

(200) R290 mo.1051=

3 1818 00082709 5

UNITED STATES

DEPARTMENT OF THE INTERIOR

S. GEOLOGICAL SURVEY

Reports - Open file servis =

National Center for Earthquake Research 345 Middlefield Road Menlo Park, California 94025

TECHNICAL LETTER NCER-9

OPEN FILE REPORT

Pn SPECTRAL VARIATIONS OF THE
GASBUGGY EXPLOSION AT INTERMEDIATE
DISTANCE RANGES*

by

W. H. K. Lee and R. D. Borcherdt

238576

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards. Weld - Int. 2905 (200) R290 no. 1051

U. S. GEOLOGICAL SURVEY V. S. GEO. Washington, D. C.
20242

JUN7 1968

For release JUNE 14, 1968

- The U. S. Geological Survey is releasing in open files the following reports. Copies are available for consultation in the Geological Survey libraries, 1033 GSA Bldg., Washington, D. C. 20242; Bldg. 25, Federal Center, Denver, Colo. 80225; and 345 Middlefield Rd., Menlo Park, Calif. 94025. Copies are available for consultation in other offices as listed:
- 1. Geologic interpretation of infrared imagery of the Pend Oreille area, Idaho, by Jack E. Harrison. 10 p., 6 figs., 1 table. 601 E. Cedar Ave., Flagstaff, Ariz. 86001.
- 2. Character and geologic habitat of potential deposits of water, carbon, and rare gases on the moon, by Donald P. Elston. 25 p., 1 text fig., 4 photographs, 2 tables. 601 E. Cedar Ave., Flagstaff, Ariz. 86001.
- 3. Geologic map of the SE 1/4 Mount Union quadrangle, Yavapai County, Arizona, by P. M. Blacet. Map and explanation (1 sheet), scale 1:24,000. 1012 Federal Bldg., Denver, Colo. 80202; 8102 Federal Office Bldg., Salt Lake City, Utah 84111; 504 Custom House, San Francisco, Calif. 94111; 7638 Federal Bldg., Los Angeles, Calif. 90012. Material from which copy can be made at private expense is available in the Los Angeles office.
- 4. Pn spectral variations of the Gasbuggy explosion at intermediate distance ranges, by W. H. K. Lee and R. D. Borcherdt. 18 p., 10 figs., 1 table.
- 5. Geologic map of the complex of alkalic rocks at Iron Hill, Gunnison County, Colorado, by D. C. Hedlund and J. C. Olson. 1 map, scale 1:12,000. 1012 Federal Bldg., Denver, Colo. 80202; 8102 Federal Office Bldg., Salt Lake City, Utah 84111.
- 6. Reconnaissance geologic map of the east half of the Bend quadrangle, Crook, Wheeler, Jefferson, Wasco, and Deschutes Counties, Oregon, by Donald A. Swanson. Geologic map (scale 1:250,000), tectoric map, cross-section, index, explanation, references. 6 sheets. 678 U.S. Court House Bldg., West 920 Riverside Ave., Spokane, Wash. 99201; 504 Custom House, San Francisco, Calif. 94111; 7638 Federal Bldg., Los Angeles, Calif. 90012; State Dept. of Geology and Mineral Industries, 1069 State Office Bldg., 1400 S.W. Fifth ave., Portland, Oregon 97201. Material from which copy can be made at private expense is available in the Spokane office.
- 7. Preliminary map showing faults in the Blackford quadrangle, western Kentucky, by Dewey H. Amos. 1 map, scale 1:24,000. 710 West High St., Lexington, Ky. 40508; Kentucky Geological Survey, 307 Mineral Industries Bldg., University of Kentucky, 120 Graham Ave., Lexington, Ky. 40506. Material from which copy can be made at private expense is available in the West High St. office.

