 33               | I              | •           | 1             | 32          | ·I             | 1           | 5,040           |
| Bicarbonate (HCO <sub>3</sub> )             | . 221          | 238            | <b>1</b>       | 1                                            | -                     | 262              |                |             | •             | 258         | 1              | 1           | 203             |
| Carbonate (CO3)                             | •              | 0              | 1              | •                                            | 1                     | 0                |                |             |               | 0           | -              | •           | 0               |
| Sulfate (SO.)                               | 911            | 115            | 212            | 215                                          | 209                   | 200              | 177            | 178         | 164           | 100         | <u>615</u>     | 2,530       | 777             |
| Chloride (CI)                               | Ω2             |                | 917            | 54                                           | 114                   | 11               | たい             | S<br>S      | 521           |             | 150            | 802, 42     | 5,520           |
| Fluoride (F)                                | +              |                | ,              | 1                                            | -                     | ·5               | 1              | ,           | ,             | 1.          |                | -           |                 |
| Nitrate (NO <sub>3</sub> )                  | - 29           | 55             | ,              | •                                            | ,                     | 2.2              | -              | -           | ,             | 0.0         | '              | ,           | 1.0             |
| Dissolved solids<br>Calculated              | r 68           | T24            | . 1            | • 1                                          | •                     | 573              | 1              | 1           | I             | 215         | ľ              | F.          | 001.01          |
| Residue on evaporation at 180°C.            |                | 476            | ,              | ,                                            | 1                     | 552              | •              |             |               | 024         |                |             | 10.500          |
| Hardness as CaCO3                           | 260            | 250            | 1              | •                                            | •                     | 405              |                |             | •             | 370         | •              | 1           | 2.150           |
| Noncarbonate hardness as CaCO <sub>3</sub>  | - 79           | 65             | 1              | ,                                            | 1                     | 192              | 1              | 1           | 1             | 158         | 1              | 1           | •               |
| Alkalinity as CaCO3                         | •              | 1              | T              | 1                                            | 1                     | 1                | 1              | 1           |               | 1           | -              | -           | •               |
| Specific conductance<br>(micromhos at 25°C) | TTL .          | 746            | . 834          | 60.                                          | 500                   | 896              | 778            | 66 L        | 2,150         | 794         | 067,1          | 61,600      | 16.700          |
| pH                                          | . 7.5          |                | 1              | '                                            | Ļ                     | 7.5              | '              |             | '             | 7.6         |                |             | 7.7             |
| Color                                       | 。              | -              | '              | •                                            | -                     | ,                | s              | '           | 1             | -           | 1              | '           | -               |
|                                             |                |                |                |                                              |                       |                  |                |             | •             |             |                | •           |                 |
|                                             |                |                |                |                                              |                       |                  |                |             |               |             |                |             |                 |

#### Table 2.-- Record of test well HTA-1

Location:  $SW_{h}^{1}SW_{h}^{1}NE_{h}^{1}$  sec. 23, T. 21 S., R. 4 E.

Altitude: 5,018.23 feet.

Depth: (drilled): 250 feet (cased): 82 feet.

Date completed: Test pumped 10-5-66.

Drilling contractor: Boyd and Son Drilling Co., Las Cruces, N. Mex. Drilling method: Cable tool.

Casing and well record: Eight-inch blank casing to 82 feet; open hole from 82 to 250 feet.

Well completion record: Concrete well head set ; well retained for water-level observation.

Formation logs: Sample description (table 3 ) and radioactivity log (fig. 3)

<u>Geologic source</u>: Fractured granitic rock, probably of Precambrian age. <u>Yield</u>: Well pumped at 26 gpm for 8 hours with 18 feet of drawdown. <u>Nonpumping water level</u>: 78.40 feet below land surface datum 10-3-66. Water quality: Potable, see table 1.

