United States
Department of the Interior
Geological Survey

Relation of Channel Slope to Reaeration of Michigan Streams

by

T. Ray Cummings

Open-file Report
73-54
Okemos, Michigan
May 1973



# United States Department of the Interior Geological Survey

Relation of Channel Slope to Reaeration of Michigan Streams

by

T. Ray Cummings

Open-file Report

Okemos, Michigan May 1973

#### CONTENTS

|           |      |      |    |      |     |    |    |     |     |     |     |                 |    |                  |   |     |     |     |     |    |    |   |   |   |   | Page |
|-----------|------|------|----|------|-----|----|----|-----|-----|-----|-----|-----------------|----|------------------|---|-----|-----|-----|-----|----|----|---|---|---|---|------|
| Abstract  |      |      | •  |      |     |    |    | •   | •   |     | •   |                 |    | •                | • |     | •   |     |     | •  |    | • | • | • | • | 1    |
| Introduct | ion  |      |    |      |     |    |    | •   |     |     | •   |                 | •  | •                |   | •   | •   | •   |     | •  |    |   |   |   |   | 2    |
| Computati | on o | of r | ea | era  | ic  | n  | co | efi | fic | cie | nt  | s               | (1 | ( <sub>2</sub> ) | , | •   | •   | •   |     | •  |    | • | • | • | • | 4    |
| Relation  | of 1 | ceae | ra | tio  | n c | oe | ff | ic  | ier | nts | ; ( | (k <sub>2</sub> | )  | to               | • | cha | anı | ne! | Ls  | 10 | ре | 2 | • | • | • | 7    |
| Relation  | of 1 | ceae | ra | tion | 1 0 | oe | ff | ici | ier | nts | . ( | (k <sub>2</sub> | )  | to               | 0 | lis | scł | naı | cge | 2  |    | • | • |   | • | 13   |
| Selected  | refe | erer | ce | S    |     |    |    | •   |     |     | •   |                 | •  | •                | • | •   | •   | •   |     | •  |    | • | • | • | • | 14   |
| Table of  | data | a .  |    |      |     |    |    |     |     |     |     |                 |    |                  |   |     |     |     |     |    |    |   |   |   |   | 15   |

#### ILLUSTRATIONS

|        |    |                                                               | rage |
|--------|----|---------------------------------------------------------------|------|
| Figure | 1. | Relation of reaeration coefficient $(k_2)$ at mean            |      |
|        |    | flow to channel slope of streams in Michigan                  | 8    |
|        | 2. | Relation of reaeration coefficient (k2) at                    |      |
|        |    | median flow to channel slope of streams in                    |      |
|        |    | Michigan                                                      | 9    |
|        | 3. | Relation of reaeration coefficient (k <sub>2</sub> ) at 7-day |      |
|        |    | 2-year low flow to channel slope of streams in                |      |
|        |    | Michigan                                                      | 10   |
|        | 4. | Relation of reaeration coefficient $(k_2)$ at 7-day           |      |
|        |    | 10-year low flow to channel slope of streams in               |      |
|        |    | Michigan                                                      | 11   |
|        | 5. | Comparison of reaeration coefficient $(k_2)$ - channel        |      |
|        |    | slope relations at mean flow, median flow, 7-day              |      |
|        |    | 2-year low flow, and 7-day 10-year low flow for               |      |
|        |    | streams in Michigan                                           | 12   |
| Table  | 1. | Flow, reaeration coefficients, and channel slope              |      |
|        |    | of streams in Michigan                                        | 16   |

## Relation of Channel Slope to Reaeration of Michigan Streams

bу

#### T. Ray Cummings

#### ABSTRACT

Reaeration coefficients  $(k_2)$ , which are rate constants for the process of oxygen absorption from the atmosphere, have been computed for Michigan's streams using an equation developed by Bennett and Rathbun (1972). Mean velocity and mean depth data, which are necessary for the computation, have been extracted from discharge measurements made at gaging stations throughout the State. The computed  $k_2$  values have been related to channel slopes obtained from topographic maps. Regression equations have been derived that express the relation of  $k_2$  to slope for streams at mean flow, median flow, 7-day 2-year low flow, and 7-day 10-year low flow. The equations indicate that an increase in channel slope or a decrease in streamflow increases  $k_2$ .

#### INTRODUCTION

Streeter and Phelps (1925) described the assimilation of organic wastes by streams in terms of two major processes—the consumption of oxygen in biochemical degradation of organic matter, and the absorption of oxygen from the atmosphere. They expressed these processes by the differential equation

$$\frac{dD}{dt} = K_1 L - K_2 D ,$$

where D represents the dissolved-oxygen deficit, L is the biochemical oxygen demand of carbonaceous material,  $K_1$  is the deoxygenation coefficient or rate constant for biochemical oxidation, and  $K_2$  is the reaeration coefficient or rate constant for oxygen absorption from the atmosphere. D and L are usually expressed in milligrams per liter, and the coefficients  $K_1$  and  $K_2$ , which are to a natural logarithm base, are expressed in reciprocal days at 20°C. Because common logarithms generally are more convenient to use in most calculations, the deoxygenation and reaeration coefficients are usually represented by  $k_1$  and  $k_2$ , where  $k_1 = 0.434$   $K_1$  and  $k_2 = 0.434$   $K_2$ .

Reaeration in open-channel flow was studied by Bennett and Rathbun (1972). They reviewed an extensive body of literature on reaeration and considered the basic methods for measuring reaeration coefficients. Experiemental field and flume data obtained by many investigators were assembled and subjected to regression analysis and statistical interpretation. Although three equations for predicting  $\mathbf{k}_2$  were derived by Bennett and Rathbun, they concluded that the equation

$$k_2 = 8.76 \frac{U^{0.607}}{H^{1.689}}$$

which was based on the widest range of field data available, was the best available for prediction of reaeration coefficients for natural streams. In the equation, U is the mean flow velocity, in feet per second, H is the mean depth of flow, in feet, and  $k_2$  is in reciprocal days at  $20^{\circ}$ C.

The above equation, of course, expresses the reaeration coefficient under ideal conditions. In water-pollution studies, such factors as wind and waves, surfactants, the dissolved-solids content and temperature of water, and the type and quantity of sewage present, must be taken into account.