P_n SPECTRAL VARIATIONS OF THE GASBUGGY EXPLOSION AT INTERMEDIATE DISTANCE RANGES

BY

W. H. K. Lee and R. D. Borcherdt

National Center for Earthquake Research

U.S. Geological Survey, Menlo Park, California

INTRODUCTION

The Project GASBUGGY nuclear explosive of 26-kilotons design yield was detonated on Sunday, December 10, 1967, 1230:00.136 MST, at latitude 36°40'40.4" North and longitude 107°12'30.3" West, about 55 air miles east of Farmington, New Mexico. The U.S. Geological Survey recorded seismic waves generated by the explosion along five lines radiating from the shot site, using truck-mounted seismic-refraction recording systems described by Warrick, et al. (1961), plus other units. The unit impulse response for ground velocity of the recording systems is approximately flat from 2 cps to above 15 cps. A preliminary data report on traveltime and amplitude variations with azimuth and distance was prepared by Warren and Jackson (1968).

The present paper is submitted as a data-analysis report whose primary purpose is to study variations of P_n spectra as a function of distance and azimuth. Seismic records were digitized from 19 stations

in the distance range 300 to 500 kilometers from the shotpoint (Figure I and Table I). Time-series analysis was then applied to the portion of seismic records containing essentially the P_n phase (the first 3 seconds after the first arrival). The results indicated significant variations of P_n spectra from station to station. Following a brief summary of the method of data analysis, the results will be discussed in detail.

DATA ANALYSIS

The first 3 seconds of the seismic records after the first arrival were digitized at a sampling rate of 50 per second, and calibrated such that the data represent absolute ground velocity in μ /sec normalized with zero mean value. The usual method of time-series analysis was then applied as described by Blackman and Tukey (1958). For a time series $X(t_1)$, $X(t_2)$, ..., $X(t_n)$ with zero mean, the autocovariance function at lag ζ is computed by

$$R(j) = \frac{1}{n-j} \sum_{i=1}^{n-j} \chi(t_i) \chi(t_{i+j})$$
 (1)

for $j = 0, 1, 2, \ldots, m$; and $\zeta = j\Delta t$, where $\Delta t = t_1 - t_{1-1}$.

The raw estimate of the spectral density at frequency \boldsymbol{f}_k is obtained by

$$\hat{P}(f_k) = \frac{2 \Delta t}{\pi} \sum_{j=0}^{m} \epsilon(j) R(j) \cos(2\pi f_k j \Delta t)$$
 (2)

where

$$\hat{\varepsilon}(j) = \begin{cases} 1 & 0 < j < m \\ 1/2 & j = 0, m \end{cases}$$

for
$$f_k = \frac{k}{2m\Delta +}$$
, $k = 0, 1, \ldots, m$.

