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I Symbol Definition 

I A Area of reservoir in acres. 

I 
·~ Constant defined by equation 71. 

A Constant defined by equation 80. u 

I B Coefficient defined by equation 41. 

B' Coefficient defined by equation 44. 

I B . 
T Constant defined by equation 72. 

I 
B Constant defined by equation 81. u 

Bq Constant defined by equation 84. 

I· CD. Drag coefficient. 

c Coefficient of specific heat at constant pressure. 

I 
p 

CT Constant of integration for the temperature profile. 

I 
c· q Constant of integration for the specific humidity 

profile. 

I D . R.z Constant defined by equation 51. 

DtR.z Constant defined by equation 78. 

I Dtz Constant defined by equation 77. 

I D uR.z Constant defined by equation so. 

D q R.z Constant defined by equation 54. 

I D Constant defined by equation 86. qz 

D Constant defined by equation 75. 

I 
z 

D Constant defin.ed by equation 76. zR.z 

I E Rate of evaporation. 
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S T 

T 

T 
.0 

T' 

Definition 

Partial pressure of water vapor. 

Arithmetic mean of the partial pressure of water 

vapor measured at th~ 2, 4, and 8-meter levels. 

Saturation vapor pressure of air which is at a 

temperature equal to that of the water surface. 

Saturation vapor pressure of air. 

Buoyant force. 

Coefficient in Dalton's law or the wind function. 

Acceleration of gravity. 

Vertical flux of sensible heat. 

Monin and Obukhov length scale. 

Coefficient of proportionality in the wind function 

or the empirical mass-transfer coefficient. 

Atmospheric pressure. 

Gas constant. 

Coefficient of correlation. 

Atmospheric stability as defined by equation 68. 

Stability parameter defined by equation 56. 

Absolute temperature of air. 

Water temperature 

Virtual temperature defined by equation 20. 

Parameter defined by equation 26. 

Temperature of air at 8 meters. 

Wet-bulb temperature. 

Velocity of air. 
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Symbol 

u 

u' 

v' 

X 

y 

z 

Definition 

Mean value of the horizontal component of the wind 

velocity. 

Horizontal component of the turbulent velocity 

fluctuation. 

Shear velocity. 

Error in the apparent value of the shear velocity. 

Apparent value of the shear velocity. 

True value of the shear velocity. 

Wind velocity at 2 meters. 

Wind .velocity at 8 meters. 

Vertical component of the turbulent velocity 

fluctuation. 

Parameter defined by equation 13. 

Error in the apparent value of Q*. 

Apparent value of Q*. 

True value of Q*. 

Specific humidity of air. 

Specific humidity of saturated air which has a 

temperature equal to that of the water surface. 

Horizontal coordinate in the direction of the wind. 

Horizontal coordinate normal to the direction of 

the wind. 

Vertical coordinate direction. 
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Symbol 

z 
0 

r 

0 

K 

p 

a 

T 

Definition 

Roughness length. 

Monin - Obukhov coefficient. 

Adiabatic lapse rate. 

Thickness of the boundary layer. 

Turbulent transfer coefficient for sensible heat. 

Turbulent transfer coefficient for momentum. 

Turbulent transfer coefficient for a scalar quantity. 

Potential temperature. 

Potential tempera~ure of the water surface. 

Von Karman coefficient. 

Dens~ty of air. 

Standard deviation. 

Shear stress. 

Scalar quantity. 

Fluctuating component of a scalar quantity. 
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ABSTRACT 

Although the process of evaporation has received the attention 

of hydrologists, meteorologists, and agriculturalists for many years, 

the measurement or estimation of the rate of evaporation from water 

surfaces still is not an easy matter. The aerodyn8:Jilic meth~d .of 

comput.ing evap~ration rates has a number of significant advantages 

over other methods and in certain situations it is about the only 

way in which the evaporation rate can be measured. In order to 

use the aerodynamic method some functional form desc.ribing the 

variation of wind velocity with elevation must be assumed. Although 

the logarithmic law appears to be an adequate description when 

atmospheric conditions are neutrally stable, no wind law has been 

found which is satisfactory under all conditions of atmospheric 

stability. The log+linear law, proposed a number of years ago, 

was specifically designed to extend the applicability of the log 

law to conditions which are at least nearly neutrally-stable. 

A massive set of data collected at Hefner, Oklahoma, were 

used to evaluate the theoretical correctness and practicality of 

the log+linear law for computing evaporation rates by the aero­

dyamic method. The theoretical correctness of the log+linear 

law was evaluated by comparing its results with those obtained 

by use of the log law and the mass-transfer method was used as 

a reference from which the practicality of the-log+linear law 

can be judged. 



The use of the log+linear law produced more accurate predictions 

of evaporation rates than could be obtained by use of the log law. 

There was a strong indication that the log+linear law at least partly 

accounted for the atmospheric stability effects. The results of the 

log+linear law were found to be almost independent of the assumed 

valtie of the Monin - Obukhov coefficient, a , as long as a was 

within the range 1 to 3. Provided that the measurement errors in the 

velocities are averaged out in a prescribed manner, the log+linear law 

can be expected to provide monthly evaporation rates which are accurate 

to within 17 percent. This accuracy approaches that which can be 

expected from the mass-transfer method .. 
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INTRODUCTION 

The process of evaporation has received the attention .·of hydrolo­

,gists, ·m~teorologists, and agriculturalists for many years. For 

·example, Roberts (1969, p. 669) reports that Benjamin Franklin attempted 

to reduce the evaporation from· a small pond in· 1765 by·spre~ding a·thin 

film on its surface. In 1908 the Weather Bureau, in cooperation with 

the Reclamation Service and the· U. S. Geological Survey, began 

a·project to measure the evaporation·ftom the Salton Sea, California 

(Roberts, 1969, p. "667). Since evaporation is a very large factor in the 

hydrologic cycle, there is great need'for accurate evaporation information 

for water resources planning. 

Increasing industrialization in this country has caused a dramatic 

increase· in the quantity of water which is used for cooling purposes. 

Almost·one half of all the water used in the United States is utilized 

for ·cooling (FWPCA, 1968, p. 5), and a major part of the excess 

energy which is added to a water system by the cooling water is ulti­

mately transferred to the atmosphere as·a result of increased evapora­

tion. Evaporation is ~ major factor in the determination of the effect 

of thermal loading on water systems. Unfortunately, the measurement or 

estimation of the rate of evaporation from water surfaces is by no means 

an easy matter. 

3 



At least six methods are currently used in order to measure the 

evaporation rate from different water systems. These are the water­

budget method, the energy-budget method, the empirical mass-transfer 

method, the aerodynamic or gradient method, the evaporation-pan method, 

and the eddy-correlation method. This report will concern itself with 

only the aerodynamic and the empirical mass-transfer methods; however, 

in order that these methods may be put into perspective, each method 

will be discussed very briefly in-what follows. 

The least complicated is the water-budget method, which applies 

the simple conservation of matter principle to a control volume. It 

involves a simple equation which states that the evaporation is equal 

to the total inflow minus the outflow,plus or minus any change in 

storage. While the method is simple, in practice it is almost impos­

sible to measure the terms of the equation with sufficient accuracy to 

determine a reasonable value for the evaporation. The difficulty is 

that in most cases the inflow and outflow terms are large in comparison 

to the evaporation term so that the evaporation must be comput"ed from 

the difference of two large numbers which are nearly equal in size. 

Only rarely can this method be successfully applied to real situations. 
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A variation of the water~budget method is a method in which 

the control volume "is the air above the water. In this .method the 

flux of water vapor approaching the lak.e and ·.leaving· the lake is , 

determined by measurements of wind velocity and-air humidity, upwind 

and downwind of the lake. The difference in these fluxes is the 

rate of evaporation from the lake. This. method would not be expected 

to be generally applicable, but in certain special cases it may be 

quite useful.. For example, Wiersma {1970, p. 50) found this method. 

to be the most accurate way to determine the magnitude of evaporation 

losses from a sprinkled field of bromus grass. 

The energy-budget method, like the water-budget method, applies 

the conservation principle to the water body. Energy is th~ conser­

vative quantity in the energy-budget method, and the terms are more . 

numerous and difficult to measure, but the computed evaporation is not 

as sensitive to small errors in the mass inflow and outflow terms. 

For lakes of moderate size and with reasonably small water inflows and 

outflows, the energy-budget is probably the most accurate and practical 

method of determining yearly or monthly evaporation rates. 

5 



The mass-transfer method is based on Dalton's law, which states 

that the evaporation rate is proportional to the vapor pressure 

gradient between the evaporating surface and air above the surface. 

The constant of proportionality, often called the wind function, 

has been assumed to take many forms, but in any case it is primarily 

dependent upon wind speed. The mass-transfer method requires re-

latively few, simple measurements and is quite accurate if the value 

of the wind function is known. The wind function varies in a complex 

manner with many variables and in general must be determined independently 

for each reservoir. 

The aerodynamic or gradient method relates the velocity and humidity 

gradients of the air in the vertical direction to the rate of evaporation 

from the underlying surface. A mixing coefficient is determined from the 

velocity gradient and an assumed functional relationship between wind 

speed and elevation. The vertical flux of water vapor is then determined 

from the humidity gradient, the mixing coefficient, and an assumed 

functional relationship between humidity and elevation. The evaporation 

rate is considered equal to the vertical flux of water vapor. Many 

different functional forms of the relation between wind speed and elevation 

have been proposed and tested. The aerodynamic method requires accurate 

measurements of velocity and humidity gradients which are difficult to 

obtain. It also suffers because the form of the functional relation 

between wind speed and elevation has defied accurate definition. 
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The most common method of estimating. evaporation rates is to 

measure the evaporation from an evaporation pan. While this method 

is convenient, the relation between the rate of evaporation from .. 

the pan and the rate of evaporati~n from a neighboring body of · 

water is-difficult to estimate·~·-

The eddy-correlation method determines the vertical· flux of 

water vapor from the correlation of the turbulent components of the 

variation in absolute htunid~ty at a point and thevertical compo­

nent of the turbulent fluctuations in wind speed at the same point. 

Instrumentation problems involved in the application of this method 

are almost insurmountable. 

As can be inferred from even this brief d'escription of the 

various methods, each method has advantages and disadvantages and 

none of the methods can be said to be the best under all circumstances. 

The me~hod used depends entirely upon the situation under consideration. 
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In certain situations the aerodynamic method may be the only 

way in which evaporation can be measured. For example, in 

estuaries the inflow and outflow terms are too large for either the 

water-budget or the energy-budget method to be applied,and both the 

mass-transfer and the evaporation-pan methods should have some 

independent measure of the evaporation rate in order to determine 

required empirical coefficients. In situations like this, one is 

forced to accept the disadvantages of the aerodynamic method and to 

attempt to use it. In addition, the aerodynamic method has a number 

of significant advantages over the other methods. First, its 

application requires no empirical coefficient as is necessary for the 

mass-transfer or evaporation-pan methods, Second, the evaporation 

rate can be determined for very short time periods while the energy 

and water-budget methods can only give evaporation rates which 

represent long term average values. Third, all measurements are made 

in the air away from the surface, so that the character of the 

underlying surface is immaterial. Also, the aerodynamic method can theoretically 

be used to determine the evaporation rate from a relatively small 

portion of a large body of water; whereas the energy-budget and water 

budget methods can only be used to determine the average rate of 

evaporation from the entire body of water. 
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For these reasons, as well as others, there ha~ been a great 

interest in improving the aerodynamic method for many years. As a 

result, many functional forms of the relation between wind speed and 

elevation have been proposed. After careful analysis, all of these 

forms are found to be deficient in fully accounting for the effect 

of atmospheric stability. 

Monin and Obukhov (1959) proposed a functional form that is 

known as the log+linear la\~ and which was designed to account for 

stability effects, at least under near-neutral conditions. This law 

appears to be theoretically sound, and while it has been tested under 

limited conditions (Webb, 1970), few sets of data are available which 

are extensive enough to determine its general applicability under 

widely varying conditions. 

. A joint project (U.s; Geological Survey, 1~54b) undertaken by ~he weather 

Bureau and four other government agencies at Lake Hefner near Oklahoma 
~. 

City, Oklahoma, provided a data set which is extensive enough to deter-

mine the general applicability of the law. This comprehensive evapora­

tion research project provided very good estimates of ~he daily evapo-

ration rates from a water-budget method as well as measurements of 

wind velocity, temperature, and humidity at four elevations over the 

center of the lake every 30 minutes for an entire 15-.month pe~iod. 
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The purpose of this report is to make use of this massive set of 

data, in order to evaluate the theoretical correctness and practicality 

of the log+linear law for computing evaporation rates. This purpose 

will be partly fulfilled by answering two questions. First, does the 

use of the log+linear law, instead of other laws, improve the estimate 

of evaporation when the atmosphere departs from the neutrally stable 

condition? Second, what accuracy can be expected when the log+linear 

law is used in conjunction with data of the type and quality collected 

at Lake Hefner? In answering the second question, the shortcomings of 

the aerodynamic method will be illustrated and some ways in which these 

shortcomings may be minimized will be demonstrated in the discussion 

of the first question. 

In order to apply the log+linear law, the value of a, a constant in 

the Monin Obukov model, was first determined from the Lake Hefner data 

using a method proposed by Deacon (1962). The evaporation rate is then 

determined for each 30-minute period by using the log+linear law and 

an average daily evaporation is computed from these figures. These daily 

evaporation quantities are then compared to the evaporation rate which 

was determined from the water-budget. By assuming the water-budget 

evaporation to be exact, the error in the aerodynamic method can be deter­

mined for each day of record. This error is then correlated with average 

wind velocity, specific humidity and atmospheric stability. 
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In order·to-serve as a basis·for comparison, the same type of 

analysis is performed using the logarithmic (log) law and' the .ma-ss­

transfer method. 

Following a method proposed by Pasquill. (Sutton, 1953, p~ 311) 

a procedure for reducing the measurement and model errors is devised 

and tested using both the log and log+linear laws. 

The theoretical development of both the log and log+linear laws 

will be presented in brief form initially, as well as the :empirical 

wind function which will be used to serve as a basis of comparison. 

Following this, a brief description of the Lake Hefner data will be 

given. The method of computations which was used in the application 

of the log law will th~n be discussed and the results of these compu­

tations presented. This will be followed by a similar discussion of 

the methods used in the application of the log+linear law and these 

results will be presented. The results obtained from the direct 

application of the log law will be compared to those obtained from the 

direct application of the log+linear law. The effectiveness of the 

modified Pasquill approach will then be discussed and its effectiveness 

when applied to the data will be evaluated. Using the 

Pasquill approach, results obtained from the log+linear law will then 

be compared to the results obtained from the log law. Finally, the 

log+linear law,as modified by the Pasquill approach,will be compared 

to the empirical mass-transfer approach and the practicality of the 

aerodynamic method will be discussed. 
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THEORETICAL DEVELOPMENT 

In this section- some basic concepts are discussed which are 

involved when any velocity law is used in the aerodyn~ic meth_od 

of computing evaporation rates. Following the discussion of these 

concepts a brief development and discussion of the logarithmic 
' ! • 

velocity law is presented, whicn in tum, is followed by an. equally 

abbreviated derivation and discussion of the log+linear law. Finally, 

the empirical mass-transfer formula is presented along with a discussion 

of the nec~ssary empirical wind function. 

As a real fluid flows past a solid boundary the effects of viscosity 

produce a velocity profile· which is characterized by a zero velocity at 

the solid surface.and ~velocity gradient which generally decreases 

with increasing distance above _the surface. The exact nature of the 

velocity profile is governe4 by the character of the underlying surface, 

both immediately below the point of observation and for a considerable 

distance upstream of this point. The influence of the underlying 

surface on the velocity profile decreases with increasing distance from 

the surface. The zone in which the velocity profile is primarily 

.governed by the underlying surface is known as the boundary layer. 

13 
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The boundary layer phenomena may be most easily visualized by 

considering an infinite fluid with a constant velocity U flowing 

past a semi-infinite flat plate. This process is illustrated on 

figure 1. The velocity must be zero at the plate but for regions 

very near to the beginning of the plate, the velocity is equal to its 

initial value of U at small distances above the plate. Therefore 

a very large velocity gradient exists near the beginning of the 

plate This large velocity gradient results in a large shearing 

stress which exerts a retarding force on the surrounding fluid 

particles. The shearing stress retards the flow at distances further 

and further from the boundary, so that the thickness of the layer 

of retarded fluid increases in the downstream direction. By definition, 

the boundary layer thickness, 6, is the thickness of the layer of 

fluid which has been retarded by the boundary. 
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-

Figure 1. Growth of a boundary layer along one side of a flat plate 
(Sis the thickness of the boundary layer)·. 
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For turbulent flow, almost the entire retarding force of the 

boundary is transmitted through the fluid by the turbulence stresses. 

Because Osborn Reynolds was the first to demonstrate the importance of 

the turbulence stress terms, they are often called Reynolds stresses 

(Hinze, 1959, p. 19). The turbulence stress term of interest here 

results from the vertical flux of momentum and is related to the 

turbulence components of the velocity by the relation 

't = -p u' v' 

where 't = shear stress; p = density of the fluid; u' = horizontal 

component of the turbulent velocity fluctuati'on; v' = vertical 

component of the turbulent velocity fluctuation; and the overbar 

(1) 

indicates a time averaged value, After comparing the turbule.nce stress 

terms in the equation of motion to the corresponding stress terms 

caused by viscosity effects, Bousinesq introduced the concept of an 

"apparent" or "turbulence" or "eddy" viscosity, e:m (Hinze, 1959, p.. 20). 