50 18,23 78:10

Table 3.-- Sample description log of test well HTA-1

| Material        | Depth Interval<br>(feet) |
|-----------------|--------------------------|
| Sand and gravel | - 0 - 80                 |
| Rock, granitic  | - 80 250                 |

### Table 4.--Record of test well HTA-2

Location:  $SW_{4}^{\perp}SW_{4}^{\perp}SW_{4}^{\perp}$  sec. 11, T. 21 S., R. 4 E

Altitude: 5,437.30 feet.

Depth: (drilled): 189 feet (cased): not

Dates Completed: Drilling stopped 11-21-66

Drilling contractor: Boyd and Son Drilling Co., Las Cruces, N. Mex.

Drilling method: Cable tool

Casing and well record: None

Well completion record: Well filled and abandoned

Formation logs: Sample description (table 5) and radioactivity logs

(fig. 3)

<u>Geologic source:</u> Fractured granitic rock, probably of Precambrian age. Yield: Estimated 1/2 gpm, or less, by bailing.

Nonpumping water level: 77 feet below land surface 11-30-66

Water quality: Potable; see table 1.

5437.30

Table 5 .-- Sample description log of test well HTA-2

| Material        |            | Interval<br>eet) |
|-----------------|------------|------------------|
| Sand and gravel | <b>0</b> 🦸 | 60               |
| Rock, granitic  | 60         | 189              |

### Table 6. -- Record of test well SMR-3

Location:  $SW_{\frac{1}{4}}SW_{\frac{1}{4}}NW_{\frac{1}{4}}$  sec. 34, T. 20 S., R. 5 E.

Altitude: 4,177.89 feet.

Depth (drilled): 1,010 feet (cased): 1,000 feet

Dates completed: Test pumped 1-14-67

Drilling contractor: Boyd and Son Drilling Co., Las Cruces, N. Mex. Drilling method: Hydraulic rotary

Casing and well record: Eight-inch casing to 1,000 feet, 1/8-inch

wide mill-cut slots from 330-355, 380-410, 565-605, 710-730,

770-790 and 925-990 feet.

Well completion record: Concrete well head set; well retained for water level observation

Formation logs: Sample description (table 7) and electric logs (fig. 6) <u>Geologic source</u>: Bolson fill of Quaternary and Tertiary age. <u>Yield:</u> Well test pumped at 212 gpm for 8 hours with 2.18 feet of drawdown. <u>Nonpumping water level</u>: 296.56 feet below land surface datum on 1-14-67.

Water quality: Potable; see table 1.

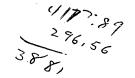



Table 7.-- Sample description log of test well SMR-3

| Material                 | Depth<br>( | Interval<br>feet) |
|--------------------------|------------|-------------------|
| Gravel and some sand     | . 0        | 25                |
| Sand :                   | . 25       | 30                |
| Gravel and some sand     | 30         | 55                |
| Sand                     | 55         | 75                |
| Gravel                   | 75         | 90                |
| Sand                     | 90         | 95                |
| Gravel and some sand     | 95         | 140               |
| Gravel                   | 140        | 200               |
| Gravel and some sand     | 200        | 220               |
| Sand and gravel          | 220        | 225               |
| Gravel                   | 225        | 240               |
| Gravel and some sand     | 240        | 275               |
| Gravel and trace of sand | 275        | 290               |
| Sand and some gravel     | 290        | 295               |
| Gravel                   | 295        | 300               |
| Gravel and some sand     | 300        | 320               |
| Sand and some gravel     | 320        | 325               |
| Gravel and sand          | 325        | 330               |
| Sand                     | 330        | 390               |
| Gravel                   | 390        | 425               |

| Table 7 Sample description log of test well SMR-3 - Concluded |
|---------------------------------------------------------------|
|---------------------------------------------------------------|

| Material               |     | Interval<br>feet) |
|------------------------|-----|-------------------|
| Gravel and sand        | 425 | 435               |
| Sand                   | 435 | 600               |
| Sand and gravel        | 600 | 645               |
| Sand                   | 645 | 740               |
| Sand and clay          | 740 | 760               |
| Sand                   | 760 | 830               |
| Sand and trace of clay | 830 | 855               |
| Sand                   | 855 | 925               |
| Sand and some clay     | 925 | 930               |
| Sand                   | 930 | 935               |
| Sand and gravel        | 935 | 950               |
| Sand and some gravel   | 950 | 1000              |