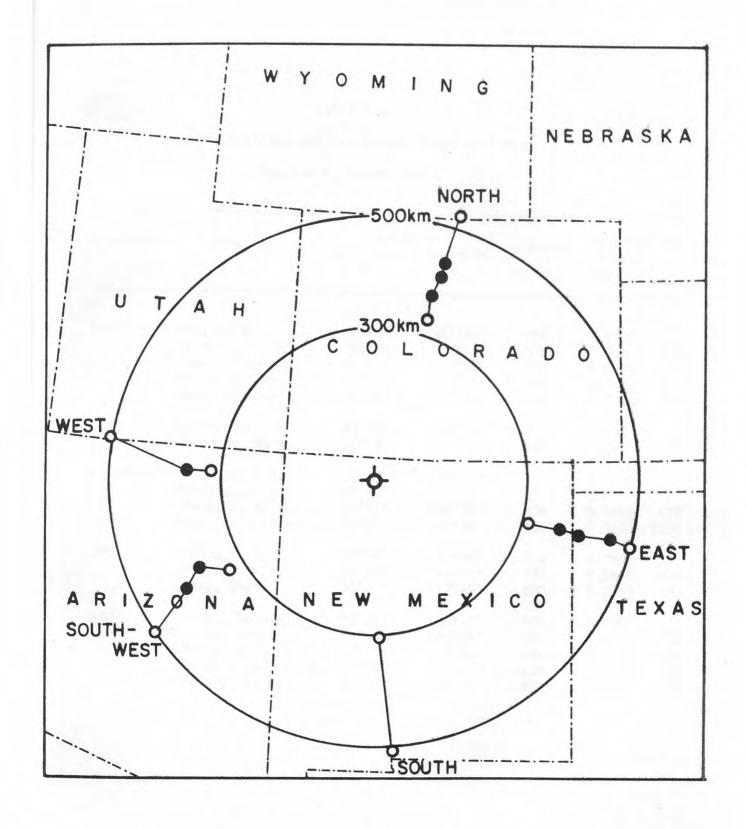


Figure I. Location map for the GASBUGGY nuclear explosion and recording stations.

Table I . Station Locations and Distances, Spectral Energy for the ${\rm P}_{\rm n}$ Phase, and ${\rm Q}$

Direction	Name	Location			Spectral	Q
			Longitude, W	Distance, km	Energy, (µ/sec) ²	
		760071	107054			
EAST	Roy, N. M.	36°03'	103°56'	302	0.0320	1.60
	Rosebud, N. M.	35°52'	103°21'	358	0.0081	160
	Romero, Tex.	35°43'	102°56'	399	0.0010	110
	Channing, Tex.	35°42'	102°23'	447	0.0023	220
	Amarillo, Tex.	35°31'	101°49'	502	0.0014	250
SOUTH	Socorro, N. M.	33°58'	106°571	301	0.0280	
	Mesquite, N. M.	32°12'	106°361	499	0.0012	250
SOUTHWEST	Holbrook, Ariz.	35°06'	110°03'	311	0.8400	
	Winslow, Ariz.	35°041	110°391	359	0.1100	90
	Chevelon, Ariz.	34°371	110°53'	404	0.1100	170
	Sunflower, Ariz.	33°51'	111°26'	496	0.5100	1200
WEST	Shonto, Ariz.	36°36'	110°361	304	0.3700	
	Kaibito, Ariz.	36°331	110°07'	351	0.1400	190
	Kanab, Útah	37°01'	112°49'	502	0.0350	350
NORTH	Climax, Colo.	39°201	106°13'	307	1.3000	
	Dillon, Colo.	39°44'	106°081	351	0.2600	110
	Granby, Colo.	40°03'	105°56'	391	0.1200	140
	Timber Creek, Colo.		105°51'	428	0.0013	70
	Tie Siding, Wyo.	41°02'	105°33'	505	0.0023	120

The raw spectral density estimates are then smoothed by "hamming":

$$P(f_0) = 0.54 \, \hat{P}(f_0) + 0.46 \, \hat{P}(f_1)$$

$$P(f_k) = 0.23 \, \hat{P}(f_{k-1}) + 0.54 \, \hat{P}(f_k) + 0.23 \, \hat{P}(f_{k+1}), \, 0 < k < m$$

$$P(f_m) = 0.54 \, \hat{P}(f_m) + 0.46 \, \hat{P}(f_{m-1}).$$
(3)

Spectra of ground velocity for the P_n phase recorded along five lines of stations are shown in Figures 2 through 6. In each of these figures, the spectral density of ground velocity for the P_n phase is plotted versus frequency. Stations in the same direction are plotted in the same figure to show the spectral variations as a function of distance. Dominant peaks in the spectra fall mostly between 3 to 5 cps. In general, the maximum spectral density decreases as the distance increases from the shotpoint. A notable exception is station Sunflower at 500 km where the maximum spectral density is almost the same as for station Holbrook at 300 km.

Spectra of ground velocity for the P_n phase recorded at distances of 300 and 500 kilometers from the shotpoint are plotted in Figures 7 and 8 to show the spectral variations as a function of azimuth. At 300 km the maximum spectral density for the north, west, and southwest is larger by a factor of about 30 than that for the east and south. At 500 km the maximum spectral density is highest toward the southwest, decreases by a factor of about 20 toward the west, and decreases by an additional factor of about 10 toward the north, east, and south.