The turbulence stress is given by 

(2) 

where ·em = turbulent transfer coefficient for momentum~ u = maan 

value of the horizontal velocitr,and z =vertical coordinate. Equation 

2 indicates that the turbulence stress results from the diffusive transfer 

of momentum and consequently, that the boundary layer growth can be visualized 

as the diffusive spread of the momentum deficit caused by the boundary. 
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The diffusion of scalar quantities such as thermal energy or matter 

can be considered in a similar manner. Considering the vertical diffusive 

flux of a scalar quantity, n, in an incompressible turbulent flow, the 

flux can be determined as 

Flux = p 0 1 v 1 

where n' is the fluctuating component of the scalar quantity n. 

Introducing the Bousinesq coefficient for turbulent diffusion,the 

vertical flux is 

·an 
Flux = -p £n -

u az 

(3) 

(4) 

where £n is the turbulent transfer coefficient for the scalar quantity 

n. The negative sign is used because the diffusive flux is always in 

the direction of a decreasing magnitude of n. It is generally assumed 

that the value of e0 is proportional or e9ual to the value of Em· 

· The relation of £Q to £m has received wide attention, but at present 

there seems to be little reason to assume the value of £g to be 

differeat than the value of £m (Deacon and Swinbank, 1958; Brutsaert, 

1965; Webb, 1970). 

The resisting stress exerted by a water surface on a moving layer 

of air is generally different than that which a land surface exerts on 

the moving air. The change in shear stres~ which occurs as the air passes 

from land to wate~ causes a boundary layer to be developed over the water 

similar to that which is developed over a flat plate. The thickness 

of the boundary layer over the lake represents the distance above the 

water surface for which the velocity distribution is governed by the 

resistance characteristics of the lake. surface. 

17 



As air passes over the water surface it absorbs water vapor. 

This vapor is diffused upward into the air stream by turbulence, 

in the same manner as the momentum perturbation caused by the 

resistance characteristics of the water surface is diffused upward. 

A vapor blanket or vapor boundary layer thus exists over a water 

surface which is similar to the momentum boundary layer. The dev­

elopment of the vapor boundary layer is illustrated on figure 2. 

The path line of a typical evaporated particle is also shown on 

figure 2. At very low elevations relative to the water surface the 

air can be considered saturated with water vapor at all times so that 

the rate of change of specific humidity with respect to distance in 

the direction of the wind is zero except at the waters.edge. This 

rate of change of specific humidity increases with elevation and 

should obtain its maximum value somewhere near the ~pper extremity of 

the boundary layer. In computing the evaporation rate by use of the 

aerodynamic method, one must generally assume that the gradient of 

humidity in the direction of the wind is zero. This is the constant 

flux assumption and states simply that the total evaporation is 

diffused vertically through the air. It is easily seen that the 

validity of the constant flux assumption decreases with increasing 

elevation above the water surface. It is mandatory, therefore, that 

measurements be made well within the vapor blanket when the- aerodynamic 

method is used. Because the thickness of the boundary layer increases 

rather slowly, the aerodynamic method is impractical when short fetches 

are involved. 

18 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I' 
I 
I 
I 
I 
I· 

•• 
•• 
I 
I 
I 
I 
I 

.. ~ '•, 

Specific Humidity Specific Humidity 

Figure 2. Schematic representatiolll of the development of a vapor ~oundary layer . 
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In the analysis of wind structure in the lowest layers of the 

atmosphere, it is advantageous to regard the air as part of a fully 

developed turbulent boundary layer in which both the Coriolis force and 

changes in the gradient of pressure in the direction of the wind are 

negligible. For steady motion this implies that the shearing stress 

is invariant with elevation. These assumptions restrict the analysis 

to motion in a layer of depth not exceeding a few tens of meters. A 

system of axes is defined in which x is measured in the direction of 

the wind, y across the wind, and z vertically. 
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For a fully turbulent, neutrally stable atmosphere,·the -air 

can be considered of uniform density, and the velocity gradient should 

be a function only of elevation, air 4ensity, and shearing stress. 

Or symbolically 

au az = f(z, p, T) (5) 

Dimensional analysis yields 

. au _ (u* J -- f-az z . (6) 

where u. is the shear velocity defined as the square root of the shear 

stress divided by the density. The simplest possible functional form 

for equation · 6 is 

au a-z= (7) 

where K is the familiar Von Kanton eoefficient which has a value of about 

0.4. Upon integration equation 7 yields 

u. z 
u =- ln- (8) 

K z
0 

where z0 is a constant length scale characterizing the roughness 

of the underlying surface which is often called the roughnessheight 

Physically z0 is the elevation at which the velocity, as computed 

from equation 8, is zero. Because the flow must be fully turbulent 

for equation 8 to be valid, the relation probably breaks down for 

elevations approaching z . 
0 

The suggestion that the natural wind 

profile should confonn to equation 8 for condi~ions of neutral 

stability appears to have originated with Prandtl in 1932 (Sutton, 

1953, p. 232) . 
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It is convenient to introduce .a drag coefficient, Co for later use 

(9) 

The turbulent transfer coefficient for momentum is easily determined 

from equations 2 and 7 

£m = K u* z (10) 
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. Asstmling that the· turbulent. transfer coefficient· for water vapor 

. is equal to that for momentlDD, equation 10 can·.be substituted into 

equation 4·to determine. the vertical ·flux of water vapor 

· dn 
Flux = -p K. u. z -at {11) 

where q is the specific humidity of the air. In the region of the 

boundary layer where the constant flux asstmlption is valid, the flux is 

independent of elevation and is therefore equal to the rate of 

evaporation, E. Within this region of the boundary layer equation 11 

can be integrated to give 

q = ·Q. ln z + Cq 

where Cq is a constant of integration and 

Q * = - __ E_ 
P K U* 

{12) 

{13) 

In equation 12, the value of ~ approaches infinity as the value of 

z approaches zero. Physically, as z approaches some small value, 

say z0 , the value of q must approach the specific humidity of 

saturated air which has a temperature equal to that of the water 

surface·. This saturation specific htDnidi ty, which will be called q0 , 

is a reference humidity · just as zero is a refe~ence velocity in the 

velocity distribution. Forcing the value of q to approach the 

reference humidity, ~ , as z approaches z0 equation 12 takes a 

form which is analogous to the equation for the velocity profile 

z 
q - q0 =Q * ln -zo 

Equation 14 is as general as equation 12,and one might expect that 

{14) 

the values of zo in equations 8 and 14 to be the same. Unfortunately, 
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such is not the case. Apparently.1 the validity of equation 14 also 

breaks down for values of z approaching z0 • Therefore the values 

of z0 in equations 8 and 14 must be considered simply as constants 

of integration and no known relationship exists between them. 
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Since the value of ; u. :.and-: .·Zo . a:re constant for_ any ~eloci ty 

profile, the veloci_ty at. two l.evel.s is r~qui:re~. in ord~r to determine 

the value of u.. If. more· tQ.~ two values .of the velocity are . 

available, the value of· u. can be determi,ned such that equation 

8 best fits the data~ Like~ise, two values of specific humidity 

are required in order to determine Q. from equation 12 because the 

value of Cq_ in this equation is not related to the value of z0 

obtained from the velocity profile. Again, if more than_ two values 
. 

of specific humidity are available for anr profile, the value of 

Q. can be determined, using the method .of least _squares or some 

similar procedure, such that equation 12 best fits the measured. 

values of specific humidity. The evaporation rate can then be computed 

from the values Q• and u. using equation 13 • 

Evaluating equation 12 at two levels and subtracting, the value 

of Cq can be eliminated, and 

Q. :a _.,1 - Cl2 

ln zi /z2 

Evaluating equation 8 at two levels 

ul - ·u2 
U* = K 

Combining equations 13, 15, and 16 and assuming the values .of 

z2 are the same for both equations 15 and 16 

p K2 (ul - u2)(ql - q2) 
E = 

(~n zl/~J 2 

Equation 17 was originally derived by Thornthwaite and Holzman 

(Priestley, 1959' p. 90). 
25 
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Marciano and Harbeck (195~, p. 64) have applied this equation 

to. data obtained at the 2- and 4- meter levels of Lake Hefner 

and found that, while the results tend to scatter around a line of 

perfect correlation, the computed evaporation rate for individual 

days was often considerably in error. Marciano and Harbeck attributed 

much of this scatter to the difficulty in making accurate measurements' 

of the small ~ifferences in wind velocity and specific humidity. 

This statement may be easily justified. The average rate of eva­

poration for Lake H~fner is about 0.41 em/day ( centimeters per 

day ) . Harbeck (1954, p. 7) gives the median wind speed to be about 

450 an/sec (centimeters per second) ,for which the median shear velocity 

.would be about 29 em/sec. Combining these figures with equations 15 

and 16, typical values of (U2 - Ut) and (q1 - q2 )are 73 em/sec and 

0.00065. Both of these differences are small relative to the mean values 

of the individually- measured quantities~ ··A small·error in the· 

measurement of any of the four quantities causes a large error in the 

computed value of E. 

Given· a neutrally stable atmosphere, all mixing of the air occurs 

as a result of turbulence and it is generally agreed that equation 8 

adequately describes the velocity profile. A neutrally stable atmosphere 

occurs when the vertical temperature distribution is such that a 

parcel of air experiences no change in density relative to the surround­

ing air as "it is displaced from one level to another in an adiabatic 

manner. An atmosphere is neutrally stable when the temperature de­

cre~ses with increasing elevation at a rate equal to the adiabatic 

lapse rate. 
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The adiabatic- lapse rate, therefore, supplies a criterion from 

which atmospheric stability can be determined. lf the temperature 

gradient exceeds the adiabatic lapse rate, a parce.l of :air which is 

displaced upward by an infinitesimal amount from a level at which 

it had had the same temperature and pressure as the surrounding air, 

will be at a higher temperature than the surrounding air at the new 

level. It will, therefore, be of a lower density ·than the surround-

ing air. The buoyancy ·force which results from ·this condition, tends 

to make the parcel continue to rise. An atmosphere with such a tem­

perature gradient .must be· statically unstable and a lapse condition 

is said to prevail. Similarly, in an atmosphere for which the 

temperature gradieqt is less than the adiabatic lapse rate, a parcel 

of air which has been forced upward will be more dense than the 

surrounding air, and it will tend to sink back to its original level . 
e;' 

This type of an atmosphere is statically stable and an inversion condition 

is said to prevail . 
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If the temperature gradient is equal to the adiabatic lapse 

rate, turbulent velocity fluctuations will cause no net flux of 

sensible heat. The gradient term in equation 4 must be modified 

when the diffusion of sensible heat is to be considered. It is 

convenient to define a temperature that can be used directly with 

equation 4 in order to determine the flux of sensible heat. The 

potential temperature Q, of dry air is such a temperature. and is 

defined as the temperature which a volume of air assumes when 

brought adiabatically from its existing pressure to a standard 

pressure, generally that at the surface (Sutton, 1953, p. 10). 

The gradient of potential temperature may be expressed in terms 

of the gradient of absolute temperature, T, and the adiabatic 

lapse rate, T, as 

.2! = 2!. + r (18) az az 

-s o · · where r =- 9.86 X 10 C/cm (Celsius degrees per centimeter). 

For practical cases to be considered here, equation 18 is valid 

for moist as well as dry air. 
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In a non-adiabatic atmosphe~~. '. ~ither'L stable or Unstabie, 

buoyant forces become !important factors in the mixing process. 

The density of moist a1r can be computed using the formula (Sutton, 

1953, p. 3) 

p 
p = R T' (19) 

where P = the atm_ospheric pressure; · R = the gas constant for dry air 

(2. 876 x 106 square centimeters per degree Celsius per. second squared) ; 

and T' = the virtual temperature. The virtual temperature is defined 

as the temperature at which a sample· of dry. air would have the same 

density as the mixture, providing that both are at·the same pressure. 

It is computed from 

T' = T 

(1' - 3ea/8P) 
(20) 

where ea is the partial pressure of the water vapor. The buoyant force 

on a unit volume of air, FG, is given by 

(21) 

where g is the acceleration of gravity. Combini~g equations 19 and 21 

FG == ~ -fr (22) 

Because the atmospheric pressure and the gas constant are almost 

invarian~, the buoyant force is proportional to g/T'. The effect of 

humidity on the buoyant force is included in equation 22 through the 

use of the virtual temperature. 
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In order to account for buoyancy effects, the velocity gradient 

must be a function of g I T', the coefficient of specific heat at 

constant pressure, C , and the vertical flux of sensible heat, H , 
p 

as well as T, p, and z. By including these added variables and using the 

basic hypothesis of similitude,Monin and Obukhov (1959) showed that 

where L is the Monin and Obukhov length scale given by 

- u 3 
L - * - K(g/T')(H/Cp p) 

Using the same methods they showed 

where 

ae 
az-= 

30 

(23) 

(24) 

(25) 

(26) 
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The length, L, has a physical interpretation. Because the values 

of K, g, Cp, p, and T' are nearly constant (note that the value of T' 
. I 

is on the absolute scale).the value of L can be considered to be pro-

portional to the shear velocity cubed, divided by the vertical flux 

of sensible heat. For a stable atmosphere, the inversion condition, 

the flux ·of sensible heat is downward (negative H) therefore, beca~se 

u. is positive, the value of L is positive. Likewise, for an unstable 

atmosphere, the lapse condition, the value of H is positive; therefore, 

the value of Lis negative. The sign of_L is determined by the temperature 

gradient of the atmosphere in relation to the adiabatic lapse rate. 
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As the temperature gradient of the atmosphere approaches the 

adiabatic_ lapse rate, the vertical flux of sensible heat approaches 

zero and the absolute value ·of L approaches infinity. As the value 

of L approaches infinity the value of z/L, of course, approaches 

zero for all z. Because it is known that equation 7 is a satisfactory 

description of the velocity gradient under the condition of neutral 

stability, the value of ~2 (0) must be unity'· and ~1 must be given by 

Likewise it is assumed that ~- (0) is unity and 

( r;1= r. 
~3LTJ-z 

(27) 

(28) 

It is seen that ~ 2 and ~4 are correction functions which are applied 

to the log law in order to account for buoyancy effects. As the value 

of H approaches zero, the functions ~2 and ~4 must approach unity. It 

can be shown that ~2 = ~4 if one assumes that the fluxes can be described 

by equations 2 and 4 and that the turbulent transfer coefficients for 

momentum and heat are the same. The assumption of the equilivance of the 

transfer coefficients for momentum and heat is subject to more doubt than 

is the assumption of the equilivance of the transfer coefficients for 

momentum and vapor. Webb ( 1970 ) states that the coefficients for heat 

and momentum as well as those for vapor and momemtum are equal over a 

fairly large range of stabilities. Businger, and other (1971) state that the 

ratio of transfer coefficients for heat and momentum at neutrality is 

approximately 1.35 and that this ratio varies significally with atmospheric 

stability. Equilivance of the coefficients is assumed for the purpose 

of this report. 
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Because the value of ~2 is known for values of z/L equal to zero, it 

is assumed that · ~2 can be described by a power series expansion about 

this point of the form 

~2 = 1 + a ( ~) + S( ~ ) 2 + (29) 

z For small values of L, conditions of near neutral stability, 412 can 

be represented by retaining only the first two terms of equation 29. 

Combining equations 27 and 29 with equation 23 

au· u z az = -.fz- (1 +a L) 

and combining equations 28 and 29 with equation 25 

a.e az-= T* z z-· (1 +a L) 

(30) 

(31) . 

E~uations 30 and 31 then should be valid for conditions which are at or 

near the neutrally stable condition. These· equations illustrate quite 

clearly that the log+linear law applies a linear correction, to the 

standard log law which accounts for atmospheric stability. 
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The value of a, called the ~onin-Obukhov coefficient, can only 

be determined from physical measurements. Monin and Obukhov (1959, p.21) 

originally proposed a value of 0.6 . This value is considerably 

at variance with the findings of later workers, who find values of· 

a nearly ten times as great as that proposed by Monin and Obukhov 

(Deacon, 1962, p. 3170). Using the observations of others taken 

over the sea, Deacon (1962, p. 3171) found the value of a to range 

from 3.3 to 3.7. Webb (1970) analyzed 89 profiles which had been chosen 

very carefully such that they were taken under near neutrally stable 

conditions and which contained no " funny looking " anomalies. 

For inversion conditions he found that the log+linear law fit the data 

quite well for a fairly large range of stabilities . For lapse 

conditions the range was considerably smaller. Webb suggested that the 

value of a is between 4.5 and 5.2 but found that a large range in 

values of a produced an acceptable fit of the velocity profiles. 

Integrating equation 30 

u = 
u 

--* 
K 

z a {ln - + - (z-zo)} zo L 
(32) 

and integrating equation 31 

e = T* {In z + ~ z} + CT (33) 

where CT is the constant of integration. Forcing a to 

the temperature of the water surface, eo, as the value z approaches 

zo 

z a e - e0 = r. {In-- +- (z- z0)} z
0 

L (34) 
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In an analogous manner the ~quation for the specific humidity profile 

can be derived (Monin and Obukhov, 1959, p. 16) as 

a 
q = Q •. { ln z + r z} + c q 

Forcing q to approach q '0 as z approaches z0 , 

q J q o = Q * { ln _!. + ~ ( z 
zo L 

zo)} 

(35) 

(36) 

As for the log law, the values of z0 in equations 32, 34, and 

36 represent little more thafi con~tants of integration, so that there 

is little reason ·to hope that they be uniquely related to each other. 

