UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Albuquerque, New Mexico	SUMMARY RECORDS OF TEST AND SUPPLY WELLS IN RANGE AREAS, WHITE SANDS MISSILE RANGE, NEW MEXICO By	James B. Cooper Open-file report	Prepared by the U.S. Geological Survey in cooperation with White Sands Missile Range	OFR: 73-49 February 1973		
	U.S. WRI 505 ALB	GEOLO D, LIBR MARC UQUER	DGICA ARY QUETTE QUE,	L SURV NW, I N.M. 87	ey RM 72 7102	0

一環

È,

SUS ALBUCATER N.M. PORT

.

. . . 0

• . 2

.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Albuquerque, New Mexico

SUMMARY RECORDS OF TEST AND SUPPLY WELLS IN RANGE AREAS,

WHITE SANDS MISSILE RANGE, NEW MEXICO

By

James B. Cooper

U.S. GEOLOGICAL SURVEY WRD, LIBRARY 505 MARQUETTE NW, RM 720 ALBUQUERQUE, N.M. 87102

Open-file report

Prepared by the U.S. Geological Survey in cooperation with White Sands Missile Range

February 1973

CONTENTS

	Page
INTRODUCTION	9
SUMMARY OF DATA	10
Gregg Site	15
Hazardous Test Area	22
Small Missile Range	•
MAR well-field area	46
NW30 Tracking Station area	65
Rhodes Canyon area	70
Mockingbird Gap area	
Red Canyon Range Camp area	87
North Óscura Peak area	93
Stallion Range Center area	10 15 st Area 15 st Area 22 e Range 28 1d area 28 1d area 46 g Station area 65 n area 65 n area 70 Gap area 75 ange Camp area 87 Peak area 93 ge Center area 100 pache Grant 115
Bosque del Apache Grant	115
REFERENCES CITED	131

ILLUSTRATIONS

		Page
Figure	1Index map showing areas where test and supply	
	wells have been drilled	11
	2Construction and lithology of Gregg supply well	19
	3Hydrograph of Gregg supply well	20
	4Construction and lithology of test well HTA-1	24
•	5Hydrograph of test well HTA-1	25
•	6Construction and lithology of supply well SMR-1	30
	7Hydrograph of supply well SMR-1	31
1000 - 1000 1000 1000	8Construction and lithology of test well SMR-2	34
	9Hydrograph of test well SMR-2	35
. · · .	10Construction and lithology of test well SMR-3	37
, , -	11Hydrograph of test well SMR-3	38
	12Construction and lithology of test well SMR-4	40
• .	13Hydrograph of test well SMR-4	41
•	14Construction and lithology of test well MAR-1	48.
	15Hydrograph of test well MAR-1	49
	16Construction and lithology of test well MAR-4	53
1.	17Hydrograph of test well MAR-4	54
	18Construction and lithology of supply well MAR-1	59
	19Hydrograph of supply well MAR-1	60
	20Construction and lithology of supply well MAR-2	62
	21Hydrograph of supply well MAR-2	63
	22Construction and lithology of test well NW30-1	67
	23Hydrograph of test well NW30-1	68

3,

ILLUSTRATIONS - Concluded

		Page
Figure	24Construction and lithology of Murray test	
	well 1	78
1. 1	25Hydrograph of Murray test well 1	- 79
	26Construction and lithology of Murray supply well	83
	27Hydrograph of Murray supply well	84
	28Construction and lithology of supply well	
· .	Red Canyon 1	89
•	29Construction and lithology of supply well	
•	Red Canyon 2	91
	30Construction and lithology of test well	
. *	A. F. Baca	95
	31Construction and lithology of Baca test well	97
	32Construction and lithology of test well	
	Stallion 1	102
·· •·	33Construction and lithology of supply well SRC-1	107
	34Hydrograph of supply well SRC-1	108
	35Construction and lithology of supply well SRC-2	112
	36Hydrograph of supply well SRC-2	113
	37Construction and lithology of test well B-1	117
	38Construction and lithology of test well B-5	123
	39Construction and lithology of test well B-7	128
	40Hydrograph of test well B-7	129

		Page
Table	1Summary record of Gregg test well	16
	2Chemical analyses of water samples from Gregg	
	test well	17
	3Summary record of Gregg supply well	18
	4Chemical analyses of water samples from Gregg	. •
	supply well	21
• *	5Summary record of test well HTA-1	23
	6Summary record of test well HTA-2	26
	7Chemical analyses of water samples from test	
• .	wells HTA-1 and 2	27
	8Summary record of supply well SMR-1	29
	9Chemical analyses of water samples from supply	·
,	well SMR-1	32
•	10Summary record of test well SMR-2	33
	11Summary record of test well SMR-3	36
	12Summary record of test well SMR-4	39
	13Summary record of test well SMR-5	42
a Ali ang	14Chemical analyses of water samples from test wells	
	SMR-2, 3, 4, and 5	43
	15Summary record of test well MAR-1	47
	16Summary record of test well MAR-2	50
	17Summary record of test well MAR-3	51
	18Summary record of test well MAR-4	52

TABLES

TABLES - Continued

		Page
Table	19Chemical analyses of water samples from test wells	
	MAR-1, 2, 3, and 4	55
	20Summary record of supply well MAR-1	58
	21Summary record of supply well MAR-2	61
	22Chemical analyses of water samples from supply	
	wells MAR-1 and 2	64
• .	23Summary record of test well NW30-1	66 🧲
	24Chemical analyses of water samples from test well	
	NW30-1	69
	25Summary record of test well RC-1	71
	26Summary record of test well RC-2	72
• • • •	27Summary record of test well RC-3	73
• .	28Chemical analyses of water samples from test wells	•
	RC-1, RC-2, and RC-3	74
	29Summary record of test well MacDonald 2	76
	30Summary record of Murray test well 1	77
•	31Summary record of Murray test well 2	80
	32Chemical analyses of water samples from Murray	· .
	test wells 1 and 2	81
	33Summary record of Murray supply well	82
	34Chemical analyses of water samples from Murray	•
• • ·	supply well	85
	35Summary record of supply well Red Canyon 1	88
	36Summary record of supply well Red Canyon 2	90

TABLES - Continued

		Pag
Table	37Chemical analyses of water samples from supply	· ·
	wells Red Canyon 1 and 2	92
· ·	38Summary record of test well A. F. Baca	94
· · · ·	39Summary record of Baca test well	96
	40Chemical analyses of water samples from A. F. Baca	
	and Baca test wells	98
· ·	41Summary record of Air Force test well	.99
•	42Summary record of test well Stallion 1	101
•	43Summary record of test well Stallion 2A	103
	44Summary record of test well Stallion 3	104
	45Chemical analyses of water samples from test wells	- `
•	Stallion 1, 2A, and 3	10
	46Summary record of supply well SRC-1	10
·	47Chemical analyses of water samples from supply	
	well SRC-1	10
	48Summary record of supply well SRC-2	11
	49Chemical analyses of water samples from supply	
	well SRC-2	11
•	50Summary record of test well B-1	11
	51Chemical analyses of water samples from test	
	well B-1	11
	52Summary record of test well B-2	
	53Summary record of test well B-3	12
	54Summary record of test well B-4	12
	JT. Dummary record of lest werr D-4	12

TABLES - Concluded

		Page
Table	55Summary record of test well B-5	122
•	56Chemical analyses of water samples from test	
	well B-5	124
•	57Summary record of test well B-6	125
•	58Chemical analyses of water samples from test wells	
	B-2, B-3, B-4, and B-6	126
	59Summary record of test well B-7	127
	60Chemical analyses of water samples from test	
	well B-7	130

SUMMARY RECORDS OF TEST AND SUPPLY WELLS IN RANGE AREAS, WHITE SANDS MISSILE RANGE, NEW MEXICO

By

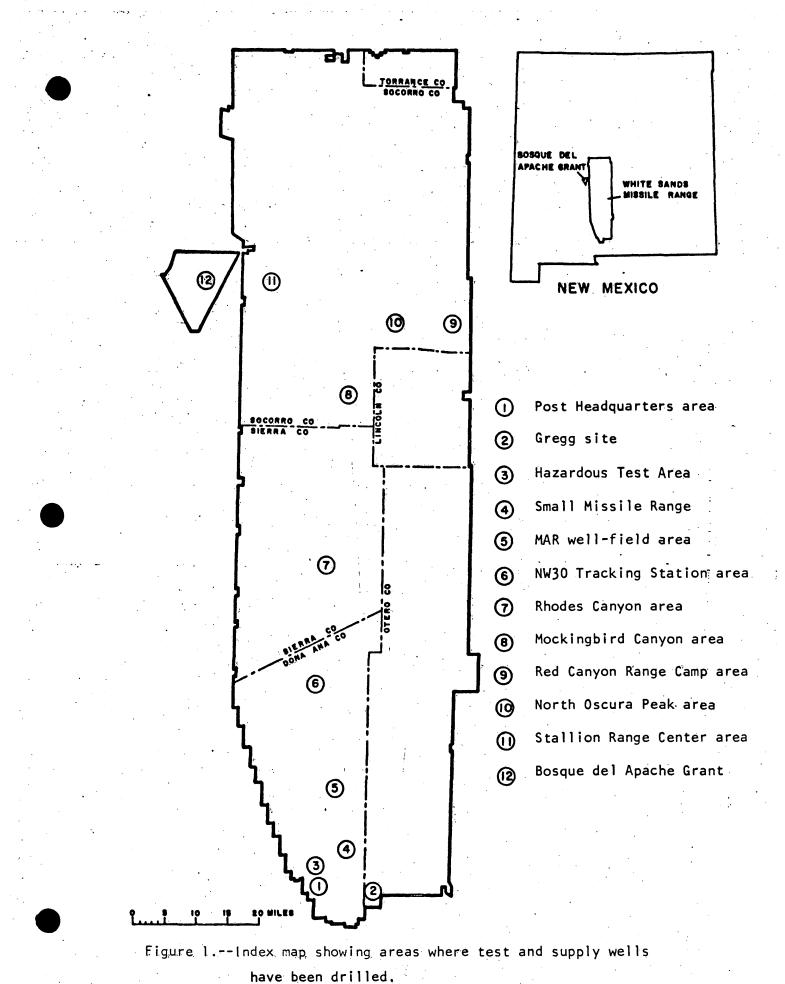
James B. Cooper

INTRODUCTION

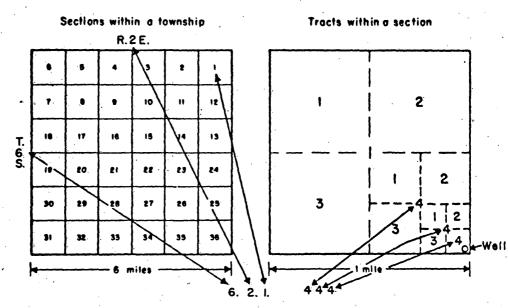
White Sands Missile Range and the U.S. Geological Survey, since 1953, have had a nearly continuous cooperative program for the investigation of the water resources of the Missile Range. Geological Survey personnel studied the geology and ground water at a number of locations on and near the range, observed the drilling and construction of several test and supply wells, and conducted aquifer tests on some wells. The results of these studies and observations are contained in a series of reports that have been released to the open file.

The purpose of this report is to summarize in one source the data that have been collected during the drilling, construction, testing, water sampling, and water-level measurement of test and supply wells in areas on the Missile Range, exclusive of the Post Headquarters area, and in the Bosque del Apache Grant. Data pertaining to wells in the Post Headquarters area are given in a separate report (Cooper, 1970).

9.


SUMMARY OF DATA

The location of range areas where wells have been drilled is shown on figure 1. Summary records of these wells, diagrams showing the construction and lithology of wells drilled for water supply and test wells completed as observation wells, chemical analyses of water samples collected from the wells, and hydrographs of wells where periodic water-level measurements have been made, are contained in tables 1-60 and shown on figures 2-40.


Explanation of the various items of data listed in the tables of summary records is given below.

Location: Established from U.S. Geological Survey topographic maps. USGS No: Wells are located and numbered according to the system

> of common subdivision of sectionized land used throughout the State by the U.S. Geological Survey. The number of each well consists of four segments separated by periods and locates the position to the nearest 10-acre tract of land. The segments denote, respectively, the township south of the New Mexico base line, the range east of the New Mexico principal meridian, the section, and the particular 10-acre tract within the section.

The fourth segment of the number consists of three digits denoting, respectively, the quarter section or approximate 160-acre tract, the quadrant (approximately 40 acres in size) of the quarter section, and the quadrant (approximately 10 acres in size) of the 40-acre tract in which the well is located. The -system of numbering quarter sections and quadrants, which is done in reading order, as well as the usual numbering of sections within a township is shown. below. The example given, 6.2.1.444, thus denotes a well in the SE4SE4SE4 sec. 1, T. 6 S., R. 2 E. The letter "a" is added to the last segment of a well number to denote a second well located within the same 10-acre tract or quadrant. When a well can be located only within 40 or 160 acres, either the last or the last two digits of the fourth segment are zeros.

Latitude and longitude: Established from U.S. Geological Survey topographic maps.

<u>Altitude</u>: Altitude, in feet, of land surface at well. Altitudes interpolated from U.S. Geological Survey topographic maps are given to nearest foot. Altitudes established by Corps of Engineers Survey are given to nearest hundredths of a foot.

Depth: Depth is in feet below land surface.

Casing and hole record: Pipe diameters (unless otherwise noted)

refer to nominal inside diameter up to 12 inches. Diameters greater than 12-inch refer to outside diameter of pipe. Hole diameters refer to outside diameter of bit used to drill the hole. All depths are in feet below land surface.

.

Yield: Data are for first pump test, or bailing test of record, usually upon completion of the well. Yields are in gpm (gallons per minute). Drawdown is the measured distance, in feet, between the nonpumping water level and the pumping water level.

Nonpumping water level: Figure given is for first measurement of

record. Measured depths are given to nearest tenth of a foot. Reported depths are given to nearest foot. Depths are in feet below land surface.

Chemical quality: Data are for first analysis of record. Includes available data on samples collected during drilling of the well and when the well was first test pumped. Conductance refers to specific conductance, which is a measure of the ability of the water to conduct an electric current. Conductance increases as mineral constituents in the water increase. Conductance is reported in micromhos per centimeter at 25°C. Sulfate and Chloride are reported in mg/1 (milligrams per liter). Date refers to date of field collection of the sample.

Formation logs: Various types of well logs made for the well. These logs are in the report reference for the well, or are in the open files of the Geological Survey. Albuquerque, N. Mex.

Geologic source: Formation that yields water to the well, or formation tested in unsuccessful wells. Reference: Detailed information on the well is contained in the

listed report reference. See "REFERENCES CITED" in text.

Gregg Site

Table 1.--Summary record of Gregg test well

Gregg Site White Sands Missile Range Otero County, New Mexico

LOCATION:SE4NW4SE4 sec. 8, T. 22 S., R. 6 E.USGS No. 22.6.8.414LATITUDE:32°24'19"LONGITUDE:106°20'48"DEPTH:Drilled to 1,010 feet; finished
at 500 feetALTITUDE:4,020 feetDATE COMPLETED:September 1961DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Boyd and Son Drilling Co., Las Cruces, N. Mex.

CASING AND HOLE RECORD: Cemented 13¹/₂-inch pipe in 18-inch hole from 0 to 38 feet; 8-inch casing 0 to 500 feet, torch-cut slots from 265-280, 290-360, 390-410, 425-465, and 480-500 feet; pipe set in 13-inch hole, removed upon completion of well.

YIELD: Well test pumped at 175 gpm for 8 hours with 12.8 feet of drawdown.

NONPUMPING WATER LEVEL: 213.2 feet on 9-7-61

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/1)	
	281-300	8,890	4,910	350	8-18-61
	Total screen	14,900	8,730	708	9- 7-61

FORMATION LOGS: 1) Sample description; 2) Induction-electrical

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Well plugged and abandoned

REFERENCE: Hood, 1968

Table 2 .-- Chemical analyses of water samples

from Gregg test well

Analyses by U.S. Geological Survey [Constituents in milligrams per liter except pH, color, and as indicated]

		يسيد المعديقي والمتعادي		······································	
Date of collection	8-8-61 <u>1</u> /	9-7-61 <u>2</u> /			
Silica (SiO ₂)	35	40			,
Iron (Fe) Calcium (Ca))	- 455			
Magnesium (Mg)		435			
Sodium (Na) Potassium (K)	1,900	3,340			
Bicarbonate (HCO ₃) Carbonate (CO ₃)		317 0			
Sulfate (S04)	4,910	8,730			
Chloride (Cl) Fluoride (F)	1.5	708 6.4			
Nitrate (NO ₃) Dissolved solids	4.1	.3	•	• *	
Calculated	1. T	13,900 14,300			
Residue on evaporation at 180°C . Hardness as CaCO ₃	1,640	3,100			
Noncarbonate hardness as CaCO ₃ Specific conductance	1,480	2,840			
(micromhos at 25°C)	8,890 8.2	14 , 900 7.4			
Color	-	-			
Temperature (°C)	-	- -			

 $\frac{1}{2}$ Collected through packer from depths of 281-300 feet.

Collected during pumping test on cased well.

<u>2</u>/

Table 3.--Summary record of Gregg supply well

Gregg Site White Sands Missile Range Otero County, New Mexico

LOCATION: SEXNW2SE2 sec. 8, T. 22 S., R. 6 E. USGS No. 22.6.8.414a

LATITUDE: 32°24'19" LONGITUDE: 106°20'48"

DEPTH: 478 feet

ALTITUDE: 4,020 feet

DATE COMPLETED: October 1961 DRILLING METHOD: Hydraulic rotary

DRILLING CONTRACTOR: Boyd and Son Drilling Co., Las Cruces, N. Mex.

CASING AND HOLE RECORD: Fourteen-inch pipe to 478 feet, torch-cut slots from 265-280, 290-360, 390-410, and 425-465 feet; gravel pack around pipe in 27 3/4-inch hole.

YIELD: Well test pumped at rates of 440 to 760 gpm for 11 hours with 60 feet of drawdown.

NONPUMPING WATER LEVEL: 218.0 feet on 10-30-61

CHEMICAL	Depth interval	Conductance		Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/1)	
	Total screen	15,000	8,830	744	10-30-61

FORMATION LOGS: See Gregg test well

GEOLOGIC SOURCE: See Gregg test well

USE AND REMARKS: Experimental use for flooding land surface to obtain cooling effect to suppress heat waves around an optical tracking station. Gregg supply well drilled about 4 feet south of Gregg test well.

REFERENCE: Hood, 1968

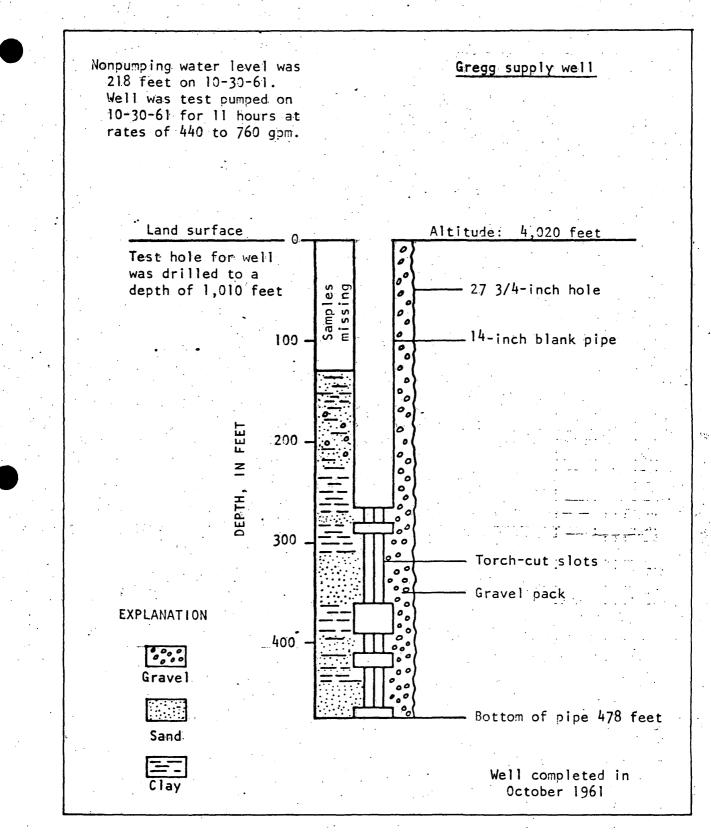
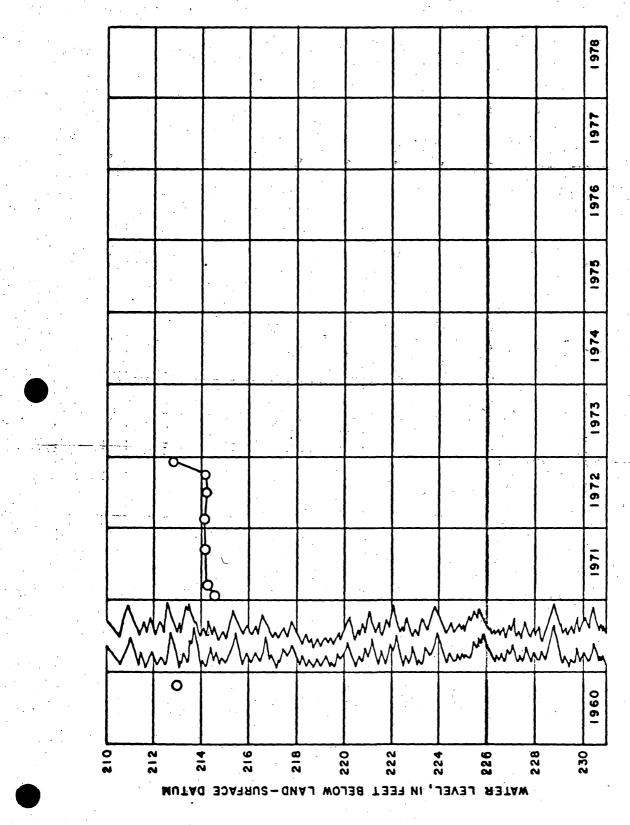



Figure 2.--Construction and lithology of Gregg supply well.