### Table 8. -- Record of test well MAR-4

Location:  $SW_{\frac{1}{4}}^{\frac{1}{4}}NW_{\frac{1}{4}}^{\frac{1}{2}}SE_{\frac{1}{4}}^{\frac{1}{4}}$  sec. 19, T. 19 S., R. 5 E. Altitude: 4223.39

Depth (drilled): 1,016 feet (cased): 750 feet

Date completed: Test pumped 2-1-67

Drilling contractor: Boyd and Son Drilling Co. Las Cruces, N. Mex. Drilling method: Hydraulic rotary

<u>Casing and well record</u>: Eight-inch casing to 750 feet; 1/8-inch wide mill-cut slots from 436-456, 466-476, 550-570, 600-660, and 720-740 feet.

<u>Well completion record:</u> Concrete well head set; well retained for water level observation.

Formation logs: Sample description (table 9 ) and electric logs (fig. 6 ) Geologic source: Bolson fill of Quaternary and Tertiary age. Yield: Well pumped at 235 gpm for 8 hours with 4.27 feet of drawdown. Nonpumping water level: 303.16 feet below land surface on 2/1/67 Water quality: Potable in upper section, inferior at depth; see table 1.

4223,39 303,16 393

# Table 9.--Sample description log of test well MAR-4

| Material                        |           | Interval<br>feet) |
|---------------------------------|-----------|-------------------|
| Clay and some gravel            | 0         | lÒ                |
| Gravel and some clay            | 10        | 25                |
| Gravel and clay                 | 25        | 30                |
| No sample                       | 30        | 35                |
| Clay and gravel                 | 35        | 50                |
| Gravel and some clay            | 50        | 75                |
| Clay and gravel                 | 75        | 85                |
| Gravel and clay                 | 85        | 95                |
| Gravel, some sand and clay      | <b>95</b> | 105               |
| Sand and gravel                 | 105       | 120               |
| Sand and some gravel            | 120       | 140               |
| Sand and clay                   | 140       | 145               |
| Sand                            | 145       | 155               |
| Sand and some gravel            | 155       | 175               |
| Sand and trace of gravel        | 175       | 190               |
| Gravel and some sand            | 190       | 255               |
| Gravel and clay                 | 255       | 265               |
| Gravel and some clay            | 265       | 275               |
| Gravel, sand, and trace of clay | 275       | 320               |
| Gravel, sand, and clay          | 320       | 325 .             |

| Table | 9Sample | description | log | of | test | well | MAR-4 | Continued, |
|-------|---------|-------------|-----|----|------|------|-------|------------|
|       |         |             |     |    |      |      |       |            |

| Material                             |     | Interval<br>feet) |
|--------------------------------------|-----|-------------------|
| Gravel, some sand, and trace of clay | 325 | 340               |
| Gravel, clay, and some sand          | 340 | 345               |
| Sand and gravel                      | 345 | 380               |
| Sand and some gravel                 | 380 | 430 .             |
| Gravel and sand                      | 430 | μ <sub>1+O</sub>  |
| Sand and gravel                      | 440 | 450               |
| Sand                                 | 450 | 490               |
| Gravel                               | 490 | 535               |
| Gravel, sand, and trace of clay      | 535 | 555               |
| Sand and some gravel                 | 555 | 605               |
| Gravel and sand                      | 605 | 615               |
| Sand and some gravel                 | 615 | 650               |
| Sand and gravel                      | 650 | 665               |
| Sand, gravel, and some clay          | 665 | 680               |
| Sand                                 | 680 | 700               |
| Sand, trace of gravel and clay       | 700 | 715               |
| Sand                                 | 715 | 740               |
| Gravel and sand                      | 740 | 745               |
| Sand and gravel                      | 745 | 770               |
| Sand, gravel, and some clay          | 770 | 785               |
| Sand, gravel and clay                | 785 | 790               |