Equations 32, 33, and 35 must be considered to contain six unknowns 

c . 
q 

Measurements of at least two levels of 

velocity, temperature, and humidity are needed in order to solve for the 

unknowns. Computation of u., H, and E from the log+linear law must 

be based on differences between measured. values of v.eloci ty, temperature, 

and humidity, and therefore measurement errors are amp_! ified greatly. 
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Perhaps the most accepted me~hod of estimating the rate of evapora-

tion from water surfaces is the mass-transfer method. The 

evaluation of any other method of computing evaporation should thus use the 

mass-transfer method as at least one basis of comparison. ·As mentioned 

previously, the mass-transfer method is based directly on Dalton's law 

which can be written in the form 

E = f(u)(e -e) o a 

where f (u) is a coefficient which is some function of the wind 

speed, e
0 

is the saturation vapor pressure of air at the temperature 

of the water surface, and ea is the partial pressure of water vapor 

(37) 

in the air. Many forms of the wind function, f (u), have been proposed. 

Most of these, however, have been deduced from pan evaporation data. 

Harbeck (1962) is one of very few who has presented a form of the 

wind function which has been derived from lake evaporation measurements. 

The wind function suggested by Harbeck is 

f(u) = N u2 

where u2 is the wind velocity measured ·.2 meters above the Water 

surface; and N is a dimensional coefficient of proportionality. The 

value of N is a function of many variables and in general should be 

determined independently for each site. Harbeck (1962, p. 104) does 

give an empirical expression which can be used to estimate N. This 

expression is 
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0.00338 
N=.~-Ao.os 

where A is the area of the lake in acres and the units of N 

are inches hour per day mile millibar. Harbeck estimates that 

the standard error of estimate for equation 39 is 16 percent 

( 1962, p. 104) . 
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Although the value of N is never known exactly when equations 

37 and 38 are used in order to compute evaporation rates, in general 

these equations give a much better estimate of the evaporation rate 

than does the Thornthwaite and Holzman equation .17 . This is 

because equation 37 does not amplify the measurement errors nearly 

as much as does equation 17. Equation 38 does not depend upon a 

velocity difference,and although 37 does contain a vapor pressure 

difference term, the value of e is usually much smaller than the a 

value of e . 
0 

Yen and Landvatter (1970) studied the evaporation from a heated 

moist surface into a very cold stream of air in a wind tunnel. They 

found that equation 37 with f(u) of the form given by equation 38 

remains valid even under extreme conditions of instability. 
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It has been poirited out·by,Pasquill (Sutton,,l953, p. 311) that 

the Thornthwaite and Holzman equation .. can.be written in a. fonn similar 

to the empirical mass-transfer equation as 

where the subscripts simply designate reference elevations and 

B = 
~e 2 p (1 - u1/u2) 

(ln z2 /z 1) 2 

The value of u1/u2 is constant for a neutrally stable 

(40) 

(41) 

atmosphere. If ·the value of B in equation 41 is determined from the 

average of many measurements, equation 40 could be used in place of 

equation 17 and a much smaller measurement error magnification would 

be expected. 
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Carrying the lead of Pasquill one step further, evaluating equation 

14 at two levels and subtracting 

Q Cq1 - qo) - (q2 - qo) 
* = ------------------ln z1/z2 

Factoring out q2 _q o and changing the sign 

where 

B' = 1 - ql - qo 
q2 - qo 

The value of B' should be constant for a neutrally stable 

atmosphere just as should the value of B. Combining equations 13, 

16, 41, and 43 

which is identical in form to the empirical mass-transfer formula 

proposed by Harbeck,except that it is written in terms of specific 

humidity instead of vapor pressure. 

(42) 

(43) 

(44) 

(45) 

The empirical mass-transfer equation with the wind function given by 

equation 38, appears to be entirely consistant with the log law 

formulation of the aerodynamic method. Brutsaert and Yeh (1970) have 

shown how this same expression can be obtained from a power law 

distribution of velocity. 
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THE DATA 

In order to test the general applicabi~ity of the ~og+ 

linear law under the widely varying c_onditions likely. to be 
• I \' • 

found in field applications, a massive set of data is needed. This 

set of data must contain accurate estimates of the a~tual evaporation 

rate as well as numerous measurements of ~he aerodynamic parameters of 

wind speed, temperature, and humidity at two or more levels, all o.f 

which are well within the boundary layer of the water surface. Massive 

sets of data which meet all thes.e, requirements are rare indeed. The 

Lake Hefner data is p~rhaps the most extensive set o~ data available 

which meets the requirements. 

Th~ Lake Hefner study was. an outgrowth of a cooperative_ investi­

gation at Lake Mead in Arizona and Nevada. _The investigation at Lake 

Mead was undertaken in l~te 1947, 1948, and early 1949 in order to 

determine average monthly evaporation values which could be used for 

planning purposes and to establish operating procedures which would 

minimize evaporation losses from a chain of reservoirs (U.S. Geological 

Survey, 1954b, p. 1). It was found that Lake Mead was not suitable for 

the basic and detailed investigation which was needed. After con-

sidering the advantages and disadvantages of many lakes an9 reservoirs 

the cooperating agencies chose Lake Hefner as the place to launch a 

detailed and·integrated attack on the water loss problem. The purpose 

of the investigation at Lake Hefner was to develop an ~mproved meth~d 

or methods for the determination and prediction of water losses by 

evaporation using the aerodynamic and· energy-budget theories (U. S. 

Geological Survey, 1954b p. xii). 
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Lake Hefner was chosen as the'site of the investigation because 

its characteristics allowed an accurate determination of evaporation 

rates using the water-budget method and because it met certain requirements 

of size, shape, depth, topographic setting, and climate. These 

requirements were imposed so that the energy-budget and ·aerodynamic 

methods could be evaluated. Because one of the purposes of.collecting 

the Lake Hefner data was to investigate the use of the aerodynamic 

theory, these data are ideally suited for evaluating the log+linear 

law. 

The physical and climatological characteristics of Lake Hefner 

have been given by Harbeck (1954, p. 6). Only a brief summary of 

these characteristics is presented here. The climate of Lake Hefner 

has been classed as subhumid. The normal annual rainfall is about 

78 centimeters with the period of April-June representing·the period 

of greatest rainfall. The average wind speed at 2 meters above the 

water surface is about 480 em/sec. The wind speed is within the 

range 250-1000 em/sec during 90 percent of the ti~e. The mean air 

temperature ranges from a high of about 27°C in July to a low of 

about 4°C in January. The lake's shape is fairly regular and circular, 

and it has a mean area of about 9 million square meters. The 

natural drainage area into the lake is only about 30 percent larger 

than the area of the lake itself. Most of the lake's inflow results 

from diversion from the North Canadian River. The topography 

surrounding the lake is flat to.gently rolling with sparse vegetation. 
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The daily evaporation, as determined by the water budget, was 

used as the control for the entir~ project. Everr ~ffort 

was made to measure each water-budget tenn ~o a precision cons~stent 
, ... 

with its significance in the result~ng evaporation and. to evaluate the 

errors inherent in toe m~asurements. Harbeck and Kennon ( 1954, ,_ 
. • l .• 

p. 17-34). descr~be the measur~ent procedures used to detemine each 

tenn of the water budget. They_ estimated the app~oximate magnitude 

of the error in measuring each water-budget ter~ for each day 

of record and combined these ·~rrors in o~der to estimate the standard 

error of the coml:luted evap~ration for each day. Each dai.ly figure 

of evaporation was classified on the basis of the estimated standard 

error into four groups. Sixty-two percent of the daily evaporation 

figures were classified as either A or 8 meaning that the standard error 

of the computed evaporation was less that 9.9 acre~eet. Based on the 

average area of the lake, 9.9 acre,£eet of water represents 0.133 

em. of depth. In this report, only those days of record which were 

classified as either A or 8 are analyzed. The water-budget evaporation 

tenns which are used herein were obtained from table 1 of the Lake 

Hefner Base Data Report (U.S. Geological Survey, 1954a, p. 9-16). 
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The meteoro~.ogical variables that were measured at Lake Hefner 

included the air temperature, wet bulb temperature, and wind speed 

at 2, 4, 8, and 16 meters above the lake surface as·well as the wind 

direction and the temperature of the water surface. These measure­

ments were made from a barge which was anchored near the center of the 

lake. Identical measurements were made at three shore stations but 

since these measurements were not necessarily within the lake boundary 

layer they are not used in this report. A complete description of the 

equipment which was used to make the measurements has been given by 

Anderson (1954, p. 35-45). 
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The average wind speed during each 30-minute interval was recorded. 

Temperatures were measured with wet and dry .thermocouples. 

All temperatures were recorded on one recorder by use of a switching 

arrangement. Each temperature was recorded during a 3-minute interval 

in each 30-minute period. The order of recording the temperatures 

was as follows; water temperaturE',. 2-meter dry then wet bulb te~pera­

tures, 4-meter dry then wet, 8-meter dry then wet, 16-meter dry then 

wet, and finally a· reference zero was ·recorded (G. E.. Harbeck Jr., oral 

conununication, 6/22/71). Therefore, all temperatures represent.a 

3-minute average and all temperatures were not taken at the same time. 

The meteorologic data for each 30-minute interval was determined from 

the·, analog charts and the values were punched on computer cards. The 

information on these cards was transferred to magnetic tape for the 

purpose of the present investigation. The 30-minute data were 

too numerous to be published, but average values for 3-hour periods 

have been published in the Base Data Report (U. S. Geoogical Survey, 

1954a). 
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COMPUTATIONS AND PRESENTATION OF RESULTS 

In this section the methods used in the computations and the 

results of these will be presented. Initially the procedures which 

are common to all computations are presented. Then those 

involved in the use of the log law are described and the results of 

these computations presented. Following this, the computatibns and 

results derived from the log+linear law are presented.· p.inally the 

results obtained when the empirical mass-transfer equation is used are 

presented. 

Computations common to both laws 

Only sets of data which met certain requirements of accuracy and 

completeness were analyzed. The first requirement was that the daily 

water-budget evaporation had to be rated as either A or 8 with regard 

to accuracy. These ratings were obtained from the Base Data Report 

(U.S. Geological Survey, 1954a, p. 9). If the accuracy of the water-

budget evaporation was not rated either A or B the entire day was 

ignored. Although data were collected continuously for a 15-month 

interval, there were many 30-minute periods for which some of the data 

were missing. Equipment malfunction was the principle cause of 

gaps in the data. A 30-minute period was ignored if any of the 

2 -~ 4-, or 8-meter data were mis~ing. The second requirement to be met 

by a day's data was that it contain at least 20 acceptable sets of 

30-minute data. It is believed that at least 20 sets of 30-minute 

data are necessary in order to provide a reasonable estimate of 

conditions prevailing during the day. Finally, all the data for the 
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· months of Jwte and July, 1950 were eliminated. The data obtained 

during these 2 months were suspected to be· of poor quali~y because· 

of difficulties encountered in setting up·such a :complex data '. 

collection system. Preliminary analysis of. the results, using the· 

data for all 15 months, tended to confirm this suspicion. A total of 

222 days met these three requirements. These 222 days contained ~793 

sets of acceptable 30-minute data, or on the average, each day 

contained 39 out of a possible 48 sets of acceptable 30-minute data. 

All the aerodynamic equations have been presented .in terms of 

the specific humidity so this quantity was determined from the wet 

and dry bulb temperatures for every set of data before further 

analyses were performed. The saturation vapor pressure of the air, 

e , was first determined from the wet bulb te~erature by use of :sp 

the Kirchhoff-Rankine-Dupre formula (Sutton, 1953, p. 4 ) 

esp = exp {63.042 - 7139.6 I Tw - 6.2558 ln Tw} (46) 

where e is in mb (millibars) and T is wet bulb temperature in sp w 

degrees Kelvin. The constants in this equation were determined, by 

the method of least squares, such that the equation is most accurate 

within the range of 0 to 30°C (degrees Celsius). Within this range 

the maximum error of 0.38 percent occurs at 30°C. The vapor pressure 

of the air, e , was next determined from the psychrometric a 

equation (Hodgman, 1951, p. 2094) 

e = e - 0.00066 P(T - T ){1 + 0.00115 (T - T )} (47) a sp w w 
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where T is the dry bulb temperature in degrees Kelvin and P is the 

barometric pressure,in millibars. Based on the mean temperature 

and elevation at Lake Hefner, it was assumed that the barometric 

pressure was 973.3 mb (Hodgman, 1951, p. 2083). Finally the specific 

humidity of the air was determined from 

0.622 e 
a 

q = 973.3 - 0.378 ea (48) 

In order to simplify the computations a special tape was written 

which contained only the data which passed the three requirements just 

discussed above and in which the wet bulb temperature was replaced by 

the computed specific humidity. 
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· The following procedure was used to evaluate each method of 

computing the evaporation rate. The measured values of wind speed, 

temperature and specific humidity were used in conjunction with the 

appropriate prediction equation to compute an evaporation rate during . . 

every available 30-minute interval of a given .day. The average of 

these evaporation rates will be called the computed evaporation rate 

for the day. The measured evaporation rate for the day was defined 

as the evaporation rate determined from the water-budget. The error 

for a day was defined as the measured evaporation rate minus the compu~ed 

evaporation rate. Actually, this error results from errors in both the 

computed and measured evaporation rates. Nevertheless, the method which 

gives the smallest values of error was considered to be the most accurate. 

The best method is then the method which gives the required accuracy_ at the 

least total cost. 

Error Analysis 

Any evaluation of an evaporation prediction equation must be 

concerned with·some form of error analysis. The difference between 

the measured and computed value of the evaporation rate can result from 

at least three factors; measurement errors, model errors, and coefficient 

errors. 
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The difference between the recorded value of a physical .quantity 

and its true me.an value during the period of interest is defined as a 

measurement error. Measurement errors are inevitable in any physical 

measurement and can be classified as either random or systematic. 

Measurement errors, as defined here, can result from two separate 

causes, first the usual equipment and personal errors and second, 

errors caused by not properly averaging over the time period. Errors 

due to the second cause, which could be called averaging or sampling 

errors, were most critical for the recorded temperatures. Each 

temperature represents the average of only 3 minutes of record during 

the 30-minute interval. One can only hope that the systematic part 

of the measurement errors was small. Generally, if equipment is 

properly maintained and calibrated, systematic errors in measurements 

can be reduced to near zero values. It is believed that, except for 

possibly the 4-meter dry-bulb temperatures and all 16-meter data, the 

systematic errors in the Lake Hefner data are small. The random part 

of measurement error.s is much more difficult to control because of the 

great number of possible causes. The effect of random errors 

can be reduced to as small a value as is desirable, at least theoretically, 

by averaging the results of many observations. The number of observa­

tions can be increased by making simultaneous measurements at many 

levels or by making measurements at only two levels but averaging the 

results over time. A combination of both averaging procedures is 

employed here. ·Because only th~ee levels of acceptable data were 

available, averaging the results o~er time was the most effective 

way of reducing the effect of random measurement errors. Unfortunately, 

so 
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I 
I 
I as has been pointed out ,before, the aerodynamic method tends to' magnify 

I the effect of. measurement errors greatly and so averaging over 

many observations is necessary. 

I No mathematical model can possibly account for all the factors , 

I 
which contribute to the shape of the velocity, temperature, and 

humidity profiles. The model error is defined as that error which 

I results in the computed evaporation because the mathematical model is 

incapable of adequately describing the physical process. For example, 

I if the true velocity and specific lhumidi ty, are not proportional to 

I ~· 

,'t 

the logarithm of z there will probably be an error in the computed 

evaporation rate no matter how accurately the values of,velocity and 
·~I 

I humidity are known. 

The coefficient error.is defined as the error in the computed 

I evaporation which results from the improper choice of an empirical 

I 
coefficient. The values of K and a in the aerodynamic methods are 

not considered as empirical coefficients in this definition. The value 

I of K has been assumed to have a value of 0.40 a priori. If this 

assumption is .incorrect, the resulting error will be considered ·to be 

I included in the model error. The value of a could also be assumed 

I 
a priori, or its value can be deduced at a particular site from measure-

ments of velocity and temperature profiles without knowing the actual 

I rate of evaporation. Any errors caused by the improper choice 

of a are also included in the model errors. It is, therefore, assumed 

I that the coefficient errors in the aerodynamic. models are zero. The 

I 
empirical mass-transfer approach which is used here contains one 

coefficient, N . It is assumed that the exact value of N 
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is that value for which the long term computed evaporation rate 

would be exact, provided all measurements were exact. This value 

cannot be determined a priori. The coefficient error for the 

empirical mass-transfer method is equal to the error in the value 

of N. 