Flgure 3.--Hydrograph of Gregg supply well

Table 4.--Chemical analyses of water samples

from Gregg supply well

Analyses by U.S. Geological Survey

[Constituents in milligrams per liter except pH, color, and as indicated]

					· · ·	
Date of collection	10-30-61 <u>1</u> /		•			
				. •		
Silica (SiO ₂)	-					ŀ
Iron (Fe)		·				
Calcium (Ca)	-		-			
Magnesium (Mg)	_	· .				
Sodium (Na)						
Potassium (K)			-			
Bicarbonate (HCO ₃)	318			•		
Carbonate (CO ₃)	0			-	- 	
Sulfate $(SO_4)^-$		•				
Chloride (Cl)	744				696	
Fluoride (F)	_	. •				
Nitrate (NO ₃)	_			•		
Dissolved solids						
Calculated			•	· .	$\sim 10^{-1}$	
Residue on evaporation at 180°C .	_	•				
Hardness as CaCO ₃	3,170					
Noncarbonate hardness as CaCO ₃	2,910					
		-				
Specific conductance (micromhos at 25°C)	15,000					
		•				
pH Color	7.4					
Temperature (°C)	26					
temperature (0)	20					

 $\frac{1}{2}$ Collected during pumping test on cased well.

Hazardous. Test Area

22.

Table 5.--Summary record of test well HTA-1

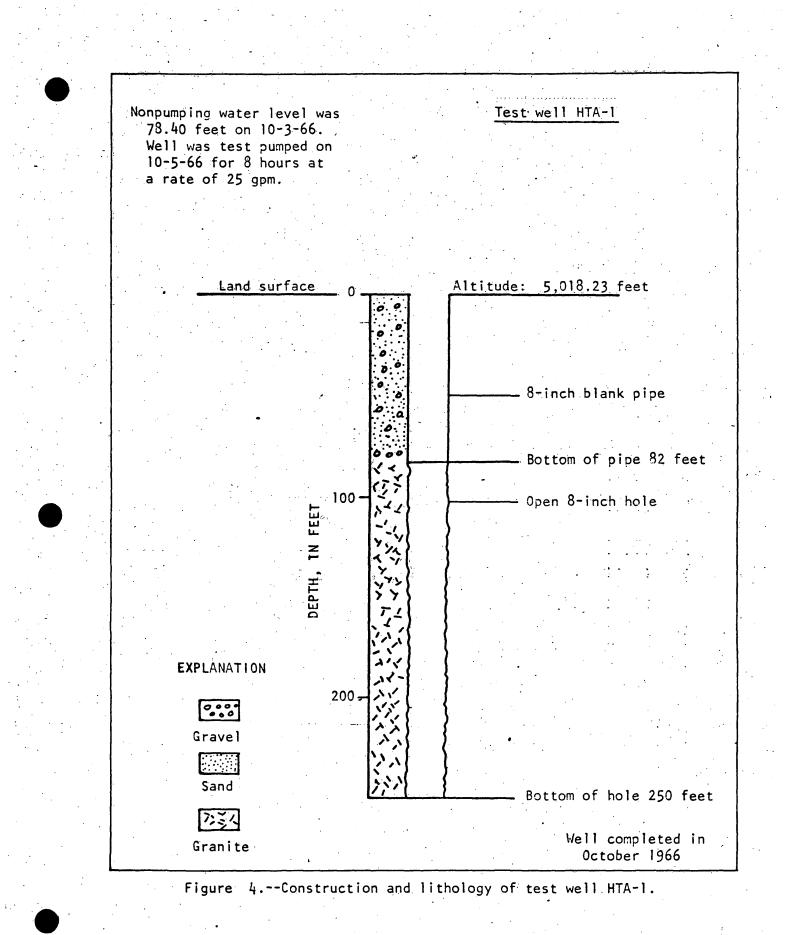
Hazardous Test Area White Sands Missile Range Dona Ana County, New Mexico

LOCATION:SW42SW42NE42 sec. 23, T. 21 S., R. 4 E.USGS No. 21.4.23.233LATITUDE:32°28'01"LONGITUDE:106°30'08"DEPTH:250 feetALTITUDE:5,018.23 feetDATE COMPLETED:October 1966DRILLING METHOD:Cable toolDRILLING CONTRACTOR:Boyd and Son Drilling Co., Las Cruces, N. Mex.

CASING AND HOLE RECORD: Eight-inch blank pipe to 82 feet; open 8-inch hole from 82 to 250 feet.

YIELD: Well test pumped at 25 gpm for 8 hours with 18 feet of drawdown.

NONPUMPING WATER LEVEL: 78.40 feet on 10-3-66


CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/l)	
	Total depth	711	116	28	10-5-66

FORMATION LOGS: 1) Driller's; 2) Sample description; 3)

GEOLOGIC SOURCE: Fractured granitic rock

USE AND REMARKS: Observation well to monitor water-level changes. Depth-to-water measurements are made every 3 months. Well equipped with submersible pump in 1969.

REFERENCE: Doty, 1968f



Figure 5.--Hydrograph of test well HTA-1.

Table 6.--Summary record of test well HTA-2

Hazardous Test Area White Sands Missile Range Dona Ana County, New Mexico

LOCATION:SW& SW& SW& sec. 11, T. 21 S., R. 4 E.USGS No.21.4.11.333LATITUDE:32°29'28"LONGITUDE:106°30'55"DEPTH:Drilled to 189 feetALTITUDE:5,437.30 feetDATE COMPLETED:November 1966DRILLING METHOD:Cable toolDRILLING CONTRACTOR:Boyd and Son Drilling Co., Las Cruces, N. Mex.CASING AND HOLE RECORD:Drilled with 10-inch bit

YIELD: Estimated 1/2 gpm

NONPUMPING WATER LEVEL: 77 feet on 11-30-66

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	•	•	Date	
	Total depth	746	115	34	11-16-66	•

FORMATION LOGS: 1) Driller's; 2) Sample description; 3)

GEOLOGIC SOURCE: Fractured granitic rock

USE AND REMARKS: Plugged and abandoned

REFERENCE: Doty, 1968f

Table 7.--Chemical analyses of water samples

from test wells HTA-1 and 2

Analyses by U.S. Geological Survey [Constituents in milligrams per liter except pH, color, and as indicated]

Test well	1	2			
Date of collection	10-5-66 <u>1</u> /	11-16-66 2/			
			•		
Silica (Si0 ₂)	34	24			
Iron (Fe)	.00	.02			
	n gorine.				
Calcium (Ca)	82	82	· · · ·		
Magnesium (Mg)	-	. 13			
Sodium (Na)	53	60			
Potassium (K)		00			
Bicarbonate (HCO ₃)	221	238			
Carbonate (CO ₃)	0	250	н. Х.		
•					•
Sulfate (SO ₄)	116	115		i var e le	K. 11
Chloride (Cl)	28	34			
Fluoride (F)	4.0	4.0			
Nitrate (NO ₃)	29	- 22	:		
Dissolved solids	•				
Calculated	468	471			
Residue on evaporation at 180°C.	_	476			
Hardness as CaCO ₃	260	260			
Noncarbonate hardness as CaCO ₃	79	65			l
Nonegroonace natiness is saves				· .	
Specific conductance				i i	
(micromhos at 25°C)	711	746			
pH	7.5	7.7			
Color	0	-	<i>,</i>		
Temperature (°C)	22				

 $\frac{1}{2}$ Collected during pumping test on cased well. $\frac{2}{2}$ Collected with bailer during drilling.

Small Missile Range

-7

Table 8.--Summary record of supply well SMR-1

Small Missile Range White Sands Missile Range Dona Ana County, New Mexico

LOCATION: NE4SW4NW4 sec. 16, T. 21 S., R. 5 E. USGS No. 21.5.16.132 LATITUDE: 32°28'56" DEPTH: Drilled to 600 feet; finished at 473 feet. DATE COMPLETED: June 1960 DRILLING METHOD: Cable tool DRILLING CONTRACTOR: Perry Brothers Drilling Co., Glencoe, N. Mex. CASING AND HOLE RECORD: Six-inch pipe to 473 feet; 1/8-inch by 4-inch torch-cut slots from 286-310, 330-340, 352-372, 382-446, and 462-472 feet; pipe set in 8 3/4-inch hole.

YIELD: Well test pumped at an average rate of 124 gpm for 12 hours with 27.8 feet of drawdown.

NONPUMPING WATER LEVEL: 281.3 feet on 6-24-60

CHEMICAL QUALITY	-	³ Conductance (micromhos)		Chloride - Date (mg/l)
	Total screen	785	142	24 6-25-60

FORMATION LOGS: 1) Sample description; 2) Induction-electrical

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Water-supply well for Small Missile Range

29

REFERENCE: Hood, 1968

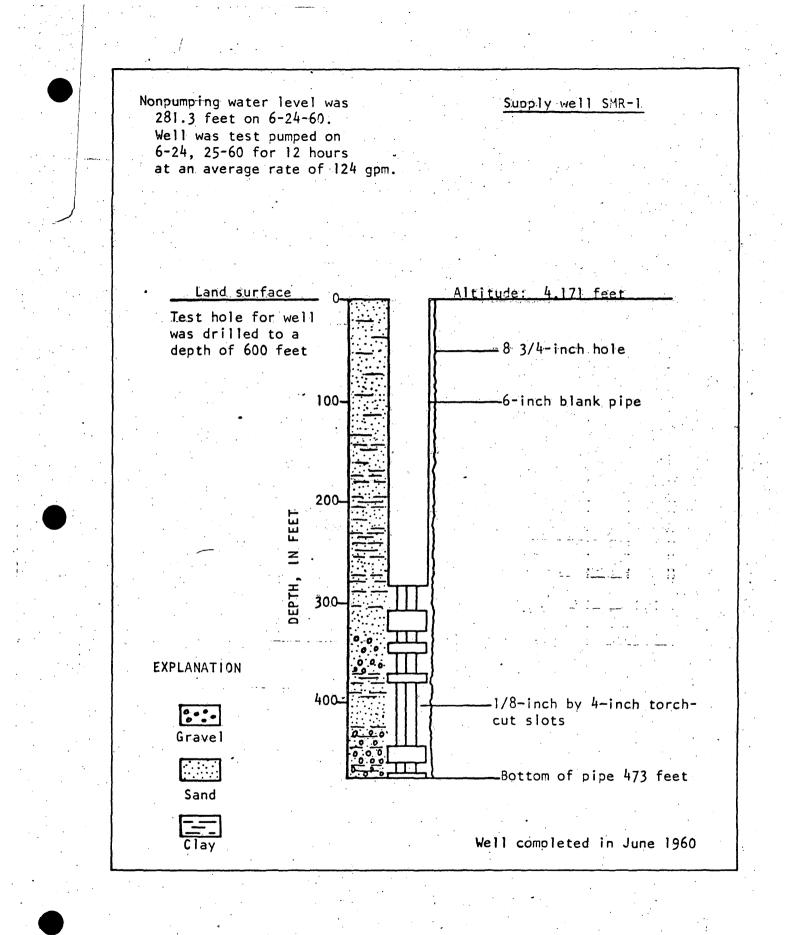
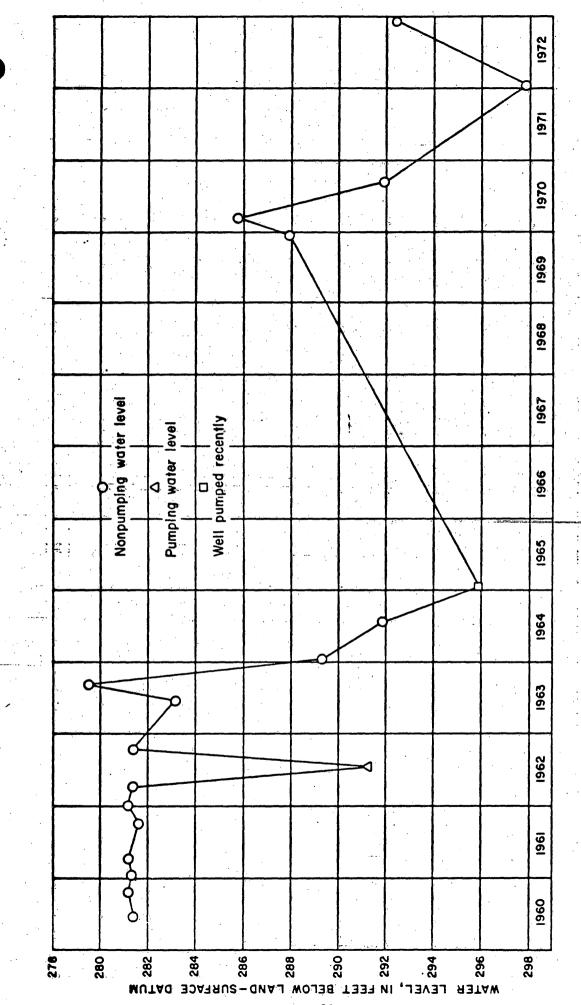



Figure 6.--Construction and lithology of supply well SMR-1.

7. -- Hydrograph of supply well SHR-1 Figure

Table 9.--Chemical analyses of water samples

from supply well SMR-1

Analyses by U.S. Geological Survey [Constituents in milligrams per liter except pH, color, and as indicated]

			the second s		
Date of collection	6-10-60 <u>1</u> /	6-14-60 <u>1</u> /	6-25-60 <u>2/</u>		
Sílica (SiO ₂)			-		
Iron (Fe)	1 .	_	-		
Calcium (Ca) Magnesium (Mg)			74 51		
Sodium (Na)					
Potassium (K)	1	_	-		
Bicarbonate (HCO ₃) Carbonate (CO ₃)		289	292		
Sulfate (504)		0 153	0 14 2	reager 1	
Chloride (Cl)	27	26	24		
Fluoride (F) Nitrate (NO ₃)			1.0 4.6	• • • • •	: : :
Dissolved solids					
Calculated	-	-	484	•	
Residue on evaporation at 180°C . Hardness as CaCO ₃	1	- 374	522 396		
Noncarbonate hardness as CaCO ₃	134	137	156		
Specific conductance			•		
(micromhos at 25°C)	775	800	785		
pH Color	8.0 -	7.5 -	7.8 -		
Temperature (°C)	27	27	27		

1/ Collected with bailer during drilling.

2/ Collected during pumping test on cased well.

Table 10. -- Summary record of test well SMR-2

Small Missile Range White Sands Missile Range Dona Ana County, New Mexico

LOCATION: SELNELSEL sec. 17, T. 21 S., R. 5 E. USGS No. 21.5.17.424 LATITUDE: 32°28'38" LONGITUDE: 106°26'44" DEPTH: Drilled to 756 feet; finished at 747 feet. DATE COMPLETED: September 1960 - DRILLING METHOD: Cable tool DRILLING CONTRACTOR: Perry Brothers Drilling Co., Glencoe, N. Mex. CASING AND HOLE RECORD: Eight-inch pipe to 608 feet; 6-inch pipe from 598 to 747 feet; torch-cut slots from 295 to 588 and 608 to 715 feet.

Pipe set in 10-inch hole from 0 to 612 feet and in 8-inch hole from 612 to 747 feet; 9 cubic yards of gravel around pipe.

<u>YIELD</u>: Well test pumped at rates as much as 172 gpm for 11 3/4 hours with 14 feet of drawdown.

NONPUMPING WATER LEVEL: 303.6 feet on 9-29-60

(feet)	(micromhos)	(mg/1)	(mg/1)	
Total screen	781	162	29	9-29-60

FORMATION LOGS: 1) Sample description; 2) Gamma ray-neutron

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Observation well to monitor water-level changes near the Small Missile Range supply well. Depth-to-water measurements are made every 3 months.

REFERENCE: Hood, 1968

Nonpumping water level was 303.6 feet on 9-29-60. Well was test pumped on 9-29-60 for 11 3/4 hours at rates as much as 172 gpm.

Test well SMR-2

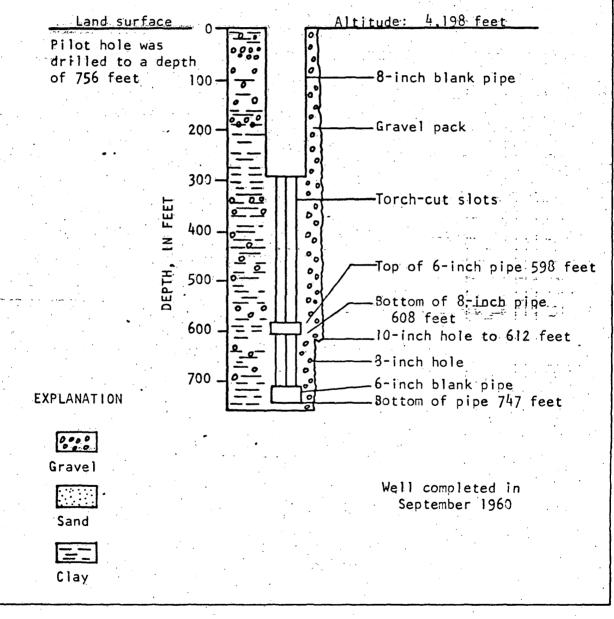
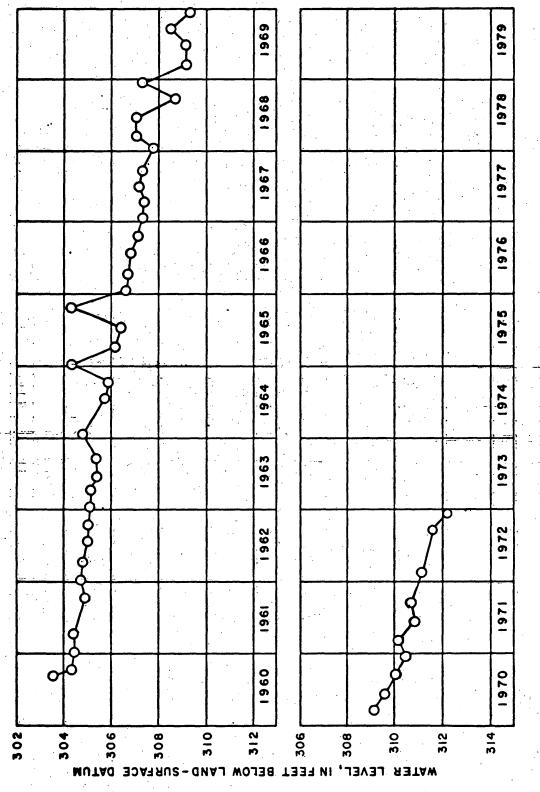



Figure 8.--Construction and lithology of test well SMR-2.

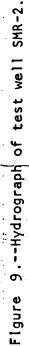


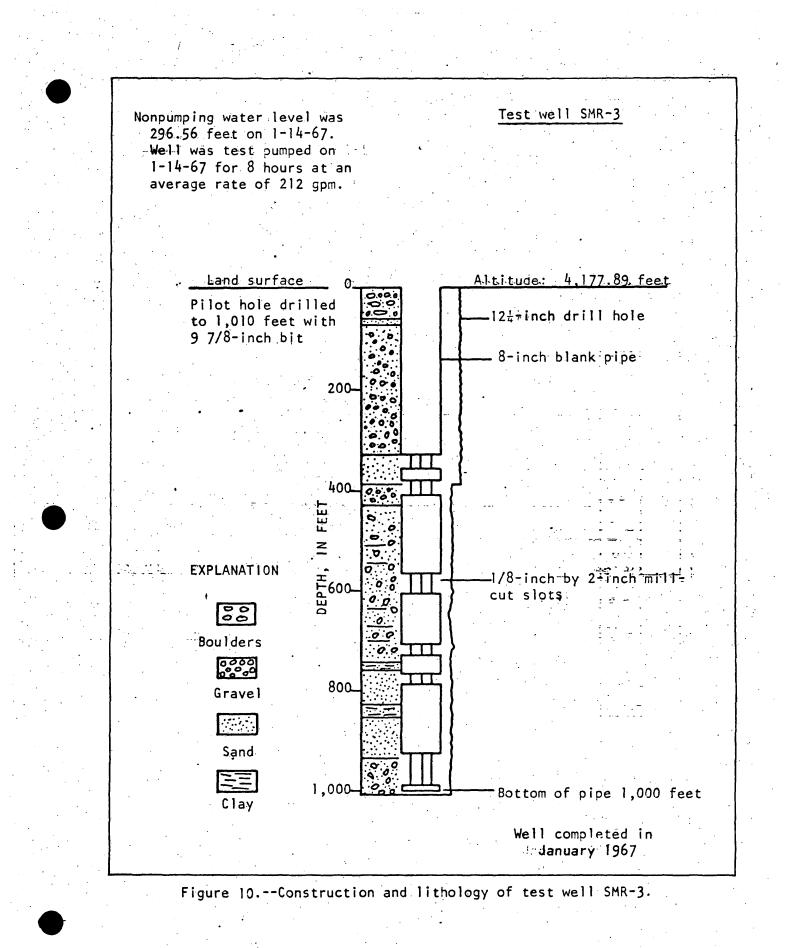
Table 11.--Summary record of test well SMR-3

Small Missile Range White Sands Missile Range Dona Ana County, New Mexico

LOCATION: SW4SW4NW4 sec. 34, T. 20 S., R. 5 E. USGS No. 20.5.34.133 LATITUDE: 32°31'04" LONGITUDE: 106°25'11" DEPTH: Drilled to 1,010 feet; finished ALTITUDE: 4,177.89 feet at 1,000 feet. DATE COMPLETED: January 1967 DRILLING METHOD: Hydraulic rotary DRILLING CONTRACTOR: Boyd and Son Drilling Co., Las Cruces, N. Mex. CASING AND HOLE RECORD: Eight-inch pipe to 1,000 feet; 1/8-inch by 2-inch mill-cut slots from 330-355, 380-410, 565-605, 710-730, 770-790, and 925-990 feet.

YIELD: Well test pumped at 212 gpm for 8 hours with 2.18 feet of drawdown.

NONPUMPING WATER LEVEL: 296.56 feet on 1-14-67


CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	. Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/1)	
	392	884	212	46	12-16-66
• •	707-742	886	215	34	12-21-66
· .	973-1,010	900	209	44	12-30-66
· *	Total screen	896	200	41	1-14-67

FORMATION LOGS: 1) Driller's; 2) Sample description; 3)

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Observation well to monitor water-level changes. Depthto-water measurements are made every 3 months.