Table 9.-- Sample description log of test well MAR-4 - Concluded

| Material                   | Depth Interval<br>(feet) |       |
|----------------------------|--------------------------|-------|
| Gravel, sand, and clay     | 790                      | 795   |
| Sand, gravel, and clay     | 795                      | 805   |
| Gravel, sand, and clay     | 805                      | 820   |
| Sand, gravel and clay      | 820                      | 840   |
| Gravel, sand, and clay     | 840                      | 850   |
| Sand, gravel, and clay     | 850                      | 855   |
| Gravel, sand, and clay     | 855                      | 885   |
| Sand, gravel and some clay | 885                      | 890   |
| Gravel, sand, and clay     | 890                      | 910   |
| Sand and gravel            | 910                      | 950   |
| Sand, gravel and clay      | 950                      | 965   |
| Clay, sand, and gravel     | 965                      | 970   |
| Gravel, sand, and clay     | 970                      | 975   |
| Clay, gravel and sand      | 975                      | 990   |
| Sand, gravel, and clay     | 990                      | 1,000 |

## Table 10. - Record of test well NW30-1

Location:  $NW_{\underline{L}}^{\underline{1}}NW_{\underline{L}}^{\underline{1}}NE_{\underline{L}}^{\underline{1}}$  sec. 2., T. 17 S., R. 4 E.

Altitude: 4,139.87 feet.

Depth (drilled): 1,010 feet (cased): 670 feet

Dates completed: Test pumped 2-24-67

Drilling contractor: Boyd and Son Drilling Co., Los Cruces, N. Mex. Drilling method: Hydraulic rotary

- Casing and well record: Eight-inch casing to 670 feet; 1/8-inch wide mill-cut slots from 260-281, 290-298, 374-390, 442-452, 485-500, 520-526, 562-582, 630-654.
- Well completion record: Concrete well head set; well retained for water level observation.

Formation logs: Sample description (table 11 ) and electric logs

(fig.6)

Geologic source: Bolson deposits of Quaternary and Tertiary age.

Yield: Well test pumped at 248 gpm for 8 hours with 30.84 feet of

drawdown.

Nonpumping water level: 211.61 feet.

Water quality: Nonpotable; see table 1 .

4139.37

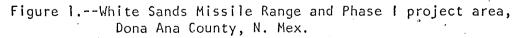
36

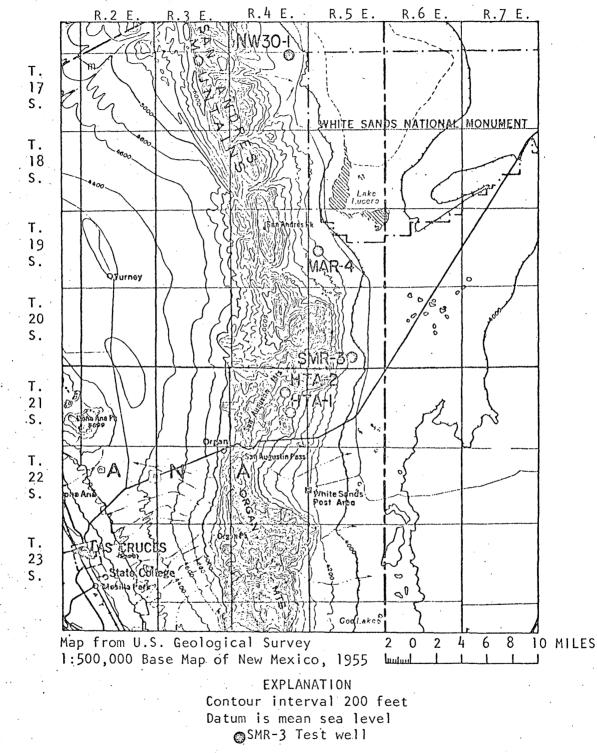
| Material                        |     | Depth Interval<br>(feet) |  |
|---------------------------------|-----|--------------------------|--|
| Gravel and some clay            |     | 30                       |  |
| Sand and gravel                 |     | 50                       |  |
| Clay sand and gravel            | 50  | 55                       |  |
| Sand and gravel                 | 55  | 80                       |  |
| Gravel clay and trace of sand   |     | 90                       |  |
| Gravel sand and trace of clay   | 90  | 95                       |  |
| No sample                       | 95  | 105                      |  |
| Gravel and some sand            |     | 150                      |  |
| Gravel, sand, and trace of clay |     | 165                      |  |
| Gravel, trace of sand and clay  | 165 | 190                      |  |
| Sand and some clay              |     | 225                      |  |
| Sand and gravel                 | 225 | 235                      |  |
| Gravel and sand                 | 235 | 255                      |  |
| Sand and gravel                 | 255 | 275                      |  |
| Sand, some gravel and clay      | 275 | 315                      |  |
| Sand, clay, and gravel          | 315 | 330                      |  |
| Sand, some clay and gravel      | 330 | 350                      |  |
| Gravel, sand and some clay      | 350 | 395                      |  |
| Gravel                          | 395 | 450                      |  |
| Gravel and sand                 | 450 | 470                      |  |