MacKichan and others (1970), using an equation  $\frac{1}{2}$  for  $k_2$  suggested by Langbein and Durum (1967), computed  $k_2$  values for different flow conditions at several sites on the Elkhorn River in Nebraska. Using the  $k_2$  values obtained, they derived an equation that related  $k_2$  at any point on the Elkhorn River to channel slope and discharge.

 $\underline{1}/$   $k_2 = 3.3 \, \frac{v}{H^{1.33}}$  , where v is mean flow velocity, in feet per second, and H is mean depth, in feet.

This report presents the results of the computation of reaeration coefficients, using the Bennett and Rathbun equation, for specific sites on Michigan's streams, and relates these values to channel slope. If possible, a  $\mathbf{k}_2$  value was computed for four flow conditions at each site: mean flow (average annual discharge), median flow (median annual discharge), 7-day low flow having a recurrence interval of 2 years, and 7-day low flow having a recurrence interval of 10 years. All  $\mathbf{k}_2$  values for a given flow condition were plotted against channel slope, in feet per mile; a regression equation relating  $\mathbf{k}_2$  to channel slope was computed for each flow condition.

#### COMPUTATION OF REAERATION COEFFICIENTS (k2)

At approximately 200 sites on streams in Michigan, the U.S. Geological Survey, in cooperation with State and Federal agencies, operates gaging stations at which continuous records of stage are obtained. Discharge measurements are made routinely at each gaging station to define a stage-discharge relation. The exact site chosen for a discharge measurement may be either upstream or downstream from the gaging station, providing there is no change in flow. Usually the site is one that permits the most accurate results from the measuring techniques used at the time of the visit to the station. Channel geometry at the measuring site may or may not be representative of the reach of the stream in the vicinity of the gaging station.

For most gaging stations, the period of record is sufficiently long that mean flow, median flow, 7-day 2-year low flow, and 7-day 10-year low flow have been computed in other studies. These discharge values, in cubic feet per second, have been used in this study; table 1 gives these data for 142 gaging stations.

In order to obtain velocity and depth information for use in the reaeration equation, the files of the Geological Survey were searched for individual discharge measurements made at times when the flow of a stream at a gaging station was as close as possible to one of the four flow conditions cited above. For example, the mean flow of the Black River near Bessemer is 226 cfs (cubic feet per second). From the files, the six most recent discharge measurements that were within 10 percent of 226 cfs were selected, and width, area, and mean velocity were tabulated on work sheets; mean depth was computed. The exact location of each measurement also was noted. The files were again searched for the six most recent discharge measurements of the Black River near Bessemer that did not differ by more than 10 percent from the median flow (83.6 cfs). The process was repeated for the 7-day 2-year and 7day 10-year low flows. Data for each gaging station were selected in the same manner, although as many as six measurements were not always available for each flow condition. At some stations it was possible to select six measurements that did not differ by more than 5 percent from the discharge value sought.

Once the above information was assembled, the work sheets were reviewed to eliminate from consideration those measurements that were not typical of present stream conditions. Measurements made prior to a known channel modification were deleted. Because individual discharge measurements may have been made upstream or downstream from a gaging station, measuring sites were spotted on topographic maps. If a measurement was found to have been made at a point where channel configuration was significantly different from that where the other measurements at the station were made, the measurement was eliminated from the work sheet. If a measurement was found to have been made at a point where channel slope differed from that where the other measurements were made, it too was eliminated.

Mean depth and mean velocity for each flow condition at a site were determined by averaging the individual mean depths and mean velocities of each measurement that remained after the above review. Reaeration coefficients for each site and each flow condition were calculated from these mean values. (See table 1.)

The range, average, and median  $k_2$  values for each flow condition are shown below. Only those sites for which it was possible to compute a  $k_2$  for all four flow conditions were used in determining average and median  $k_2$  values.

|                        | Range of k <sub>2</sub> | Average k2 | Median k2 |
|------------------------|-------------------------|------------|-----------|
| Mean flow              | 0.23 - 61.7             | 5.43       | 4.6       |
| Median flow            | .23 - 38.6              | 6.74       | 5.8       |
| 7-day 2-year low flow  | .25 - 97.8              | 10.63      | 7.3       |
| 7-day 10-year low flow | .16 - 98.7              | 12.05      | 7.8       |

RELATION OF REAERATION COEFFICIENTS (k2) TO CHANNEL SLOPE

U. S. Geological Survey topographic maps were used to determine channel slope. Maps published at a  $7\frac{1}{2}$ -minute scale have either 5- or 10-foot contour intervals and, thus, are more desirable for computing channel slope than maps prepared at a 15-minute scale, which usually have 20-foot contour intervals. Unfortunately, it was necessary to compute channel slope from 15-minute topographic maps in slightly more than half the cases because maps at  $7\frac{1}{2}$ -minute scale were not available.

Channel slope was computed for the site at which discharge measurements were made rather than at the exact gaging-station location if the two locations differed. At three gaging stations, 04-0455., 04-0615., and 04-1655. (table 1), the locations of discharge measurements varied to the extent that it was desirable to compute  $k_2$  and channel slope values for two different locations.

A plot of channel slope (S) versus  $k_2$  for streams at mean flow is shown in figure 1. A line of best fit, based on a regression analysis, also is shown. Plots of channel slope versus  $k_2$  for median flow, for 7-day 2-year low flow, and for 7-day 10-year low flow are shown in figures 2, 3, and 4. Figure 5 compares the reaeration coefficient-channel slope relations of the four flow conditions. Regression equations are as follows:

#### **Equation**

| Mean flow              | $k_2 = 1.68 \text{ s}^{0.70}$ |
|------------------------|-------------------------------|
| Median flow            | $k_2 = 2.37 \text{ s}^{0.63}$ |
| 7-day 2-year low flow  | $k_2 = 3.25 \text{ s}^{0.60}$ |
| 7-day 10-year low flow | $k_2 = 3.46 \text{ s}^{0.64}$ |

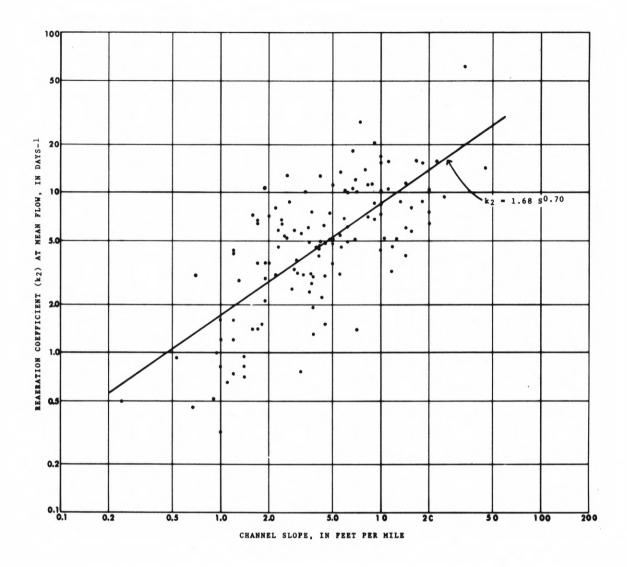



Figure 1.--Relation of reaeration coefficient (k<sub>2</sub>) at mean flow to channel slope of streams in Michigan.