REFERENCE: Doty, 1968f

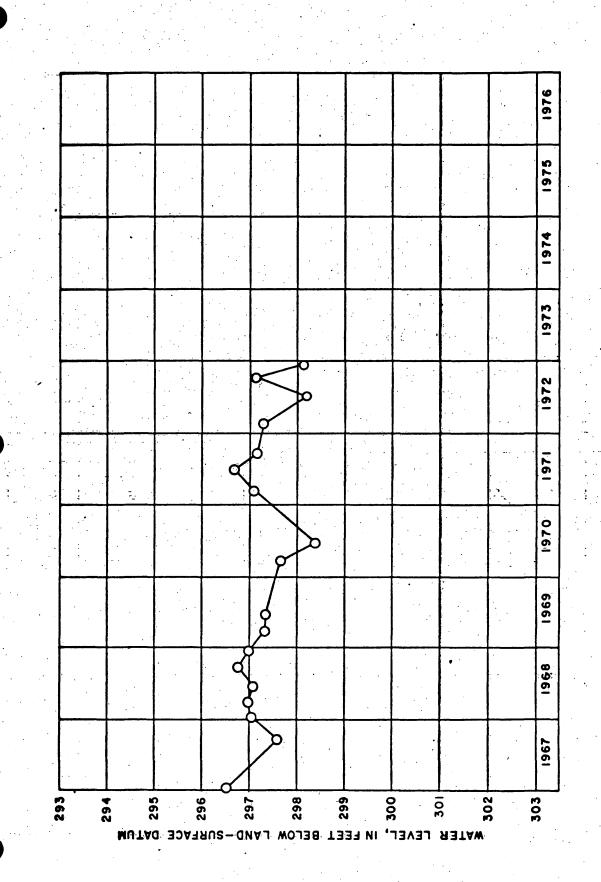


Figure 11:--Hydrograph of test well SMR-3.

38 _

Table 12.--Summary record of test well SMR-4

Small Missile Range White Sands Missile Range Dona Ana County, New Mexico

LOCATION:SE4SE4SW4 sec. 20, T. 21 S., R. 5 E.USGS No. 21.5.20.344LATITUDE:32°27'35"LONGITUDE:106°27'13"DEPTH:1,016 feetALTITUDE:4,210 feetDATE COMPLETED:December 1967DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Boyd and Son Drilling Co., Las Cruces, N. Mex.CASING AND HOLE RECORD:Drilled 12 1/4-inch hole to 450 feet and7 7/8-inch hole to total depth; hole reamed to 12 1/4 inches from450 to 580 feet and 8-inch pipe installed with 1/8 by 2-inch mill-cut

slots, 36 slots per foot, in the interval 470 to 570 feet.

YIELD: Well test pumped at 152 gpm for 8 hours with 5.25 feet of drawdown.

NONPUMPING WATER LEVEL: 274.21 feet on 12-29-67

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/1)	Chloride (mg/l)	Date
	273-450	917	173	89	11-14-67
	670-703	684	110	62	11-16-67
· · · ·	965-1,016	920	173	70	11-20-67
· · · · ·	470-570 (screen) 700	140	37	12-29-67

FORMATION LOGS: 1) Sample description; 2) Dual induction laterolog; 3) Proximity log microlog

GEOLOGIC SOURCE: Fan deposits or bolson fill

USE AND REMARKS: Observation well to monitor water-level changes. Depth-to-water measurements are made every 3 months.

REFERENCE: Doty, 1969

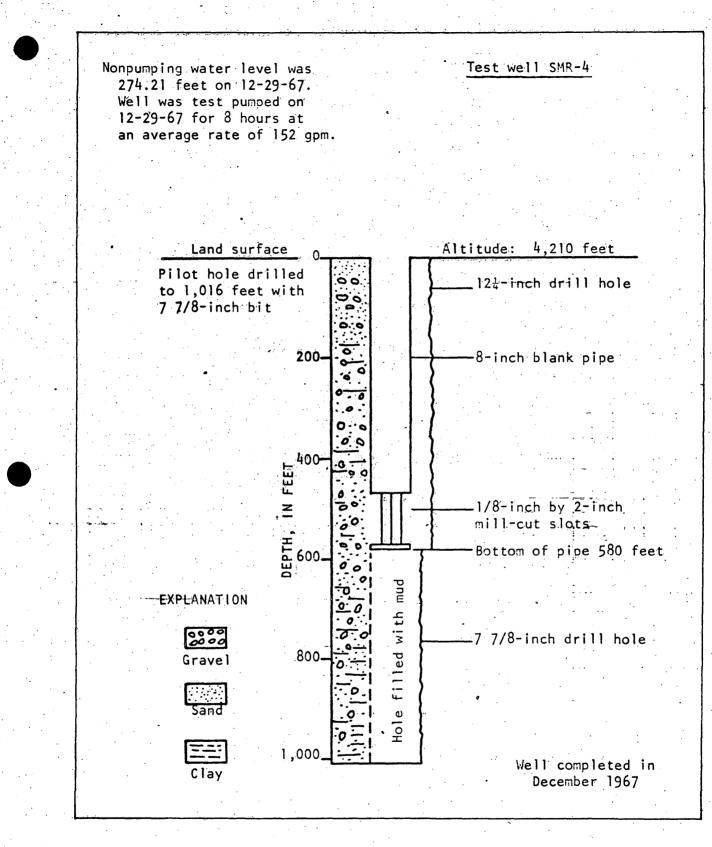


Figure 12.--Construction and lithology of test well SMR-4.

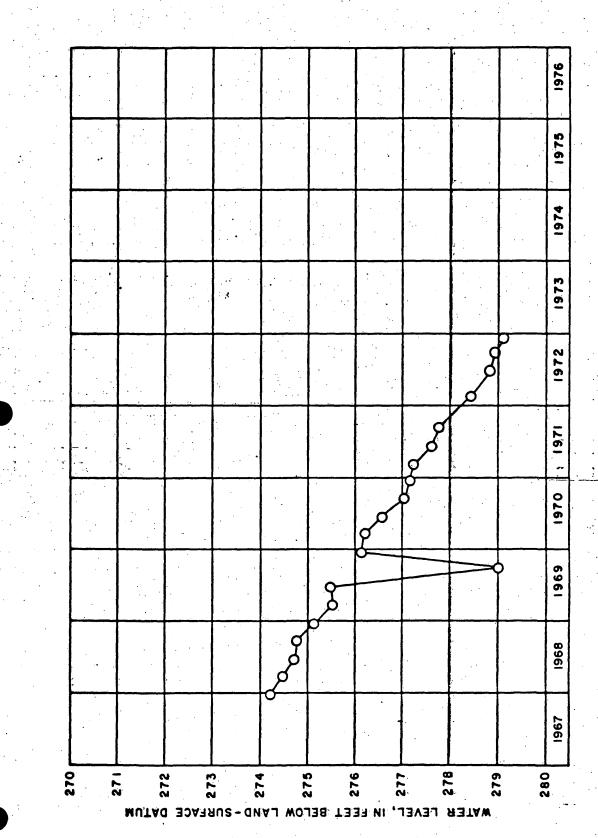


Figure 13.--Hydrograph of test well SMR-4.

Table 13.--Summary record of test well SMR-5

Small Missile Range White Sands Missile Range Dona Ana County, New Mexico

LOCATION:SELSWLSEL sec. 14, T. 21 S., R. 5 E.USGS No. 21.5.14.434LATITUDE:32°28'26"LONGITUDE:106°23'50"DEPTH:666 feetALTITUDE:3,950 feetDATE COMPLETED:December 1967DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Boyd and Son Drilling Co., Las Cruces, N. Mex.CASING AND HOLE RECORD:Drilled with 18-inch bit to 249 feet;10 3/4-inch pipe installed.Drilled from 249 feet to total depth with7 7/8-inch bit.

YIELD: Not test pumped; bailed at 20 gpm during collection of upper water sample.

NONPUMPING WATER LEVEL: 108.6 feet on 12-20-67 .

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/l)	
	109-249	2,200	922	104	12-11-67
	615-666	13,900	-6,450	1,930	12-18-67

FORMATION LOGS: 1) Sample description; 2) Dual induction laterolog; 3) Proximity log microlog

42

GEOLOGIC SOURCE: Bolson deposits

USE AND REMARKS: Well plugged and abandoned

REFERENCE: Doty, 1969

Table 14. — Chemical analyses of water samples

from test wells SMR-2, 3, 4, and 5

Analyses by U.S. Geological Survey

[Constituents in milligrams per liter except pH, color, and as indicated]

·					
Test well SMR	2	2	2	3	3
Date of collection	7-7-60 <u>1</u> /	8-10-60 <u>1</u> /	9-29-60 <u>2</u> /	12-16-66 <u>3</u> /	12-21-66 _4/
			· .		
Silica (SiO ₂)	·		30	-	-
Iron (Fe)		-	.31	<u> </u>	-
	· .		75		
Calcium (Ca)		-	75	-	-
Magnesium (Mg)	1		40	-	-
Sodium (Na)	-	-	39	-	
Potassium (K)	-		2.2		·/
Bicarbonate (HCO ₃)	186		275	- -	-
Carbonate (CO ₃)	0	-	.0		-
Sulfate (SO ₄)	201		162	212	215
Chloride (Cl)	<u>38</u>	30	29	46	34
Fluoride (F)	-	_	1.5	- , .	·
Nitrate (NO ₃)		_	4.3	-	-
Dissolved solids					
Calculated	-	-	531	-	-
Residue on evaporation at 180 $^\circ$ C .	-,	-	532	-	-
Hardness as CaCO ₃	334	- ¹¹ -	35 2	-	- .
Noncarbonate hardness as CaCO3	182	– .	126	. –	-
Specific conductance					
(micromhos at 25°C)	701	017	701		000
	7.81	817	781	884	886
рН	7.8	-	7.7	~	
Color	-	-	-	-	-
Temperature (°C)	-	26	29	23	27

Collected with bailer during drilling.

 $\frac{\frac{1}{2}}{\frac{3}{4}}$ Collected during pumping test on cased well. Collected with bailer from depth of 392 feet. Collected through packer from depths of 707-742 feet.

Table 14.--Chemical analyses of water samples from test

wells SMR-2, 3, 4, and 5 - Continued

Test well SMR	3	3	4	4	4
Date of collection	12-30-66 <u>5/</u>	1 -14-67 <u>2</u> /	11- 14-67 <u>6</u> /	11-16-63 <u>7</u> /	11-20-6 <u>8</u> /
Silica (SiO ₂)		_ 24	39	-	36
Iron (Fe)	· · .	•00		-	.01
Calcium (Ca)	-	86	54	37	64
Magnesium (Mg)	· -	47	28	6.9	9.8
Sodium (Na) Potassium (K)	(38	149	98	126
Bicarbonate (HCO3)	_	262	188	158	222
Carbonate (CO3)	-	0	0	0.	. 0
Sulfate (SO ₄)		200	173	110	173
Chloride (Cl)	44	41	89	62	70 ·
Fluoride (F)	-	.5	3.1	-	1.3
Nitrate (NO ₃)	-	7.2	6.8	4.6	12
Dissolved solids		•			
Calculated	-	573	591		601
Residue on evaporation at 180°C .	·	568	610	-	597
Hardness as CaCO3	-	406	[·] 146	121	200
Noncarbonate hardness as CaCO3		192	0	0	18
Specific conductance					
(micromhos at 25°C)	900	896	917	684	920
рН	-	7.5	8.1	7.8	7.7
Color	-	. –	7.	-	· 4 ·
Temperature (°C)	27	26	24	26	29

 $\frac{2}{5}/\frac{5}{6}/\frac{7}{8}/$ Collected during pumping test on cased well.

Collected through packer from depths of 973-1,010 feet.

Collected through packer from depths of 273-450 feet.

Collected through packer from depths of 670-703 feet. Collected through packer from depths of 965-1,016 feet.

Table 14.--Chemical analyses of water samples

from test wells SMR-2, 3, 4, and 5 - Concluded

			· ·		
Test well SMR	4	5	5		
Date of collection	12-29-6 <u>2</u> /	12-11-6 <u>9</u> /	12-18-6 <u>10</u> /		•
Silica (SiO ₂) Iron (Fe)	43	60 • 00	15 .02		
Calcium (Ca) Magnesium (Mg)	77 15	195 81	575 685		
Sodium (Na) Potassium (K)	48	207	2,500		
Bicarbonate (HCO ₃) Carbonate (CO ₃)	182 0	194 0	278 0		
Sulfate (SO ₄) Chloride (Cl) Fluoride (F)	140 37 2.5	922 104. 1.8	6,450 1,930 3.3		
Nitrate (NO ₃) Dissolved solids	8.4	.2	.4		
Calculated Residue on evaporation at 180°C .	460 474	· .	12,300 13,400		
Hardness as CaCO3 Noncarbonate hardness as CaCO3	255 106	820 661	4,250 4,020		
Specific conductance (micromhos at 25°C) pH	700 7.8	2,200 7.5	13,900 7.5		
Color Temperature (°C)	3 28	3 21	3 22		
				1	

 $\frac{2}{9}$ Collected during pumping test on cased well. $\frac{9}{9}$ Collected through packer from depths of 109-

Collected through packer from depths of 109-249 feet.

10/ Collected through packer from depths of 615-666 feet.

M

•

MAR well-field area

AR well-field area

st.

Table 15.--Summary record of test well MAR-1

MAR well-field area White Sands Missile Range Dona Ana County, New Mexico

 LOCATION:
 SW4SW4SW4 sec. 17, T. 19 S., R. 5 E.
 USGS No. 19.5.17.333

 LATITUDE:
 32°38'54"
 LONGITUDE:
 106°27'41"

 DEPTH:
 Drilled to 1,000 feet; finished at 650 feet
 ALTITUDE:
 4,135 feet

 DATE COMPLETED:
 May 1963
 DRILLING METHOD:
 Hydraulic rotary

DRILLING CONTRACTOR: Cass Drilling Co., El Paso, Tex.

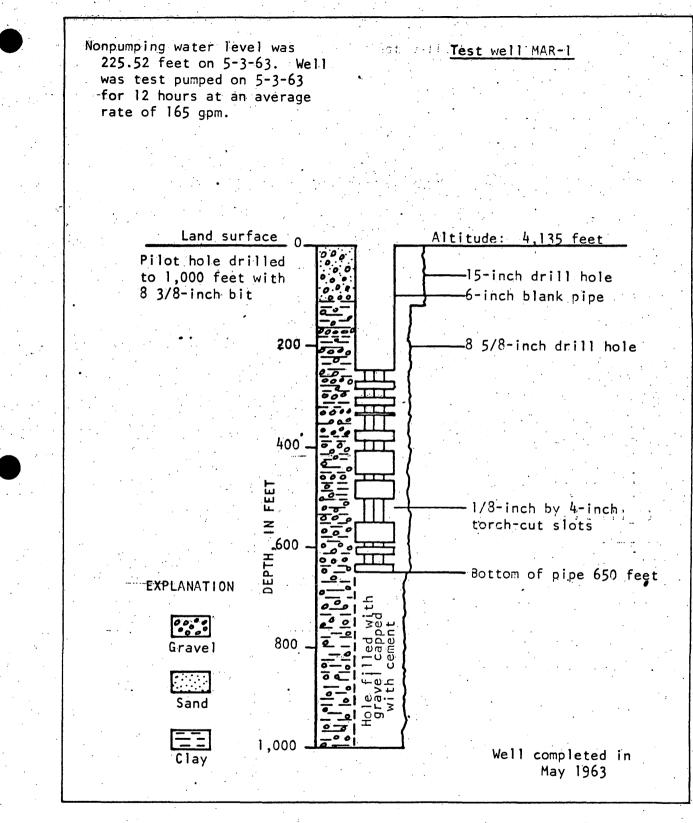
CASING AND HOLE RECORD: Six-inch pipe to 650 feet, 1/8-inch by 4-inch torch-cut slots from 250-270, 285-300, 318-328, 336-368, 386-406, 452-462, 500-550, 588-598, and 617-632 feet; hole filled with gravel capped with cement from 1,000 to 650 feet; 15-inch diameter hole to 120 feet; 8 5/8-inch diameter hole from 120 to 650 feet.

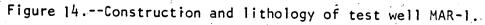
YIELD: Well test pumped at 165 gpm for 12 hours with 39.4 feet of drawdown.

NONPUMPING WATER LEVEL: 225.52 feet on 5-3-63

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/1)	Chloride (mg/l)	Date
· ·	250-350	950	234	42	3-20-63
	582-718	726	93	42	3-28-63
	827-1,000	68,700	2,460	27,200	4- 6-63
	Total screen	80 9	, 162	42	5- 9-63

FORMATION LOGS: 1) Sample description; 2) Contact caliper;


3) Induction-electrical


GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Observation well to monitor water-level changes near the MAR well field. Depth-to-water measurements are made every 3 months.

47

REFERENCE: Doty, 1968a

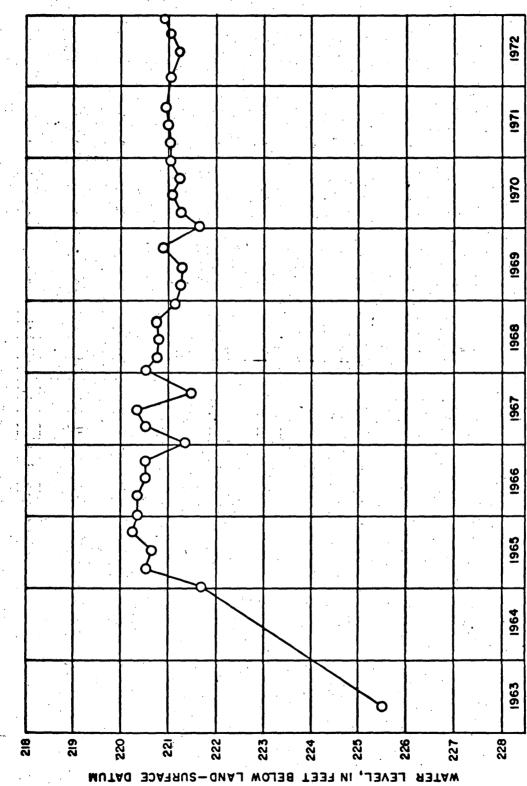


Figure 15.--Hydrograph of test well MAR-1 -•

Table-16.--Summary record of test well MAR-2

MAR well-field area White Sands Missile Range Dona Ana County, New Mexico

LOCATION: SWZSEZSEZ sec. 28, T. 19 S., R. 5 E. USGS No. 19.5.28.443

LATITUDE: 32°37'12" LONGITUDE: 106°25'52"

DEPTH: 749 feet

ALTITUDE: 4,135 feet

DATE COMPLETED: June 1963 DRILLING METHOD: Hydraulic rotary

DRILLING CONTRACTOR: Cass Drilling Co., El Paso, Tex.

CASING AND HOLE RECORD: Fifteen-inch hole to 117 feet; 8 3/4-inch hole from 117 to 749 feet; 10-inch temporary pipe installed to 117 feet; pipe removed upon completion of well.

YIELD: Not tested

NONPUMPING WATER LEVEL: 237 feet on 6-4-63

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/l)	
	246-310	917	225	55	5-21-63
	670-749	56,200	2,640	20,500	5-24-63

FORMATION LOGS: 1) Sample description; 2) Contact caliper; 3) Induction-electrical

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Well plugged and abandoned

REFERENCE: Doty, 1968a

Table 17.--Summary record of test well MAR-3

MAR well-field area White Sands Missile Range Dona Ana County, New Mexico

LOCATION:NW42NW42NW42 sec. 21, T. 19 S., R. 5 E. USGS No. 19.5.21.111LATITUDE:32°38'54"LONGITUDE:106°26'41"DEPTH:750 feetALTITUDE:4,080 feetDATE COMPLETED:July 1963DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Cass Drilling Co., El Paso, Tex.

CASING AND HOLE RECORD: Fifteen-inch hole to 81 feet; 8 3/4-inch hole from 81 to 750 feet; 6-inch temporary pipe installed to 290 feet; pipe removed upon completion of well.

YIELD: Well bailed at 1.6 gpm

NONPUMPING WATER LEVEL: 179 feet on 6-27-63

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/l)	Chloride (mg/l)	Date
· .	178-290	930	258	45	6-27-63
	605-705	49,300	1,890	18,100	7- 3-63

FORMATION LOGS: 1) Sample description; 2) Contact caliper; 3) Induction-electrical

51

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Well plugged and abandoned

REFERENCE: Doty, 1968a

Table 18.--Summary record of test well MAR-4

MAR well-field area White Sands Missile Range Dona Ana County, New Mexico

LOCATION:SW4NW4SE4 sec. 19, T. 19 S., R. 5 E.USGS No. 19.5.19.413LATITUDE:32°38'42"LONGITUDE:106°28'12"DEPTH:Drilled to 1,016 feet; finished
at 750 feetALTITUDE:4,223.39 feetDATE COMPLETED:February 1967DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Boyd and Son Drilling Co., Las Cruces, N. Mex.

CASING AND HOLE RECORD: Eight-inch pipe to 750 feet; 1/8-inch by 2-inch mill-cut slots from 436-456, 466-476, 550-570, 600-660, and 720-740 feet; open hole below pipe filled with cement from 750-770 feet.

YIELD: Well test pumped at 235 gpm for 8 hours with 4.27 feet of drawdown.

NONPUMPING WATER LEVEL: 303.16 feet on 2-1-67

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/1)	Chloride (mg/l)	Date
	430	778	177	34	1-21-67
	705-740	799	178	- 38	1-23-67
•	985-1,016	2,150	164	480	1-26-67
POPMATION	Total screen	794	166	34	2- 1-67

FORMATION LOGS: 1) Driller's; 2) Sample description; 3)

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Observation well to monitor water-level changes near the MAR well field. Depth-to-water measurements are made every 3 months.