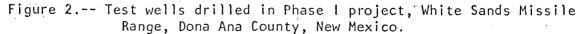
Table 11.--Sample description log of test well NW30-1

37

## test Table 11.-Sample description log of/well NW30-1 -Continued


| Material                            |      | Depth Interval<br>(feet) |  |
|-------------------------------------|------|--------------------------|--|
| Sand and gravel                     | 470  | 480                      |  |
| Gravel and sand                     | 480  | 490                      |  |
| Sand and gravel                     | 490  | 500                      |  |
| Gravel, sand, and some clay         | 500  | 510                      |  |
| Sand and gravel                     | 510. | 515                      |  |
| Gravel, sand, and some clay         | 515  | 520                      |  |
| No sample                           | 520  | 525                      |  |
| Gravel, sand, and trace of clay     | 525  | 550                      |  |
| Gravel, sand, and clay              | 550  | 555                      |  |
| Gravel sand and some clay           | 555  | 565                      |  |
| Sand and gravel                     | 565  | 585                      |  |
| Sand, some clay and trace of gravel | 585  | 590                      |  |
| Sand and gravel                     | 590  | 595                      |  |
| Sand                                | 595  | 600                      |  |
| Gravel, sand and clay               | 600  | 605                      |  |
| Sand, clay, and some gravel         | 605  | 610                      |  |
| Gravel, sand, and some clay         | 610  | 620                      |  |
| Sand, gravel, and some clay         | 620  | 675                      |  |
| Clay, sand and gravel               | 675  | 680                      |  |
| Sand, gravel and clay               | 680  | 700                      |  |
| Sand, some clay and gravel          | 700  | 730                      |  |


38


test Table 11.--Sample description log of/well NW30-1 - Concluded

| Material                    | Depth   | Interval<br>(feet) |
|-----------------------------|---------|--------------------|
| No sample                   | - 730   | 735                |
| Clay, some gravel and sand  | - 735   | 770                |
| Sand, some gravel and clay  | - 770   | 775                |
| Sand, clay and some gravel  | - 775   | 800                |
| Gravel, clay, and some sand | - 800   | 805                |
| Clay, gravel, and sand      | - 805   | 820                |
| Sand, clay and gravel       | - 820   | 830                |
| Clay, sand, and some gravel | - 830   | 855                |
| Sand, clay and some gravel  | - 855   | 920                |
| Sand and some gravel        | - 920   | 965                |
| Clay, sand, and some gravel | - ; 965 | 985                |
| Sand, clay, and some gravel | - 985   | 1,000              |