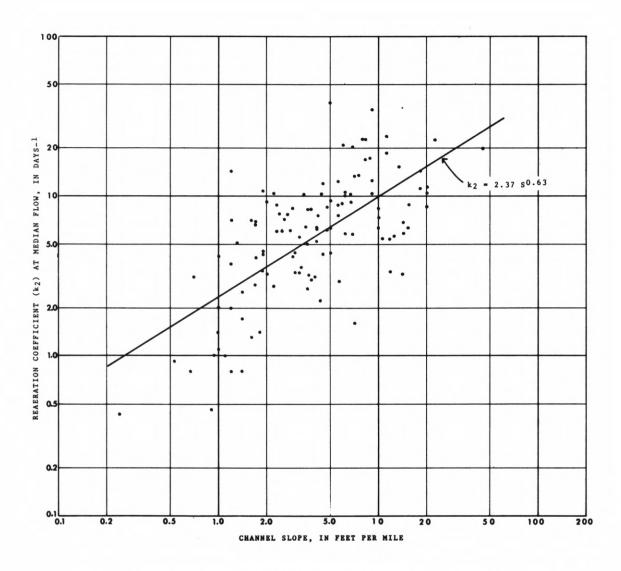



Figure 2.--Relation of reaeration coefficient (k<sub>2</sub>) at median flow to channel slope of streams in Michigan.

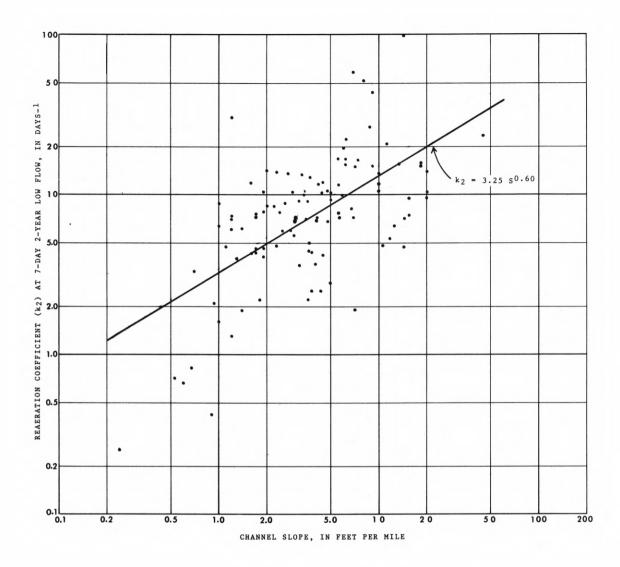



Figure 3.--Relation of reaeration coefficient ( $k_2$ ) at 7-day 2-year low flow to channel slope of streams in Michigan.

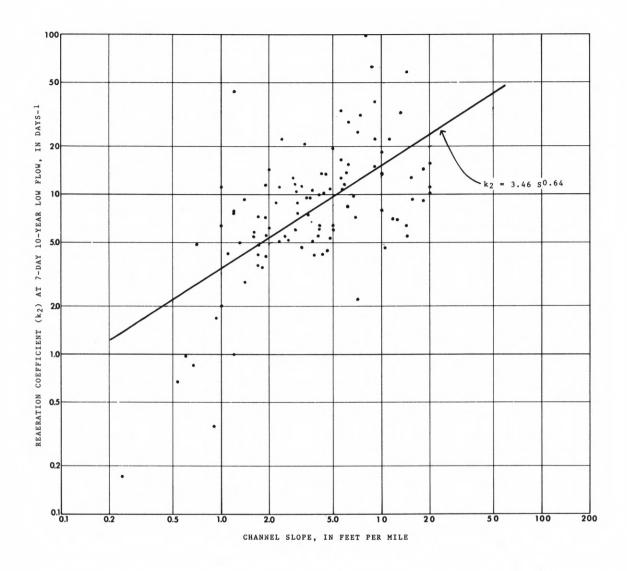



Figure 4.--Relation of reaeration coefficient (k<sub>2</sub>) at 7-day 10-year low flow to channel slope of streams in Michigan.

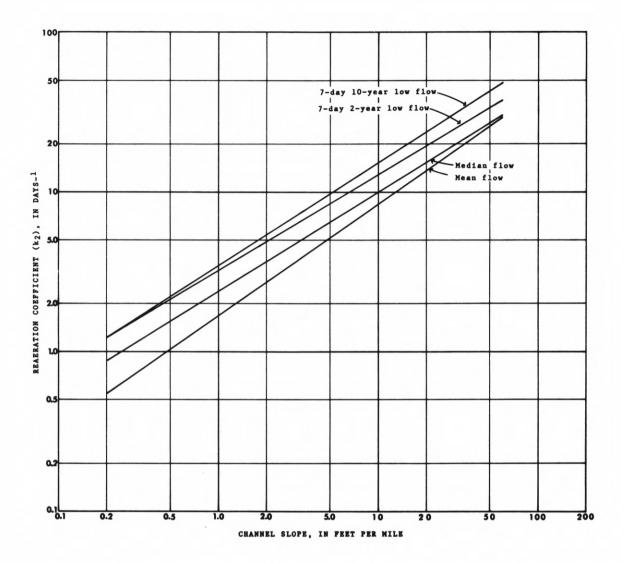



Figure 5.--Comparison of reaeration coefficient ( $k_2$ ) - channel slope relations at mean flow, median flow, 7-day 2-year low flow, and 7-day 10-year low flow for streams in Michigan.