REFERENCE: Doty, 1968f

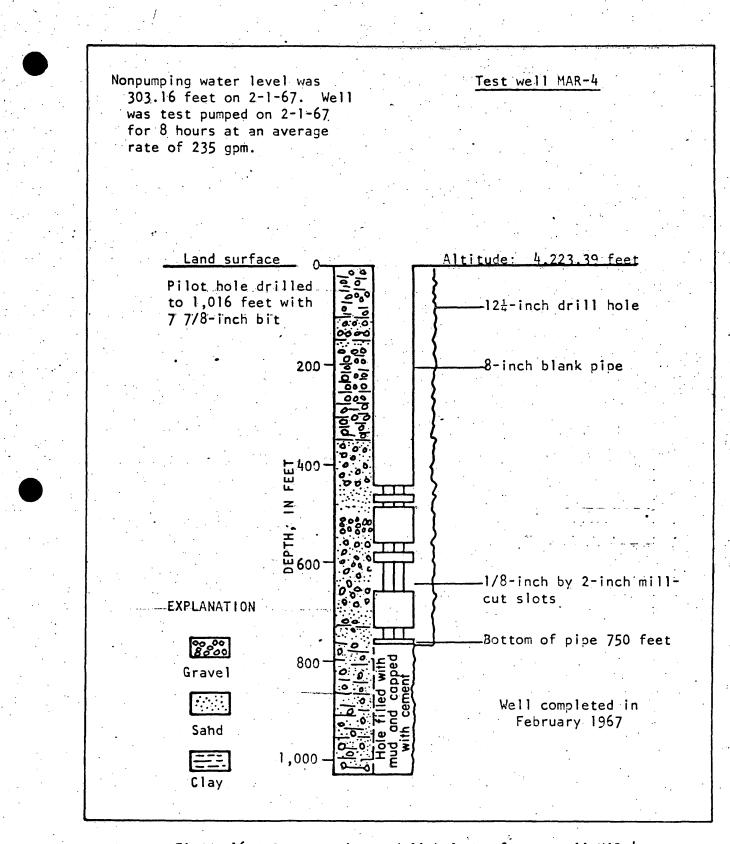


Figure 16.--Construction and lithology of test well MAR-4.

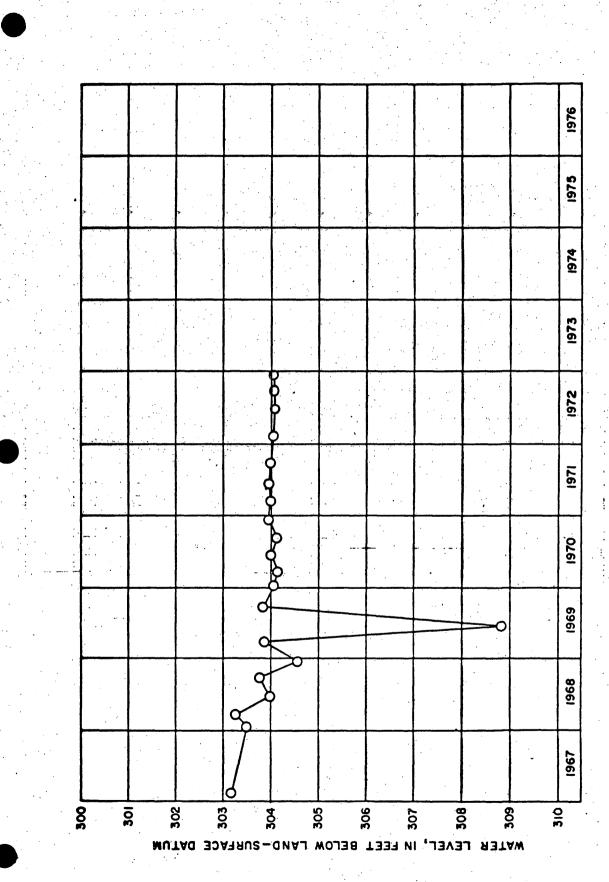


Figure 17.--Hydrograph of test well MAR-4.

Table 19.--Chemical analyses of water samples

from test wells MAR-1, 2, 3, and 4

Analyses by U.S. Geological Survey

[Constituents in milligrams per liter except pH, color, and as indicated]

Fine provide an analorem ber the	er encep	c pil, co.	tor, and	as India	aleuj
Test well MAR	1	1	1	1	2
Date of collection	3-20-63 <u>1</u> /	3-28-63 <u>2</u> /	4-6-63 <u>3</u> /	5-9-63 <u>4</u> /	5-21-63 <u>5</u> /
Silica (SiO ₂) Iron (Fe)		-	_	25	21
Calcium (Ca)	-			81	53
Magnesium (Mg) Sodium (Na)	· ·	-	-	36	38
Potassium (K)	· ·	_	-	42 254	94 212
Carbonate (CO ₃)		-	-	0	0
Sulfate (S04)Chloride (C1)	234 42	93 42	2,460 27,200	162 42	225 _ 55 ,
Fluoride (F) Nitrate (NO ₃)	-	-	-	.5 6.9	.7 8.6
Dissolved solids Calculated	_		_	520	599
Residue on evaporation at 180°C .	-	_	-	- 352	612 290
Hardness as CaCO ₃ Noncarbonate hardness as CaCO ₃	-		-	144	116
<pre>Specific conductance (micromhos at 25°C)</pre>	950	726	68,700	809	917
рН Color	-	-	-	7.4 1	7.8 4
Temperature (°C)	- .	- ***	-	-	-
		· · · · · · · · · · · · · · · · · · ·		· · · ·	

 $\frac{1}{2}/\frac{3}{4}/\frac{5}{5}$ Collected through packer from depths of 250-350 feet. Collected through packer from depths of 582-718 feet. Collected through packer from depths of 827-1,000 feet.

Collected during pumping test on cased well.

Collected through packer from depths of 246-310 feet.

Table 19.--Chemical analyses of water samples from test

Test well MAR 2 3 3 4 4 Date of collection 5-24-63 6-27-63 7-3-63 1-21-67 1-23-6 Silica (SiO2) - - - - - - - - 10/ Silica (SiO2) - <th></th> <th></th> <th></th> <th>•</th> <th>`</th> <th></th>				•	`	
Silte of contention 6/ 7/ 8/ 9/ 10/ Siltca (SiO ₂) - </td <td>Test well MAR</td> <td>2</td> <td>3</td> <td>3</td> <td>4</td> <td>4</td>	Test well MAR	2	3	3	4	4
Silica (SiO2) - <	Date of collection					
Iron (Fe) - - - - - Calcium (Ca) - - - - - Magnesium (Mg) - - - - - Sodium (Na) - - - - - Potassium (K) - - - - - Bicarbonate (HCO ₃) - - 182 - - Carbonate (CO ₃) - - 0 - - Sulfate (SO ₄) 2,640 258 1,890 177 178 Chloride (C1) 20,500 45 18,100 34 38 Fluoride (F) - - - - - Nitrate (NO ₃) - - - - - Dissolved solids - - - - - - Residue on evaporation at 180°C - - - - - - Hardness as CaCO ₃ - - - - - - - Specific conductanc						
Iron (Fe) - - - - - Calcium (Ca) - - - - - Magnesium (Mg) - - - - - Sodium (Na) - - - - - Potassium (K) - - - - - Bicarbonate (HCO ₃) - - 182 - - Carbonate (CO ₃) - - 0 - - Sulfate (SO ₄) 2,640 258 1,890 177 178 Chloride (C1) 20,500 45 18,100 34 38 Fluoride (F) - - - - - Nitrate (NO ₃) - - - - - Dissolved solids - - - - - - Residue on evaporation at 180°C - - - - - - Hardness as CaCO ₃ - - - - - - - Specific conductanc	Silica $(S10_2)$	-	_	-		_ ·
Calcium (Ca) - - - - - - Magnesium (Mg) - - - - - - - Sodium (Na) -<		-				
Magnesium (Mg) -						
Sodium (Na) - <td< td=""><td>Calcium (Ca)</td><td>-</td><td>-</td><td>-</td><td>-</td><td>- <u>-</u>.</td></td<>	Calcium (Ca)	-	-	-	-	- <u>-</u> .
Potassium (K) - <	Magnesium (Mg)	-		-	-	-
Bicarbonate (HCO ₃) - - 182 - - Carbonate (CO ₃) 2,640 258 1,890 177 178 Sulfate (SO ₄) 20,500 45 18,100 34	Sodium (Na))	-				
Bicarbonate (HCO ₃) - - 182 - - Carbonate (CO ₃) 2,640 258 1,890 177 178 Sulfate (SO ₄) 2,640 258 1,890 177 178 Chloride (Cl) 20,500 45 18,100 34 - 38 Fluoride (F) -	Potassium (K)	-	-	_	_	
Carbonate (CO ₃) - - 0 - - Sulfate (SO ₄) 2,640 258 1,890 177 178 Chloride (C1) 20,500 45 18,100 34 38 Fluoride (F) - - - - - Nitrate (NO ₃) - - - - - Dissolved solids - - - - - Calculated - - - - - Noncarbonate hardness as CaCO ₃ - - - - - Specific conductance 56,200 930 49,300 778 799 pH - - - - - -						
Sulfate (SO ₄) 2,640 258 1,890 177 178 Chloride (C1) 20,500 45 18,100 34			-	182	-	·
Chloride (C1) 20,500 45 18,100 34 38 Fluoride (F) - <td></td> <td></td> <td>-</td> <td>0</td> <td>_</td> <td>-</td>			-	0	_	-
Fluoride (F) -	Sulfate (S04)	2,640	258	1,890	177	178
Nitrate (NO ₃) -	Chloride (Cl)	20,500	45	18,100	34	38
Dissolved solids -	Fluoride (F)	-	. -	-	- .	_
Dissolved solids -	Nitrate (NO ₃)	-	-	-	-	
Calculated -						
Residue on evaporation at 180°C. -						
Hardness as CaCO3 -			-	-	-	-
Noncarbonate hardness as CaCO3 - <	Residue on evaporation at 180°C .	-	-	-		. –
Specific conductance 56,200 930 49,300 778 799 pH - - - - - - - - Color - - - - - - - -	Hardness as CaCO ₃	. –	-	-	-	— .
(micromhos at 25°C) 56,200 930 49,300 778 799 pH - - - - - - - - Color - - - - - - - -	Noncarbonate hardness as CaCO ₃	_ `	_	-	-	_ .
(micromhos at 25°C) 56,200 930 49,300 778 799 pH - - - - - - - - Color - - - - - - - -	Specific conductorse					
pH	-	56 200	. 930	49 300	779	700
Color		50,200	0.90	49,500	//0	133
			-	-	-	-
Temperature (°C) 23 28	Color	- -	-	-		-
	Temperature (°C)	- .	-	-	23	28

wells MAR-1, 2, 3, and 4 - Continued

 $\frac{8}{2}$ Collected through packer from depths of 605-705 feet. $\frac{9}{2}$ Collected with bailer from depth of 430 feet.

Collected through packer from depths of 705-740 feet.

10/

Table 19.--Chemical analyses of water samples

from test wells MAR-1, 2, 3, and 4 - Concluded

		•		•	
Test well MAR	4	4			
Date of collection	1-26-67 <u>11</u> /	2-1-67 _ <u>4</u> /			
Silica (S10 ₂) Iron (Fe)		24			
Calcium (Ca) Magnesium (Mg) Sodium (Na)		82 40			
Potassium (K)	-	32 258			
Carbonate (CO ₃) Sulfate (SO ₄) Chloride (C1)	164	0 166 34			
Fluoride (F) Nitrate (NO ₃)	I .	.4 6.6			
Dissolved solids Calculated Residue on evaporation at 180°C .		512 570			
Hardness as CaCO ₃ Noncarbonate hardness as CaCO ₃	- -	370 158			
<pre>Specific conductance (micromhos at 25°C) pH</pre>	2,150 -	794 7.6	1		
Color Temperature (°C)	- 28	- 25	•		
	1 1				

<u>4/</u> <u>11</u>/ Collected during pumping test on cased well.

 $\overline{1}$ / Collected through packer from depths of 985-1,016 feet.

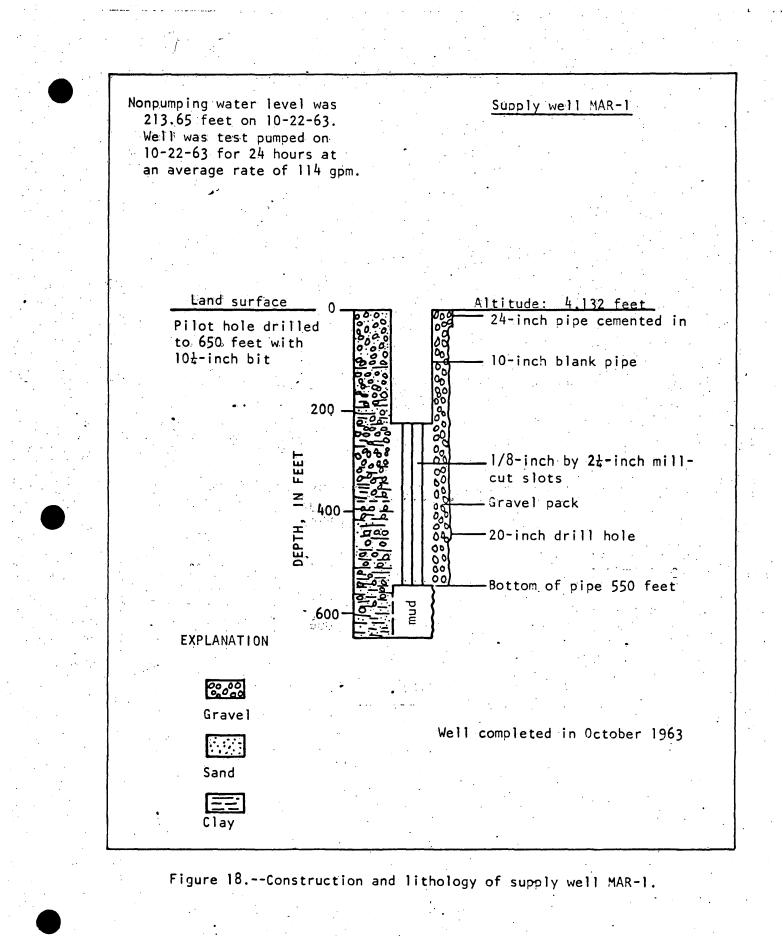
Table 20.--Summary record of supply well MAR-1

MAR well-field area White Sands Missile Range Dona Ana County, New Mexico

LOCATION: NW4SW4SW4 sec. 17, T. 19 S., R. 5 E. USGS No. 19.5.17.331 LATITUDE: 32°39'06" DEPTH: Drilled to 650 feet; finished at 550 feet DATE COMPLETED: October 1963 DRILLING METHOD: Hydraulic rotary DRILLING CONTRACTOR: Harold P. Doty Drilling Co., Albuquerque, N. Mex. CASING AND HOLE RECORD: Twenty-four-inch pipe cemented to 30 feet; 10-inch pipe 0 to 550 feet; 1/8-inch by 2 1/4-inch mill-cut slots from 230 to 550 feet; gravel pack around pipe in 20-inch hole.

YIELD: Well test pumped at 114 gpm for 24 hours with 37 feet of drawdown.

NONPUMPING WATER LEVEL: 213.65 feet on 10-22-63


CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)		Chloride (mg/1)	Date
• • • •	Total screen	818	180	36	10-23-63

FORMATION LOGS: 1) Sample description; 2) Microlog; 3) Inductionelectrical.

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Water-supply well for MAR facility

REFERENCE: Doty, 1968b

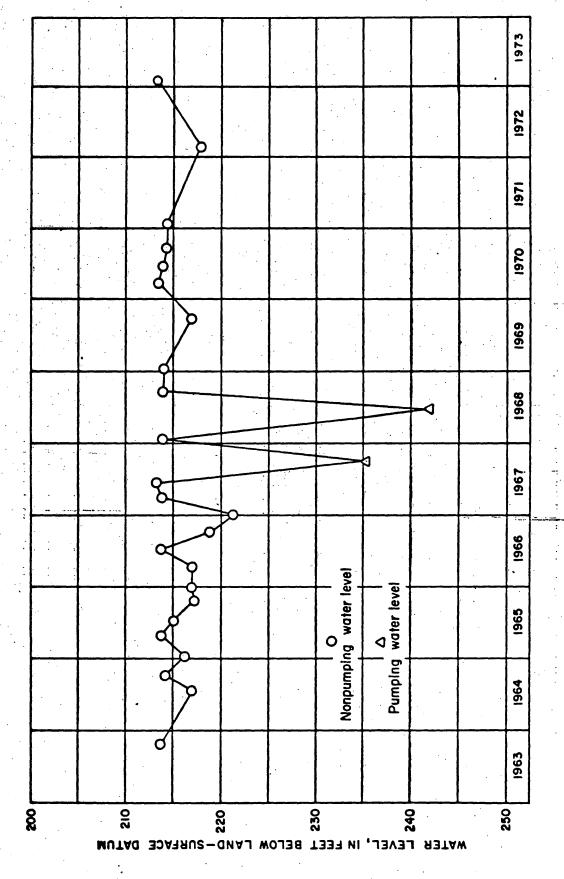


Figure 19.--Hydrograph of supply well MAR-1

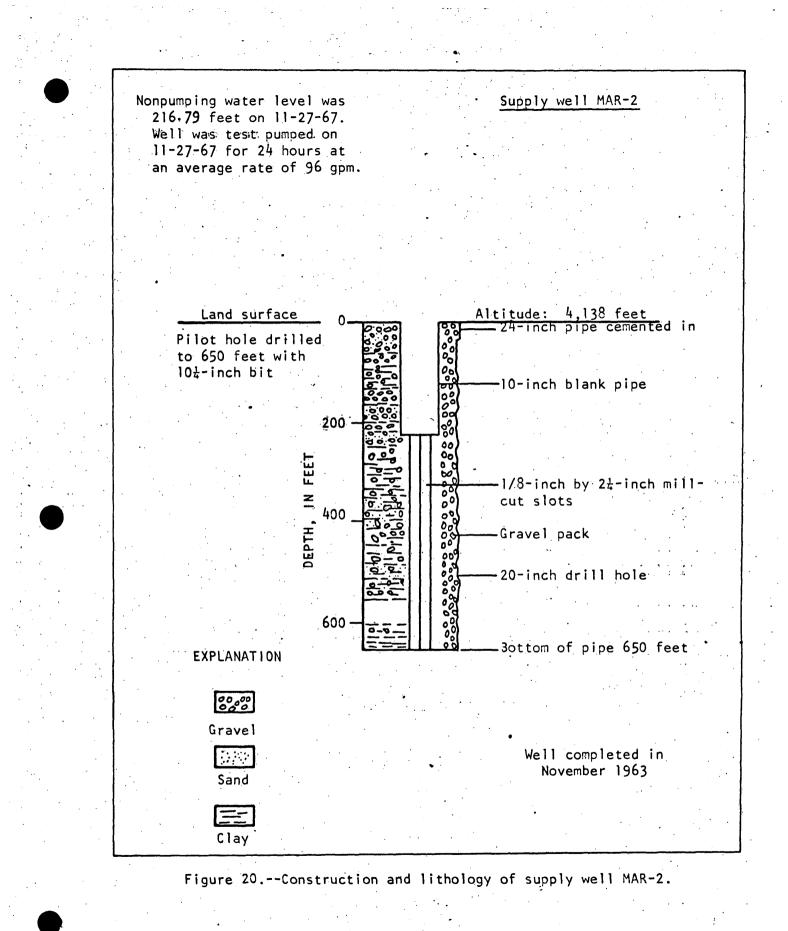
Table 21.--Summary record of supply well MAR-2

MAR well-field area White Sands Missile Range Dona Ana County, New Mexico

LOCATION:SE¼SW¼SW¼ sec. 17, T. 19 S., R. 5 E.USGS No.19.5.17.334LATITUDE:32°38'57"LONGITUDE:106°27'32"DEPTH:650 feetALTITUDE:4,138 feetDATE COMPLETED:November 1963DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Harold P. Doty Drilling Co., Albuquerque, N. Mex.CASING AND HOLE RECORD:Twenty-four-inch pipe cemented to 30 feet;10-inch pipe 0 to 650 feet;1/8-inch by 2 1/4-inch mill-cut slots from227 to 650 feet;gravel pack around pipe in 20-inch hole.

YIELD: Well test pumped at 96 gpm for 24 hours with 116 feet of drawdown.

NONPUMPING WATER LEVEL: 216.79 feet on 11-27-63


CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Dat e
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/1)	
	Total screen	805	170	36	11-28-63

FORMATION LOGS: 1) Sample description; 2) Microlog; 3) Inductionelectrical

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Water-supply well for MAR facility

REFERENCE: Doty, 1968b

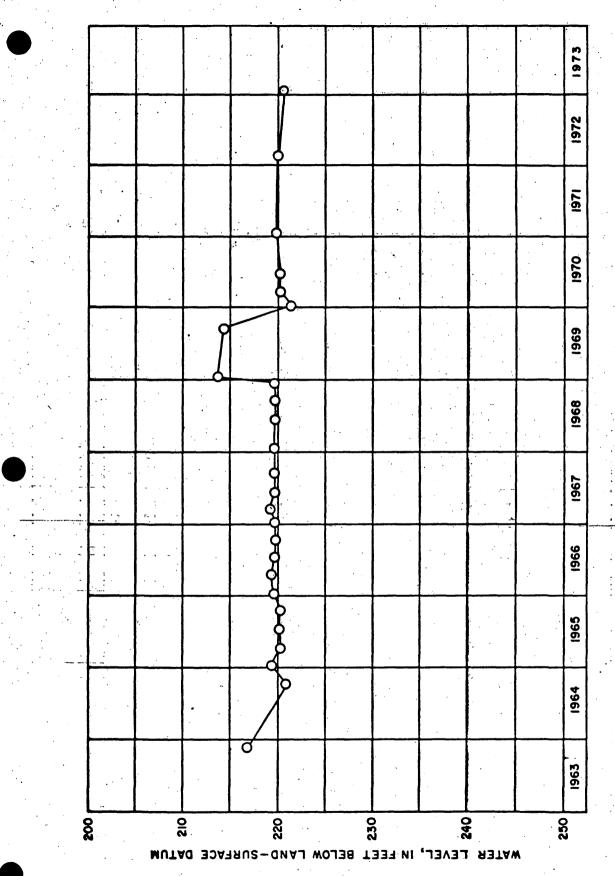


Figure 21.--Hydrograph of supply well MAR-2.

Table 22.--Chemical analyses of water samples

from supply wells MAR-1 and 2

Analyses by U.S. Geological Survey [Constituents in milligrams per liter except pH, color, and as indicated]

Supply well MAR	1	2.	2	2	
Date of collection	10-23-63 <u>1</u> /	10-29-63 <u>2</u> /	11-28-63 <u>1</u> /	4-22-64 <u>3</u> /	
			1 A.		
Silica (SiO ₂)	25		25	23	
Iron (Fe)	-	-	-	34	
Calcium (Ca)	78	_	68	79	
Magnesium (Mg)	41	-	40	42	
Sodium (Na)				-	
Potassium (K)	43	-	52	39	
Bicarbonate (HCO ₃)	256	_	259	254 -	
Carbonate (CO ₃)	0		0	0	
Sulfate (SO ₄)	180	174	170	176	
Chloride (Cl)	1	37	36	36	
Fluoride (F)	1.4	-	1.2	•6	•
Nitrate (NO ₃)	6.0		5.7	6.4	
Dissolved solids					
Calculated	536	-	525	528	
Residue on evaporation at 180°C .	-	-	-	552	
Hardness as CaCO3	364	. - .	336	368 [.]	
Noncarbonate hardness as CaCO3	154	-	124	160	
Specific conductance		an a			
(micromhos at 25°C)	818	807	805	817	
рН	7.5	-	7.7	7,5	
Color	-	-	-	_	
Temperature (°C)	1 <u>-</u>	. –.	- '	-	
	4 				

Collected during pumping test on cased well.