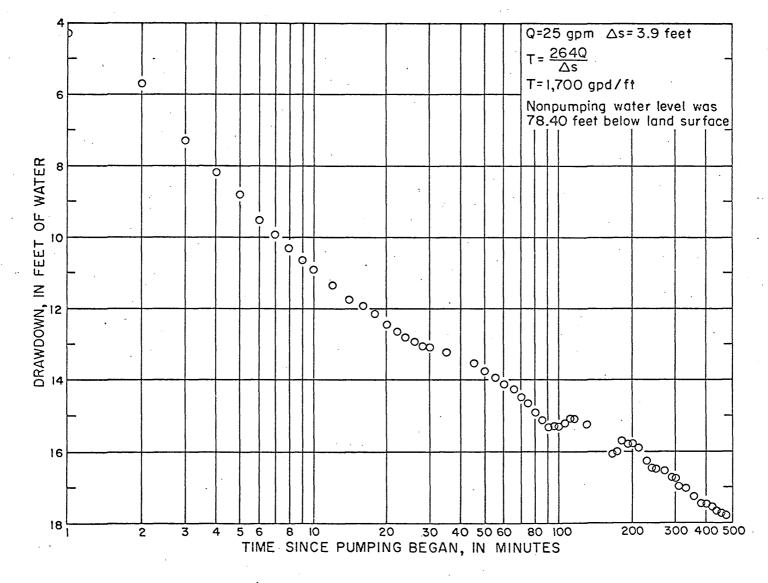



Figure 4.--Drawdown in well HTA-1, Oct. 5, 1966.

Q=25 gpm △s=4 feet - T= <u>264Q</u> ∆s  $\widehat{\ } :$ T=1,700 gpd/ft 2 Nonpumping water level was RESIDUAL DRAWDOWN, IN FEET OF WATER 78.40 feet below land surface 4 0 ° 0 0 0 ' ò 6 O b 0 ò Ö 8 0 0 10 0 12 6 8 10 20 30 4 <u>TIME SINCE PUMPING BEGAN</u> TIME SINCE PUMPING STOPPED 2 3 4 5 6 40 50 60 80 100 200 300 400 500 IN MINUTES

Figure 5.--Residual drawdown in well HTA-1, Oct. 5,1966.

\$ <u>5</u>

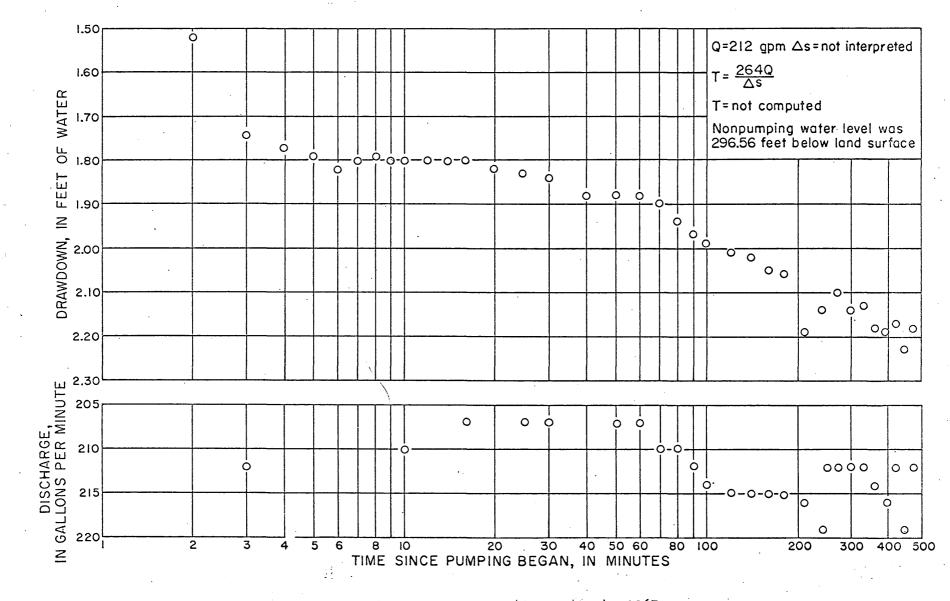
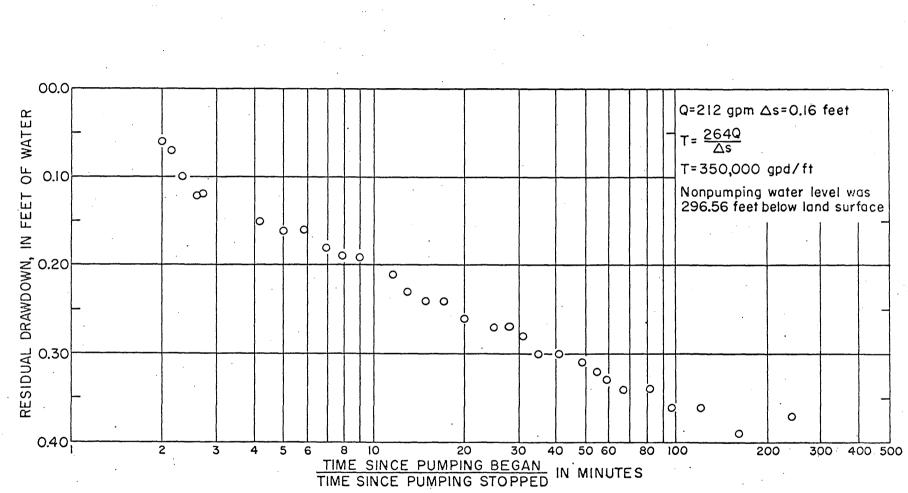
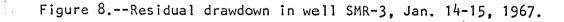