The above equations suggest that there is a significant relation between  $k_2$  and channel slope that can be predicted if the flow condition of a stream is known. Use of the equations, however, should probably be restricted to estimating the reaeration coefficient at a specific site, or to comparing, in a general way, the reaeration capabilities of one stream with those of another. Estimates of the reaeration coefficient of a stream reach should await field studies that either verify or modify the above equations.

#### RELATION OF REAERATION COEFFICIENTS (k2) TO DISCHARGE

An attempt to relate  $k_2$  to discharge by regression analysis was not made in this study. A preliminary analysis of the data indicated that such relationships would be less satisfactory for predicting  $k_2$  than relations developed with channel slope. A plot of all  $k_2$  values against corresponding discharge values, however, indicates that a general increase in  $k_2$  occurs as discharge decreases and that at discharges of less than 100 cfs the increase is rapid. A line of best fit drawn by eye through plotted points suggests that the relation of  $k_2$  to discharge (Q) varies as follows: at 10 cfs,  $k_2 \approx \frac{45}{\sqrt{Q}}$ ; at 100 cfs,  $k_2 \approx \frac{70}{\sqrt{Q}}$ ; at 400 cfs,  $k_2 \approx \frac{95}{\sqrt{Q}}$ ; at 1,500 cfs,  $k_2 \approx \frac{120}{\sqrt{Q}}$ ;

and at 3,000 cfs,  $k_2 \approx \frac{140}{\sqrt{0}}$ .

#### SELECTED REFERENCES

- Bennett, J. P., and Rathbun, R. E., 1972, Reaeration in open-channel flow: U. S. Geol. Survey Prof. Paper 737, 75 p., 19 figs.
- Langbein, W. B., and Durum, W. H., 1967, The aeration capacity of streams: U. S. Geol. Survey Circ. 542, 6 p., 4 figs.
- MacKichan, K. A., Stuthmann, N. G., and Bentall, Ray, 1970, Use of channel slope and discharge to determined reaeration coefficients for Elkhorn River in Nebraska: U. S. Geol. Survey Prof. Paper 700-C, p. 193-197.
- Streeter, H. W., and Phelps, E. G., 1925, A study of the pollution and natural purification of the Ohio River: U. S. Public Health Service, Public Health Bull. 146, 75 p.

### TABLE OF DATA

Table 1.--Flow, reaeration coefficients, and channel slope

#### of streams in Michigan.

 $/\overline{\mathbb{Q}}$ a = mean flow (average annual discharge); Qm = median flow (median annual discharge); M7, 2 = 7-day 2-year low flow; M7, 10 = 7-day 10-year low flow; Qak2, Qmk2, M7, 2k2, and M7, 10k2 = reareation coefficients at indicated flow condition; slope = channel slope at gaging station or measuring site, in feet per mile\_/

|                   |                                       | measarrn6      | site, in feet  |                  |       |      |      | _      |                      |       |
|-------------------|---------------------------------------|----------------|----------------|------------------|-------|------|------|--------|----------------------|-------|
| Station<br>Number | Station Name                          | Q <sub>a</sub> | Q <sub>m</sub> | M <sub>7,2</sub> | M7,10 | Qak2 | Qmk2 | M7,2k2 | M <sub>7,10</sub> k2 | Slope |
| 04-0310.          | Black River near Bessemer             | 226            | 83.6           | 24.1             | 15.7  | 5.1  | 9.3  | 10.3   | 19.5                 | 5.0   |
| 0315.             | Presque Isle River at Marenisco       | 172            | 97.3           | 41.7             | 23.7  | 3.3  | 4.2  | 5.5    | 6.0                  | 2.9   |
| 0330.             | M. Br. Ontonagon R. nr. Paulding      | 170            | 125            | 84.3             | 69.6  | 5.1  | 5.7  | 7.2    | 7.2                  | 6.9   |
| 0350.             | E. Br. Ontonagon R. nr. Mass          | 254            | 165            | 107              | 84.3  | 1.4  | 1.6  | 1.9    | 2.2                  | 7.1   |
| 0405.             | Sturgeon River near Sidnaw            | 203            | 89.7           | 17.6             | 8.30  | 4.6  | 6.4  | 6.9    | 10.0                 | 4.1   |
| 0415.             | Sturgeon River near Alston            | 410            | 259            |                  |       | 3.2  | 3.3  |        |                      | 11.8  |
| 0425.             | Otter River near Elo                  | 212            | 119            | 79.8             | 73.8  | 3.6  | 6.3  | 9.3    | 6.4                  | 5.0   |
| 0430.             | Sturgeon River near Arnheim           | 797            | 464            | 273              | 206   | . 45 | . 79 | . 81   | . 85                 | .6    |
| 0455.             | Tahquamenon R nr Tahquamenon Paradise | 865            | 512            | 212              | 187   | .23  | . 23 |        | .16                  |       |