The log law 

Marciano and Harbeck {1954, p. 46-70) have applied the 

Thornthwaite-Holzman equation to the 2- and 8-meter data of Lake 

Hefner. Because the Thornthwaite - Holzman equation is based 

directly on the log law, further analysis using this law may in 

some ways seem redundant. The log law is to be used as a standard 

from which any improvements resulting from the use of the log+linear 

law must be gaged, so it is necessary that the best possible results 

be obtained from the log law and that these results be obtained under 

the same conditions of sorting and analysis as is to be used for the 

log+linear law. In order to reduce the measurement errors as much 

as possible and at the same time make use of all possible data the 

log law was generalized such that all three levels of data {2-, 4-, and 

8-meter) can be used in determining the evaporation rate. 
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The first step in the application of the log law to a particular 

set of data is to determine the shear velocity. The values of u*/K 

and ln z were determined by use of equation 8 and the measured 
0 

velocities such that the sum of the squares of the differences between 

the measured and computed velocities was a minimum. Minimizing the 

sum of the. squares the value of u. /K is obtained from 

where 

and 

D uiz 

3 
= L 

i=l 

-= 
K 

D uR.z 
-D­

R.z . 

u. ln z. 
1 1 - 3

1 
[ ~ u .] [ ~ 1 n z.] . 1 1 . 1 1 1= 1= 

DR.z = ~ ln2 z. - !.[ ~ ln z.J
2 

i=l 1 3 i=l 1 

(49) 

(SO) 

(51) 

In these expressions, the value of u. is the measured velocity in 
1 

em/sec and z. 
1 

is· the elevation of the measurement in meters. The 
. ··.· 

value of u* was then determined for each 30-minute interval of each 

day by assuming K=0.4, a total of ~793 times. Regression analysis · 

yielded the relation 

u* = -1.85 + 0.0731 u2 

where u2 is the 2-meter wind velocity in centimeters per second 

and u* is in centimeters per second. The value of u
2
/u. should 

be reasonably constant for any particular body .of water. There-

fore, this ratio was used as a means of discarding obviously 

incorrect data. The entire 30-minute periq~ was ignored if 
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u2/u. was greater than 137 or less than 1.37. These limits are extremely 

broad so no reasonable data were ignored. About 4 percent of the 

data were eliminated by this restriction. 

For each profile that contained reasonable wind data, the value 

f Q was computed from the specific humidity profile. 
0 * The values 

of Q. and c were determined from equation 12, and the measured values 
q 

of specific humidity. These computations were similar to those used 

for the velocity profile. The sum of the squares. Qf the differences 

between the measured and computed specific humidity was minimized. 

The computation equation is 

(53) 

where 

r q . In z1. - -3
1 

[ . r q 
1
.] [ .r ln z i]. . 

i=l 
1 

1=1 1=1 
(54) 

The density of the air was estimated in the following manner. A 

representative vapor pressure was assumed to be given by the arithmetic 

average of the measured specific humidities and was calculated from 

p 3 

3 2 q. 
i=l 1 

e = 
3 (55) a 

0.378 0.622 + 2 q. 3 i=l 1 

Where P is the ·atmospheric pressure, 973.3 mb. The density 

of moist air was then computed from equations ·19 and 20. The arithmetic 

mean of the air temperatures was used in equation 20. The effect of 

humidity and temperature on the air density was accounted for, but the 

effect of varying barometric pressure on density was ignored. 
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The evaporation rate for each 30-mil)ute period was then co~puted 

by use of equation 13. From equations 13 an.d. 49 it is. seen that . ~h~ 

value of E is proportional to K 2 .and had the value of K been 

assumed to be 0.38 instead of 0~4 each eyaporation rate would have 

been 9. 8 percent smaller. Values of K as. s~ll. as 0. 38 are often 

assumed, but these smaller values are usually associated with 
. . ( 

atmospheric conditions that are not neutrally stable. Any ~vaporation 

rate computed for a 30-minute. period which had a value larger than 

10 em/day or smaller than -2 em/day was ignored in computing the 

daily average evaporation· rate. These limits were arbitrary but 

they were believed to:be large enough so that.no reasonable data 

were :rejected. For example, ·the ~tean eVaporation rate from Lake 

Hefner was 0.41 ~/day~· the maximJm·daily evaporation rate a~ 

determined from the water-budg~t m.ethod was 1.4.4 ·em/day, and the 

minimum daily evaporation. rate• was. -·o .674 .em/day. Only about 

one ·or two profiles per thousand we.re rejec~ed because. of this 

restriction. The mean eOJDpUtea 'evapOTaet-ion rate for the d·ay· was 

then detennined as the average of· all. acceptable 30·-minute .. evaporation 

rates. 
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The calculations just described result from the direct application 

of the log law to each individual profile of data. Some of the results 

of these computations are presented on figure 3. The ordinate of 

figure 3 is the measured evaporation fo·r the day as determined from 

the water~budget method and the abscissa of the figure is the mean 

computed evaporation rate for the day. The points· tend to scatter 

about a line of perfect correlation but there are significant errors 

on individual days. A large amount of averaging has already occurred 

in the results presented on figure 3. Each point represents the 

average of several profiles and each profile uses the results of 

measurements obtained at three levels. The standard deviation, a, 

of the daily errors is shown on the figure as well .as the coefficient 

of correlation, r, between the computed and measured values of evapora­

tion. The coefficient of correlation is a measure of the linear 

correlation between these two values. A value of one for r indicates 

perfect correlation and a value of zero indicates no correlation. 

The standard deviation of daily errors is perhaps the bes.t 

measure of the accuracy of the log law for computing daily evaporation 

values. Approximately 2/3 of the daily errors should be smaller than 

the standard deviation. The error in the daily evaporation was less 

than 0.383 em approximately 2/3 of the time. This error is to be 

compared to an average daily evaporation rate of 0.41 em and an 

estimated maximum standard error in the water-budget evaporation of 

0.133 em. 
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Figure 3. Experimental test of the direct application of the log law. 
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The daily error is defined as the water-budget evaporation rate 

minus the average computed evaporation rate for the day and the values 

on figure 3 are very large. Approximately 1/3 of the days had an error 

in the computed evaporation in excess of 92 percent of the mean daily 

evaporation. In an attempt to isolate the cause of these large errors, 

the magnitude of the error was correlated with daily average values of 

various meteorologic parameters. 
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The log law is postulated to be valid only under conditions of 

neutral stability. Therefore, it is logical to expect the error to be 

strongly correlated with atmospheric stability. Perhaps the most 

commonly used measure of atmospheric stability is the gradient form of 

the Richardson number (Priestley·, 1959, · p. 9). However, the Richardson 

number must b~ computed using exactly the same data used .to com-

pute. the evaporation rate. The measure of atmo~_pheric stability which 

is used in this report is the one proposed ·by Marciano and Harbeck 

(1954, p. 52) 

(56) 

where T8 is the dry bulb air temperature at 8 meters, u8 is the 

wind speed at 8 meters, and. T
0 

is the water temperature. This term 

is closely related to the Richardson number and is not a function. of 

gradients which must be measured in the air. It also has the advan.tage 

of being dependent upon the water temperature, a quantity which was not 

used in the determination of the computed evaporation. Neglecting the lapse 
I • 

rate, the value of the stability parameter is zero if .the- atmosphere 

is neutrally st.able. The value of th.e· stability parameter was computed for 

each 30-minute interval of the day and the values were averaged in order 

to determine the average value of ST for the.day._The .correlatio~ of the 

daily error values with the stability parameter is demonstrated on fig\..'.re 4. 

Also shown on figure 4 is the regression line and the correlation 

coefficient. The results of 6 days gave extremely large absolute 

values of S T and were not used in the correlation analysis. 
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Figure 4. Correlation of the daily error values with the stability parameter 

for the direct application of the log law. 
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The distribution of the points on figure 4 suggest that the 

error decreases with increasing values of the stability parameter, 

but it is not obvious that this association is significant. Asswning 

the population distribution is bivariant normal and using a trans­

formation given by R. A. Fisher {Coope:r, 1969, p. 212), the confidence 

1 imi ts for the population correl.ation coefficient can be obtained. 

Accepting a 0.99 level as the significance criterion, the true 

value of the coefficient of correlation between the error an~ stability 

parameter has a value between the limits -0.285 and -0.505. The pro-

bability that the true correlation coefficien~ is as large as zero 

·is very small, and it can be concluded that there exists a very 

significant correlation between the e~or and atmospheric stability. 

This result was, of course, expected and one may be surprised that 

the scatter on figure 4 is so large. This scatter can be partially 

explained as follows. :_The stability parameter varies throughout the 

day and is usually negative at night and pos~tive d~r.ing the daylight 

hours. Therefore the mean value of S T for the day is often very. 

nearly equal to zero even though its magnitude woul~ probably have 

been large throughout the day. _If the.measured evaporation rate during 

all 30-minute intervals had been available so that averaging throughout 

the day was not necessary, it is expected that the correlation would 

have been much better. Nevertheless, the data illustrated on figure 

4 demonstrate that the accuracy of the log law decreases as the 

atmosphere departs from the condition of neutral stability. 
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The correlation between the daily error values and the daily 

average value of the 8-meter wind speed is illustrated on figure 5. 

Applying Fisher's z transformation, the 0.99 confidence limits for 

the population correlation coefficient are estimated to be -0.038 and 

-0.369. The error is also very significantly co~related with wind 

velocity. 

The correlation between the daily error values and the daily 

average value of the 8-meter specific humidity is illustrated on 

figure 6. Applying the z transformation, the 0.99 confidence limits 

on r are +0.302, -0.036, and the 0.95 confidence limits on r are 

+0.264, +0.005. Therefore, the error is probably correlated with the 

specific humidity, but the probability is not as large as was the case 

for wind velocity and stability parameter. 

Assuming that the population correlation coefficients for velocity 

and (_or) specific humidity are different than zero, the interpretation 

of the meaning of the res~lt is difficult. It could mean that the 

measurements contain systematic errors or that there is some basic 

model error in the log law. Because it is a foregone conclusion that 

the log law is not completely adequate, it will be assumed these 

correlations are not an indication of systematic errors in the 

measurements. 
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air for the direct application of the log law. 
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The_ temperature difference between the air and the water surface 

is an important factor in determinin~ the atmospheric stability and, 

therefore, the accuracy of the log law. This temperature difference 

tends to vary seasonally. The seasonal nature of the error in the log 

law is demonstrated on figure 7. The ordinate of figure 7 represents 

the cumulative error in the computed evaporation and the abscissa 

represents time in days. The cumulative error represents the sum of 

all previous errors and is, therefore, the integrated effect of all' 
i.,. 

previous errors. This integration process smoothes the results and 

makes seasonal trends more obvious. The instantaneous error is 

given by the slope of the curve. The number of days on the apsciss·a 

represents the number of days of acceptable record. There were 

fewer days of acceptabl'e data during the winter ~onths than during 

the summer months . 
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The log law generally Underestimated the evaporation rate 

during the months of August and September 1950, but it generally 

overestimated the evaporation rate during the other 11 months. 

The total measured evaporation for the 222 days of record was 

90.93 em. When·averaged ov~r the entire 222-day period, the 

log law tended to overestimat~ the evaporation rate. by 15 percent. 

The average error for the entire 222 days is not representative 

of the accuracy which can be expected from the direct application 

of the log law. During the months of August and September, '19SO, 

the evaporation rate was underpredicted by an average of 41.5 

percent and during the rest of the time the evaporation rate 

was overpredicted by an average of 38.1 percent. 

The results presented on figures 3 through 7 were based on 

curves fitted to three levels of data (2-~ 4-, and 8-meter). To serve 

as a basis for comparison from which the value of the third 

level of data can be approximated, the Thornthwaite - Holzman 

equation was used to·determine the evaporation rate for each. 

30-minute period. Otherwise the computation procedures were the 

same as was used above. 
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The coefficient of correlation and the standard deviation of daily 

errors were 0.646 and 0.390 em when the 2-and 8-meter levels were used. 

The seasonal variation of the errors is shown on figure 8. These 

results are very similar to those obtained using all three levels. The 

standard deviations of the daily errors were nearly the same and, when 

averaged over the entire 222 days, the Tho~thwait~lzman equation 

overpredicted the evaporation by 8.6 percent compared to a value of 

15 percent for all three levels. During the months of August and 

September, 1950, the 2- and 8-meter data underpredicted the actua! evapora~ 
.. 

tion by an average of 40.2 percent as compared to 4l.S percent for the 

three levels of data and during the rest of the time it overpredicted 

the evaporation by an average of 28.6 percent as compared to 38.1 per­

cent for the three levels of data. It would appear from a comparison 

of the results obtained using the 2- and 8-meter levels with t~ose obtained 

from the use of all three levels that the addition of the 4-meter data 

does not increase the accuracy by very much. 

The results obtained with the 2-and 4-meter data are quite 

different than the results obtained by use of all three levels. The 

coefficient of correlation and the standard deviation of daily errors 

were 0.461 and 0.592 em when the 2-.and 4-meter levels were used and 

the seasonal variation of the errors is shown on figure 9. This 

standard deviation of daily errors is more than SO percent larger than 

the value obtained by use of all three levels. AI though the 2- and 4- meter 

data predict the evaporation pret~y accurately during the months of 

August and September 1950, these data overpredicted the evaporation 

by an average of 77 percent during the rest of the time. 
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Thornthwaite-Holzman equation with the 2- and 8-meter data. 
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The large divergence of the results obtained by use of the 2~and 

4-meter data from the results obtained by use of all three levels of 

data and by use of the 2-rund 8-meter data suggest possible systematic 

errors in the 4-meter data .. 

The consistency of the 4-meter velocity data was investigated 

first. The distribution of the points on figure 4 suggest~ that "on 

the average" the atmospheric conditions over Lake Hefner tend 

to be n~utrally stable. For neutrally stable conditions the 

ratio of the velocities at any two levels should be constant·~ The 
. ··-

ratios of the 8-meter to 2-meter velocity .and the 4-meter to 2-meter 

velocity were computed for all ~793 sets of data and the distribution 

functions for these ratios are shown on figure 10. The values of the 

ratios range between wide limit~ because of measurement errors and 

because of atmospheric cond~tions which are not neutrally stable. But 

the median value of these ratios should be practically independent of 

random measurement errors, and because "on the average", the atmosphere 

is neutrally stable, the median values of these ratios should be 

consistent with the log law·. The median value of the ratio of the 

8-meter to the 2-meter wind velocity is 1.226. The value of z , 
0 

which can be computed from this ratio and equation 8, is 0.410 em. The 

value of z which is determined from the median value of the ratio of · 
0 

the 4-meter to 2-meter wind velocity is 0.431 em. The relatively good 

agreement between the values of z as determined from the two ratios 
0 

indicates that .. the velocity data contain no significant systematic 

errors. 
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The consistency of the 4-meter specific humidity data was investi-

gated next. The quantity q-q in equation 14 is defined as the 
0 

humidity deficit. The ratios of the 8-meter to 2 -meter· hwnidi ty defi·ci t 

and the 4-meter to 2-meter humidity deficit were computed for all pro-

files and the distribution functions of these ratios are shown on 

figure 11. During 7 percent of the time the humidity def~cit at 4 meters 

was larger than that at 8 meters. This makes one suspect that the data 

were not consistent during a fairly large part of the time. Th~. 

median values of the ratios are 1.0927 and 1.0651 for the 8.- to 2- and 4- to 

2-meter data respectively. These ratios and e~uation 14 can be used 

to determine values of z which apply to the "average" specific­o 

humidity profile. The values ··of z ·are 1. 06·x 10- 3 em and 4. 6xl o- 3 em 
0 

fo·r the 8-2 and 4-2 meter data respectively. It is of no particular 

significance that these value~ .of z 
0 

are much smaller than were the 

values of z
0 

which were determined from the velocity profiles. 

However, the large difference in the two values of z which were 
0 

determined from the specific humidity data indicates that ther, was 

probably some systematic error in the measurement of specific humidity. 

This systematic error could have occurred at any or all of the levels . 

However, the previous analyses, as illustrated on figures 7, 8, and 9, 

suggest that the principle error occurred in the 4-meter data. So, it 

is suspected that the 4-meter specific humidity was underpredicted 

during a fairly large percentage of the time. 
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The specific humidity is a quantity which was determined from the 

measured values of the wet and dry-bulb temperatures. The consistency 

of the dry-bulb temperatures was investigated next. The distri-

bution of the potential temperature which is corisistent'with' the l'og 

law can be obtained from equation 34 by setting a equal to zero. · The 

quantity e-e
0 

in equation 34 is defined as the temperat~re deficit. 

The distribution functions for the temperature deficit ratios are 

sho~n on figure 12. The median values of the ratios are 1.0773 and 

1.0421 and the values of z are 3.23xlo-6 em and 3.94xlo-s em for the 
0 

8- and'2- meter and 4- and 2- meter data respectively. Again the small''value of 

z
0 

is of no particular concern. The large difference b~tween 

the two values of z
0 

determined from the·pote~tial temperature 

profiles indicates ·that the dry bulb temperature measurements contain 

some systematic errors. Because the potential-temperature profiles 

appear to be more inconsistent than do the specific-humidity profiles, 

it is suspected that the 4-meter dry-bulb temperatures are the only 

measurements that contain significant systematic errors. Even with 

these systematic errors in the 4-meter specific-humidity values, the 

results which a~e based on all three levels appear to be at least 

slightl_y better than the results which are only based on the 2- and 

8-meter data. 
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Because of the large expected value of the error in the evaporation 

rate which is computed from one set of profiles, any conclusions 

must be based on the average of:many observations. The evaporation 

rate for each 30-minute period has been computed from equation 13 in 

which the value of u. has been determined from the velocity profile, 

and the value of Q• has been determined from the specific-humidity 

profile. When the Thornthwaite-Holzman equation is used, all three 

operations are combined into one. An error in the computed evaporation 

results from errors in the values of u* and .Q. . It will be._.shoWl) next 

how errors in u •. and Q. tend to accumulate when the average o; 

many observations.is used. A method o.f aualysi~ is de:veloped 

which will.minimize this undesirable accumulation. 
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Let us represent the true value ·of the shear velocity, 

- - a ' u. - u. + u. 