 $\frac{1}{2}$ Collected by air jet from a depth of 650 feet.

Collected after well placed in production.

NW30 Tracking Station area

•

Table 23.--Summary record of test well NW30-1

NW30 Tracking Station area White Sands Missile Range Dona Ana County, New Mexico

 LOCATION:
 NW4NW4NE4
 sec. 2, T. 17 S., R. 4 E.
 USGS No.
 17.4.2.211

 LATITUDE:
 32°52'05"
 LONGITUDE:
 106°30'19"

 DEPTH:
 Drilled to 1,010 feet; finished at 670 feet
 ALTITUDE:
 4,139.87 feet

DATE COMPLETED: February 1967 DRILLING METHOD: Hydraulic rotary

DRILLING CONTRACTOR: Boyd and Son Drilling Co., Las Cruces, N. Mex.

CASING AND HOLE RECORD: Eight-inch pipe to 670 feet; 1/8-inch by 2-inch mill-cut slots from 260-281, 290-298, 374-390, 442-452, 485-500, 520-526, 562-582, and 630-654 feet; open hole below pipe filled with cement from 670-690 feet.

YIELD: Well test pumped at 248 gpm for 8 hours with 30.84 feet of drawdown.

NONPUMPING WATER LEVEL: 211.61 feet on 2-24-67

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/l)	Chloride (mg/l)	Date
	352	1,496	613	156	2-12-67
•	620-735	61,600	2,330	24,200	2-15-67
	Total screen	16,700	, 744	5,520	2-24-67

FORMATION LOGS: 1) Driller's; 2) Sample description; 3) Inductionelectrical; 4) Microlog

GEOLOGIC SOURCE: Bolson fill

<u>USE AND REMARKS</u>: Observation well to monitor water-level changes. Depthto-water measurements are made every 3 months.

REFERENCE: Doty, 1968f

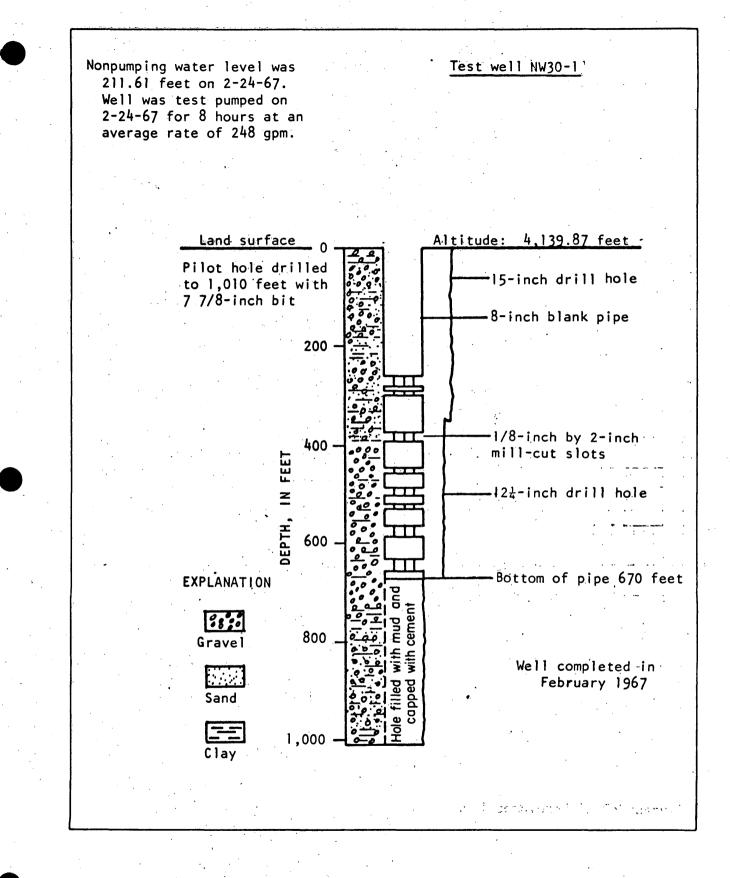


Figure 22 -- Construction and lithology of test well NW30-1.

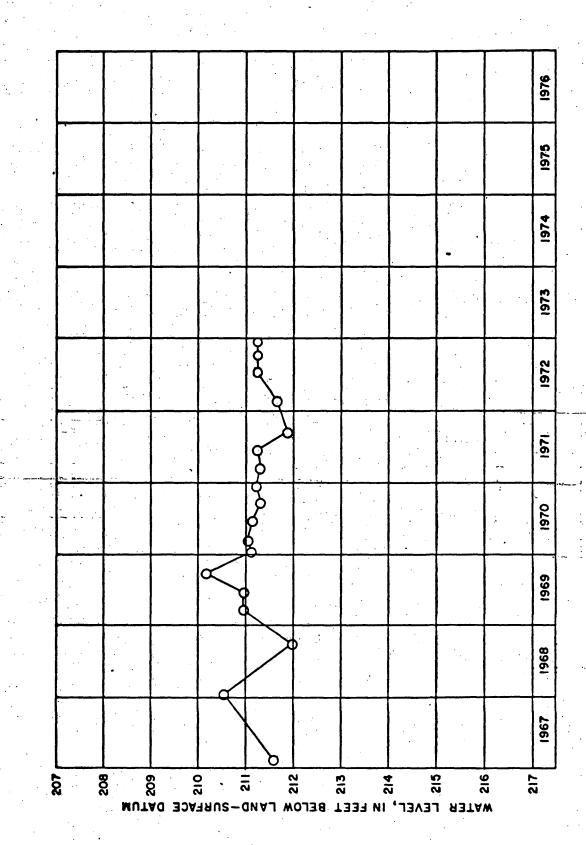


Figure 23.--Hydrograph of test well NW30-1.

Table 24.--Chemical analyses of water samples

from test well NW30-1

Analyses by U.S. Geological Survey [Constituents in milligrams per liter except pH, color, and as indicated]

ۍ					
Date of collection	2-12-67 <u>1</u> /	2-15-67 <u>2</u> /	2-24-67 <u>3</u> /	· .	
Silica (SiO ₂)	-	-	· 23	1	{ ···
Iron (Fe)	-	-	.0		
Calcium (Ca)	_	······	418	2°	
Magnesium (Mg)	_	_	264		
Sodium (Na)			204		
Potassium (K)	-	-	3,040		
and a second					
Bicarbonate (HCO ₃)		-	203		
Carbonate (CO ₃)	1	-	0	a da ser de la composición de	
Sulfate (SO ₄)	•	2,330	744		
Chloride (Cl)	156	24,200	5,520		
Fluoride (F)	-	-	.7		
Nitrate (NO ₃)	-	-	. 6.1		
Dissolved solids					· . ·
Calculated	-	· -	10,100		
Residue on evaporation at 180°C .	. –	-	10,500		
Hardness as CaCO ₃	e - 11	·	2,130		·
Noncarbonate hardness as CaCO ₃	- ·	-	1,966		
Specific conductance					
(micromhos at 25°C)	1,496	61,600	16,700		
н	- -	-	7.7	•	
Color	-	-	. 3	•	
Temperature (°C)	23	27	26		
· · · · · · · · · · · · · · · · ·					

Collected with bailer from depth of 352 feet. Collected through packer from depths of 620-735 feet. $\frac{\frac{1}{2}}{\frac{3}{3}}$

Collected during pumping test on cased well.

Rhodes Canyon area

Table 25.--Summary record of test well RC-1

Rhodes Canyon area White Sands Missile Range Sierra County, New Mexico

LOCATION:SEL/SW/4SEL/4 sec. 31, T. 12 S., R. 5 E.USGS No.12.5.31.434LATITUDE:33°12'26"LONGITUDE:106°30'18"DEPTH:942 feetALTITUDE:4,550 feetDATE COMPLETED:January 1965DRILLING METHOD:Cable toolDRILLING CONTRACTOR:Layne Texas Co., Inc., El Paso, Tex.CASING AND HOLE RECORD:Eight-inch hole to 750 feet; 6-inch hole from750 to 942 feet;6-inch temporary pipe installed to 746 feet; piperemoved upon completion of well.

YIELD: Well bailed at about 3 gpm

NONPUMPING WATER LEVEL: 471.5 feet on 12-11-64

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/l)	(mg/l)	
	530-540	967	232	62	12-11-64

FORMATION LOGS: 1) Sample description; 2) Gamma ray-neutron; 3) Induction-electrical

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Well plugged and abandoned

REFERENCE: Doty, 1968c

Table 26.--Summary record of test well RC-2

Rhodes Canyon area White Sands Missile Range Sierra County, New Mexico

LOCATION:NE4SW43SE4 sec. 28, T. 12 S., R. 5 E. USGS No. 12.5.28.432LATITUDE:33°14'22"LONGITUDE:106°32'24"DEPTH:358 feetALTITUDE:4,350 feetDATE COMPLETED:May 1964DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Layne Texas Co., Inc., E1 Paso, Tex.CASING AND HOLE RECORD:Nine and seven eighths-inch hole to 40 feet;

7 7/8-inch hole from 40 to 358 feet; 4-inch temporary pipe installed to 358 feet; pipe removed upon completion of water sampling.

YIELD: Not tested

NONPUMPING WATER LEVEL: 234.2 feet on 5-12-64

CHEMICAL QUALITY	Depth interval (feet)			•	
	358	5,150	1,010	1,040	5-6-64

FORMATION LOGS: 1) Sample description; 2) Microlog; 3) Inductionelectrical

72

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Well plugged and abandoned

REFERENCE: Doty, 1968c

Table 27.--Summary record of test well RC-3

Rhodes Canyon area White Sands Missile Range Sierra County, New Mexico

LOCATION:NW½NE½SE½ sec. 27, T. 13 S., R. 5 E.USGS No.13.5.27.421LATITUDE:33°09'19"LONGITUDE:106°29'05"DEPTH:750 feetALTITUDE:4,014 feetDATE COMPLETED:June 8, 1969DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Jerry Burgett Drilling Co., Carlsbad, N. Mex.CASING AND HOLE RECORD:Drilled with 6 3/4-inch bit to 750 feet

<u>YIELD</u>: Water-sampling operation indicated 10 gpm in interval from 257-269 feet.

NONPUMPING WATER LEVEL: About 35 feet on 6-12-69

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/1)	Chloride (mg/l)	Date
· · ·	257-269	38,500	5,280	11,950	6-12-69
· · ·	390-412	181,000	5,940	103,000	6-12-69
	490-512	159,000	6,120	84,500	6-11-69

FORMATION LOGS: 1) Sample description; 2) Drilling time; 3) Dual induction-laterolog; 4) Proximity log microlog

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Plugged and abandoned

REFERENCE: Lyford, 1970a

Table 28.--Chemical analyses of water samples

from test wells RC-1, RC-2, and RC-3

Analyses by U.S. Geological Survey

[Constituents in milligrams per liter except pH, color, and as indicated]

Test well RC	1	2	3	3	3
Date of collection	12-11-64 <u>1</u> /	5-6-64 <u>2</u> /	6-11-69 <u>3</u> /	6-12-69 <u>4</u> /	6-12-69 <u>5</u> /
	1.				· ·
Silica (SiO ₂)	15	21	19	17	10
Iron (Fe)	-	-	.06	.07	.03
Calcium (Ca)	85	134	2,000	1,950	950
Magnesium (Mg)	40	52	1,270	1,420	421
Sodium (Na)					
) Potassium (K)	64	961	53,100	64,800	8,440
Bicarbonate (HCO ₃)	204	140	66	54	98
Carbonate (CO ₃)	0	0	0	:0	0
Sulfate (SO ₄)		1,010	6,120	5,940	
Chloride (C1)	1	1,040		103,000	1
Fluoride (F)	1.6	1.8	1.6		
Nitrate (NO3)	18	5	.4	•••	•0
Dissolved solids		1. A.			
Calculated	618	3,290	147,000	177.000	27.100
Residue on evaporation at 180°C.			151,000		
Hardness as CaCO ₃	376	548	10,200	10,700	
Noncarbonate hardness as CaCO ₃	209	434	10,100	10,700	
			-	-	
Specific conductance	967	5,150	159,000	181 000	38 500
(micromhos at 25°C)	8.2	7.6	7.1	7.1	7.6
Color	_	-	7	5	5
Temperature (°C)		-	25	25	23
10mperature (0/					

Collected from depths of 530-540 feet.

Collected from depth of 358 feet.

Collected through packer from depths of 490-512 feet.

 $\frac{\frac{1}{2}}{\frac{3}{4}}$ Collected through packer from depths of 390-412 feet. 5/

Collected through packer from depths of 257-269 feet. 74

Mockingbird Gap area

Table 29.--Summary record of test well MacDonald 2

Mockingbird Gap area White Sands Missile Range Socorro County, New Mexico

LOCATION:NW4SE4NE4 sec. 5, T. 9 S., R. 5 E.USGS No. 9.5.5.241LATITUDE:33°33'45"LONGITUDE:106°26'40"DEPTH:400 feetALTITUDE:5,130 feetDATE COMPLETED:July 1956DRILLING METHOD:Cable toolDRILLING CONTRACTOR:R. L. Newberry, Socorro, N. Mex.CASING AND HOLE RECORD:No record of hole diameter.No casing installed.

YIELD: Well reported to be dry.

NONPUMPING WATER LEVEL: -

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/1)	

FORMATION LOGS: 1) Sample description

GEOLOGIC SOURCE: Undifferentiated siltstone, sandy clay, and sand

USE AND REMARKS: Well plugged and abandoned

REFERENCE: - Weir, 1965

76 .

Table 30.--Summary record of Murray test well 1

Mockingbird Gap area White Sands Missile Range Socorro County, New Mexico

LOCATION:SE4SW4SW4 sec. 32, T. 8 S., R. 5 E.USGS No.8.5.32.334LATITUDE:33°34'08"LONGITUDE:106°27'18"DEPTH:Drilled to 310 feet; finished
at 250 feet.ALTITUDE:5,070 feetDATE COMPLETED:July 1965DRILLING METHOD:Cable toolDRILLING CONTRACTOR:Perry Drilling Co., Tularosa, N. Mex.CASING AND HOLE RECORD:Six-inch pipe to 250 feet, 1/8-inch by 4-inch

torch-cut slots from 225 to 250 feet; pipe set in 9 1/2-inch hole.

<u>YIELD</u>: Well bailed at 1.5 gpm with 51 feet of drawdown.

NONPUMPING WATER LEVEL: 180.8 feet on 7-2-65

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)		Chloride _(mg/l)_	
	225-250	974	278	28	7-2-65

FORMATION LOGS: 1) Sample description; 2) Gamma ray-neutron

GEOLOGIC SOURCE: Fan deposits or Bolson fill

USE AND REMARKS: Observation well to monitor water-level changes near the Murray Well (Stallion Range Center Supply). Depth-to-water measurements are made every 3 months.

REFERENCE: Doty, 1968d

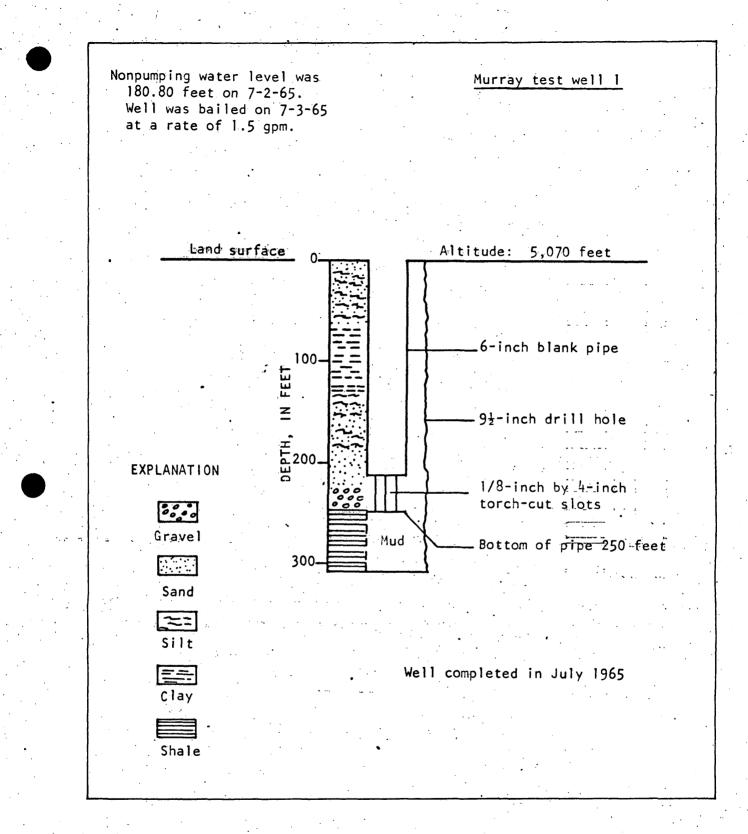


Figure 24.--Construction and lithology of Murray test well 1.

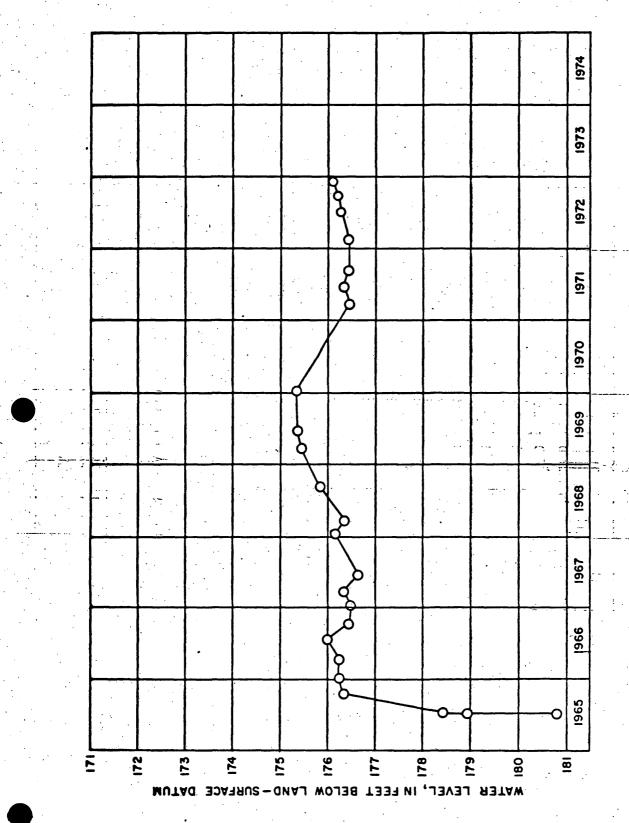


Figure 25.--Hydrograph of Murray test well 1.

Table 31.--Summary record of Murray test well 2

Mockingbird Gap area White Sands Missile Range Socorro County, New Mexico

LOCATION: SE4SE4SW4 sec. 32, T. 8 S., R. 5 E. USGS No. 8.5.32.344

LATITUDE: 33°34'08"

LONGITUDE: 106°27'06"

DEPTH: 500 feet

ALTITUDE: 5,090 feet

DATE COMPLETED: October 1965 DRILLING METHOD: Cable tool

DRILLING CONTRACTOR: Perry Drilling Co., Tularosa, N. Mex.

CASING AND HOLE RECORD: Ten-inch hole to 475 feet; 6-inch hole from 475 to 500 feet. Six-inch temporary pipe installed to 475 feet; pipe removed upon completion of well.

YIELD: Well bailed at about 20 gpm.

NONPUMPING WATER LEVEL: 266.7 feet on 9-20-65

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/l)	Chloride (mg/1)	Date
	235-255	1,300	503	41	9-13-65
· · ·	385	1,560	510	100	9-16-65
	465-470	1,880	622	146	9-20-65

FORMATION LOGS: 1) Sample description; 2) Gamma ray-neutron

GEOLOGIC SOURCE: Clay and siltstone of undetermined age

USE AND REMARKS: Well plugged and abandoned

REFERENCE: Doty, 1968d

Table 32.--Chemical analyses of water samples from

Murray test wells 1 and 2

Analyses by U.S. Geological Survey

[Constituents in milligrams per liter except pH, color, and as indicated]

Test well	1	2	2	2	
Date of collection	7-2-65 <u>1</u> /	9-13-65 <u>2</u> /	9-16-65 <u>3</u> /	9-20-65 <u>4</u> /	
Silica (SiO ₂)	17	_	<u>_</u>	10	
Iron (Fe)			-	-	
Calcium (Ca)	80		· ·	41	
· · · · · · · · · · · · · · · · · · ·			. –	13	
Magnesium (Mg)		-		. 13	
Sodium (Na)}	107	-	· -	370	
Potassium (K)J					
Bicarbonate (HCO ₃)	236	-		129	
Carbonate (CO ₃)	· .0		-	0	
Sulfate (SO4)	278	503	510	622	
Chloride (Cl)	28	41	100	146	
Fluoride (F)	.7	~	. –	1.2	
Nitrate (NO ₃)	.5	-	-	.0	
Dissolved solids					
Calculated	649			1,270	
				1,270	
Residue on evaporation at 180°C.	•			150	
Hardness as CaCO ₃	292	-	*	158	
Noncarbonate hardness as CaCO ₃	98	-	-	52	
Specific conductance					
(micromhos at 25°C)	974	1,300	1,560	1,880	
рН	8.0	. –	-	8.2	
Color	· _	_	-	–	
Temperature (°C)	-	-	· -		

Collected with bailer from depths of 225-250 feet.

 $\frac{1}{2}/{3}/{4}/{4}$ Collected with bailer from depths of 235-255 feet.

Collected with bailer from depth of 385 feet.

Collected with bailer from depths of 465-470 feet.