| -Do-              | -do-                                  | -do-           | -do-           | -do-             | -do-  |      | 6.8  | 6.1    | 5.9                  |       |
| 0460.             | Black River near Garnet               | 26.3           | 15.7           | 8.10             | 6.24  | 3.2  | 5.6  | 8.4    | 7.3                  |       |
| 0495.             | Manistique River at Germfask          | 440            | 385            | 200              | 159   | 2.7  | 3.2  | 4.2    | 4.3                  |       |
| 0545.             | Duck Creek near Blaney                | 93             | 44.2           | 9.74             | 5.94  | 3.0  | 3.5  | 3.7    | 6.0                  |       |
| 0550.             | Manistique River near Blaney          | 820            | 611            | 287              | 216   | . 82 | . 92 | 2.8    | 3.1                  |       |
| 0560.             | W. Br. Manistique R. nr. Manistique   | 411            | 269            | 124              | 93.3  | 2.1  | 4.1  | 7.6    | 9.8                  |       |
| 0565.             | Manistique River near Manistique      | 1,355          | 943            | 457              | 343   | 1.2  | 1.9  | 3.3    | 3.2                  |       |
| 0580.             | M. Br. Escanaba River near Ishpeming  | 133            | 69.3           | 21.8             | 16.2  | 6.2  | 10.3 | 10.3   | 10.3                 | 4.4   |
| 0585.             | E. Br. Escanaba River at Gwinn        | 98.8           | 53.9           | 27.3             | 22.3  | 10.0 | 10.3 | 22.0   | 28.3                 | 6.2   |
| 0590.             | Escanaba River at Cornell             | 829            | 466            | 210              | 163   | 5.1  | 5.6  | 6.4    | 6.9                  | 12.5  |
| 0595.             | Ford River near Hyde                  | 341            | 148            | 38.1             | 29.1  | 8.6  | 12.5 | 15.0   | 15.0                 | 9.1   |
| 0610.             | Brule River near Florence, Wis.       | 348            | 280            | 194              | 159   | 7.3  | 6.3  | 10.7   | 7.9                  | 10.0  |
| 0615.             | Paint River at Crystal Falls          | 568            | 356            | 213              | 167   | 7.5  | 10.4 | 10.3   | 10.1                 | 20.0  |
| -Do-              | -do-                                  | -do-           | -do-           | -do-             | -do-  | 2.4  | 2.6  | 2.2    |                      | 3.6   |
| 0653.             | W. Br. Sturgeon R. nr. Randville      | 39.6           |                |                  |       | 12.8 |      |        |                      | 2.6   |
| 0655.             | Sturgeon River near Foster City       | 171            |                |                  |       | 3.0  |      |        |                      | 2.2   |
| 0975.             | St. Joseph River at Three Rivers      | 919            | 693            | 285              | 166   | 2.8  | 5.1  | 4.0    | 5.0                  | 1.3   |
| 0985.             | Fawn River near White Pigeon          | 138            | 122            |                  |       | 6.4  | 6.9  |        |                      | 1.7   |
| 0990.             | St. Joseph River at Mottville         | 1,472          | 1,190          | 534              | 345   | 3.1  | 3.3  | 7.1    | 8.8                  | 3.0   |
| 1015.             | St. Joseph River at Niles             | 3,044          | 2,420          | 1,292            | 888   | .51  | .46  | . 42   | . 35                 | .9    |
| 1025.             | Paw Paw River at Riverside            | 384            | 316            | 176              | 145   | .70  | . 79 | 1.9    | 2.8                  | 1.4   |
| 1035.             | Kalamazoo River at Marshall           | 280            | 232            | 130              | 80.0  | 4.0  | 3.2  | 4.7    | 6.4                  | 14.3  |
| 1050.             | Battle Creek at Battle Creek          | 189            | 118            | 46.9             | 30.7  | 4.9  | 5.0  | 9.1    | 9.4                  | 3.6   |
| 1055.             | Kalamazoo River near Battle Creek     | 613            | 474            | 254              | 163   | 7.4  | 8.6  | 10.7   | 10.8                 | 4.8   |
| 1060.             | Kalamazoo River at Comstock           | 794            | 650            | 345              | 246   | 2.9  | 4.5  | 7.8    | 7.2                  | 1.9   |
| 1065.             | Portage Creek at Kalamazoo            | 56.5           | 54.3           | 39.2             | 29.3  | 5.7  | 6.3  | 7.5    | 9.2                  | 15.4  |
| 1085.             | Kalamazoo River near Fennville        | 1,301          | 1,126          | 550              | 334   |      |      |        | 1                    | 1.2   |