-. 
U* I by 

(57) 

where a u. is the apparent value of the shear velocity, such as that 

determined from equation 49, and u! is the error in 

represent the true value of Q* , Q. by 

a 
u. . Likewise 

(58) 

where Q! is the apparent value of Q. , such as that determined by 

equation 53, and Q! is the error in Q! Assuming that the density 

of air is constant and using the overbar to represent the average of 

several quantities, the true average evaporation l'ate is determined as 

E = p K ii. Q. (59) 

and using equations 57 and 58 

E = p oc: { u! Q! + u! Q ~ + u~ Q! + u~ Q: J ( 60) 

Because the true values of u. and Q. are never known the average 

evaporation rate must be estimated by using only the first term of 

equation 60. The last three terms in equation 60 approach zero as the 

number of observations increase indefinitely if, and only if, three 

restrictions on the distribution of the errors are satisfied. First, 

the mean value of the errors must be zero. Second, the error in the 

shear velocity must be independent. of the apparent magnitude of Q * and 

the error in Q* must be independent of the apparent shear velocity; and 

third, the errors in u. and Q * must not be correlated with each 
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other. The true evaporation rate can be predicted by use 

of the aerodynamic method if and only if these three restrictions on 

the distribution of the errors in u* and Q * are satisfied. 

The coefficient errors in the aerodynamic methods have been 

included in the model errors; therefore, the errors in u* and Q * as 

determined by the aerodynamic method result from only two causes. The 

aerodynamic method contains only measurement errors and model errors. 

Because the measurement and model errors are additive, each type must 

be subjected to the above stated restrictions. If the data contain no 

systematic errors, it ~s probable that the measurement errors satisfy 

these restrictions because there is no particular reason to believe 

that an error in the measurement of velocity is correlated with either 

the magnitude of specific humidity or the error in its measurement. 

Similarly, there is no particular reason to believe that the measurement 

error in the specific humidity is in any way related to the shear 

velocity. 
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The model errors are probably not quite so random. It has been 

observed that "on the average" the atmosphere behaves as if it were 

neutrally stable; therefore, model errors for the log law probably 

satisfy the first requirement quite well. It is perhaps even reasonable 

to expect that they satisfy the second restriction. However, it has 

been demonstrated rather conclusively, both on figure 4 and elsewhere, 

that the log law is not valid under atmospheric conditions that are 

not neutrally stable. Therefore, it is reasonable to expect that 

rather large model errors will occur in both u. and Q * when the 
.• 

atmosphere departs from neutral stability. Because the errors in u* 

and · Q. are both correlated with atmospheric stability, it is 

reasonable to expect that they are highly correlated with each other. 

This implies that restriction number 3 is not satisfied and that the 

value of the fourth term in equation 60 will not approach zero as the 

number of observations increases. 

If some method could be found to predict either u* or Q. such 

that the error in this prediction was not correlated with atmospheric 

stability, then the tog law could be used to predict the other value, 

either u* or Q. , and long term evaporation rat~s could be 

accurately predicted by the aerodynamic method. 
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Fortunately there is a method by which this can be accomplished at 

least to a large extent. The roughness of a water surface is dominated 

by the structure of the water waves and the water wave structure is 

dependent upon the wind velocity. The shear velocity, therefore, is a 

direct function of the wind velocity. The functional form of this 

relation is not known, but the conunonly assumed square res_istance 

law would imply that the shear velocity is proportional to the first 

power of the wind velocity. 

Perhaps the best estimate of the functional relation between the 

shear velocity and wind speed has already been presented in equation 52. 

This equation is 'based on all the data which is used in the report, so, 

provided that the mean value of errors in u* was zero and the square 

resistance law is valid, the values of u* as determined from equation 

52 should be quite accurate. Marciano and Harbeck ( 1954 ,. p. 49) have 

pres· en ted a relationship between the shear velocity and the 8-meter wind 

speed which is based only on data obtained under atmospheric conditions 

which were neutrally stable. The relationship that they presented can 

be expressed as 

where ua is the 8-meter wind velocity and both· u* and u8 ar~. 

expressed in centimeters per second. Both of these expressions,- equations 

52 and 61, have been used to determine the computed evaporation but only 

the results obtained by the use of equation 52 will be presented in 

detail. 
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The modified log law will be the term used to refer to 

the method of computing the evaporation rate from equation 13 wherein 

the value of Q * has been determined from equation 53 and the value 

of u. has been determined from an equation similar to equation 52. The 

modified log law has at least two advantages over the log law. First, 

equation 52 does not magnify the measurement errors as does ~quation 49 

and second, it is believed that the model error in equation 52 is 

less correlated with stability than is the model error in equation 

49. While the modified log law reduces the magnification of the measure-

ment errors in the wind velocity and is believed to reduce the last 

cross product term in equation 60, it is entirely consistent with the log 

law because the coefficients in equation 52 were determined directly 

by use of the log law. 

The evaporation rate was computed using equation 52 and the modified 

log law in exactly the same manner as for the log law. Figure 

13 is a plot of the measured against the computed evaporation rate and . 
is similar to figure 3. The use of the modified log law has reduced 

the standard deviation of the daily errors from 0.383 em to 0.270 em. 

Part of this reduction must be the result of a reduced magnification of 

the measurement errors in velocity, but part of it is believed to result 

from a reduction of the model error in the determination of u. . 
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The correlation of the daily error values resulting from the 

use of the modified log law with the stability parameter is demonstrated 

on figure 14. The 0.99 level confidence limits on the population 

correlation coefficient are -0.460 and -0.143. The correlation of the 

daily error values resulting from the use of the modified log law with 

the 8-meter wind velocity is demonstrated on figure 15. The .0.99 level 

confidence limits on the population correlation coefficient are -0.400 

and -0.073, and the correlation of daily errors with the 8-meter specific 

humidity is demonstrated on figure 16. The 0.99 level confidence limits 

on this population correlation coefficient are -0.187 and +0.157. 
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The primary purpose of developing the modified log law was to 

reduce the cumulative effect of the correlation of model errors, the 

fourth term in equation 60. Therefore, the graph of the cumulative 

errors in the computed evaporation as a function of time should offer 

the best means of determining whether or not the goal of the method has 

been achieved. Figure 17 is such a plot. As illustrated on figure 17, 

the modified log law using equation 52 to estimate the value of u* 

overpredicted the total evaporation during the 222 days by 4.19 em or 

4.6 percent. The shape of the curve on figure 17 is very similar to 

the shape of the curve on figure 7 which indicates that the seasonal 

nature of the errors in the log law and the modified log law are. 

similar. During the months of August and September 1950, the modified 

log law underpredicted the evaporation by 25.8 percent whereas the direct 

log law underpredicted it by 41.5 percent. During the rest of the time 

the modified log law overpredicted the evaporation by 16.8 percent 

whereas the direct log law overpredicted the evaporation by 38.1 percent. 
I 

Because the mean value of the shear velocity for the 222-day period is 

the same whether computed from equation 49 or 52 and the value of Q * 

was computed from equation 53 in both the log and the modified log 

laws, the improved accuracy indicated on figure 17 must have resulted 

from reductions in one or all of the last three terms in equation 60. 
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The data were also analyzed using the modified log law wherein 

the shear velocity was determined from equation 61. The results of 

this analysis are presented in brief form. The standard deviation of 

the daily errors was 0.302 em and the coefficient of correlation of the 

daily errors with the stability parameter, wind speed, and specific 

humidity were -0.310, -0.241, and -0.008 respectively. The accumulated 

values of the daily errors varied with time in a manner which was very 

similar to those illustrated on figure 7 except that the accumulated 

errors for the modified log law were only about 2/3 as large as those 

shown on figure 7. The relationship between shear velocity and mean 

wind velocity which is based upon all data instead of only data 

obtained when the atmosphere is neutrally stable appears to give more 

accurate results. 
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The log+linear law 

The purpose of this section is to describe the computation pro­

cedure and the results obtained when the log+ linear law is used to·. 

describe the data. Before this description can be applied the 

value of.a must be determined. The value of a was determined 

from the data using a method proposed by Deacon (1962) and which 

will be described before further analysis is performed. After a 

. value for a has been determined, the re~ults obtained as a 

result of the direct application of the log+linear law to the 

data will be presented. Then, using a method simil~r to that 

used in the modified log law, the data will ·be analyzed again using 

what is called the modified log+linear law. 

The assumption is made .in this section that all wind, temperature, 

and humidity profiles can be described by equations of the form given 

in equations 32, 33, and 35~ The validity of this assumption will be 

assessed by comparing the computed to the measured evaporation values. 

The first problem is to find a value for a which will make equations 

32 and 33 best fit the measured wind and temperature profiles. After 

Deacon (1962), apply equation 32 to two levels, say the 8-meter and 

2-meter levels, and subtract to give 

U* , 6U 
ua - u 2 = -- ln 4 + a ~ 

K K L (62) 

Divide both sides by a reference velocity. The 8-meter velocity will 

be used here because it is believed to be the most reliable. This gives 
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u. 6 u. 
= -- ln 4 +.a ---

K u 8 u 8 K L 
(63) 

From equation 24 and by use of the definition of u* 

K L (:.)(~) 
p 

u. 
- =- (64) 

From equations 2 and 4 

H £H (ae/azJ 
Cp T = - £m au/az (65) 

where is the turbulent transfer coefficient for sensible heat. 

Combining _equations 64 and 65 

u. _ ..&... ...!!. ae/az 
( )( £ )( ) 

K L - T' £m au/az (66) 

The reference virtual temperature is assumed to be measured at 
. 8 meters. Ll.ke the reference velocity, the elevation of the measure­

ment of this temperature is arbitrary. If the functional forms· of the 

equations which describe the temperature and velocity profiles are the 

same, even if they are not described by equations 30 and 31, the ratio 

of the gradients can be replaced by a difference quotient so 

(67) 
K L 

A me~sure of atmospheric stabil~ty, S, is now defined 

(68) 
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With this definition, equation 63 can be rewritten in the convenient 

form 

ua - u2 u ( e:H ) ------ = --*- ln 4 + .. a T S 
ua K ua m 

(69) 

At least under conditions of near· neutral stability, the value of 

u./K u8 should be nearly constant, equation 8. If, therefore, the 1 eft side of 

equation 69 were plotted as a function of S for. each set of profiles, 

the results should define a straight line in the neighbc;)rhood of 

S=O . The slope of this straight line is the quantity cx(e:H/e:m) . 

To be consistent with the assumptions made in the derivation of 

equatio~ 32, the value of e:H will be assumed to be equal to the 

value of e: 
m 

The values of (u 8 - u2)/u8 and S were computed for all 8,793 

sets of profile~. In order to reduce the scatter of individual points, 
}...: . 

groups of these values were averaged. The ·value of S determined th~ 

group to which individual points belonged. Figure 18 is a plot of 

the resulting averages. The number of profiles represented by each 

plotted point ranges from 131 for S = -0.0546 to 584 for S = +0. 0123 

A smooth curve through the data points is shown. The slope of this 

curve in the region of S~O is not well defined. It is possible to 

draw a reasonable curve through the data which has a slope at S=O 

with any value between ~2 .1 and 4. 2. This rather indeterminate slope is 

consistent with Webb's (1970) observation that a ~arge range in values 

of a produce acceptable fits. of. veloci.ty pro:fj.les ... At thj.s point 

the value of a was assumed to .be :-3.0. · 
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Once the value ·of·a. is assumed the problem reduces to the. 

determination of the values of shear velocity, heat flux, and 

vapor flux for each set of profiles which make equations 32,. 33, 

and 35 best fit the measured data. This task is mor~ complicated 

than it was for the log law because the equations are more complicated 

and because the shear velocity is dependent on the heat flux. The 

equations became s·o complicated that an iterative technique became 

necessary.· This technique will be described in detail in what 

follows, but briefly it involved first, estimating a value for u 
* 

from equation 52, then determining a value for H such that equation 

. 33 best fit the temperature qat a. Using this value of H a new 

value of u. was determined such that equation 32 best fit the velocity 

data . The second value of u. was compared to the first value of u .. 

and if they did not.agree well,_ the process was repeated using the 

new value of u. as a starting point. After successive values of u. 

converged, the value of E was determined such that equatio~ 35 best 

fit the humidity data. 

Keeping this overall procedure in mind the specific steps will 

be described in detail. The value _of u. ,~s determined by .equation 52 

was considered to be the best estimate that could be obtained a 

priori; therefore, it was used as a starting point. 
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Combining equation 33 with the definitions of T~ and ·L (equations 

26, 24), the expression for the potential temperature can be written as 

(70) 

where the constant 

A = (K u c p)- 1 
T * p 

(71) 

and the constant 

Cl g 
(72) 

The virtual temperature, r' , was determined from 

r'= 
0.375 qw (73) 

1-
0.622 + 0.378 q .. 

This virtual temperature is on the absolute scale and includes the 

effect of water vapor on the buoyancy term. The potential temperature 

was referenced to the 2-meter level so that no correction needed to be 

made to that temperature. The potential temperatures at the 4- and· 

8-meter levels were obtained by simply adding 0.02°C and 0.06°C to the 

respective absolute temperatures. The value of the density of air, p , 

was ftl culated in the same manner as for the log law. Minimizing the 

sums of the squares of the differences between the measured potential 

temperature and the potential temperature as determined by equation 70 

2 82 D H3 - 3 A_ B D H2 + [~ D - 2 B D ] H 
T z . ~ 1 T zR.z -1 R.z T tz 

(74) 
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where 
.. 

.. · : .D · = .·· ~ .z~. ~ ._1 [ . ~ z. J 
2 

z· . 
1 

1 3 . 
1 

1 · 
1= 1= 

D = ~ z 1. 1 n z . - .!. .[· ~ z ·1 [ ~ ln z . ] 
z1z i=l 1 3 i=l 1 . i=l 1 

D = tz 

3 
L e. 

i=l· 1 

(75) 

(76) 

. (77) 

Dtlz = ~ e. ln z. - l [ ~ e .] .[ ~· _ln .z.
1
.J ·(78) 

i=l 1 1 3 i=l .i i=l 

All real solutions to equation 74 were detemined and the solution which 

gave the minimum value of the squared error was selected as the· best 

value of H. 
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Using the best value of H , the value of u. which minimized 

the sum of the squares of the differences between the measured velocity 

and the .velocity computed by equation 32 was determined. To do this 

equation 32 was rewritten in the form 

u = u. A ln z + B z + c u u u (79) 

where the constant 

A = 1/K u· (80) 

and the constant 

B 
a g H 

= -u u2 T' c p 
* p 

(81) 

In the determination of B the previous estimate of u. was used. 
u 

Minimizing the sum of the squares of the errors in equation 79 

0uR.z - 8u 0zR.z 
Au DR.z 

(82) 

This value of u. was called the new value of u. and its value was 

compared to the previous value of u • . If the difference between the 

two values of u* was greater than 0.07 em/sec, another iteration was 

performed by using the new value of u* as a starting point with 

equations 71, 72' and 74. The arbitrary difference of 0.07 em/sec was 

selected as being approximately equal to 1 percent of the minimum 

expected value for u* as detennined from the minimum wind speed expected 

at Lake Hefner. 
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In general the iteration procedure converged rapidly, seldom 

requiring more than. five or six iterations. In certain cases, however 

the process did not converge. If convergence. was not ob~ained 

within 20·iterations it was arbitrarily assumed th'at the process was 

unstable and the entire set of profiles was discarded. Thirty-

three percent of the profiles failed to converge and so were eliminated. 

This caused the loss of a considerable part ·of the data. The 

failure of the process to converge, however, would tend to indicate 

that the data were in error._ The process is be 1 ieved to sort out 

the "bad" data. If the process converged, the value of ~2/u. was 

computed, and to be consistent with the analysis of the log law, the 

set of profiles was ignored if the value of u2/u. was less than 1.37 

or greater than 137. Very few p~ofiles failed this test. 
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.If ari acceptable value of u* was obtained, the evaporatidn, 

E was then determined such that the sum of the squares of the 

differences between the measured specific humidity and the specific 

humidity computed from equation 35 was a minimum. Rewriting 

equation 35 

where 

q. = q* ln z + Q. 8 q z · + C q 

8 = K ·a g H 
w T' C u3 

p * 

The value of H corresponding to the last iterative process 

was used. Minimizing the error in equation 83 

8q Dqz - DqR.z 
Q * = ------~~--~~--~---

Dnz - 2 B D n + a2 D 
~ q z~z q z 

where 

qz 

3 
= L 

i=l 
q. z . - -3

1 
[. ~. q. J [ ~ z ·] 

11 "1 1.11 1= 1= 

D 

(83) 

(84) 

(85) 

(86) 

The value of the evaporation was then computed from equation 13. To be 

consistent with the analysis of the log law, values of E which were 

larger than 10 em/day or less than -2 em/day were considered unacceptable 

and the average daily evaporation rate was computed as the average of 

all the acceptable evaporation rates for the day. In this case, 

because the iteration procedure often did not converge, there 

were often less than 20 periods of acceptable record for the day. 

No day's results wer~ thrown out because the final average was based 

on less than 20 sets of profiles. 
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These calculations result from the direct application of the 

log+ 1 inear law to each individual set of profile dat.~.. Some of the results 

of these computations are presented on figure 19. Figure 19 is directly 

comparable to figures 3 and 13. The standard deviation of daily errors, 

illustrated on figure 19, is 0.27:2 em. This value is to be compared 

with the value of 0.383 em obtained from the direct application of the 

log law. Although there seems to be a definite improvement it is well 

to remember that the standard daily error represented on figure:·l9 is 

still 65 percent of the mean daily evaporation. 

The sensitivity of the resu1ts to the assumed value of .. ex was 

investigated at this point. ·Various values of ex _. . ranging from 1.0 

to 5.0 were assumed and the standard deviation of daily error v~lues 

were computed in the same manner for each assumed value of ex . The 

standard deviation remained constant, to within three significant 

figures, for values of ex within the range 1.5 to 2.5 and it increased 

slowly as values departed in either direction from this range. 