Spectra of all the stations show the spectral energy is concentrated between 2 and 8 cps and becomes insignificant beyond 10 cps.

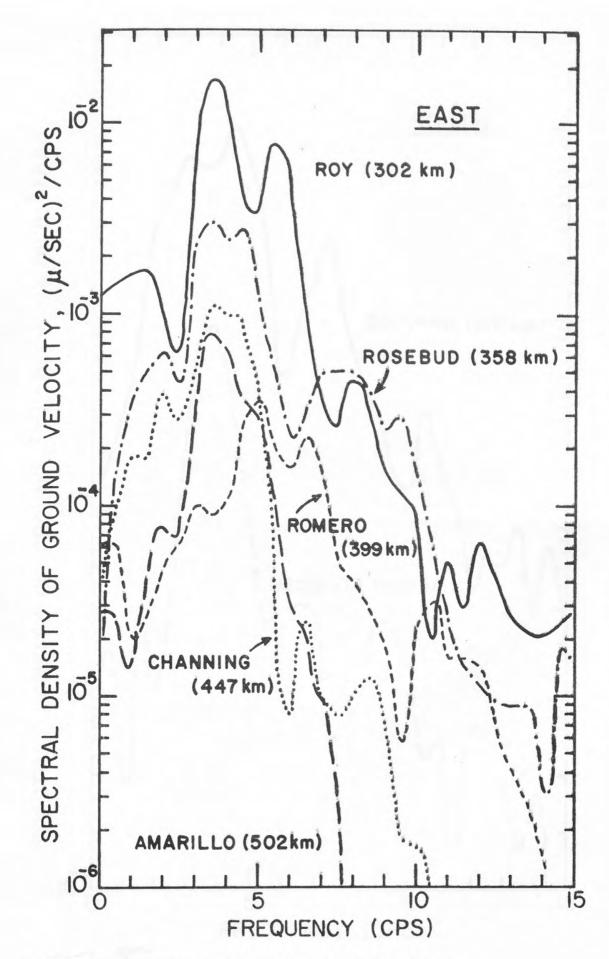


Figure 2. P_n spectral variations along the east line.

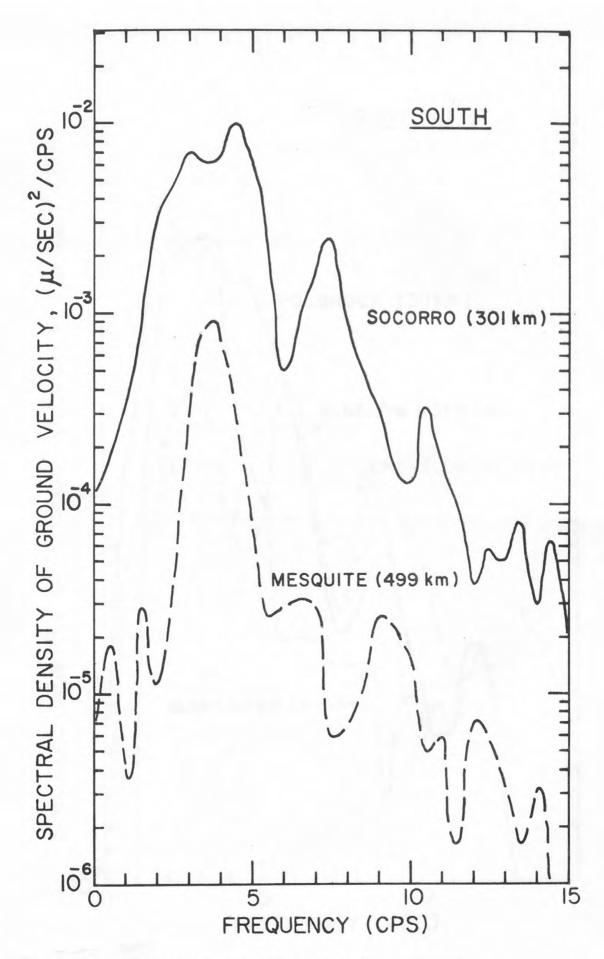


Figure 3. P_n spectral variations along the south line.