 $\sqrt{Q}a$  = mean flow (average annual discharge); Qm = median flow (median annual discharge); M7,2 = 7-day 2-year low flow; M7,10 = 7-day 10-year low flow; Qak2, Qmk2, M7,2k2, and M7,10k2 = reareation coefficients at indicated flow condition; slope = channel slope at gaging station or measuring site, in feet per mile\_7

|                   |                                 | measuring      | site, in feet | per mile.7 |       |      |                               |        |         |       |
|-------------------|---------------------------------|----------------|---------------|------------|-------|------|-------------------------------|--------|---------|-------|
| Station<br>Number | Station Name                    | Q <sub>a</sub> | Qm            | М7,2       | M7,10 | Qak2 | Q <sub>m</sub> k <sub>2</sub> | M7,2k2 | M7,10k2 | Slope |
| 04-1090.          | Grand River at Jackson          | 110            | 72.8          | 31.6       | 20.8  | 2.5  | 6.1                           | 6.0    | 12.8    | 2.8   |
| 1100.             | Orchard Creek at Munith         | 37.2           | 17.0          | 4.06       | 2.34  | 7.2  | 7.0                           | 11.9   | 5.5     | 1.6   |
| 1110.             | Grand River near Eaton Rapids   | 394            | 249           | 85.2       | 61.3  | 5.2  | 7.1                           | 8.8    | 5.2     | 2.6   |
| 1115.             | Deer Creek near Dansville       | 8.67           | 3.05          | 0.48       | 0.17  | 12.0 | 20.7                          | 58.4   |         | 6.9   |
| 1120.             | Sloan Creek near Williamston    | 4.52           | 0.89          |            |       | 10.5 | 23.7                          |        |         | 11.1  |
| 1125.             | Red Cedar River at East Lansing | 185            | 81.8          | 18.8       | 8.30  | 4.2  | 7.0                           | 7.3    | 7.8     | 1.2   |
| 1130.             | Grand River at Lansing          | 787            | 441           | 138        | 71.7  | 3.6  | 4.4                           | 4.6    | 4.1     | 1.9   |
| 1140.             | Grand River at Portland         | 744            | 428           | 159        | 105   | 3.8  | 4.4                           | 7.0    | 7.6     | 3.0   |
| 1145.             | Lookingglass River near Eagle   | 158            | 71.7          | 24.8       | 14.5  | 4.0  | 5.2                           | 6.9    | 6.2     | 4.1   |
| 1150.             | Maple River at Maple Rapids     | 2 3 2          | 88.0          | 16.4       | 8.10  | . 81 | 2.5                           | 6.2    | 9.4     | 1.4   |
| 1160.             | Grand River at Ionia            | 1,597          | 875           | 273        | 181   | . 65 | .99                           | 4.7    | 4.3     | 1.1   |
| 1165.             | Flat River at Smyrna            | 399            | 319           | 157        | 121   | 3.7  | 2.7                           | 2.9    | 2.7     |       |
| 1170.             | Quaker Brook near Nashville     | 5.17           | 3.54          | 1.60       | 0.97  | 10.3 | 7.3                           | 13.7   | 13.6    | 10.0  |
| 1175.             | Thornapple River near Hastings  | 279            | 154           | 66.9       | 45.6  | 8.0  | 10.3                          | 8.4    | 8.9     | 2.2   |
| 1180.             | Thornapple River near Caledonia | 508            | 328           | 169        | 116   | 4.5  | 6.3                           | 7.2    | 6.4     | 4.1   |
| 1185.             | Rogue River near Rockford       | 211            | 162           | 83.1       | 67.0  | 4.6  | 5.4                           | 5.3    | 7.0     | 11.8  |
| 1190.             | Grand River at Grand Rapids     | 3,372          | 2,155         | 981        | 681   | 11.5 | 6.8                           | 7.1    | 5.5     | 14.3  |
| 1210.             | Muskegon River near Merritt     | 221            | 169           | 64.6       | 35.6  | 1.4  | 1.3                           | 4.3    | 5.8     | 1.6   |
| 1215.             | Muskegon River at Evart         | 964            | 708           | 380        | 300   | 3.6  | 4.1                           | 4.6    | 4.9     | 1.7   |
| 1220.             | Muskegon River at Newaygo       | 1,908          | 1,630         | 829        | 649   | 3.1  | 3.2                           | 4.5    | 5.1     | 3.7   |
| 1222.             | White River near Whitehall      | 390            | 337           |            |       | .94  | 1.7                           |        |         | 1.4   |
| 1225.             | Pere Marquette R. at Scottville | 621            | 553 .         | 376        | 344   | .99  | 1.0                           | 2.1    | 1.7     | .94   |
| 1230.             | Big Sable River near Freesoil   | 139            | 128           | 91.8       | 85.2  | 5.5  | 5.5                           | 9.2    | 11.2    | 3.2   |
| 1235.             | Manistee River near Grayling    | 182            | 178           | 156        | 146   | 6.7  | 6.7                           | 7.3    | 7.3     | 1.7   |
| 1240.             | Manistee River near Sherman     | 1,034          | 981           | 804        | 699   | 1.5  | 1.4                           | 2.2    | 3.5     | 1.8   |
| 1245.             | E. Br. Pine River nr. Tustin    | 25.9           | 14.7          | 6.31       | 5.51  | 8.8  | 11.1                          | 15.2   | 9.2     | 18.2  |
| 1250.             | Pine River near LeRoy           | 88.0           | 66.0          | 46.9       | 43.7  | 4.6  | 2.9                           | 7.2    | 10.8    | 5.7   |
| 1255.             | Pine River near Hoxeyville      | 276            | 241           | 196        | 183   | 5.2  | 5.4                           | 4.8    | 4.6     | 10.5  |
| 1260.             | Manistee River near Manistee    | 1,958          | 1,810         | 1,329      | 1,193 | 1.2  | 1.1                           | 1.6    | 2.0     | 1.0   |
| 1262.             | Little Manistee R. nr. Freesoil | 197            | 157           |            |       | 10.7 | 9.1                           |        |         | 6.7   |
| 1270.             | Boardman River near Mayfield    | 190            | 174           | 130        | 96.1  | 8.0  | 8.8                           | 9.5    | 12.9    | 15.4  |
| 1280.             | Sturgeon River near Wolverine   | 200            | 184           | 141        | 126   | 15.2 | 14.3                          | 15.6   | 14.5    | 18.2  |
| 1285.             | Indian River at Indian River    | 544            | 527           | 351        | 274   | .92  | .92                           | .71    | .67     | .53   |
| 1290.             | Pigeon River near Vanderbilt    | 74.8           | 67.4          | 45.9       | 40.2  | 15.6 | 18.7                          | 20.6   | 22.0    | 11.1  |
| 1295.             | Pigeon River at Afton           | 133            | 113           | 72.1       | 60.9  | 10.4 | 11.4                          | 13.9   | 15.7    | 20.0  |
| 1300.             | Cheboygan River near Cheboygan  | 775            | 749           | 330        | 212   | . 49 | . 43                          | . 25   | .17     | . 24  |
|                   |                                 |                |               |            |       |      |                               |        |         |       |

Table 1.--Flow, reaeration coefficients, and channel slope

#### of streams in Michigan. -- Continued

 $/\overline{\mathbb{Q}}a$  = mean flow (average annual discharge); Qm = median flow (median annual discharge); M<sub>7,2</sub> = 7-day 2-year low flow; M<sub>7,10</sub> = 7-day 10-year low flow; Qak<sub>2</sub>, Qmk<sub>2</sub>, M<sub>7,2</sub>k<sub>2</sub>, and M<sub>7,10</sub>k<sub>2</sub> = reareation coefficients at indicated flow condition; slope = channel slope at gaging station or measuring site, in feet per mile\_/