This confirms that the results are quite 1nsensitive to the assumed 

numerical value of ex , as was observed by W~bb (i 970) and predicted 

by the use of figure 18. The assumed value of 3 for a, which is 

used in this study, is close to the optimum value. 
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Figure 19. Experimental test of the direct application of the log+ linear law. 
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The log+linear law was specifically designed to account for 

atmospheric stability. Figure 20 is a plot of the daily error values 

against the stability parameter, ST. Also included is the regression 

line. Using the same procedure as for the log law case, the 

0.99 level confidence interval for the correlation coefficient is 

-0.069, -0.396. Therefore, the daily error values ·are still. highly 

correlated with stability. 

The correlation between· the daily error values and the daily 

average value of the 8-meter wind speed is illustrated on figure 21. 

The 0.99 level confidence limits on the population correlation coefficient 

are -o·. 076, -0.402. The daily error value is significantly correlated 

with the 8-meter velocity~ 

The correlation between the daily error values and the daily average 

value of the 8-meter specific humidity is illustrated on figure 22. The 

0.99 level confidence limits on the population correlation coefficient 

are -0.012, +0.324. Likewise, the 0.95 confidence limits are +0.030, 

+0.286. As for the log law, the error is probably correlated 

with the specific.humidity, bu~ .t~e ~robabili~y i~ ~ot ~s large as was 

the case for the wind velocity and stability parameter. 
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Figure 20. Correlation of the daily error values with the stability parameter 
for the direct application of the log+ linear law. 

104 

15 

I 
I 
I 
I· 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 

•• 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

en 0.8 
a:: • • 
LLI 
~ 0.6 LLI • 
~ • • 
~ • • z 0.4 • • • LLJ .. u • z 

0.2 
z • • 0 

' • 
~ 0 
<X •• a:: 
0 • ~ -0.2. • • •• • • 
> • •• • 
LLJ .. , • • • • • • >- -04 • • ~ . •• • 
<X • 
0 • • • 
z -0.6 • • 

• • a:: • • 
~-0.8 

r= -0.245 • 
222 Days a:: 

LLJ • 
-1.0 

• 
-1.2 . 

0 200 ~00 600" 800 1000 1200 
8-METER WIND VELOCITY, IN CENTIMETERS PER SECOND 

Figure 21. Correlation of daily error values with the wind velocity for the 
· direct application of the .log+ linear l~w: 

105 



0.8 -
• en 

0:: 
w 0.6 ~ - • • w • 
~ • • 
~ OA - • ••• z 
w 
u 
z· 0.2 

z 
0 0 
..... 
<t 
0:: 
0 -0.2 
Q_ 

<t 
> w-0.4 

• • • •• • • •• •• 
' • • - ' • • . . ·.... . ..· • ., • • 
~- • • • • .... -·. • • J. .... •• ., • '.. - ... -• ... . ... -'~: ;--.-,. • • • • -• . ....... - -.-. -. • • ; ·. . .. - • • --- •• • •• • • . . : - ' '·· • •••• • • • •• ~ •• • • • • .. • • • • • • • • • • • • •• • • • 

f- • • • • • • 
~ 
<t -0.6 
0 

• • • • - e • • 
• • z --0.8 

• 
f- • 

0:: r=+0.160 
0 
0:: -1.0 
0:: 

• 222 Days 
1-

w 
I I I I I I I I -1.2 

0 0.002 0.004 0.006 0.008 0.010 0.012 0.014 
8- METER SPECIFIC HUMIDITY 

0.016 0.018 

Figure 22. Correlation of the daily error values with the specific humidity 
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The seasonal nature of the errors in the log+linear law is 

demonstrated on figure 23. Comparing figure 23 to figure 7, 

the reduction in the cumulative error which results from the 

use of the log+linear law instead of the log law is clearly 

evident. At the end of the 222 days, the cumulative error in 

the computed evaporation is only -3.01 em indicat~ng that on 

the average the log+linear law overpredicted the evaporation 

by 3.3 percent. Unfortunately this 3.3 percent e~ror is n6t 

generally representative o~ the accuracy 6f the idg+linear 

law. During the months .. of August and September 1950, ~he log+ 
.·. 

fin·ea~ law ~de~;redicted the ·evapotation. by. an average 31.2 

percent while during the months of October 1950, through August 

1951, it overpredicted the evaporation by an average 17.6 

percent. 

· .. As indicated by the high negative correlation of er.rors with 

thEr st:ability parametei: on' figure 20, . the direct application of 
... . . \ . 

the l9g+linea~ ,-law does .not··.fully account~ fo~ stability effects. 
. • • ·j,' 

A modified approach, therefore, such as that used on the log 

law, would appear to be fruitful. The results of such an approach 

will be presented next. 
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The first step was to find a prediction equation for u* · 

consistent with 'the log+linear law, just as equation 52 is consistent 

with the log law. This equation is assumed to have the same form as 

equation 52 but with. different coefficients. First the shear velocity 

was computed using the metho~ de;cribed ~or the 1og+lin~ar l~w. The 

coefficients were then determined by regression. The resultin~ 

equation was 

u* = -1.15 + 0.0712 u2 (87) 

Equation 52 predicts lower shear values than does equation 87, but the 

differences are only 1.7 and 8.9 percent at 1,000 and 100 em/sec 

respectively. 
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The evaporation was computed in the same manner as before except 

that equation 87, instead of equation 82, was used to compute u •. No 

iteration was needed so no profiles were discarded because of non­

convergence. This procedure is called the modified log+linear procedure. 

The computed and water-budget evaporation for each day is presented 

on figure 24. The standard deviation of daily error values, figure 24, 

is 6 percent lower than the standard deviation obtained by use of 

either the modified log law or the direct log+linear law. B~cause the 

errors resulting from the direct use of the log+linear law were highly 

correlated with stability, figure 20, it was expected that the modified 

log+linear law would reduce the standard deviation by a larger amount. 

One explanation for this rather poor showing of the modified log+linear 

law may be that profiles for which the iteration process did not converge 

were not ignored on figure 24 while they were on figure 19. The quality 

of the data which were used to check the modified log+linear law may 

have been poorer than that used to check the direct log+linear law be­

cause there is reason to believe that the data for which equations 

74 and 82 did not converge were of poor quality. The modified log+ 

linear law was then applied to only the profiles for which equations 

74 and 82 converged. The standard deviation of daily errors for these 

data was 0.241 em which represents a 12 percent reduction over the value 

obtained by the direct application of the log+linear law. Further 

results obtained from the modified log+linear law are based on all 

profiles, whether or not they converged, so that they will be consistent 

with those illustrated on figure .24 and so that the quality of the data 

will be consistent with that used for the log law. 
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The correlation between the daily error values and the daily 

average stability parameter is illustrated on figure 25. The use of 

equation 87 has reduced the correlation coefficient on stability from 

-0.240 to -0.073. The 0.99 level confidence limits for the correlation 

coefficient presented on figure 25 are +0.100, -0.245. Using only the 

convergent data the correlation coefficient was -0.297. 

The correlation between the daily error values and the daily 

average 8-meter wind speed is illustrated on figure 26. The 0.99 level 

confidence limits for the correlation coefficient presented on figure 

26 are -0.033, -0.365. The errors are highly correlated with wind 

velocity. 

The correlation between the daily error values and the daily 

average specific humidity at 8 meters is illustrated on figure 27. The 

0.99 level confidence limits for the correlation coefficient presented 

on figure 27 are -0.198, +0.146. The errors are not significantly 

correlated with the specific humidity. 
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Figure 25. Correlation of the daily error· values with the stability 
parameter for the application of the modified log+ linear law. 
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for the modified log+ linear law. 
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The seasonal nature of the errors in the modified log+linear law 

is demonstrated on figure 28. At the end of 222 days the cumulative 

error in the computed evaporation is -0.85 percent. During the months 

of August and September 1950, the evaporation was underpredicted by 

an average 14.4 percent and during the months of October 1950, 

through August 1951, the evaporation was overpredicted by an average 

6.8 percent. On figure 28 the maximum cumulative error occurred 

about January 1, 1951. During the months of August 1950 through 

December 1950, the evaporation was underpredicted by an average 

14.8 percent and during the months of January through August 1951, the 

evaporation was overpredicted by an average 16.4 percent. 

When only the convergent profiles were used the resulting seasonal 

variation of errors was very similar to that presented on figure 23. 

The total error at the end of the 222 days of record was -3.93 em and 

the error, as of October 1, 1950, was +5.48 em. The average errors 

were 4.2 percent overprediction for the entire period, 20.4 percent 
. 

underprediction during the months of August and September 1950, and 

13.7 percent overprediction during the rest of the time. 
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The empirical mass-transfer approach 

In order to serve as a basis for comparison,the empirical mass­

transfer method was also used to compute the evaporation rate for each 

time period. Equation 37,with the wind function given by equation 38, 

was used for the calculations. One of the major advantages of equation 

37 is that it does not tend to magnify measurement errors as does the 

aerodynamic methods. This advantage is at least partially 

offset because equation 38 contains an unknown coefficient error in the 

value of N . It was possible to eliminate this coefficient error in 

the results presented here because the evaporation for the total period 

was known from the water budget. The value of N in. equation 38 was 

determined such that the total computed evaporation for the 222 days 

was exactly equal to the measured evaporation. This procedure eliminated 

the coefficient error from the value of N , at least for the time 

period of interest here. The resulting value of N was 1.302xl0- 4 

which gives the evaporation rate in centimeters per day when the velocity 

is in centimeters per second and the'vapor pressure in millibars. 

Using this value for N the evaporation was computed for each 

30-minute time period of each day and the average evaporation 

for each of the 222 days was determined. In these computations, the 

wind velocity at the 2-meter level was used for u2 , the value of 

was determined from the water temperature and equation 46, and the 

e 
0 

value of e was determined from equation 48 and the specific humidity 
a 

at the 2-meter level. 
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The computed and water-budget evaporation for each day is presented on 

figure 29. The standard deviation of the daily error values shown on figure 29 

is 0.141 em. The estimated maximum v21'lue of the standard deviation of the 

errors in the water-budget evaporation was 0.133 em. Figure 29 was con­

structed using a value for· N which was "exact". If the value of N 

had been chosen such that the total error for 13 months was ·not 

zero, the value of the standard deviation would have been considerably 

larger. For example, a 1 percent decrease in the value of N would 

increase the value of the standard deviation by about 1.5 percent. 

Nevertheless, the reason for the wide acceptance of the empirical mass­

transfer method is clear·. 

The correlation between the daily error values for the empirical 

mass-transfer method and the daily average values of the stability 

parameter is illustrated on figure 30. The 0.99 level confidence limits 

for the correlation coefficient presented on figure 30 are +0.007, -0.333, 

and the 0.95 confidence limits are -0.036, -0.296. The error is probably 

correlated with stability. 

The correlation between the daily error values and the daily average 

8-meter wind speed is illustratedl on figure 31. The 0.99 level confidence 

limits for the correlation coefficient are -0.003, -0.338. The error is 

highly correlated, with wind velocity. 

The correlation between the daily error values and the daily average 

8-meter specific humidity is illustrated on figure 32. The 0.99 level 

confidence limits for the correlation coefficient are +0.165, -0.179. 

The error is not significantly correlated with specific humidity. 
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Figure 29. Experimental test of the empirical mass-transfer formula. 
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The seasonal nature of the errors in the empirical mass-transfer 

method is demonstrated on figure 33. The overall similarity in the 

shapes of all the seasonal variation curves (figures 7, 17, 23, 28, 33) 

is remarkable. For example, the local maximum in mid-April and during 

the first part of August 1951 is prominent on all figures. The local 

minimum in July 1951, is also common to all curves. The empirical 

curve (figure 33) resembles the modified log+linear curve(figure 28) 

more than it does the other curves in that· it does not show a maximum 

about the first of October 1951. Like the modified log+linear law, 

the empirical mass-transfer method consistently underpredicted the 

evaporation during the months of September through December, 1951. The 

empirical equation underpredicted the evaporation during this period by 

about 10.5 percent while the modified log+linear law underpredicted it 

by 14.8 percent. If the values of N were increased by 4.3 percent 

the two methods would have been very comparable during this period of 

time. During the months of JruaJJary through July 1951, the empirical 
(' ' . 

equation overpredicted the evaporation by an average of 5.8 percent 

compared to an overprediction of 6.4 percent by the modified log+linear 

law. 
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DISCUSSION OF RESULTS 

General 

Several methods were used to compute the evaporation from Lake 

Hefner. The theoretical soundness and practicality of the log+linear 

law as a method of computing·evaporation will now be considered. This 

objective will be fulfilled primarily by comparing the results obtained 

from the log+linear law with the results obtained by other methods. The 

theoretical soundness will be inferred from a comparison with the log 

law, which is assumed to be theoretically correct under conditions of 

neutral stability. The practicality will be illustrated by a comparison 

with the empirical mass-transfer method. 

After a brief discussion of the philosophy of the comparisons, 

the direct log+linear law will be compared to the direct log law. The 

effectiveness of the modified procedures is then discussed and the 

modified log+linear law is compared to the modified log law. Finally, . 
the modified log+linear law is compared to the empirical mass-transfer 

method. and the general practicality of the aerodynamic method is discussed. 
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The ultimate practical purpose of the methods investigated here 

is to allow the computation of the flux of momentum (shear), heat, 

or vapor (evaporation) from a surface using measurements of velocity, 

temperature, and humidity which are obtained at positions above the 

surface. If a law accurately represents the measured velocity, tem­

perature, and humidity profiles but fails to improve the users 

ability to estimate the sheat·, heat flux, or evaporation, it will 

have failed in the practical sense. The criterion which will be used 

to test the success of each method or law will be its accuracy in 

predicting the evaporation. Ideally, the method should accurately 

predict the shear velocity and heat flux as well as evaporation, 

but no independent measurements of these quantities are available. 

It is quite probable however, that the method which best predicts 

the evaporation will also be most accurate in the prediction of 

shear velocity and heat flux at least on a micrometeorological 

scale. 

Consider the evaporation rate as a random variable which fluctuates 

continually with time as does wind velocity, temperature, and 

specific humidity. Because no model can possibly account for all 

the factors which effect the evaporation rate, this rate contains 

random components in addition to those caused by the random nature 

of the independent variables. If the random nature of the quantities 

involved is accepted, the success or failure of any of the models 

during a single observation event has little statistical or practical 

significance. Any conclusions about the models must be based on 

outcomes of many individual measurements and upon the laws of statistics. 
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The quantities of interest here are the probable error which can 

be expected on an.individual application of the method and the probable 

error in the total evaporation which is obtained from many applications. 

Because the water-budget evaporation value could not be determined for 

a period of time shorter than 1 day, it was impossible to measure 

the error which results from the single application of any of the laws or 

methods directly. However in general, the daily error value represents the 

mean of about 39 individual errors. If one assumes that the individual 

errors are mutually independent, the standard deviation of the 

individual errors can be computed as the standard deviation of the 

daily errors multiplied by the square root of the number of individual 

observations during the day (Cooper, 1969, p. 46). Therefore on the 

average; one would expect that the standard deviation of the individual 

errors to be about ~ = 6.24 times as large as those presented on 

figures 3, 8, 13, 24, and 29. Only about 67 percent of the profiles 

were used with the direct log+linear ~aw, so the standard deviation 

of the individual errors for this method are expected to be 

about ~ = 5.1 times as large as that shown on figure 19. 
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Direct comparison of the log+linear to the log law 

The log+linear law was· developed to account, at least partly, for 

the effects of atmospheric stability on 'the velocity, temperature, 

and humidity. profiles. Theoretically this law appears to be sound 

for an atmosphere which is nearly neutrally-stable, but in truth, 

the atmosphere is often far from neutrally stable. The question 

arises; does the law have any value for conditions that are likely 

to occur in the field? The purpose of this section is to demonstrate 

the succes~ or failure of the log+line~r law in improving the accuracy 

of the computed evaporation in comparison with that computed from 

the log law. 

Probably the best measure of the general accuracy which can be 

expected from application of a method is the standard deviation·of 

the daily error values. Approximately 32 percent of the computed 

daily evaporation rates should be in error by an amount larger than 

the standard deviation but only about 5 percent of the rates should 

be in error by an amount greater than twice 'the standard deviation. 

The standard deviation of daily ·errors for the log law was 0. 383 em 

while that for the log+linear law was 0.272 em. ·rhe log+linear law 

gave more accurate results for this particular set of measurements. 
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The 222 error values presented on figure 3 represent a sample 

of an infinite number of possible error values which could be 

obtained by use of the log law if it were applied to all possible 

sets of data which are comparable to those obtained at Lake Hefner. 

This infinite number of possible error values is called a population 

and has a definite mean and standard deviation. The standard de­

viation of the error values on figure 3 is only a sample standard 

deviation but it is also the best estimate available for the 

population standard deviation. Likewise, the sample standard 

deviation presented on figure 19 is the best estimate of the standard 

deviation of the population of all possible error values which could 

be obtained by use of the log+linear law if it were applied to all 

possible sets of data comparable with those obtained at Lake Hefner. 

If the standard deviation of the log+linear population is smaller 

than the standard deviation of the log population, one could say 

with certainty that the log+linea~ law is more accurate, as measured 

by the standard deviation, than the log law when applied to data 

which compare with those obtained at Lake Hefner. 
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The true .values of the st~dard deviations for· the populations 

can not be determined, so it can not be said with.certainty which 

law is the most accurate. However,confidence.limits for a p·opulation 

standard deviation can be obtained if one is willing to assume that 

the population distribution is normal (Cooper, 1969, p.77)~ Assuming 

the populations are normal, the.0.99 confidence l~mits forth~ 

standard deviations of the daily errof v~lues ar~ 0.243, 0.311 

and 0.342, 0.438 em for.the log+linear and the -log laws respectively. 