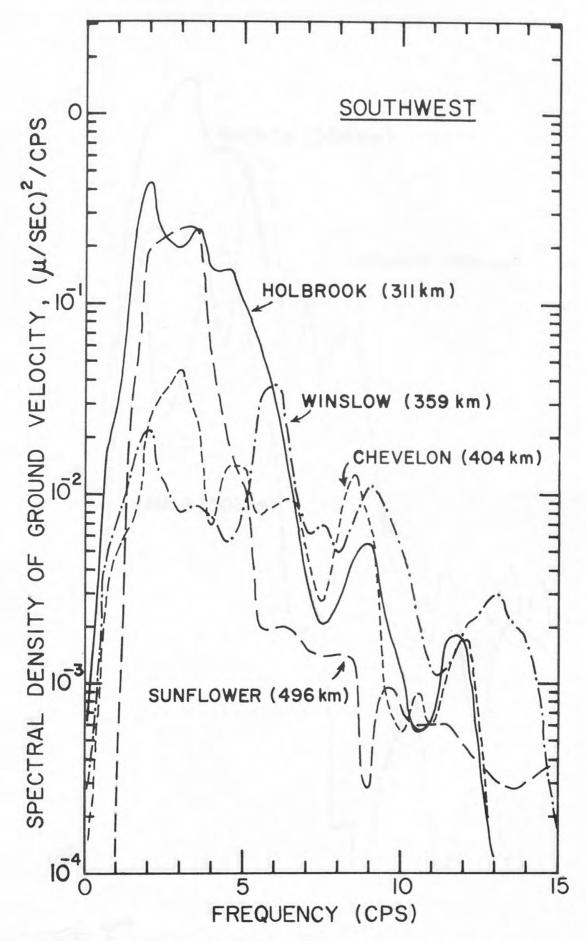


Figure 4. Pn spectral variations along the southwest line.

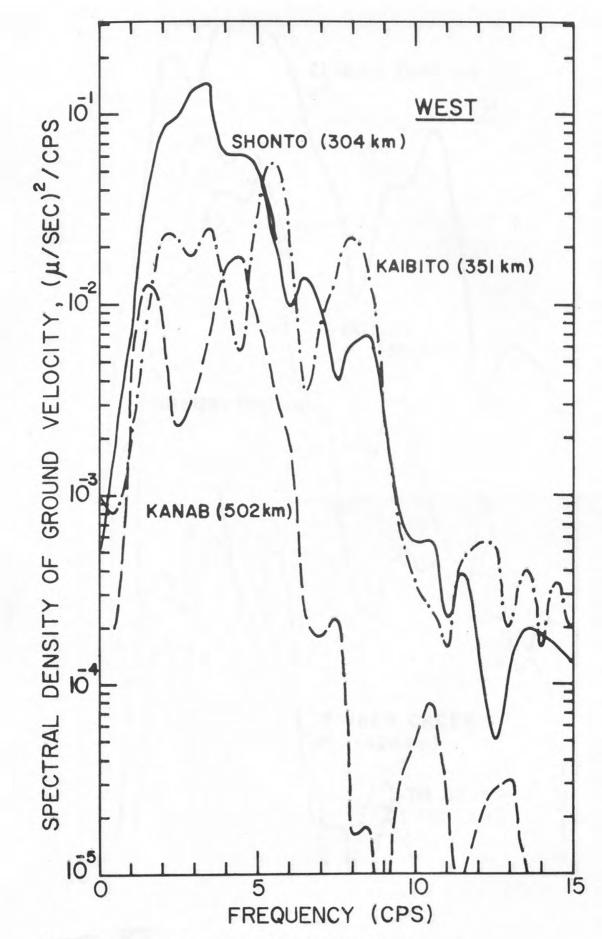


Figure 5. P_n spectral variations along the west line.