Table 33.--Summary record of Murray supply well

Mockingbird Gap area White Sands Missile Range Socorro County, New Mexico

LOCATION:NW4SW4SE4 sec. 32, T. 8 S., R. 5 E. USGS No.8.5.32.431LATITUDE:33°34'12"LONGITUDE:106°26'56"DEPTH:290 feet (original depth 236 feet)ALTITUDE:5,115 feetDATE COMPLETED:April 1966¹DRILLING METHOD:Cable toolDRILLING CONTRACTOR:McClendon Drilling Co., Alamogordo, N. Mex.

CASING AND HOLE RECORD: Ten-inch pipe to 290 feet, 1/8-inch by 2-inch mill-cut slots from 205-245 and 272-287 feet; torch-cut slots from 255-260 feet (for cementing off lower portion of hole, if so desired).

YIELD: Well test pumped at 140 gpm for 8 hours with 18.5 feet of drawdown.

NONPUMP ING	WATER LEVEL:	201.63 feet (bel on 4-28-66	ow concret	e floor of	pumphouse)	
CHEMICAL QUALITY	Depth interval (feet)		Sulfate (mg/1)	Chloride (mg/l)	Date	
	236	949	302	48	5-31-55	

FORMATION LOGS: 1) Sample description (236-290 feet); 2) Fluid conductivity; 3) Electric; 4) Gamma; 5) Caliper; 6) Neutron

GEOLOGIC SOURCE: Fan deposits or Bolson fill

<u>USE AND REMARKS</u>: $\frac{1}{Date}$ existing well rehabilitated. Water-supply well for Stallion Range Center and other up-range facilities. Not used since May 1967.

REFERENCE: Doty, 1968e

Nonpumping water level was 201.63 feet below pumphouse floor on 4-28-66. Well was test pumped on 4-28-66 for 8 hours at an average rate of 140 gpm.

Murray supply well

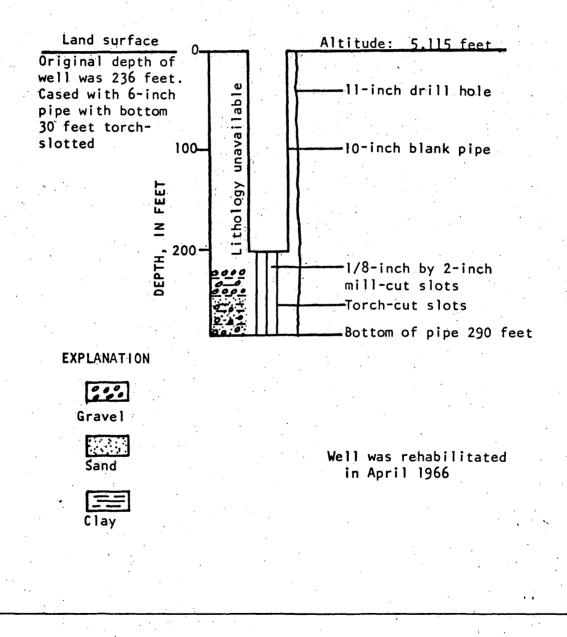
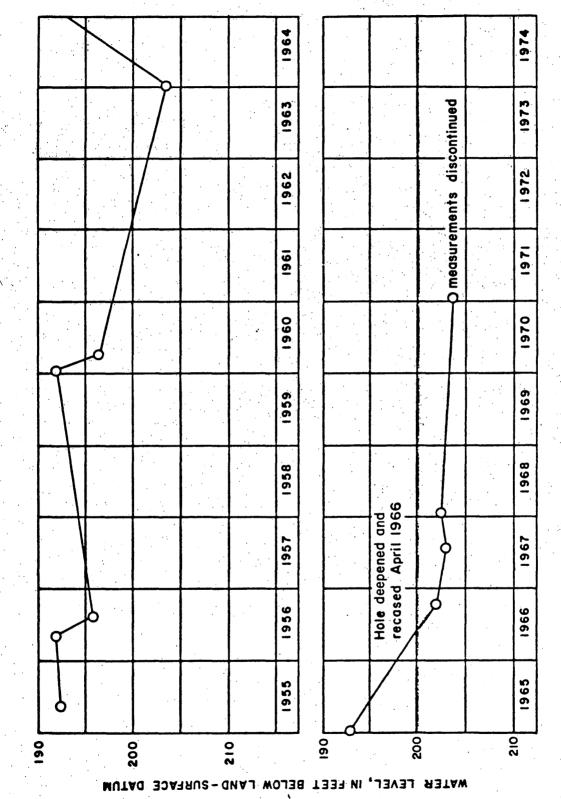



Figure 26.--Construction and lithology of Murray supply well.

Ł,

Figure 27.--Hydrograph of Murray supply well.

Table 34.--Chemical analyses of water samples from

Murray supply well

Analyses by U.S. Geological Survey

[Constituents in milligrams per liter except pH, color, and as indicated]

and the second					
Well depth (feet)	236	236	236	236	290
Date of collection	5-31-55	5-11-56	5-9-57	2–10–66	4-28-66 <u>1</u> /
Silica (SiO ₂)	31	31	28	27	29
Iron (Fe)	-	-	-	.12	.01
Calcium (Ca)	117	117	115	116	100
Magnesium (Mg)	1	38	38	31	36
Sodium (Na)				1. ¹ .	
Potassium (K)	35	33	34	39	46
Bicarbonate (HCO ₃)	162	159	159	161	175
Carbonate (CO ₃)	0	0	0	0	0
Sulfate (SO ₄)		302	299	286	277
Chloride (Cl)	48	47	48	46	40
Fluoride (F)	1.0	1.0	1.0	1.0	1.4
Nitrate (NO ₃)	4.3	8.3	7.4	5.8	6.0
Dissolved solids					
Calculated	-	-		_	621
Residue on evaporation at 180°C .	. 655	655	648	655	651
Hardness as CaCO ₃	444	448	444	416	396
Noncarbonate hardness as CaCO3	312	318	313	284	252
Specific conductance					
(micromhos at 25°C)	. 949	948	944	927	919
рН	7.6	7.4	7.5	7.6	7.5
Color	_ ·	-		0	3
Temperature (°C)	22	21	21	22	-
	· .				

1/

Collected during pumping test after well had been deepened.

Table 34.--Chemical analyses of water samples from

Murray supply well - Concluded

	*.				
Well depth (feet)	290	290	290	290	
Date of collection	10-7-66	1-11-67	7-18-67	7-20-67	
Silica (SiO ₂)	-	_	28	28	
Iron (Fe)	_		-	-	
Calcium (Ca)		_	115	107	• •
Magnesium (Mg)		_	33	36	
Sodium (Na)					· ·
Potassium (K)	-	-	77	58	
Bicarbonate (HCO ₃)	-	-	168	165	
Carbonate (CO ₃)	-		0	0	•
Sulfate (SO4)	306	- .	37 <u>3</u>	331	
Chloride (Cl)	-	43	39	38	
Fluoride (F)	-	-	1.4	1.4	
Nitrate (NO ₃)	-	-	8.9	7.9	
Dissolved solids					
Calculated	-	_	758	688	
Residue on evaporation at 180°C .	674	713	-	733	
Hardness as CaCO ₃	-	-	424	416	
Noncarbonate hardness as CaCO3	-	-	286	281	
Specific conductance	070	001	1 000	1 000	
(micromhos at 25°C)	972	991	1,080	1,000	
рН	-	-	7.7	7.6	
Color	-	-	-	-	
Temperature (°C)	21	-	22	23	

86.

Red Canyon Range Camp area

L ARENDE RIGA

Bill Carl

Table 35.--Summary record of supply well Red Canyon 1

Red Canyon Range Camp area White Sands Missile Range Socorro County, New Mexico

LOCATION:NE4NW4SE4 sec. 8, T. 7 S., R. 8 E.USGS No. 7.8.8.412LATITUDE:33°42'50"LONGITUDE:106°07'40"DEPTH:702 feetALTITUDE:5,495 feetDATE COMPLETED:September 1956DRILLING METHOD:Cable toolDRILLING CONTRACTOR:B. and W. Drilling Co., Borger, Tex.CASING AND HOLE RECORD:Cased with 10-inch pipe with torch-cut slotsfrom 602 to 702 feet.Cased with 10-inch pipe with torch-cut slots

YIELD: Well tested at about 35 gpm

NONPUMPING WATER LEVEL: 214.9 feet on 11-21-56

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/l)	
• •	602-702	3,350	2,050	94	9-13-56

FORMATION LOGS: 1) Sample description

GEOLOGIC SOURCE: Yeso Formation

USE AND REMARKS: Nonpotable water supply for Red Canyon Range Camp

REFERENCE: Weir, 1965

Supply well Red Canyon 1 Nonpumping water level was 214.9 feet on 11-21-56. Well was test pumped at a rate of about 35 gpm. Land surface Altitude: <u>5.495 feet</u> 0 200 -10-inch blank pipe DEPTH, IN FEET EXPLANATION 0.00 Gravel 600 -Torch-cut slots Sand Bottom of pipe 702 feet Siltstone 111 Well completed in Sandstone September 1956 Þ Limestone Gypsum Figure 28.--Construction and lithology of supply well

Red Canyon 1.

Table 36.--Summary record of supply well Red Canyon 2

Red Canyon Range Camp area White Sands Missile Range Socorro County, New Mexico

LOCATION:NELNELSWL sec. 8, T. 7 S., R. 8 E.USGS No. 7.8.8.322LATITUDE:33°42'50"LONGITUDE:106°07'54"DEPTH:710 feetALTITUDE:5,520 feetDATE COMPLETED:November 1956DRILLING METHOD:Cable toolDRILLING CONTRACTOR:B. and W. Drilling Co., Borger, Tex.CASING AND HOLE RECORD:Cased with 10-inch pipe with torch-cut slotsfrom 270-300, 410-450, and 660-690 feet.

YIELD: Test pumped at 200 gpm for 48 hours with 2 feet of drawdown.

NONPUMPING WATER LEVEL: 242.8 feet on 11-21-56

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/l)	
	270-690	3,160	1,910	92	11-23-56

FORMATION LOGS: 1) Sample description

GEOLOGIC SOURCE: Yeso Formation

USE AND REMARKS: Nonpotable water supply for Red Canyon Range Camp

90

REFERENCE: Weir, 1965

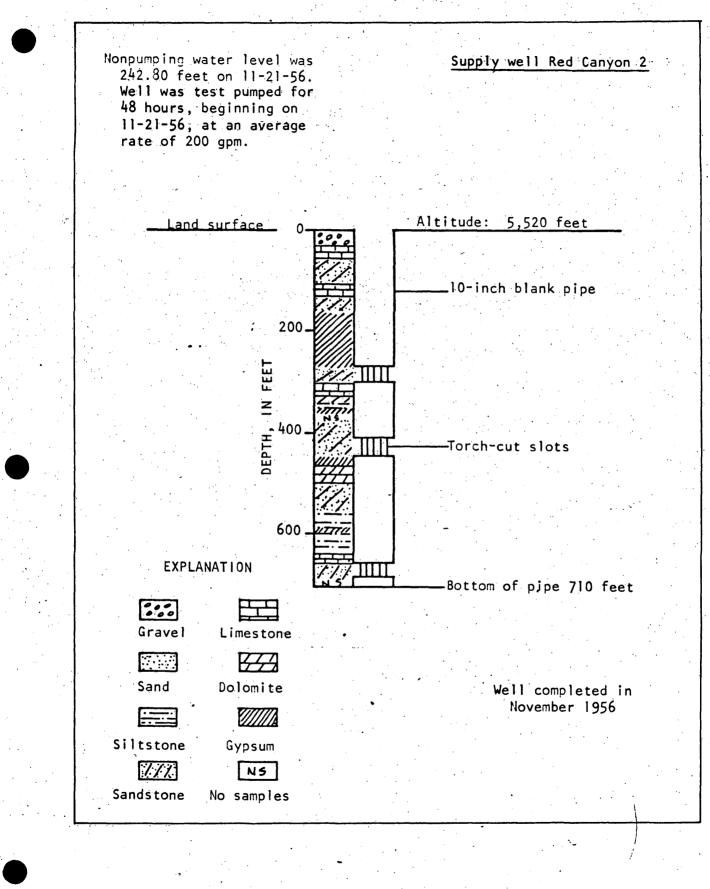


Figure 29.--Construction and lithology of supply well Red Canyon 2.

Table 37.--Chemical analyses of water samples

from supply wells Red Canyon 1 and 2

Analyses by U.S. Geological Survey

[Constituents in milligrams per liter except pH, color, and as indicated] Test well 1 1 2 2 2 **16** [·] Silica (SiO₂) 16 19 Iron (Fe)00 ..05 Calcium (Ca) 635 596 576 Magnesium (Mg) 209 183 172 Sodium (Na) 9.7 20 6.2 Potassium (K) Bicarbonate (HCO₃) 234 204 190 90 Carbonate (CO₃) 0 -0 0 0. Sulfate (SO₄) 2,050 1,970 1,910 1,870 Chloride (C1) 94 91 93 92 92 Fluoride (F) 1.8 1.6 1.8 1.4 Nitrate (NO₃) 2.4 5.0 5.4 4.5 Dissolved solids Calculated Residue on evaporation at 180°C . 3,130 2,920 2,780 Hardness as CaCO₃ 2,440 2,360 2,240 2,140 Noncarbonate hardness as CaCO₃ 2,250 2,080 2,070 2,190 Specific conductance (micromhos at 25°C) 3,350 3,200 3,220 3,160 3,150 pH 7.5 7.1 7.1 7.4 Color Temperature (°C) 21 10

North Oscura Peak area

Table 38.--Summary record of test well A. F. Baca

North Oscura Peak area White Sands Missile Range Socorro County, New Mexico

LOCATION:SW4SW4SW4 sec. 26, T. 6 S., R. 6 E.USGS No. 6.6.26.333LATITUDE:33°45'45"LONGITUDE:106°18'05"DEPTH:220 feetALTITUDE:6,444 feetDATE COMPLETED:December 1952DRILLING METHOD:Cable toolDRILLING CONTRACTOR:M. B. McClendon, Tularosa, N. Mex.CASING AND HOLE RECORD:Cased with 6-inch pipe to 203 feet, perforated 0-84 and 190-203 feet.

YIELD: Test pumped at 20 gpm for 3 hours with 14 feet of drawdown.

NONPUMPING WATER LEVEL: 39.50 feet on 3-8-55

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/l)	(mg/1)	
	Total perforations	1,310	155	56	3-8-55

FORMATION LOGS: 1) Driller's

GEOLOGIC SOURCE: Bursum Formation

USE AND REMARKS: Well drilled for Holloman Air Force Base

94

REFERENCE: Weir, 1965

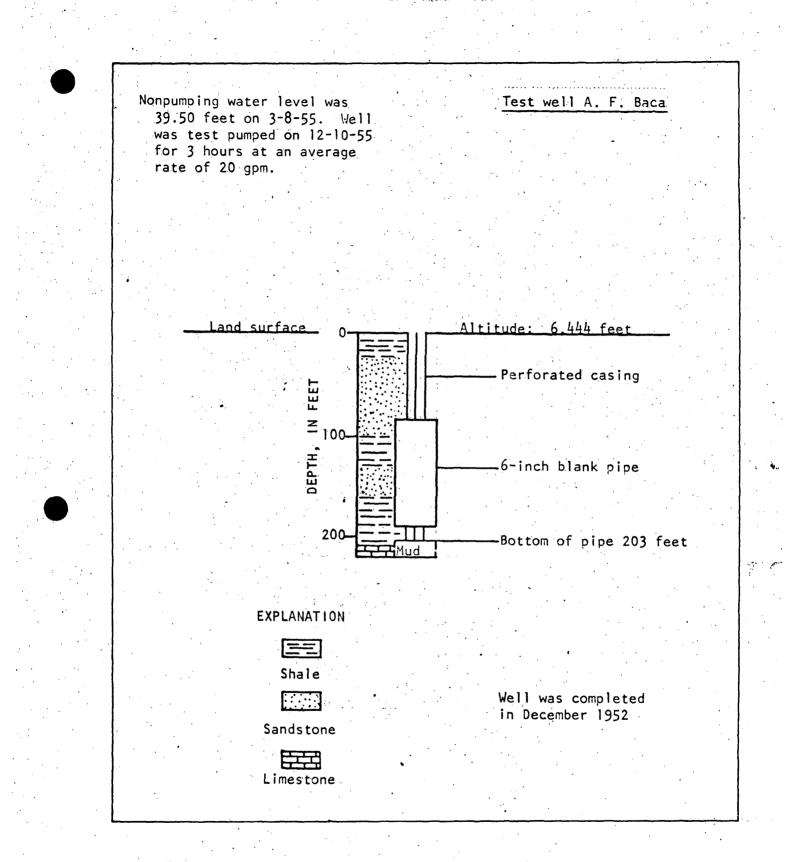


Figure 30.--Construction and lithology of test well A. F. Baca.

Table 39.--Summary record of Baca test well

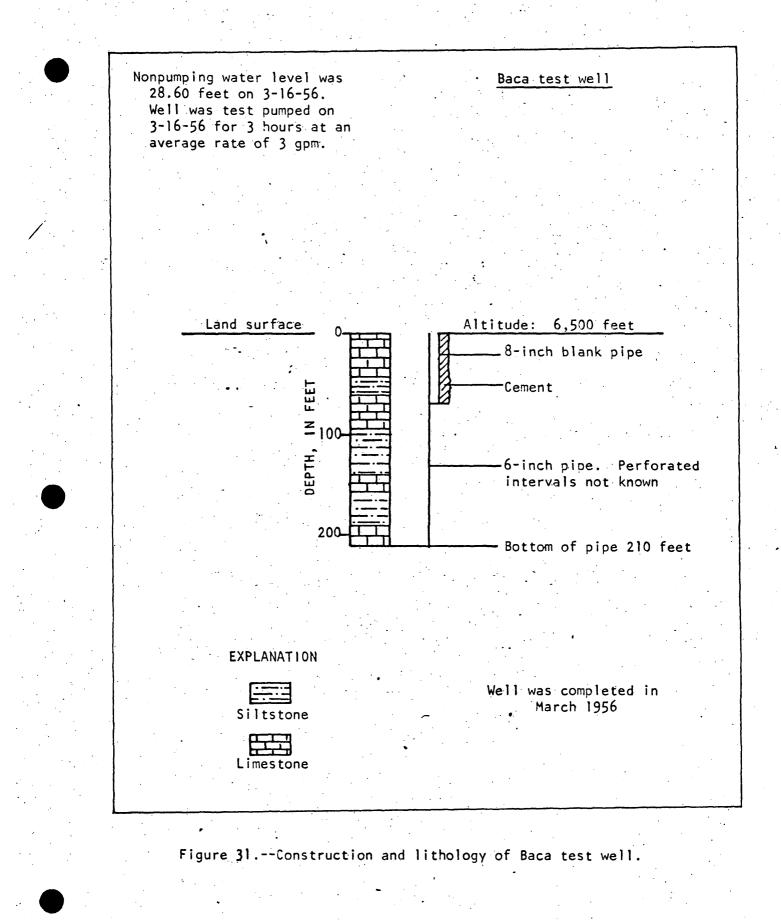
North Oscura Peak area White Sands Missile Range Socorro County, New Mexico

LOCATION:SELNELNEL sec. 34, T. 6 S., R. 6 E.USGS No. 6.6.34.224LATITUDE:33°45'32"LONGITUDE:106°18'10"DEPTH:210 feetALTITUDE:6,500 feetDATE COMPLETED:March 1956DRILLING METHOD:Cable toolDRILLING CONTRACTOR:R. L. Newberry, Socorro, N. Mex.CASING AND HOLE RECORD:Eight-inch pipe to 70 feet cemented; 6-inch pipe 0 to 210 feet, perforated intervals not known.

YIELD: Well test pumped at 3 gpm for 3 hours with 116 feet of drawdown.

NONPUMPING WATER LEVEL: 28.60 feet on 3-16-56

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)			Date
	210	1,410	124	52	5-7-57


FORMATION LOGS: 1) Sample description

GEOLOGIC SOURCE: Bursum Formation

USE AND REMARKS: Equipped with pump on December 18, 1956

96

REFERENCE: Weir, 1965

Table 40,--Chemical analyses of water samples from A. F. Baca

and Baca test wells

Analyses by U.S. Geological Survey [Constituents in milligrams per liter except pH, color, and as indicated]

Test well	A. F. Baca			Васа		
Date of collection	3-8-55	12-11-55	2-23-56 <u>1</u> /	3-13-56 <u>2</u> /	5-7-57 <u>2</u> /	
Silica (SiO ₂)	11	10	· _	-	7.2	
Iron (Fe)		_		-	-	
Calcium (Ca)	72	81	-		10	
Magnesium (Mg)	74	· · 71	· - ·	•	7.6	
Sodium (Na) Potassium (K)	103	120	-	-	331	
Bicarbonate (HCO ₃)	410	414	_	_	624	
Carbonate (CO ₃)	0	414 0	_	_	33	
Sulfate (SO ₄)	155	159		-	124	
Chloride (Cl)	56	52	31	55	52	
Fluoride (F)	.2	1.4	-	_	2.6	
Nitrate (NO ₃)	161	178	112	1.4	.2	
Dissolved solids			-			
Calculated	-	-	-	-	-	
Residue on evaporation at $180^{\circ}C$.	834	862	. –	-	875	
Hardness as CaCO ₃	484	494	-	-	56	
Noncarbonate hardness as CaCO ₃	148	154	-	-	0	
Specific conductance					• . •	
(micromhos at 25°C)	1,310	1,320	1,180	1,490	1,410	
рН	7.8	7.4	. * _ *	_ (8.8	
Color		_	-	_ ·	- .	
Temperature (°C)	16	-	14	15	-	

 $\underline{1}$ / Collected from depth of 53 feet.

2/ Collected from near bottom of well.

Table 41.--Summary record of Air Force test well

North Oscura Peak area White Sands Missile Range Socorro County, New Mexico

LOCATION:SW42SE42NE42 sec. 6, T. 7 S., R. 6 E.USGS No.7.6.6.243LATITUDE:33°44'25"LONGITUDE:106°21'28"DEPTH:701 feet $\frac{1}{}$ ALTITUDE:7,775 feetDATE COMPLETED:January 1956 $\frac{1}{}$ DRILLING METHOD:Cable toolDRILLING CONTRACTOR:R. L. Newberry, Socorro, N. Mex.Casing AND HOLE RECORD:Niné-inch hole; uncased

YIELD: Reported to be dry

NONPUMPING WATER LEVEL:

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/1)	

FORMATION LOGS: 1) Sample description (477-701 feet)

GEOLOGIC SOURCE: Madera Limestone

USE AND REMARKS: $\frac{1}{D}$ Drilled originally to 477 feet; plugged and abandoned in 1952. When deepened well was dry; plugged and abandoned.