|                   |                                    | measuring      | site, in feet p | er mile./        |                   |      |      |        |         |       |
|-------------------|------------------------------------|----------------|-----------------|------------------|-------------------|------|------|--------|---------|-------|
| Station<br>Number | Station Name                       | Q <sub>a</sub> | Q <sub>m</sub>  | M <sub>7,2</sub> | M <sub>7,10</sub> | Qak2 | Qmk2 | M7,2k2 | M7,10k2 | Slope |
| 04-1305.          | Black River near Tower             | 251            | 207             | 119              | 84.2              | 6.4  | 8.6  | 9.5    | 11.1    | 20.0  |
| 1310.             | Rainy River near Onaway            | 24.9           | 6.70            |                  |                   | 15.7 | 22.7 |        |         | 22.4  |
| 1315.             | Rainy River near Ocqueoc           | 36.3           | 14.2            | 1.19             | 0.56              | 8.8  | 15.2 | 15.5   | 32.7    | 13.3  |
| 1325.             | Thunder Bay River near Hillman     | 208            | 180             | 127              | 114               | 2.5  | 2.6  | 4.4    | 4.4     |       |
| 1340.             | N. Br. Thunder Bay R. nr. Bolton   | 105            | 42.2            | 7.14             | 2.06              | 7.7  | 7.6  | 11.9   | 7.8     |       |
| 1355.             | Au Sable River at Grayling         | 73.2           | 68.6            | 50.4             | 42.5              | 10.1 | 10.1 | 10.0   | 9.6     | 3.4   |
| 1356.             | E. Br. Au Sable R. at Grayling     | 40.7           |                 |                  |                   | 6.8  |      |        |         | 2.4   |
| 1365.             | Au Sable River at Mio              | 926            | 846             | 642              | 567               | 3.1  | 3.1  | 3.0    | 3.7     |       |
| 1380.             | E. Br. Au Gres River at McIvor     | 62.8           | 46.4            | 30.9             | 26.1              | 10.0 | 13.4 | 15.0   | 24.4    | 7.1   |
| 1385.             | Au Gres River near National City   | 93.6           | 48.5            | 12.9             | 9.28              | 6.1  | 10.3 | 16.7   | 8.4     | 6.2   |
| 1390.             | Houghton Creek near Lupton         | 50.8           | 43.9            | 35.5             | 33.1              | 6.0  | 6.4  | 7.0    | 7.5     | 3.5   |
| 1395.             | Rifle R. at "The Ranch" nr. Lupton | 90.5           | 78.0            | 60.3             | 55.2              | 13.3 | 12.5 | 17.0   | 16.3    | 5.6   |
| 1400.             | Prior Creek near Selkirk           | 16.3           | 11.0            | 5.57             | 4.97              | 20.4 | 34.7 | 43.6   | 38.6    | 9.1   |
| 1405.             | Rifle River at Selkirk             | 140            | 112             | 74.4             | 68.1              | 5.1  | 6.1  | 6.8    | 5.3     | 4.8   |
| 1410.             | S. Br. Shepards Creek nr. Selkirk  | 0.52           | 0.12            |                  |                   | 61.7 |      |        |         | 33.3  |
| 1415.             | W. Br. Rifle River near Selkirk    | 60.2           | 44.5            | 28.0             | 25.0              | 18.3 | 10.3 | 8.2    | 9.8     | 6.7   |
| 1420.             | Rifle River near Sterling          | 302            | 221             | 132              | 117               | 3.0  | 3.0  | 4.4    | 4.2     | 3.8   |
| 1435.             | N. Br. Kawkawlin R. nr. Kawkawlin  | 53.7           | 5.15            |                  |                   | 2.9  | 2.7  |        |         | 2.2   |
| 1440.             | Shiawassee River at Byron          | 238            | 131             | 45.2             | 26.6              | 4.6  | 3.1  | 3.7    | 5.5     | 4.0   |
| 1445.             | Shiawassee River at Owosso         | 302            | 154             | 49.8             | 18.6              | 4.8  | 4.4  | 2.8    | 6.0     | 5.0   |
| 1450.             | Shiawassee River near Fergus       | 401            | 193             | 63.6             | 39.0              | . 32 | 1.4  | 8.8    | 11.1    | 1.0   |
| 1455.             | Bad River near Brant               | 62.9           | 8.28            |                  |                   | 1.3  | 8.2  |        |         | 3.8   |
| 1460.             | Farmers Creek near Lapeer          | 27.8           | 13.0            | 2.32             | 1.12              | 8.8  | 7.7  | 13.6   |         | 2.7   |
| 1475.             | Flint River near Otisville         | 248            | 123             | 44.7             | 28.3              | 3.6  | 3.2  | 14.2   | 14.2    | 2.0   |
| 1480.             | Flint River at Genesee             | 358            | 164             | 48.1             | 24.3              | 1.2  | 3.8  | 7.0    |         | 1.2   |
| 1482.             | Swartz Creek near Holly            | 5.80           | 3.24            | 0.41             | 0.12              | 14.0 | 22.7 | 51.4   | 98.7    | 8.0   |
| 1485.             | Flint River near Flint             | 531            | 231             | 73.0             | 40.3              | 1.9  | 3.0  | 2.5    |         | 3.8   |
| 1500.             | S. Br. Cass R. nr. Cass City       | 117            | 18.0            | 2.03             | 0.80              | 4.6  | 6.0  | 4.8    | 5.1     | 2.3   |
| 1505.             | Cass River at Cass City            | 190            | 34.9            | 3.60             | 1.40              | 4.9  | 5.8  | 15.2   | 15.4    | 6.2   |
| 1510.             | Cass River at Vassar               | 371            | 107             | 28.0             | 16.3              | 7.1  | 9.2  | 8.4    | 6.2     | 2.0   |
| 1515.             | Cass River at Frankenmuth          | 454            | 139             | 35.8             | 18.5              | . 81 | 4.2  | 6.4    | 6.4     | 1.0   |
| 1525.             | Tobacco River at Beaverton         | 358            | 248             | 124              | 76.2              | 2.7  | 3.2  | 5.0    | 10.5    | 3.7   |
| 1535.             | Salt River near North Bradley      | 76.5           | 20.1            | 5.45             | 3.00              | 6.3  | 7.7  | 7.7    | 22.6    | 2.4   |
| 1540.             | Chippewa River near Mount Pleasant | 292            | 213             | 98.1             | 67.8              | 3.6  | 4.1  | 4.3    | 3.6     | 1.7   |
| 1545.             | Chippewa River near Midland        | 419            | 260             | 116              | 90.0              | 5.3  | 6.0  | 6.0    | 5.5     | 2.5   |
| 1550.             | Pine River at Alma                 | 198            | 128             | 49.0             | 27.4              | 2.1  | 3.4  | 4.1    | 5.5     | 1.9   |
|                   |                                    |                |                 | 1                |                   |      |      |        |         |       |

Table 1.--Flow, reaeration coefficients, and channel slope

#### of streams in Michigan. -- Continued

 $/\overline{Q}a$  = mean flow (average annual discharge); Qm = median flow (median annual discharge); M<sub>7,2</sub> = 7-day 2-year low flow; M<sub>7,10</sub> = 7-day 10-year low flow; Qak2, Qmk2, M<sub>7,2</sub>k2, and M<sub>7,10</sub>k2 = reareation coefficients at indicated flow condition; slope = channel slope at gaging station or measuring site, in feet per mile./