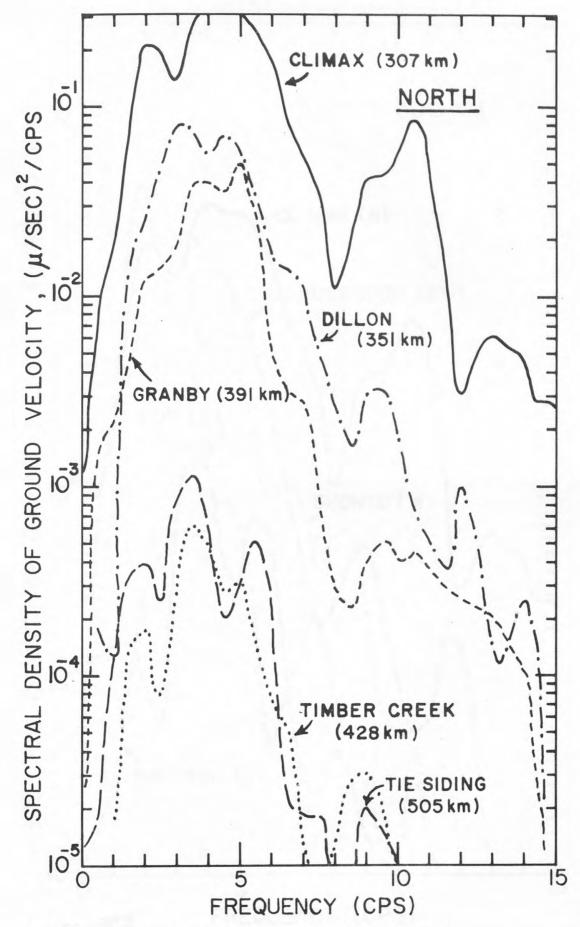


Figure 6. P_n spectral variations along the north line.

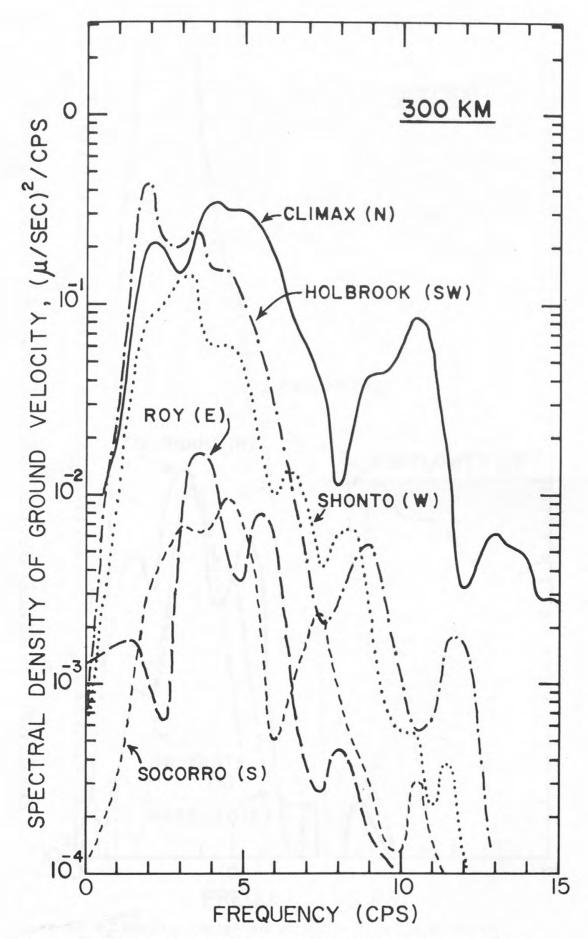


Figure 7. P_n spectral variations at 300 km from the shotpoint.