REFERENCE: Weir, 1965

Stallion Range Center area

a,

£....

Table 42.--Summary record of test well Stallion 1

Stallion Range Center area White Sands Missile Range Socorro County, New Mexico

LOCATION:SE4SE4SE4 sec. 1, T. 6 S., R. 2 E.USGS No.6.2.1.444LATITUDE:33°48'35"LONGITUDE:106°40'55"DEPTH:600 feetALTITUDE:5,075 feetDATE COMPLETED:April 1956DRILLING METHOD:Cable toolDRILLING CONTRACTOR:R. L. Newberry, Socorro, N. Mex.CASING AND HOLE RECORD:Cased to 600 feet with 7-inch pipe; torch-cut slots from 309-330, 369-391, 434-453, 495-516, and 563-579 feet.

YIELD: Well test pumped at 20 gpm for 6 hours with 16 feet of drawdown.

NONPUMPING WATER LEVEL: 317.70 feet on 4-17-56

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/1)	
	318-600 318-600	3,310 3,080	2,040 2,090	39 44	4- 4-56 4-18-56

FORMATION LOGS: 1) Sample description

GEOLOGIC SOURCE: Baca and Datil Formations

USE AND REMARKS: Test well, cased and capped

REFERENCE: Weir, 1965

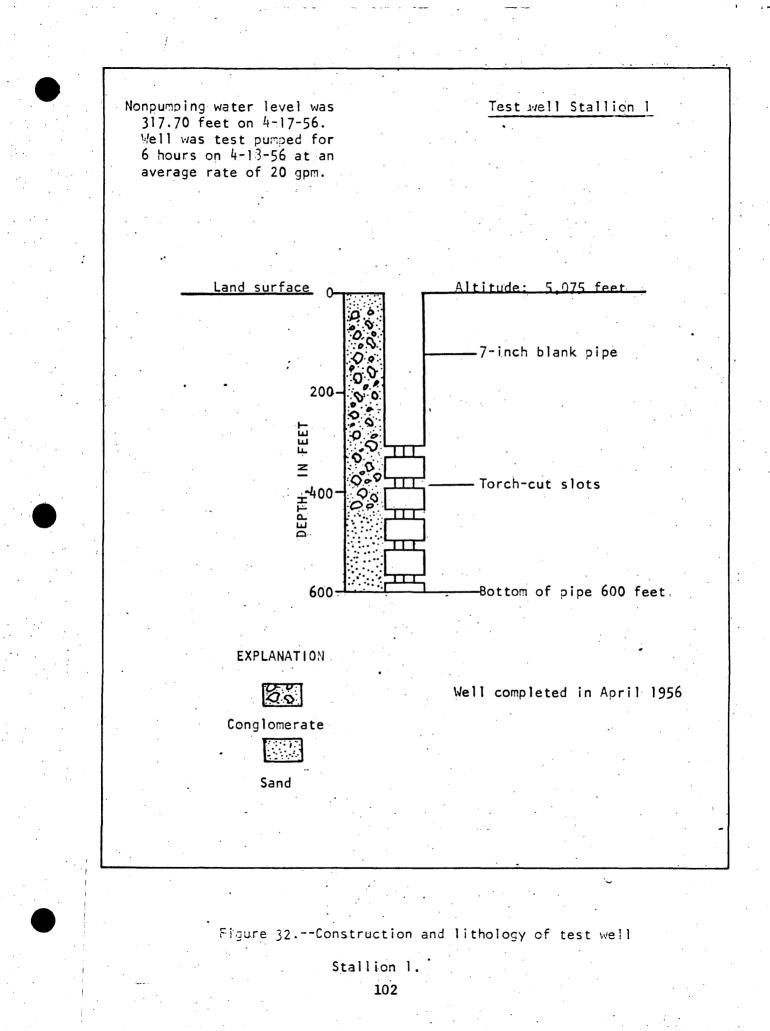


Table 43.--Summary record of test well Stallion 2A

Stallion Range Center area White Sands Missile Range Socorro County, New Mexico

LOCATION:NW42SE42NW42 sec. 10, T. 6 S., R. 2 E.USGS No. 6.2.10.141LATITUDE:33°48'16"LONGITUDE:106°43'38"DEPTH:600 feetALTITUDE:5,050 feetDATE COMPLETED:June 1956DRILLING METHOD:Cable toolDRILLING CONTRACTOR:R. L. Newberry, Socorro, N. Mex.CASING AND HOLE RECORD:Eight-inch hole; uncased

YIELD: Well was bailed at a rate of 11 gpm

NONPUMPING WATER LEVEL: 405.0 feet on 5-31-56

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	_(mg/1)	(mg/1)	
	405-600	2,010	904	39	5-21-56

FORMATION LOGS: 1) Sample description

GEOLOGIC SOURCE: Baca and Datil Formations

USE AND REMARKS: Plugged and abandoned

REFERENCE: Weir, 1965

Table 44.--Summary record of test well Stallion 3

Stallion Range Center area White Sands Missile Range Socorro County, New Mexico

LOCATION:SE4SE4NW4 sec. 4, T. 6 S., R. 2 E.USGS No.6.2.4.144LATITUDE:33°49'00"LONGITUDE:106°44'32"DEPTH:720 feetALTITUDE:5,065 feetDATE COMPLETED:September 1956DRILLING METHOD:Cable toolDRILLING CONTRACTOR:R. L. Newberry, Socorro, N. Mex.CASING AND HOLE RECORD:Eight-inch hole; uncased

YIELD: Well was bailed at a rate of 3 gpm

NONPUMPING WATER LEVEL: 420.0 feet on 9-7-56

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/1)	Chloride (mg/l)	Date	* .
· · · · · · · · · · · · · · · · · · ·	420-720 420-720	475 771	_ 218	14 24	8-22-56 9-14-56	

FORMATION LOGS: 1) Sample description

GEOLOGIC SOURCE: Santa Fe Group; Baca and Datil Formations

USE AND REMARKS: Plugged and abandoned

REFERENCE: Weir, 1965

Table 45.--Chemical analyses of water samples from

test wells Stallion 1, 2A, and 3

Analyses by U.S. Geological Survey [Constituents in milligrams per liter except pH, color, and as indicated]

[oonstituents in milligrams per lit	er except	, coi	lor, and		,ateuj
Stallion test well	1	1	2A	3	3
Date of collection	4-4-56	4-18-56	5-21-56	8-22-56	9-14-56
Silica (SiO ₂)	-	37		-	
Iron (Fe)	-	. –	-	-	-
Calcium (Ca)	_	391	_		33
Magnesium (Mg)	1	177	-	_	8.8
Sodium (Na)	1 .			·	
Potassium (K)		271	-	-	126
		58	64	104	141
Bicarbonate (HCO ₃)		0	0	0	. 0
Carbonate (CO_3)		2,090	904	_	218
Sulfate (SO ₄) Chloride (Cl)		44	39	14	24
Fluoride (F)		1.0	•		1.6
Nitrate (NO_3)		7.3			1.0
	-	1.5	-	-	10
Dissolved solids					
Calculated	1. A.	3,050	-	. –	
Residue on evaporation at 180°C .		-	-	-	496
Hardness as CaCO ₃		1,700	416	107	118
Noncarbonate hardness as CaCO ₃	1,580	1,660	364	22	. 3
Specific conductance	· ·				
(micromhos at 25°C)	3,310	3,080	2,010	475	771
рН	7.8	7.4	7.8	7.9	7.6
Color	-	-	-	-	-
Temperature (°C)	22	24	26 ·	_	28

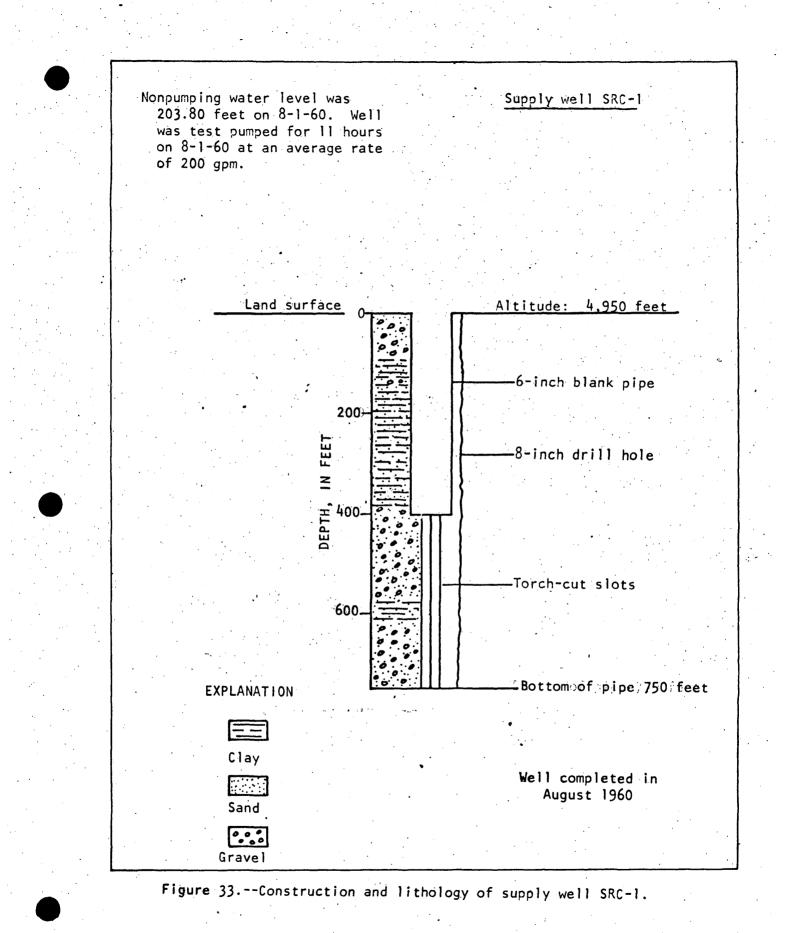
Table 46.--Summary record of supply well SRC-1

Stallion Range Center area White Sands Missile Range Socorro County, New Mexico

NE4SW4NE4 sec. 5, T. 6 N., R. 3 W. 6.3.5.232 LOCATION: USGS No. 106°39'08" LATITUDE: 33°49'08" LONGITUDE: 750 feet DEPTH: ALTITUDE: 4,950 feet DRILLING METHOD: Cable tool DATE COMPLETED: August 1960 DRILLING CONTRACTOR: Layne Texas Co., Inc., El Paso, Tex. CASING AND HOLE RECORD: Six-inch pipe to 750 feet; torch-cut slots from 400 to 750 feet; pipe set in 8-inch hole.

YIELD: Well test pumped at 200 gpm for 11 hours with 123 feet of drawdown.

NONPUMPING WATER LEVEL: 203.8 feet on 8-1-60


CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/1)	Chloride (mg/l)	Date
	400-500	3,800	2,510	42	7-7-60
	Total screen	3,430	2,150	42	8-1-60

FORMATION LOGS: 1) Sample description

GEOLOGIC SOURCE: Bolson fill

USE AND REMARKS: Supplies water to desalting unit at Stallion Range Center

REFERENCE: Hood, 1968

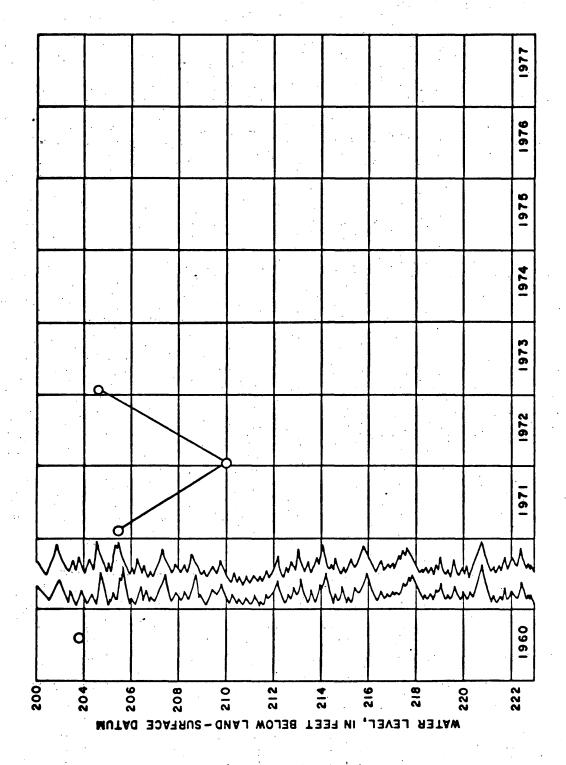


Figure 34.--Hydrograph of supply well SRC-1

Table 47.--Chemical analyses of water samples from

supply well SRC-1

Date of collection	7-7-60 <u>1</u> /	8-1-60 2/	5-17-63	6-18-64	10-7-66
		. • .			-
Silica (SiO ₂)	-	32	30	28	29
Iron (Fe)	-	-	.53	.32	-
Calcium (Ca)		410	409		. • .
Magnesium (Mg)	1	ł .		406	408
Sodium (Na)	1 · · ·	170	175	174	180
Potassium (K)	1	289	279	283	254
	· ·				
Bicarbonate (HCO ₃)	1	51	49	52	52
Carbonate (CO ₃)		0	0	0	0
Sulfate (SO ₄)		2,150	2,150	2,150	2,120
Chloride (Cl)		42	43	41	42
Fluoride (F)		.9	.8	.8	_
Nitrate (NO ₃)	-	8.3	.6.5	6.7	5.7
Dissolved solids					
Calculated	. _	3,130	3,120	3,120	3,070
Residue on evaporation at $180\degree$ C .	-	3,380	3,420	3,470	.
Hardness as CaCO3	2,080	1,720	1,740	1,730	1,760
Noncarbonate hardness as CaCO3	2,040	1,680	1,700	1,690	1,720
Specific conductance				•	
(micromhos at 25°C)	3,800	3,430	3,460	3,420	3,500
рН	7.3				7.9
- Color	_	_	2	2	
Temperature (°C)	28	27	_	_	

Analyses by U.S. Geological Survey [Constituents in milligrams per liter except pH, color, and as indicated]

1/ Collected during pumping test when well was 500 feet deep.

2/ Collected during pumping test when well was completed at depth of 750 feet.

Table 47.--Chemical analyses of water samples from

supply well SRC-1 - Concluded

			<u></u>		
Date of collection	11-9-66	6-18-67	6-7-68		
Silica (SiO ₂)	29	28	29		•
Iron (Fe)	-	.32	-		
Calcium (Ca)	414	406	408		
Magnesium (Mg)		174	163		
Sodium (Na)					•
Potassium (K)	275	283	274		
Bicarbonate (HCO ₃)	52	52	50		· •
Carbonate (CO ₃)	0	0	0		
Sulfate (SO ₄)		2,150	2,090		
Chloride (Cl)	43	41	42		
Chloride (Cl) Fluoride (F)	.7	.8	.8		
Nitrate (NO ₃)	and the second	1	9.2		
Dissolved solids					•
Calculated	3.110	3,470	3,040		
Residue on evaporation at 180°C.			_		
Hardness as CaCO ₃	1	1,730	1,690		
Noncarbonate hardness as CaCO3		1,690	1,650	1. A.	
Specific conductance					• •
(micromhos at 25°C)	3,470	3,420	3,480		
рН	7.0	7.4	7.6		
Color					
Temperature (°C)	_	· _ ·	27		
				·	

110.

Table 48.--Summary record of supply well SRC-2

Stallion Range Center area White Sands Missile Range Socorro County, New Mexico

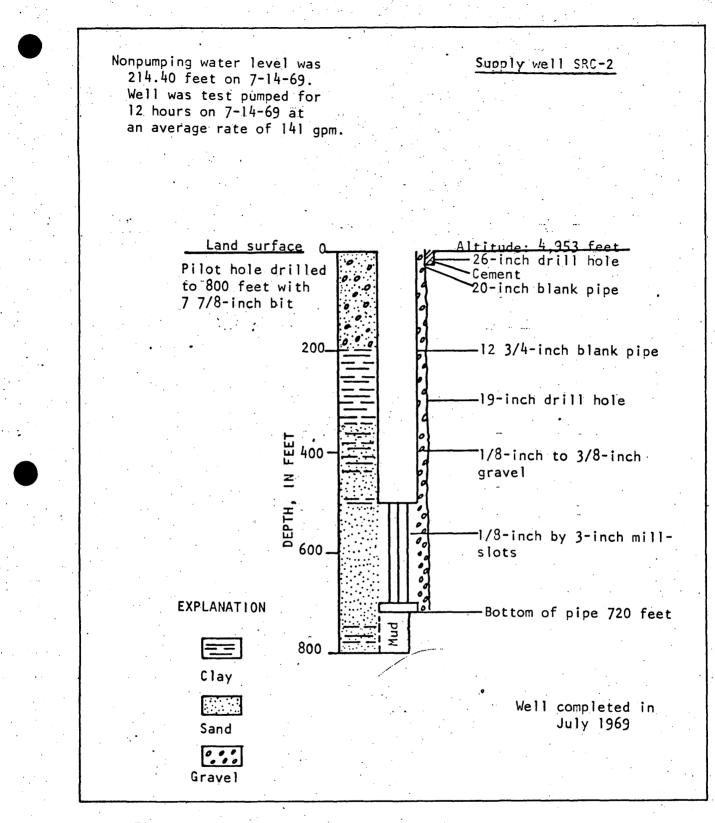
LOCATION:SE\SW\2NE\2 sec. 5, T. 6 S., R. 3 E.USGS No. 6.3.5.234LATITUDE:33°49'07"LONGITUDE:106°39'12"DEPTH:800 feet; cased to 720 feetALTITUDE:4,953 feetDATE COMPLETED:July 1969DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Jerry Burgett Drilling Co., Carlsbad, N. Mex.

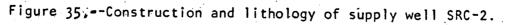
CASING AND HOLE RECORD: Pilot hole drilled with 7 7/8-inch bit to 800 feet; 26-inch hole reamed to 30 feet and 20-inch pipe grouted in place; hole reamed with 19-inch bit to 720 feet; cased with 12 3/4-inch pipe to 720 feet with mill-cut slots 1/8 inch by 3 inches, 8 around and 3 rounds per foot between 500 and 700 feet; annulus filled with 1/8- to 3/8-inch gravel.

YIELD: Well test pumped at 141 gpm for 12 hours with 175 feet of drawdown.

NONPUMPING WATER LEVEL: 214.4 feet on 7-14-69

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/l)	(mg/l)	
	636648	3,800	2,360	58	7- 3-69
	500700	3,470	2,130	46	7-21-69


FORMATION LOGS: 1) Sample description; 2) Dual induction-laterolog; 3) Proximity log microlog


GEOLOGIC SOURCE: Sediments of Tertiary and Quaternary age

111

USE AND REMARKS: Supplies water to desalting unit at Stallion Range Center.

REFERENCE: Lyford, 1970b

			4 U		7 V V V V			877	230
									1969
									1970
		0						1	1261
									197.2
•		0							1973
· ·									1974
•		•							1975
	-	· · · ·				•	· .		1976
									1977
								 	1978

Figure 36.--Hydrograph of supply well SRC-2.

Table 49.--Chemical analyses of water samples from

supply well SRC-2

Analyses by U.S. Geological Survey

[Constituents in milligrams per lit	er excep	t pH, co.	lor, and	as indi	cated]
Date of collection	7-3-69 <u>1</u> /	7-21-69 <u>2</u> /			
Silica (SiO ₂)	20	32			
Iron (Fe)	.02	.01			
	105	100			
Calcium (Ca)	495	420		· ·	
Magnesium (Mg)	171	168			
Sodium (Na)	310	273			
Potassium (K)					
Bicarbonate (HCO ₃)	82	50			
Carbonate (CO ₃)	1	· o		:	
Sulfate (SO4)	1	2,130			
Chloride (Cl)		46		· · · ·	
Fluoride (F)	· ·	I .			
Nitrate (NO ₃)	1			•	
		0.5			
Dissolved solids			· , ·		
Calculated	3,460	3,100			•
Residue on evaporation at 180°C .		3,440			
Hardness as CaCO ₃	1,940	1,740			4
Noncarbonate hardness as CaCO ₃	1,870	1,700			
Specific conductance					
(micromhos at 25°C)	3,800	3,470			
рН	7.1				
Color	5	5			
Temperature (°C)	25	28			

1/ Collected through packer from depths of 636-648 feet.

 $\underline{2}$ / Collected during pumping test on cased well.

Bosque del Apache Grant

Table 50.--Summary record of test well B-1

Bosque del Apache Grant Socorro County, New Mexico

LOCATION:NW½NW½NW½ sec. 9, T. 6 S., R. 1 E.USGS No. 6.1.9.111LATITUDE:33°48'26"LONGITUDE:106°51'00"DEPTH:Drilled to 500 feet; finished
at 167 feetALTITUDE:4,530 feetDATE COMPLETED:November 1963DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Layne Texas Co., Inc., El Paso, Tex.

CASING AND HOLE RECORD: Six-inch pipe to 500 feet, 1/8-inch by 4-inch mill-cut slots from 100-160, 320-340, and 440-460 feet; pipe filled with sand from 500 to 167 feet, and capped with cement; pipe set in 9-7/8 inch hole.

YIELD: Well test pumped at 150 gpm for 8 hours with 30 feet of drawdown.

NONPUMPING WATER LEVEL: 20.65 feet on 11-15-63

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/l)	Chloride (mg/l)	Date
	100-160	1,060	245	56	11-15-63
	320-340	1,620	258	236	11-13-63
	440-462	4,350	704	905	11-12-63

FORMATION LOGS: 1) Sample description; 2) Induction-electrical

GEOLOGIC SOURCE: Alluvium

USE AND REMARKS: Observation well to monitor water-level and chemicalquality changes. In 1966 well was equipped with pump and windmill by local rancher.