Figure 7.--Drawdown in well SMR-3, Jan. 14, 1967.





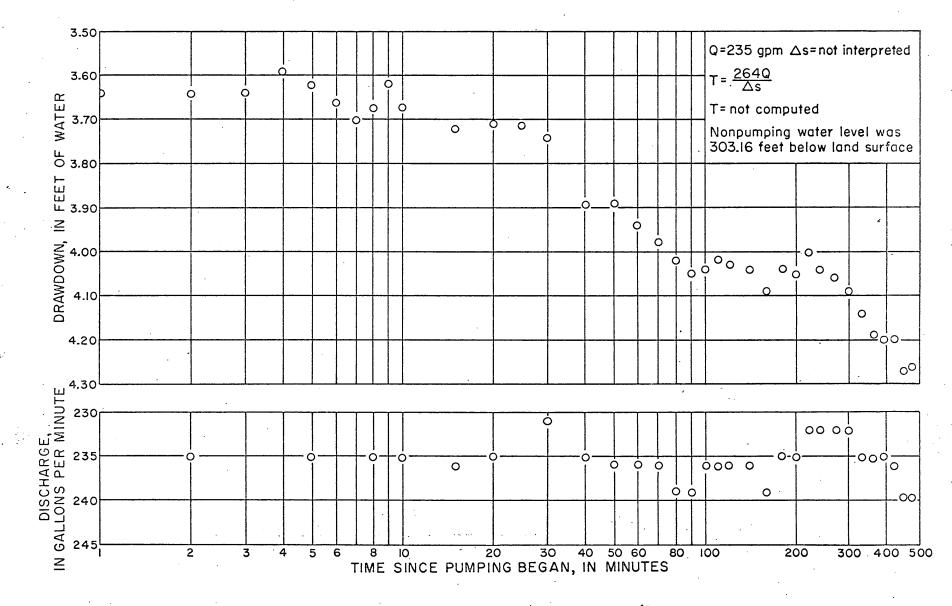



Figure 9,--Drawdown in well MAR-4, Feb. 1, 1967.