|                   |                                     | measuring | site, in feet | per mile.7       |                   |       |      |                                 |                                  |       |
|-------------------|-------------------------------------|-----------|---------------|------------------|-------------------|-------|------|---------------------------------|----------------------------------|-------|
| Station<br>Number | Station Name                        | Qa        | Qm            | M <sub>7,2</sub> | M <sub>7,10</sub> | Qak2  | Qmk2 | M <sub>7,2</sub> k <sub>2</sub> | M <sub>7,10</sub> k <sub>2</sub> | Slope |
| 04-1555.          | Pine River near Midland             | 271       | 166           | 60.3             | 32.9              | 4.9   | 7.5  | 11.7                            | 13.7                             | 4.2   |
| 1560.             | Tittabawassee River at Midland      | 1,548     | 769           | 254              | 169               | . 76  | 3.3  | 3.6                             | 4.7                              | 3.2   |
| 1575.             | Sebewaing River near Sebewaing      | 34.7      | 3.55          |                  |                   | 11.2  | 22.7 |                                 |                                  | 8.3   |
| 1580.             | E. Fk. Sebewaing R. nr. Sebewaing   | 18.2      | 1.66          |                  |                   | 7.0   | 16.2 |                                 |                                  | 8.3   |
| 1585.             | Pigeon River near Owendale          | 27.2      | 7.34          | 1.47             | 0.63              | 17.0  | 24.7 | 44.0                            | 87.3                             |       |
| 1595.             | Black River near Fargo              | 271       | 43.7          | 10.4             | 5.07              | 4.8   | 12.0 | 11.9                            | 13.6                             | 4.5   |
| 1600.             | Mill Creek near Abbottsford         | 97.0      | 21.7          | 6.11             | 4.11              | 4.4 . | 8.4  | 11.9                            | 18.6                             | 10.0  |
| 1605.             | Black River near Port Huron         | 289       | 53.4          | 12.0             | 6.18              | 1.5   | 4.3  | 4.2                             |                                  | 4.5   |
| 1610.             | Clinton River at Auburn Heights     | 74.8      | 62.4          | 22.5             | 10.4              | 6.8   | 10.3 | 15.0                            | 22.0                             | 9.1   |
| 1615.             | Paint Creek near Lake Orion         | 19.9      | 14.4          | 2.54             | 1.52              | 14.2  | 19.5 | 23.6                            |                                  | 45.4  |
| 1618.             | Stony Creek near Washington         | 29.1      |               |                  |                   | 8.4   |      |                                 |                                  | 10.0  |
| 1629.             | Big Beaver Creek near Warren        | 11.2      |               |                  |                   | 12.8  |      |                                 |                                  | 4.2   |
| 1635.             | Plum Brook near Utica               | 11.4      | 3.13          |                  |                   | 11.1  | 38.6 |                                 |                                  | 5.0   |
| 1640.             | Clinton River near Fraser           | 318       | 197           | 81.1             | 64.5              | 1.4   | 2.8  | 7.5                             | 4.2                              | 1.7   |
| 1641.             | East Pond Creek at Romeo            | 10.6      |               |                  |                   | 16.9  |      |                                 |                                  | 10.0  |
| 1643.             | E. Br. Coon Creek at Armada         | 4.72      |               |                  |                   | 16.0  |      |                                 |                                  | 16.7  |
| 1645.             | N. Br. Clinton R. nr. Mount Clemens | 108       | 28.7          | 2.30             | 0.73              | 4.3   | 14.2 | 30.1                            | 44.0                             | 1.2   |
| 1655.             | Clinton River at Mount Clemens      | 470       | 234           | 89.4             | 54.7              | 1.6   | 2.0  |                                 |                                  | 1.0   |
| -Do-              | -do-                                | -do-      | -do-          | -do-             | -do-              |       |      | .66                             | .96                              | 0.6   |
| 1660.             | River Rouge at Birmingham           | 13.7      | 6.15          | 1.30             | 0.48              | 6.0   | 5.8  | 97.8                            | 58.4                             | 14.3  |
| 1661.             | River Rouge at Southfield           | 39.5      |               |                  |                   | 3.0   |      |                                 |                                  | 4.5   |
| 1662.             | Evans Ditch at Southfield           | 5.78      |               |                  |                   | 15.2  |      |                                 |                                  | 10.0  |
| 1663.             | Upper River Rouge at Farmington     | 8.11      |               |                  |                   | 9.4   |      |                                 |                                  | 25.0  |
| 1665.             | River Rouge at Detroit              | 104       | 42.4          | 9.43             | 4.52              | 3.1   | 8.8  | 7.7                             | 33.1                             | 5.6   |
| 1670.             | Middle River Rouge near Garden City | 62.5      | 29.6          | 7.95             | 4.09              | 5.4   | 7.5  | 11.7                            | 12.8                             | 5.6   |
| 1680.             | Lower River Rouge at Inkster        | 46.5      | 11.0          | 1.52             | 0.77              | 10.3  | 20.8 | 19.8                            | 13.6                             | 6.0   |
| 1695.             | Huron River at Commerce             | 35.2      | 25.6          | 9.10             | 5.60              | 11.2  | 17.0 | 26.5                            | 62.7                             | 8.8   |
| 1700.             | Huron River at Milford              | 89.2      | 68.6          | 30.1             | 19.1              | 5.8   | 8.4  | 10.3                            | 11.7                             | 2.9   |
| 1705.             | Huron River near New Hudson         | 102       | 83.1          | 27.2             | 16.6              | 10.8  | 10.8 | 10.3                            | 11.7                             | 1.9   |
| 1715.             | Ore Creek near Brighton             | 21.3      | 16.0          | 3.48             | 1.82              | 27.6  | 13.5 | 16.2                            | 32.2                             | 7.4   |
| 1720.             | Huron River near Hamburg            | 184       | 146           | 59.6             | 42.6              | 3.0   | 3.1  | 3.3                             | 4.9                              | 0.7   |
| 1730.             | Huron River near Dexter             | 341       | 247           | 87.7             | 51.9              | 5.8   | 8.8  | 13.9                            | 11.1                             | 2.3   |
| 1735.             | Mill Creek near Dexter              | 62.6      | 33.2          | 14.1             | 11.3              | 7.6   | 8.2  | 12.9                            | 10.5                             | 3.7   |
| 1745.             | Huron River at Ann Arbor            | 407       | 276           | 93.2             | 40.5              | 6.9   | 8.9  | 9.8                             | 11.7                             | 5.9   |
| 1757.             | River Raisin near Tecumseh          | 140       | 94.4          | 34.2             | 14.8              | 3.1   | 3.6  | 13.5                            | 20.8                             | 3.3   |
| 1760.             | River Raisin near Adrian            | 261       | 155           | 54.5             | 34.3              | 1.6   | 2.0  | 6.0                             | 7.9                              | 1.2   |
| 1765.             | River Raisin near Monroe            | 648       | 273           | 80.4             | 26.7              | 2.2   | 2.2  | 2.5                             | 4.2                              | 4.3   |
|                   |                                     |           |               |                  |                   |       |      |                                 |                                  |       |