REFERENCE: Doty, 1968c

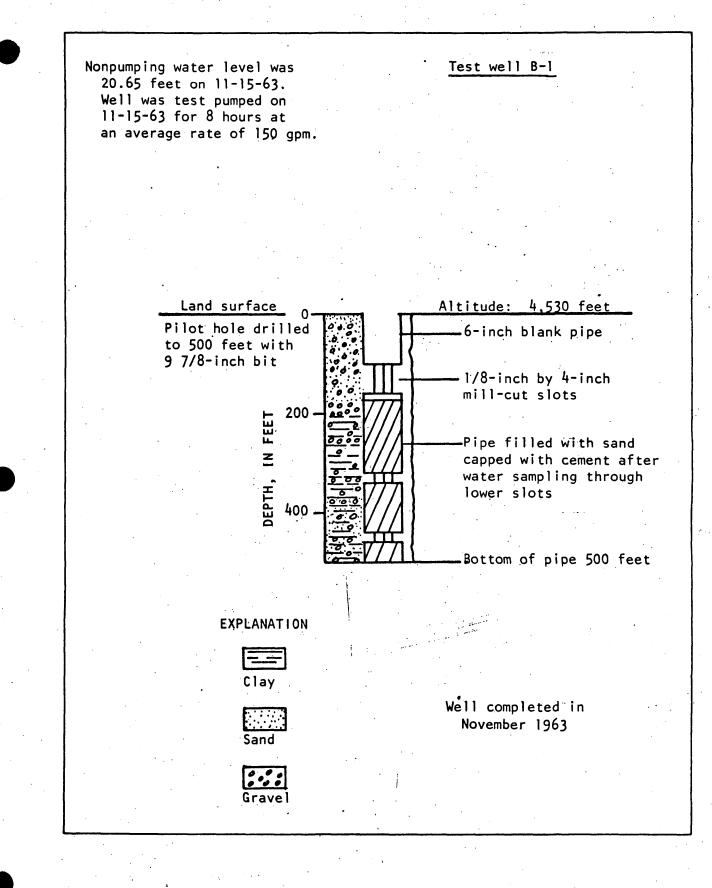


Figure 37.--Construction and lithology of test well B-1.

Table 51. -- Chemical analyses of water samples from

test well B-1

[Constituents in milligrams per lit	er except	t pH, col	lor, and	as indic	ated
Date of collection	11-12-63 1/	11-13-63 <u>2</u> /	11-15-63 <u>3</u> /	6-17-66 4/	
Silica (SiO ₂)	. –	-	35	-	
Iron (Fe)	-		.11		
Calcium (Ca)		· . ·	6.4		
Magnesium (Mg)	1 .		1.5		
Sodium (Na)	•	. –		-	
-		-	230	. –	·. ·
Potassium (K)	-	-	8.3	-	
Bicarbonate (HCO ₃)	· –	· · _	230	· _	
Carbonate (CO ₃)		_	∵ 0,	2 - - - 1	· · · · ·
Sulfate (SO ₄)	704	258	245	240	
Chloride (Cl)	905	236	56	55.	
Fluoride (F)		. –	1.4	-	
Nitrate (NO ₃)		-	.2	· · ·	
Dissolved solids	•				
Calculated			697		
		-	097	-	
Residue on evaporation at 180°C.		-	-	-	
Hardness as CaCO ₃		: <u>-</u>	22	· -	
Noncarbonate hardness as CaCO ₃	-	-	0	–	
Specific conductance					· · ·
(micromhos at 25°C)	4,350	1,620	1,060	1,050	
рН	_ .	-	8.1	-	
Color	· —	· _	-	-	•
Temperature (°C)		· · ·			• •
					· ·

Analyses by U.S. Geological Survey milligrams per liter except pH, color and as indicated]

.

Collected through packer from depths of 440-462 feet.

 $\frac{1}{2}/{3}/{4}$ Collected through packer from depths of 320-340 feet.

Collected during pumping test on cased well. Collected from pump on well.

Table 52.--Summary record of test well B-2

Bosque del Apache Grant Socorro County, New Mexico

LOCATION:SE4NW4SE4 sec. 4, T. 6 S., R. 1 E.USGS No. 6.1.4.414LATITUDE:33°48'48"LONGITUDE:106°50'28"DEPTH:255 feetALTITUDE:4,540 feetDATE COMPLETED:June 1966DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Layne Texas Co., Inc., El Paso, Tex.CASING AND HOLE RECORD:Drilled to 255 feet with 10½-inch bit; no pipe installed.

YIELD: Not tested

NONPUMPING WATER LEVEL: 25.57 feet on 6-17-66

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/l)	Chloride (mg/1)	Date	:
	119-130 242-253	6,350 5,760	1,250 756	1,150 1,350	6-11-66 6-17-66	

FORMATION LOGS: 1) Driller's

GEOLOGIC SOURCE: Alluvium

USE AND REMARKS: Well plugged and abandoned

119

REFERENCE: Cooper and Doty, 1966

Table 53.--Summary record of test well B-3

Bosque del Apache Grant Socorro County, New Mexico

LOCATION:NE4NW4NE4 sec. 9, T. 6 S., R. 1 E.USGS No.6.1.9.212LATITUDE:33°48'34"LONGITUDE:106°50'18"DEPTH:255 feetALTITUDE:4,540 feetDATE COMPLETED:June 1966DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Layne Texas Co., Inc., El Paso, Tex.CASING AND HOLE RECORD:Drilled to 255 feet with 10½-inch bit; no pipeinstalled.

YIELD: Not tested

NONPUMPING WATER LEVEL: 41.20 feet on 6-28-66

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/l)	(mg/l)	
	86-97	5,060	1,060	905	6-23-66
	241-252	8,190	1,380	1,920	6-28-66

FORMATION LOGS: 1) Driller's

GEOLOGIC SOURCE: Alluvium

USE AND REMARKS: Well plugged and abandoned

REFERENCE: Cooper and Doty, 1966

Table 54.--Summary record of test well B-4

Bosque del Apache Grant Socorro County, New Mexico

LOCATION:SW42SW42SW42 sec. 9, T. 6 S., R. 1 E.USGS No. 6.1.9.333LATITUDE:33°47'43"LONGITUDE:106°51'16"DEPTH:256 feetALTITUDE:4,510 feetDATE COMPLETED:July 1966DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Layne Texas Co., Inc., El Paso, Tex.CASING AND HOLE RECORD:Drilled to 256 feet with 10½-inch bit; no pipeInstalled.

YIELD: Not tested

NONPUMPING WATER LEVEL: 10.8 feet on 7-12-66

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/1)	(mg/l)	
	91-102	6,560	1,230	1,540	7- 7-66
	237-252	9,660	1,500	2,380	7-12-66

FORMATION LOGS: 1) Driller's; 2) Microlaterolog; 3) Inductionelectrical

GEOLOGIC SOURCE: Alluvium

USE AND REMARKS: Well plugged and abandoned

REFERENCE: Cooper and Doty, 1966

Table 55.--Summary record of test well B-5

Bosque del Apache Grant Socorro County, New Mexico

LOCATION:SW4NE4NE4 sec. 8, T. 6 S., R. 1 E.USGS No. 6.1.8.332LATITUDE:33°48'27"LONGITUDE:106°51'15"DEPTH:512 feet; completed at 185 feetALTITUDE:4,523 feetDATE COMPLETED:May 1967DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Layne Texas Co., Inc., El Paso, Tex.

CASING AND HOLE RECORD: Drilled to 455 feet with 12¹/₂-inch bit; drilled to 512 feet with 6 5/8-inch bit; cement plug set in hole from 185 to 205 feet; hole cased to 185 feet with 8 5/8-inch pipe with 1/8 by 2-inch mill-cut slots from 55 to 95 feet, 125 to 150 feet, and 160 to 170 feet.

YIELD: Well test pumped at 300 gpm for 8 hours with 19 feet of drawdown.

NONPUMPING WATER LEVEL: 13.65 feet on 5-26-67

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/1)	Chloride (mg/1)	Date
	77-100	719	160	33	4-21-67
	227-250	1,130	125	180	4-27-67
	489-512	6,100	955	1,300	5- 9-67
	Total screen	1,120	, 234	82	5-26-67

FORMATION LOGS: 1) Driller's; 2) Sample description; 3) Dual inductionlaterolog; 4) Microlog

GEOLOGIC SOURCE: Alluvium

<u>USE AND REMARKS</u>: Observation well to monitor water-level and chemicalquality changes.

REFERENCE: Cooper, 1968

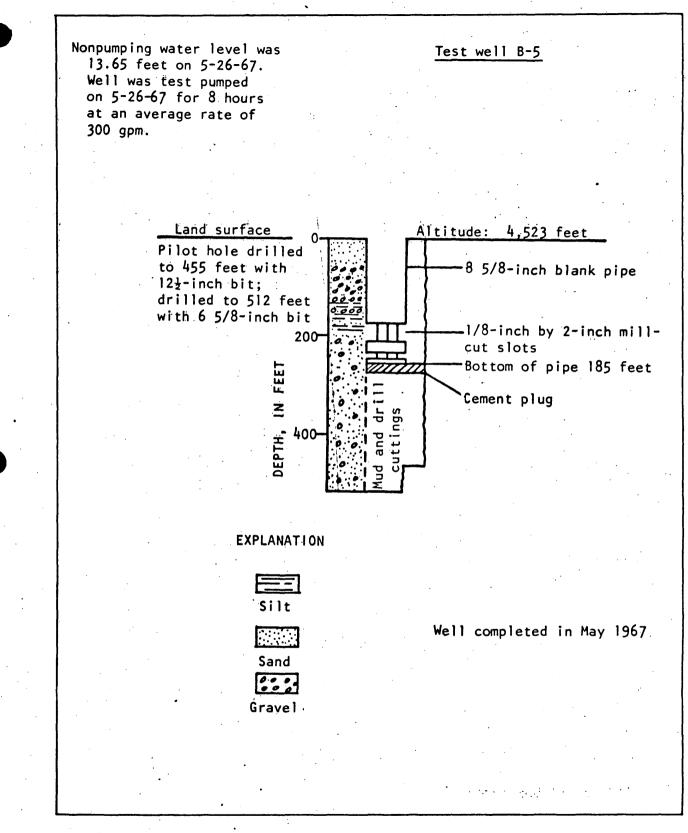


Figure 38.--Construction and lithology of test well B-5.

Table 56.--Chemical analyses of water samples from

test well B-5

[Constituents in milligrams per lit				as indi	cated]
Date of collection	4-21-67 <u>1</u> /	4-27-67 <u>2</u> /	5-9-67 <u>3</u> /	5-19-67 <u>4</u> /	5-26-67 <u>5</u> /
			<u> </u>		<u></u>
Silica (SiO ₂)	_	_	_		35
Iron (Fe)		· _ ·			.37
Calcium (Ca)		-	· _ · ·	-	29
Magnesium (Mg)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-	-	-	9.1
Sodium (Na)		178	1 - - -	193	200
Potassium (K)	4.7	5.5	-	-	10
Bicarbonate (HCO3)	-	168	-	238	242
Carbonate (CO ₃)	_	4			0
Sulfate (SO4)	160	125	955	232	234
Chloride (Cl)	33	180	1,300	79	82
Fluoride (F)	_		_,		.7
Nitrate (NO ₃)	_	_	_	_	.1
Dissolved solids					
Calculated	· • •		· ·		· ·
		-	- '		719:
Residue on evaporation at 180°C.		-	-	-	-
Hardness as CaCO ₃		120	-	115	110
Noncarbonate hardness as CaCO ₃	-	- -	-	-	0
Specific conductance					
(micromhos at 25°C)	719	1,130	6,100	1,090	1,120
рН	-	8.3		8.2	8.0
Color	-	-		-	_
Temperature (°C)					

Analyses by U.S. Geological Survey

Packer at 62 feet; screen from 77 to 100 feet. 1/

2/ 3/ 2/ 5/ Packer at 212 feet; screen from 227 to 250 feet. Packer at 474 feet; screen from 489 to 512 feet.

Collected during well development.

Collected during pumping test on cased well.

Table 57.--Summary record of test well B-6

Bosque del Apache Grant Socorro County, New Mexico

LOCATION: SW4NW4SE4 sec. 8, T. 6 S., R. 1 E. **USGS No.** 6.1.8.413 106°51'30" 33°48'07" LATITUDE: LONGITUDE: ALTITUDE: 4,525 feet DEPTH: 115 feet DATE COMPLETED: June 1967 DRILLING METHOD: Hydraulic rotary DRILLING CONTRACTOR: Layne Texas Co., Inc., El Paso, Tex. Drilled to 115 feet with 6 3/4-inch bit; reamed CASING AND HOLE RECORD: to 75 feet with 9 7/8-inch bit; no pipe installed.

YIELD: Not tested

NONPUMPING WATER LEVEL: 9.70 feet on 6-14-67

CHEMICAL	Depth interval	Conductance	Sulfate	Chloride	Date
QUALITY	(feet)	(micromhos)	(mg/l)	(mg/1)	
	89-112	5,290	960 ·	995	6-14-67

FORMATION LOGS: 1) Driller's

GEOLOGIC SOURCE: Alluvium

USE AND REMARKS: Well plugged and abandoned

125

REFERENCE: Cooper, 1968

and B-6 , B-3, B-4 Table 58.---Chemical analyses of water samples from test wells B-2.

Analyses by Geological Survey, U.S. Dept. of the Interior (Chemical constituents in milligrams per liter)

Test well	B-2	B-2	B-3	B-3	B-4	B-4	B-6
Date of collection	6-11-66	6-17-66	6-23-66	6–28–66	7-7-66	7-12-66	6-14-67
Sample interval	1/	2/	3/	4/	5/	<u>6</u> /	17
Sulfate (SO4)	1,250	756	1,060	1,380	1,230	1,500	096
Chloride (C1)	1,150	1,350	905	1,920	1,540	2,380	995
Specific conductance (micromhos at 25°C)	6,350	5,760	5,060	8,190	6,560	9,660	5,290

104 feet; screen from 119-130 feet. 227 feet; screen from 242-253 feet. 225 feet; screen from 241-252 feet. Packer at 227 feet; screen from 237-252 feet. Packer at 75 feet; screen from 89-112 feet. /6 feet; soreen from 91-102 feet. 71 feet; screen from 86-97 feet. Packer at at at at at Packer Packer Packer Packer Packer

Table 59.--Summary record of test well B-7

Bosque del Apache Grant Socorro County, New Mexico

LOCATION:NW4NW4NE4 sec. 8, T. 6 S., R. 1 E.USGS No. 6.1.8.211LATITUDE:33°48'38"LONGITUDE:106°51'32"DEPTH:515 feet; completed at 255 feetALTITUDE:4,520 feetDATE COMPLETED:September 1967DRILLING METHOD:Hydraulic rotaryDRILLING CONTRACTOR:Layne Texas Co., Inc., El Paso, Tex.

CASING AND HOLE RECORD: Drilled to 464 feet with 12¹/₂-inch bit; drilled to 515 feet with 6 5/8-inch bit; cement plug set in hole from 255 to 275 feet; hole cased to 255 feet with 8 5/8-inch pipe with 1/8- by 2-inch mill-cut slots from 175 to 215 feet and 235 to 250 feet.

YIELD: Well test pumped at 320 gpm for 8 hours with 30 feet of drawdown.

NONPUMPING WATER LEVEL: 8.20 feet on 9-22-67

CHEMICAL QUALITY	Depth interval (feet)	Conductance (micromhos)	Sulfate (mg/1)	Chloride (mg/l)	Date
	77-100	1,490	299	137	8-30-67
÷	227-251	944	127	130	9- 5-67
	481-502	6,530	1,064	1,410	9- 9-67
•	Total screen	854	106	120	9-22-67

FORMATION LOGS: 1) Driller's; 2) Sample description; 3) Dual inductionlaterolog; 4) Microlog

GEOLOGIC SOURCE: Alluvium

<u>USE AND REMARKS</u>: Observation well to monitor water-level and chemicalquality changes.

REFERENCE: Cooper, 1968

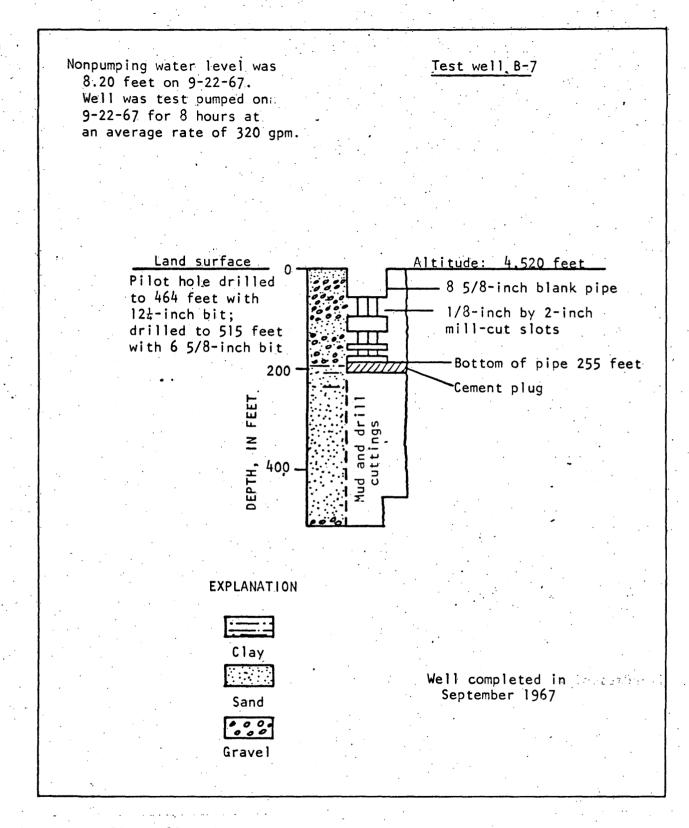


Figure 39.--Construction and lithology of test well B-7.

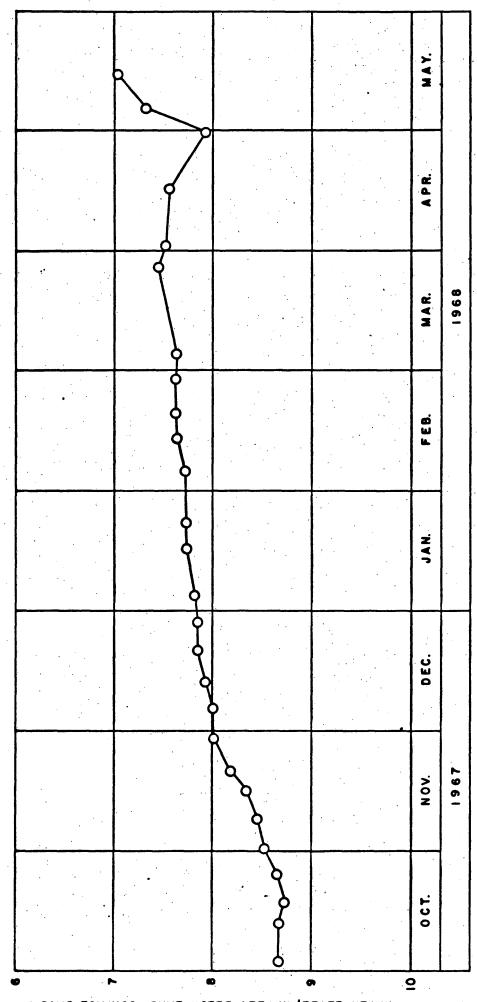


Figure 40.--Hydrograph of test well B-7.

WATER LEVEL IN FEET BELOW LAND - SURFACE DATUM

Table 60.--Chemical analyses of water samples from

test well B-7

Analyses by U.S. Geological Survey

[Constituents in milligrams per liter except pH, color, and as indicated]

Date of collection	8-30-67 <u>1</u> /	9-5-67 2/	9-9-67 <u>3</u> /	9-22-67 <u>4</u> /	5
		· · ·			
Silica (SiO ₂)	-	. –	_	56	
Iron (Fe)	-		-	.1	
Calcium (Ca)	_	_	-	- 34	
Magnesium (Mg)	-	-	-	9.5	
Sodium (Na))				12/	
ر Potassium (K)		-		134	:
Bicarbonate (HCO ₃)		_		163	•
Carbonate (CO_3)	_			ios o	
Sulfate (SO ₄)	299	127	1,064	0 106	
Chloride (Cl)		130	1,410	100	
Fluoride (F)		_	-	.5	•
Nitrate (NO ₃)	·	· · · _	_	1.2	
	1		;		
Dissolved solids				- (- ·	
Calculated	-	-	-	541	
Residue on evaporation at 180°C.		-	-	528	
Hardness as CaCO ₃		-	-	. 124	
Noncarbonate hardness as CaCO ₃	-	-	. – .	0	
Specific conductance					· · ·
(micromhos at 25°C)	1,490	944	6,530	854	
рН	-		-	7.9	
Color	-	-	. –	-	
Iemperature (°C)					

feet; screen from 227 to 251 feet. $\frac{\overline{3}}{4}$ Packer at 464 feet; screen from 481 to 502 feet.

Collected during a pumping test on cased well.

REFERENCES CITED

Cooper, J. B., 1968, Ground-water exploration in the Bosque del Apache Grant, Socorro County, New Mexico: U.S. Geol Survey open-file report, 79 p., 12 figs.

- -----1970, Summary records of supply wells and test wells in the Post Headquarters area, White Sands Missile Range, New Mexico: U.S. Geol. Survey open-file report, 202 p., 87 figs.
- Cooper, J. B., and Doty, G. C., 1966, Test wells east of the Rio Grande, Bosque del Apache Grant, Socorro County, New Mexico: U.S. Geol. Survey open-file report, 26 p., 5 figs.
- Doty, G. C., 1968a, Summary of test wells drilled for MAR site water supply, White Sands Missile Range, New Mexico: U.S. Geol. Survey open-file report, 20 p., 6 figs.

REFERENCES CITED - Concluded

- Doty, G. C., 1968f, Phase I test wells, White Sands Missile Range,
 - Dona Ana County, New Mexico: U.S. Geol. Survey open-file report, 39 p., 12 figs.
 - ------1969, Test wells SMR-4 and SMR-5, White Sands Missile Range, Dona Ana County, New Mexico: U.S. Geol. Survey open-file report, 26 p., 5 figs.
- Hood, J. W., 1968, Ground-water investigations at White Sands Missile Range, New Mexico, July 1960 to June 1962: U.S. Geol. Survey open-file report, 153 p., 28 figs.
- Lyford, F. P., 1970a, Test wells T-15, T-16, T-17, T-18, and RC-3, White Sands Missile Range, Dona Ana and Socorro Counties, New Mexico: U.S. Geol. Survey open-file report, 46 p., 14 figs.
- Weir, J. E., Jr., 1965, Geology and availability of ground water in the northern part of the White Sands Missile Range and vicinity, New Mexico: U.S. Geol. Survey Water-Supply Paper 1801, 78 p., 11 figs.