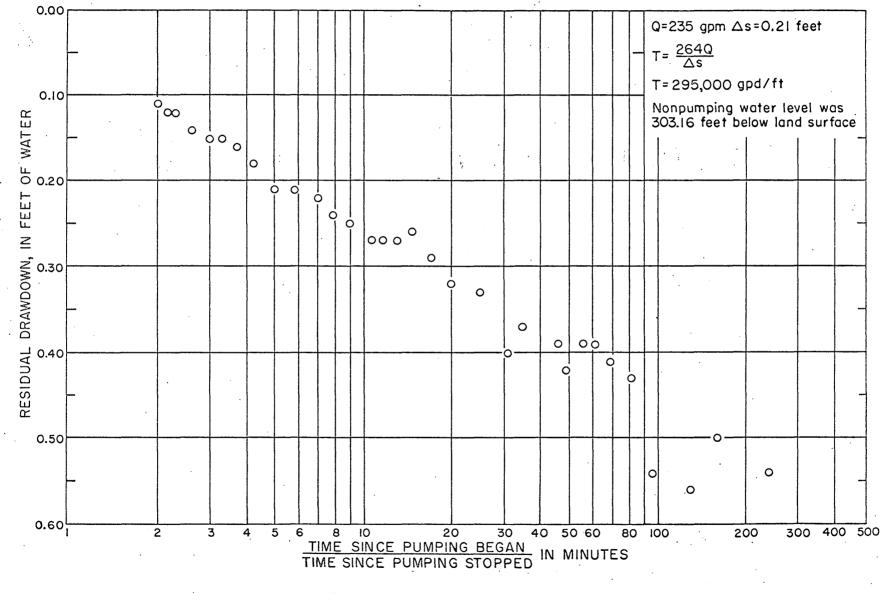



Figure 10.--Residual drawdown in well MAR-4, Feb. 2, 1967.

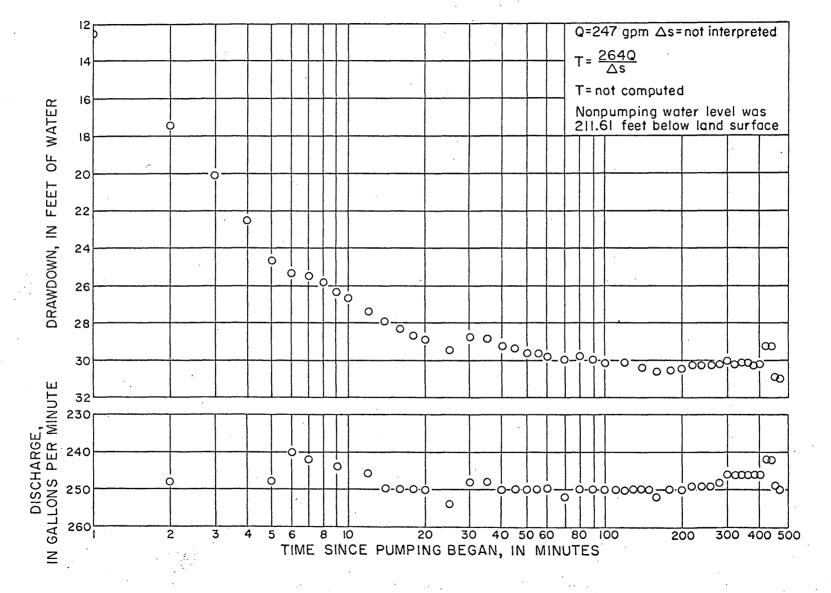
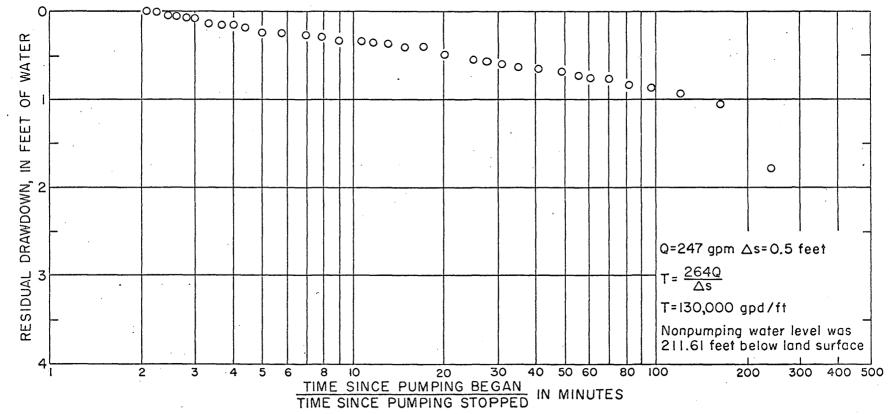
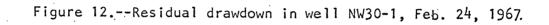





Figure 11.--Drawdown in well NM30-1, Feb. 24. 1967.