For the log+linear law error values, these confidence limits imply 

that the probability that the population standard deviation is larger 

than 0.311 ~m is less than 0.01 while the probability that the 

population standard· deviation for the log law error values is 

less than 0.342 em is also less than 0401. Therefore it is almost 

certain that the log+li~ear_law is more accurate than the log 

law when these laws are used on data comparable with those collected 

at Lake Hefner. 
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Why is the log+linear law more. accurate than the log law? 

It is natural to assume that the improved accuracy is the 

result of a better accounting for the effects of atmospheric 

stability, but it is necessary to demonstrate this. The correlation 

coefficients between the error values and the stability parameters 

are given on figures 4 and 20. It has been shown that the 0.99 

level confidence limits on the correlation coefficient for the 

log+linear law are -0.069, -0.396 while the same limits for the 

log law are -0.285, -0.505. The overlapping of these limits 

demonstrate that there is a definite possibility that the errors in 

the log+linear law are just as correlated with the stability parameter 

as are the errors in the log law. Hypothesizing that the population 

correlation coefficients are the same, Fischer's Z transformation 

can be generalized to test for a significant difference in the 

sample values of the correlation coefficients (Snedecor, 1956, p. 178). 

Using the one tailed test, the correiation coefficient for the 

log+linear law is significantly less than that for the log law 

at the 0.90 confidence level but it is not at the 0.95 level. This 

is not an extremely high probability, but it is large enough to 

imply that the stability correction in the log+linear law does 

improve the accuracy of the results, especially when it is remembered 

that only a very crude measure of the atmospheric stabili!Y was used. 
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The errors in the log+linear law are correlated with stability 

just as were the errors in the log law. This implie~ that the first two 

terms in the expansion of equation 29 are not sufficient to co~pletely 

describe the function ~ 2 under all conditions found in_ the _field. 

The originator of the log+linear law only expected the co!rection 

to work for ~ases where the atmosphere is nearly neutrally-stable. 

The analysis presented here suggests that the correction, while 

not perfect, does improve the daily predicted evapor~tion even under 

situations that are far from neutrally stable. 

While the expected value of the error in the computed evaporation 

for a day is important, it is also important to know something about 

the expected value of the error in the computed evaporation fo~ time 

periods longer than 1 day. For the purposes of water resources 

management, it is seldom necessary to know.the total evaporation 

which occured in time intervals as short as 1 day. Even if the 

expected value of tne error in daily evaporation values were large, a 

method would be cpnsidered useful if these errors were random so that 

the errors in the week~y or mo~thly evaporation values were small. 

The purpose of ~igures _7 and 23 was to demonstrate the accuracy of the 

laws .when long ter~ ev~poration rates are considered. If the errors 

from day to day were completely random the cumulative error on these 

figures should fluctuate randomly about zero. The method of presenta­

tion smoothed the results and made seasonal trends more obvious. The 

slopes of these curves during any time interval represents the accuracy 

of the method during that time interval. 
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It is apparent that the log+linear law performed better in pre­

dicting long term evaporation rates, as well as daily values, than 

did the log law because the slope of the curve on figure 23 is generally 

less than the slope of the curve on figure 7. During the entire 

period the log+linear law was in error by only 3.3 percent compared to 

15.0 percent for the log law. During the months of August and 

September 1950, when both laws tended to underpredict the actual 

evaporation, it reduced the average error from 41.5 to 31.2 percent 

and during the rest of the time, when both methods tended to 

overpredict the actual evaporation, it reduced the average error from 

38.l.to 17.6 percent. 

The direct application of the log+linear law to the Lake Hefner 

data gave better results than did the direct application of the log 

law. The standard deviation of the daily error values was reduced 

from 0.383 to 0.272 em or about 34 percent. There is a fairly strong 

indication that the errors were less •correlated to atmospheric 

stability and the average error was reduced appreciably during all 

seasons of the year. It would appear that the log+linear law is 

theoretically more correct than the log law even though it can not 

completely account for the effects of atmospheric stability when 

conditions are far from neutral. 
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Effectiveness of the modified procedure 

Both the log law and the log+linear law utilize equation 13 

in the computation of the evaporation rate. Both laws determine 

the evaporation rate as the product of u., which' is related to 

the slope of the veiocity profile, time~ Q , which is related to 
* 

the slope of the specific humidity profile. The two laws assume 

different functional forms for the velocity profile, but in either 

case the forms of the temperature and specific humidity profiles are 

assumed to be the same as that of the velocity profile. Neither 

functional form is correct if the atmosphere is not near neutral 

stability. The functional forms of the temperature and specific 

humidity profiles are likely to represent the measured values 

paorly if the functional form of the velocity profile fails 

to fit the measured velocity profile. Errors in the computed 

value of u* are very likely correlated with errors in the computed 

value of Q• because both are correlated with atmospheric stability. 

Equation 13 tends to compound these errors when the evaporation rate 

is computed and the last term in equation 60 is· not zero. 
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Better results may be expected if a method can be found to 

determine either u* orQ* for which the errors were not as strongly 

correlated with stability. Because the water surface roughness is so 

strongly dependent upon the wind speed, an equation similar to equation 

52 might be found such that its errors are less correlated with stability 

than are the errors in either equation 49 or 82. The coefficients in 

equation 52 were determined by use of all data, equation 49,· and a least 

squares regression. Equations 49 and 52 are, therefore, based upon consistent 

assumptions, but the measurement, and perhaps the model, errors in 

equation 52 have been reduced through the averaging process. Likewise 

equations 82 and 87 are consistent with the assumptions in the log+linear 

law. The averaged shear velocity equations, 52 and 87, should provide a 

better estimate of the instantaneous shear velocity than do equations 49 

and 82 because the averaged equations do not magnify individual measure-

ment errors • Elimination of the magnification factor alone should reduce 

the error values in the daily evaporation rates provided that the model 

errors in the averaged expressions are no larger than are the model errors 

in equations 49 and 82. If the model errors in the averaged expressions 

are either smaller or less correlated with stability than are the model 

errors in equations 49 and 82, an added bonus is received. The reduction 

in the last term of equation 60 reduces the error in an averaged evaporation 

rate. 
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The consistency of equations 52 and 87 can be accessed by use 

of a drag coefficient. Combining equations 9 and 52 to find the 

2-meter drag coefficient consistent with t t,~ log law yields 

c = 0.00534 -
0. 2'70 3.4 (88) + --D ~2 u22 

Within the r~nge of wind velocities measured at Lake Hef!ler, the value 

of the 2-meter drag coefficient varied from a minimum of 0.00298 for 

a wind speed o( 100 em/sec to a maximum of. 0. 00507 for a wind speed 

of ~000 em/sec. Converting these coefficients to the 10-meter level, 

they range from 0.00200 to 0.00307. These values for the drag 

coefficient are an average of about 1.8 times as large as those which 

would be predicted by a relation suggested by Deacon (Roll, 1965, 

p. 160). However Deacon's relation was derived for neutrally stable 

conditions over the sea. The drag coefficient at Lake Hefner 

increased with wind speed about twice as fast as does the value 

predicted by Deacon's relation. 

Similar results were obtained by use of the log+ linear law. 

Combining equations 9 and 87 the expression for the 2-meter drag 

coefficient is 

0.164 
CD = 0.00507 -

u2 u22 
1.3 

(89) --- + --

Within the range of 100 to 1000 em/sec the 2-meter drag coefficient 

varied from 0.00356 to 0.00491. Converting these to 10-meter values 

using the log law they range from 0.00232 to 0.00299. The value of 

CD determined from equation 89 averages about 1.9 times that predicted 

by Deacon's equation but the slope of equation 89 with respect to the 

wind velocity nearly matches that predicted by Deacon. 
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The standard deviation of daily errors for the direct and 

modified log law are given on figures 3 and 13 respectively. The 

0. 99 level confidence limits of the standard deviations .are 0. 342, 

0.438 and 0.242, 0.309 for direct and modified methods respectively. 

The 35 percent reduction in the standard deviation ·of daily error 

values obtained by use of the modified procedure with the log law 

is very significant, both in the engineering and the statistical 

sense. 
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For the purpose of eva'luating the effect:of using·the modified· 

·procedure with the log+ linear law, both. methods ·should. ·be applied to 

data of the same quality. Therefo.re the results· presented on figure · 

24 wi 11 not be used. ·.Instead, the results· which were obtained using 

only the profiles for which· equations 74 and 82 converged are used. -: 

The 0.90·level confidence limits of the standard deviation of .the 

daily errors for the modified log+linear law are 0.224, and 0.263 while 

those for the direct log+ linear law (figure· 19), are 0. 253, and 0.-297 · 

These limits overlap even at this relatively low confidence level. 

Assuming the error values are normally distributed- and using 

the F-test (Cooper, 1969, p. 96) it can be shown that the standard 

deviation for the modified method is smaller than that for the direct 

method with a probability larger than 0.90~ This reduction of 12 

percent is not as large as that obtained with the log law but is -

still probably significant in the statistical sense. The much smaller 

improvement for the log+linear law is probably the result of two 

factors. First, the model errors in equations 82 and 8S·are smaller 

than those in equations 49 and· 53 so the correlation of the errors · 

in equation 60 is -smaller to begin. with. Second, when the log+linear 

law is applied, three fluxes, momentum, heat and vapor, are computed 

so the model errors are propagated in three computations instead 

of two. 
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It is interesting to compare the results presented on figure 24· 

with the results obtained using only the data for which the computed 

shear velocities converged. Did the profiles for which the computations 

did not converge contain poor quality data? The standard error for an 

individual profile can be estimated as the standard error in ·the daily 

values times the square root _of the number of profiles analyzed in 

determining the daily average. When all profiles were used (figure . 

24) the estimated standard error for an individual profile measurement 

is 0.253 x {~ = 1.58 em, because on the average 39 profiles were 

used in computing the daily average evaporation. When only convergent 

data were used an average of 26 profiles per day were available, so the 

estimated standard error for an individual profile measurement was 

0.241 x ~. = 1.23 em. These figures indicate that the data which would 

not converge was of poor quality because the estimated standard error 

for an individual profile measurement using converg~nt data was about 

25 percent less than the standard error using all profiles. Much of 

the advantage gained by sorting the data was lost in the final analysis 

becasue the daily evaporation figures had to be estimated from a 

smaller set of data. For example, the standard deviation of daily 

errors on figure 24 is only about 5 percent larger than the value 

which was obtained by the use of the convergent data. 
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The reduction in the standard error for the daily computed 

evaporation values which resulted from the use of the modified 

procedure could occur simply because the measurement errors 1n 

the velocity profiles are not amplified. It is also possible 

that the averaged shear velocity equation contains smaller model 

errors than either equation 49 or Bi or that these errors are less 

correlated with stability. The sample correlation coefficient for 

the direct application of the log law is given on figure 4 as 

-0.363 and the 0.99 level confidence limits on this coefficient 

were -0.285 and -0.505. Likewise the sample correlation coefficient 

forth~ modified log law is given on figure 14 as -0.310 with 0.99. 

level confidence limits of -0.143, and -0.460. The modified procedure 

did reduce , the sample correlation coefficient but the reduction does 

not appear statistically significant. Using Fischer's z. transtonnation 

the difference still does not appear to be significant. 
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The sample correlation coefficient between the daily errors and 

the stability parameter for the direct application of the log+linear 

law was given on figure 20 as -0.240 and the value for the 

modified log+linear law using only convergent data was -0.297. In 

this case, use of the modified procedure appears to have actually 

increased the correlation of errors·with the stability parameter. 

The increase is not significant in the statistical sense. 

Although it can not be proven beyond a reasonable doubt, it 

would appear that the model errors in the averaged shear velocity 

equation are smaller than the model errors in the log equation, 

equation 49, and larger than the errors in the log+linear equation, 

equation 82. If this is true, it would help to explain the relatively 

small improvement in the standard deviation of daily errors which 

resulted from the use of the modified procedure with the .log+linear 

law. The modified log law has benefited from a reduction in the 

amplification·of the measurement errqrs as well as a reduction in the 

correlation between the model errors in the shear velocity with the 

stability parameter. For the modified log+linear law, however, the 

advantage which was gained because of the reduction in the amplification 

of the measurement errors was reduced somewhat by the relatively larger 

model errors in the averaged shear velocity equation. 
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The total effect of using the modified procedure can perhaps be 

illustrated best by comparing the resulting long term average errors. 

Use of the modified procedure with the log law reduced the average 

error for all seasons of the year. The procedure reduced the 

average error from 15 to 4.6 percent for the entire period, from 

41.5 to 25.8 percent during the months of August and September, and 

from 38.1 to 16.8 percent during the rest of the time. Use of the 

modified procedure with the log+l~near law also reduced the average 

error during each season. It reduced the average error from 31.2 to 

20.4 percent during the months of August and September 1950 and 

reduced it from 17.6 to 13.7 percent during the rest of the time. 

However it increased the error ·for the entire period from 3.3 to 4.2 

percent. 

An averaged shear velocity relation, (that is, the modified pro-

'cedure) is recommended for use with either the log or the log+linear law. 

Improvements will be greater when it is used with the log law. The 

method obviously reduces the magnification of measurement errors in 

the velocity profile. The model errors in the averaged relation 

are apparently either reduced or at least less correlated with stability 

than are the error~ in the direct log law. The model errors in the 

averaged relation are apparently larger than those in the direct 

log+linear equation, but in this case at least, the improved accuracy 

which resulted from the smaller magnification of measurement errors 

more than compensated for the increase in the model errors. 
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Comparison of the modified log+linear to the modified log law 

The most valid comparison of the two laws should be obtained 

by comparing the results of the modified log+linear law to those 

of the modified log law because the most valid comparison should 

result when the most accurate formulation of each law is used. 

This comparison is presented now. The results of the modified 

log+linear law will be those which were obtained by use of all 

data, including that which did not converge for the direct log+ 

linear formulation. The use of all profiles will assure that 

both sets of results are based on data of the same quality. 
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The standard deviation of the daily error values for the modified 

log law has been given on figure 13 as 0.270 em and that for the 

modified log+ linear law has been· given on figure 24 as 0. 253 em. The 

0.99 level confidence limits on the standard deviation for the modified 

log law have been given as 0. 242 and 0. 309 em. In the same manner ·the 

0.99 level confidence limits for the modified log+linear law are found to be 

0.226 and 0.290 em. Assuming that the error values are normally 

distributed and using the F-test {Cooper, 1969, p. 96), statistically 

it is seen that there is little reason to believe that the population 

standard deviations are different for the two laws. Although for 

this particular set of data the modified log+linear law has reduced 

the standard deviation of daily errors by 6.5 percent over that 

obtained by use of the modified log law, it can not be proven· 

that the modified log law would not be just as accurate or perhaps 

even more accurate if another set of data of comparable quality were 

analyzed. 
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The coefficient of correlation between the stability parameter 

and the daily error values for the modified log law was -0.310 

(figure 14) . It was -0.073 for the modified log+linear law 

(figure 25). The first value is highly significant statistically 

while the last is not. It would appear, at first glance, that the 

modified log+linear law is significantly less correlated with 

stability than is the modified log law, but this conclusion is not 

entirely justified. The coefficient of correlation obtained by use 

of the modified log+linear law with the convergent data was -0.297. 

Because the daily average value of the stability parameter is so 

near Jere and is such a poor measure of the individual values of 

the parameter, it is not too surprising that these seemingly inconsis-

tant results are obtained. 

The long term average errors for the two methods have been presented 

on figures 17 and 28. When averaged over the entire period of record 

the modified log law overpredicted ~he average evaporation by an 

average of 4.6 percent while the modified log+linear law overpredicted 
' 

·it by an average of 0.85 percent. During the months of August and 

September 1950 the modified log law underpredicted the evaporation by 

an average of 25.8 percent while the modified log+linear law under­

predicted it by an average of 14.4 percent. During the·rnonths of 

October 1950 through August 195~ both methods overpredicted the 

evaporation. The average error was 16.8 percent for the modified log 

law and 6.8 percent for the modified log+linear law. The long term 

average error was always less for the modified log+linear law. 
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Most of the evidence indicates that the modified .log+.linear law. 

is a more accurate description of the evaporation process.than is the 

modified log law. The difference is small. Apparently the -average 

shear velocity relation was so much more effective when used 

with the log law than it was when ~sed with the log+linear law that 

the differences between the two methods have been reduced to the point 

where it can no longer be proven to exist with a high degree of confi­

dence. 
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Comparison of the modified log+linear law to the empirical 

mass-transfer formulation 

The ultimate purpose of any aerodynamic method is to accurately 

predict evaporation rates from water surfaces. All aerodynamic methods 

suffer from two disadvantages: they require a tremendous amount of 

data and they greatly magnify any errors in the measurement of these 

data. These disadvantages are present but are not nearly as acute 

when the empirical mass-transfer method is used. The disadvantage of the 

empirical mass-transfer method is that it is dependent upon the value 

of an empirical coefficient. Because both the aerodynamic and the 

empirical mass-transfer methods are designed to accomplish the same 

purpose and because both have their advantages and disadvantages, it is 

enlightening to compare the results obtained from the modified log+linear 

law to those obtained from the empirical mass-transfer approach. Only 

the results of the modified log+linear law are used for this comparison 

because these results appear to be the most accurate obtainable from any 

of the aerodynamic methods which were•investigated. 
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An empirical coefficient, N, for the mass-transfer me.thod can 

be estimated by use of equation 39. Harbeck (1962, p. 104) 

suggests that the standard error for this estimate is about 1.6 p~rcent. 