The spectral energy of ground velocity can therefore be obtained by integrating the spectral density from 2 to 10 cps:

$$E = \int_{2}^{10} P(f) df \tag{4}$$

The results are tabulated in Table I. Spectral energy is plotted against distance in Figure 9, and a contour map of iso-spectral energy is shown in Figure IO. These figures show that the spectral energy is about 2 orders of magnitude higher for the southwest and west than for the east and south. The spectral energy along the north line is similar to the southwest and west lines for the distance interval 300 to 400 km, but is similar to the east and south lines from 400 to 500 km.

Attenuation of the P_n phase can be studied by calculating the Q values between pairs of stations. The dimensionless quantity, Q, is the reciprocal of the specific attenuation factor (Knopoff, 1964) and is defined by Gutenberg (1958) as:

$$Q = \frac{\pi}{kTV} , \qquad (5)$$

where

k = the coefficient of absorption

T = period of the seismic wave

V = seismic velocity.

The absorption coefficient k is defined by

$$\frac{A_1}{A_2} = e^{-k (D_1 - D_2)}, (6)$$

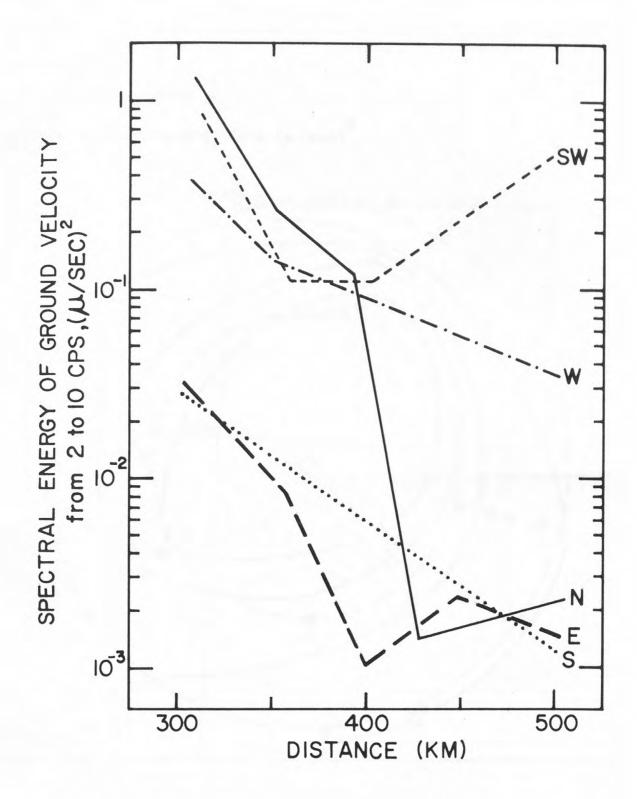


Figure 9. Spectral energy of ground velocity from 2 to 10 cps for the $P_{\rm n}$ phase as a function of distance along the five lines of recording.

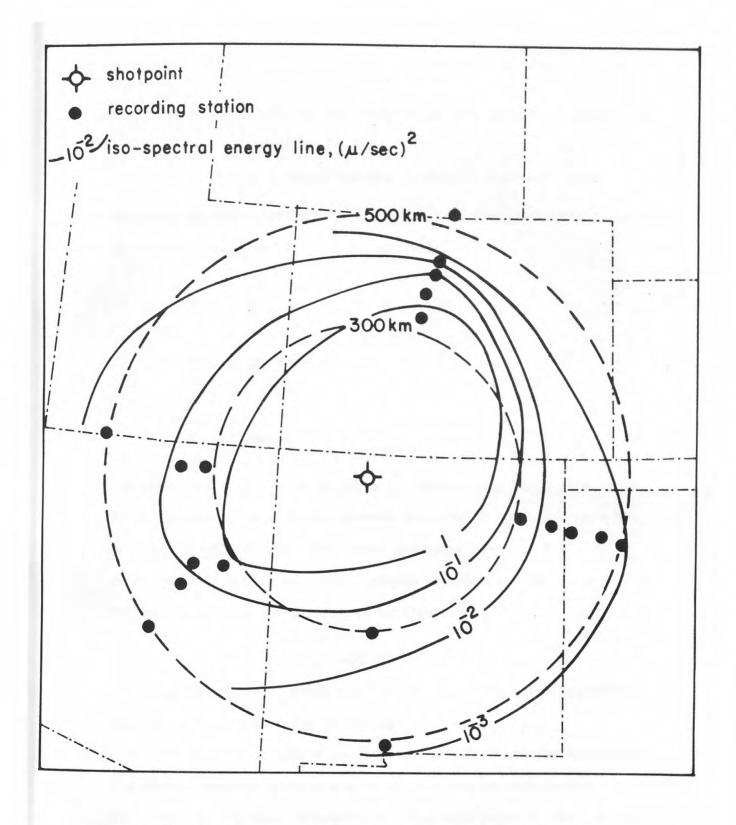


Figure 10. Contour map of spectral energy of ground velocity from 2 to 10 cps for the $P_{\rm n}$ phase.

where

 A_1/A_2 = ratio of amplitude of seismic wave at location 1 to location 2

 $D_1 = D_2 = distance$ between location I and location 2.

For rough estimates of \mathbb{Q} , we use the spectral energy of ground velocity for the \mathbb{P}_n phase from 2 to 10 cps so that:

$$\frac{A_1}{A_2} = \sqrt{\frac{E_1}{E_2}} ,$$

$$T \simeq \frac{1}{5 \text{ cps}} = 0.2 \text{ sec}$$
,

and

$$V \simeq 8 \text{ km/sec}$$
 (7)

The results are tabulated in Table I. Values of Q range from about 70 to 350 and agree with the general estimate of 60 to 450 made by Anderson (1966) for the lower crust and upper mantle. The only exception is the Q value (1200) between Holbrook and Sunflower. This may be due to local conditions at Sunflower.

CONCLUSIONS

Studies on the ${\rm P}_{\rm n}$ phase recorded at 19 stations for the GASBUGGY nuclear explosion show the following:


(1) Spectra of ground velocity differs from station to station.


The gross characteristics are similar, but the maximum spectral density may differ by 3 orders of magnitude. Dominant peaks in the spectra are mostly between 3 and 5 cps.

- (2) There is a general decrease in the spectral energy as distance increases from the shotpoint. Spectral energy is strongly dependent on the azimuth, being two orders of magnitude higher toward the southwest and north than toward the east and south.
- (3) A contour map of iso-spectral energy indicates that attenuations of seismic waves is higher in the east and south than in the west and southwest. This result is consistent with the heat-flow measurements showing higher heat flow toward the southeast than toward the northwest (John Sass, personal communication).
- (4) The reciprocal of specific attenuation factor, Q, was estimated from the spectral energy ratios between pairs of stations. Values of Q (70 to 350) are consistent with the general range estimated for the lower crust and upper mantle.

REFERENCES

- Anderson, D. L., 1966, Earth's viscosity: Science, v. 151, p. 321-322.
- Blackman, R. B., and Tukey, J. W., 1958, The measurement of power spectra: New York, Dover Publications.
- Gutenberg, B., 1958, Attenuation of seismic waves in the earth's mantle: Bull. Seis. Soc. America, v. 48, p. 269-282.
- Knopoff, L., 1964, Q: Reviews of Geophys., v. 2, p. 625-660.
- Warren, D. H., and Jackson, W. H., 1968, Surface seismic measurements of the project GASBUGGY explosion at intermediate distance ranges: U.S. Geol. Survey open-file report.
- Warrick, R. E., Hoover, D. B., Jackson, W. H., Pakiser, L. C., and Roller, J. C., 1961, The specification and testing of a seismic-refraction system for crustal studies: Geophysics, v. 26, p. 820-824.