For the purposes of this report, the value of N was determined such 

that the average error for the entire 222 days of record was zero. 

Tnis value of N is "exact" for this set of data, so tha·t in the 

comparison it must be re~embered that 

value of N would add to the errors 

any errors in an 

detennined here. 

estimated 

In other 

words, for the purpose of this comparison, the major disadvantage 

of the empirical mass-transfer method has been eliminated. Howeve~ 

the consequences of errors in N will be pointed out as the results 

are presented. 

The standard deviation of daily error values for the empirical 

mass-transfer method was 0.141 ern (figure 29). Comparing this value 

with 0.253 em which was obtained by use of the modified log+linea~ 

law (figure 24), it is easily seen why the empirical method is so 

widely accepted. It has been estimated that the standard deviation 

of daily errors in the water-budget evaporation could be as large as 

0.133 ern. The small standard deviation of daily error values 

is somewhat misleading because it is based on an "exact" value of 

N. The standard deviation of error values increases rapidly if the 

value of N is in error. For example a 1 percent decrease in the 

value of N causes an increase in the standard deviation of 

approximately 1.5 percent. 
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The primary reason for the accuracy of the empirical mass­

transfer equation is probably that it does not greatly magnify 

errors in the measurement of velocity or vapor pressure. The vapor 

pressure gradient·in equation 37 is large because it is determined 

as the difference b~tween the value for air and the saturation 

value at a temperature equal to the water surface temperature. 

Also the saturation vapor pressure is dependent only upon the water 

temperature, which is relatively easy to measure, and' not on the . 

difference between a wet-bulb and a dry-bulb temperature measurement. 

The coefficient of correlation between daily error values and 

the stability parameter for the empirical mass-transfer method was 

-0.169 (figure 30). This correlation coefficient is significantly 

less than zero at the 0.99 confidence level but it would seem mean­

ingless to compare it to the value obtained by use of the modified 

log+linear law since the modified log+linear law gave a coefficient 

of correlation of -0.073 when all data were considered and a value 

of -0.297 when only convergent•data were considered. It does appear 

that the error in the empirical mass-transfer formula is correlated 

with atmospheric stability. 
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The seasonal variation of error values .for the empirical mass­

transfer method and the modified log+linear law are illustrated 

on figures 33 and 28 respectively. Although the shapes of the curves 

on these t~o figures have many similarities, differences are also 

apparent. During the month of August l950,the empirical law over~ 

predicted the average evaporation by 6.0 percent while the modified 

log+linear law underpredicted it by an average of 27.2 perc~nt. During 

the months of July and August 195l,the empirical law predicted the 

average evaporation n~arly correctly_ while the modified log+linear 

law overpredicted it by an average of 9.2 percent. During the rest 

of the time, however, the curves were very similar. D~ring the· 

months of September through December 1950,both laws tended t.o 

underpredict the evaporation, the empirical law by 10.5 percent 

and the log+linear law by 14.8 percent. For the months of January 

through June 1951, both tended to overpredict the evaporation, 

the empirical method by 10 .. 8 percent and the log+ 1 in ear method by 

28.3 percent. 

Except for the month of August 1950, the maximum d.ifference 

between the average.errors for the two methods was 17.5 percent. If 

the expected value of the error in the value of N is as large as 

16 or 17 percent then the modified log+linear law will probably 

produce values of average evaporation which are as accurate as those 

that can be obtained by use of.the empirical mass-transfer equation 

for time intervals longer than 1 month. 
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It has been shown how the Thornthwaite -Holzman equation can 

be expressed in a form that is equivalent to the empirical mass-

transfer formula, equation 45. The constants in equation 45 can be 

evaluated by use of the data contained on figures 10 and 11. Assuming 

the. median of the ratios to be the most representative value and 

working between the 2-and 8-meter levels the values of B and B' 

can be determined. Using the median value of the velocity ratio 

(figure 10), equation 41, and assuming the density of air to 

-3 3 . be 1.2 x 10 g/cm (gram per cubic centimeter), the value of B 

can be determined to be -2.27 x 10-5 g/cm3 . Likewise by use.of 

the median humidity-deficit ratio (figure 11) the value of B' can , 

be determined by use of equation 45 to be -0.0927. The resulting 

value of N is 2.10 x 10-6 • Converting units to those used 

is 1.16 x 10-4 . This value is 10.8 previously the value of N 

percent smaller than the value necessary to make the computed and 

the water-budget evaporation values• identical for the entire 222 

days of record. 

The close agreement between the value of N which was determined 

by use of equation 45 and the value which was determined by use of 

the water-budget control strengthens ones confidence in the empirical 

mass-transfer formula and suggests a possible method of determining 

a value of N which would be applicable to large lakes, estuaries 

or the ocean. 
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I 
I Practicality of the aerodynamic method 

I One of the major disadvant.ag~s of the aerodynamic method is that 

all calculations are based on the vertical gradient of quantities 

I within the atmosphere. These gradients are usually small and must 

I 
be computed from differences in measured quantities as illustrated 

by equation 17. Equation 17 greatly magnifies any measurement 

I errors and the severity of this m~gnification can be illustrated. 

Working between the 2-and 8-meter levels the median velocity ratio 

I was 1.226 (figure 10). A 1 percent measurement error in either 

I 
velocity would result in an error of about 5 percent for equation 17. 

Therefore measurement errors in velocity are magnified by a factor 
· .. 

I of about 5 in equation 17 when the 2-and 8-meter levels are used. 

Using the 2-and 4-meter levels the errors are magnified by a factor 

I of about 10. The magnification factor for errors in the specific 

I 
humidity are even worse. In this case the factor depends upon the 

magnitude of the quantities involved as well as the median ratio of 

I' the humidity deficit (figure 11). For typical conditions during the 

month of January, an error in the measurement of the specific humidity 

I at 8-meters is amplified about 12 times and an error at the 4-meter 

I 
level is amplified about 18 times. Likewise for conditions typical 

of July, errors in the 8..;meter specific humidity are amplified about 

I 26 times and those· for the 4-meter level are amplified nearly 40 times. 

I 
I 
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Limitations of the aerodynamic method are apparent. The 

magnification problem can only be reduced by making measurements 

further apart. However,towers which are taller than 8 meters are 

expensive to construct over the water. In addition to this, all 

measurements must be made well within the boundary layer and the 

boundary layer grows in thickness very slowly with fetch. The upper 

limit of measurements may often be limited by the thickness of the 

vapor blanket. 

The effect of error magnification can be reduced by averaging 

the results of many observations provided that the measurement 

errors are random. The averaging can be accomplished in two ways. 

Measurements can be made at many levels or repetitive measure­

ments can be obtained at only two levels and the re$ults 

averaged over time. A combination of both ways was used in this 

report. 
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By obtaining data at many levels, more accurate instantaneous 

gradients should be obtained. However the instrumentation:cost is 

very high. In addition, the magnification factor increases as the 

levels of observation become closer together.· It would appear that 

the value of each additional level ~f data decreases· rapidly.. AI though 

fitting the curves using data obtained at multiple levels will theoret-

ically increase the accuracy, the Lake Hefner data did not contain 

enough levels to determine how much improvement can be expected from 

each added level of information. There is a definite advantage to 

having data from more than two·· levels in that it allows one to evaluate 

the consistency of the da.ta from each level by determining values of 

z0 for each pair of levels.·· This procedure led to the suspicion that 

the 4-meter dry-bulb temperatures of the Lake Hefner data were in 

error. 

The other way of reducing the effect· of measurement errors, . 

averaging over time, was evaluated. This procedure does not increase 

the instrumentation requirements but it does eliminate the ability to 

make accurate short term determinations of evaporation. 
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The modified procedure which has been developed in this report 

is one means of partly averaging out errors in velocity measurements 

before evaporation calculations are made. After a long term record 

has been obtained and an equation of the form given by equation 

52 is developed, better short ter~ values can be obtained than 

would be possible by the direct use of the aerodynamic ~ethod. 

Necessarily, a certain amount of empiricism has crept into the method. 

The really large error magnification factor appears to be associated 

with the humidity profiles, so that the results which can be 

obtained by the modified procedure are definitely limited. 

The next step would appear to be the averaging of errors in 

the humidity profiles by use of equation 44 and the median value 

of the humidity deficit ratio (figure 11). One could argue the 

merits of using either the mean or the median value of the ratios. 

The median value was chosen here because it is unaffected by the 

magnitude of extreme values, which are suspected to have little 

physical significance. At this point the aerodynamic method has 

nearly reverted to the empirical mass-transfer approach. 
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Harbeck and Meyers (1970) concluded that the energy budget 

method is a reliable method for the determination of evaporation 

from lakes and reservoirs for periods of time ranging from a w~e·k· 

to a month. Because the required equipment is expensive and data· 

processing is time.:..consuming, they concluded th.at the energy budget should 

ordinarily be used only long enough to penni t dete.lini.ning the ma.ss- · 

transfer coefficient~ N, with adequate accuracy. The energy budget 

equipment can then be moved to a second reservoir, and evaporation 
. . . 

. measurements continued indefinitely at the first reservoir· using the 

mass-transfer method at a minimum of expense. 

It is not prop~sed here that the aerodynamic method is com­

petitive with the energy budget· method for dete.nnining evaporation 

from lakes and reservoirs. There exists, however,.water bodies to 

which the energy-budget· determinat-ion of N can not be applied such 

as very large lakes, and oceans. The aerodynamic method might.be 

used in the same manner as the energy budget to determine the mass-

transfer coefficient. In this case, long term averaging is necessary 

in order to reduce the effect of measurement errors and to cancel 

the effect of seasonal trends. 
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How long must the aerodynamic method be used before a specified 

accuracy in the value of N can be expected? First, because of the 

rather large seasonal effect illustrated on figure 28, comp1ete 

years should be used. Assuming that the modified log+linear methpd 

is used and that the data will be comparable to those collected at 

Lake Hefner, one can estimate the number of days of record which. 

will be necessary. For example, assume that the daily error values 

are drawn from a normal population with zero mean (figure 24), with 

a standard deviation of 0.253 em (figure 24), and that the average 

evaporation rate will be 0.41 em per day~ Then 1,020 days of acceptable 

record are required in. order to establish the value of N to within 5 

percent at the 0.99 confidence level. Three years of record 

would be needed. 
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Three years of record taken every 30 minutes at three levels 

would be a massive undertaking. It is tempting to suggest that· 

the value of N be determined from equation 39 and to abandon all 

efforts to use the aerodynamic method. It must be remembered, 

however, that equation 39 was developed .. ellpirically using 

only· data from lakes and reservoirs where the energy budget had 
... 

been applied. The applicability of this equation for estuaries 

or the oceans has never been adequately checked. In these situations 

it is perhaps necessary to make a realistic assessment of the short­

comings of the aerodynamic method and learn to minimize its dis­

advantages to the greatest possible extent. One object of this 

report has been to illustrate these shortcomings and perhaps 

indicate some ways in which the disadvantages of the aerodynamic 

method can be minimized. 
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Summary and conclusions 

The process of evaporation has received the attention of 

hydrologists, meteorologists, and agriculturalists for many years. 

Because it is a major factor in the transfer of excess heat from 

water systems to the atmosphere, and because of its importance in 

water short areas, interest in the process is increasing. Unfortunately, 

the measurement or estimation of the rate of evaporation from water 

surfaces is by no means an easy matter. The methods which may 

currently be used to measure the evaporation rate include the 

water-budget method, the energy-budget method, the empirical mass­

transfer method, the aerodynamic method, the evaporation pan method, 

and the eddy-correlation method. The-method which should be used 

depends entirely upon the situation under consideration because 

each method has advantages and disadvantages so that none of them 

can be said to be the best. This report has analyzed only 

the aerodynamic and the empirical m~ss-transfer methods. 
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In certain situations the· aerodynamic method is about the only 

way in which the evaporation can be measured. In these situations 

one is forced to accept its disadvantages and to attempt to use it. 

In addition, the aerodynamic 'method has a number of·significant 

advantages over the other methods. It requires no~empirical coefficient, 

"instantaneous" rates ~re theoretically possible, all measurements 

are in the air away. from the surface, and measurement of the 

evaporation rate from a relatively small area of a large body of 

water is possible. Ther~ has been a great interest in improving 

the aerodynamic method and many functional forms of the 

relation between wind speed and elevation have been proposed. 

All are found to be de.ficient in properly accounting for the effects . 

of atmospheric stability. 
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In 1954, Monin and Obukhov (1959) proposed the log+linear law 

which was designed to account for stability effects. While the law 

has received considerable testing under limited conditions, few sets 

of data are available which are extensive enough to determine its 

general applicability under widely varying conditions. The purpose 

of this report was to make use of the massive set of data collected 

at Lake Hefner, Oklahoma during the years of 1950 and 1951 (U.S. 

Geological Survey, 1954b) in order to evaluate the theoretical 

correctness and practicality of the log+linear law as a 

method of computing evaporation rates. Under conditions of neutral 

atmospheric stability, ·the log law appears to be theor_etically 

sound. Because the log+linear law represents a linear correction 

term to the basic log law, the theoretical soundness of this 

correction was inferred by comparing the results which were obtained 

from the log+linear law to similar results which were obtained 

from the log law. The empirical mas~-transfer method is probably 

the most practical and accurate method available for computing 

evaporation rates provided the value of the empirical coefficient 

is known. Because accurate values of the daily evaporation rates 

were available from the water-budget method, it was possible to 

determine the "exact" value of the empirical coefficient. The 

practicality of the log+linear law was inferred by comparing its 

results with those obtained from the mass-transfer method. Following 

a suggestion proposed by Pasquill (Sutton, 1953, p. 311), a method of 

reducing the effect of measurement errors was devised and tested on 

both the log and log+linear laws. 
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None of the models accounted for all the factors which effect 

the evaporation rate, therefore this rate containe4 random c.ompo~ents 

in addition to those caused by the random nature of the independ.ent 

variables an~ by the random errors in the measurement of the 

variables. As a result, the success or failure of any o~ the 

methods during a single observation event was given little 

statistical or practical significance. Instead the conclusions 

about the various methods were based on the outcome of many individual 

observations and upon the laws of statistics. This method of ~n~iysis 

required a massive set of rather high quality data. 

By us~ of a method proposed by Deacon (1962) the value of the 

constant a in the log+linear law was determined beforehand from 

the measured data. A value of 3.0 was used throughout ~he report~ 

but the results are not very sensitive to the assumed value of a 

as long as it is within the range of 1.0 to 3.0. 

163 



The direct application of the log+linear law produced more 

accurate predictions of evaporation rates than were produced by the 

direct application of the log law. The standard deviation of daily 

error values was reduced by 34 percent, a value which was very 

significant statistically. The error in the seasonal average 

evaporation rate was reduced appreciably during all seasons of 

the year. There was a fairly strong indication that these improve­

ments were the result of a better accounting for the atmospheric 

stability effects by the log+linear law, because the daily error 

values were less correlated with the daily average value of the 

stability parameter. Even though the log+linear law does not 

completely eliminate the correlation of the error with stability, 

it does provide more accurate results than can be expected from 

the direct application of the log law when applied to field data 

comparable to those collected at Lake Hefner. 

The modified procedure, that is the use of an averaged shear 

velocity relation, is recommended for use with either the log or the 

log+linear laws. The expected improvement to be gained by the use of 

this procedure is much larger when it is applied to the log law 

than when it is applied to the log+linear law. When applied to 

either law, the averaged shear velocity relation reduces the effect 

of measurement errors in the velocity. Apparently the averaged shear 

velocity relation contains errors which are smaller, or at least less 

correlated with stability, than are the model errors in equation 49 

(log law) but larger than those in equation 82 (log+linear law). 
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Although most of the evidence indicates that the modified log+ 

linear law is a more accurate description of the evaporation process 

than is the modified log law, the difference in the accuracies of 

the two is not large enough to be statistically significant. Apparently 

the averaged shear velocity relation is so much more effective on 

the log law that the differences between the two methods has been 

reduced to the point where it can no longer be proven to exist with 

a high degree of confidence. 

If the value of the empirical mass-transfer coefficient is 

known, the mass-transfer method is much more accurate than the 

aerodynamic method. The excellent accuracy of the mass-transfer 

method apparently results from the small magnification of measurement 

errors. Except for the month of August 1950, the maximum difference 

between the long term average evaporation rates as determined by 

the mass-transfer and the modified log+lin~ar methods was 17.5 percent. 

If the value of N can only be estimated to within 17 percent 

the modified log+linear law approaches the accuracy of the mass­

transfer method as a means of determining average evaporation rates 

for time intervals longer than 1 month. It was possible to predict 

the empirical mass-transfer coefficient to within 10.8 percent of the 

value obtained from the water-budget control by use of the median 

values of the velocity and humidity deficit ratios obtained between 

the s-and 2-meter levels. 
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One of the major disadvantages of the aerodynamic method is I 
that the computation procedure tends to amplify measurement errors 

greatly. The effect of this amplification can only be eliminated I 
I 

by an averaging process. The modified procedure is one way to 

partly achieve this goal. It only reduces the amplification, however, 

of errors in the measured velocity and errors in .the measured I 
specific humidity apparently contain the largest amplification factors. 

It is suggested that the modified log+linear law can be used I 
1: 

to determine the mass-transfer coefficient in situations where the 

energy-budget method is not applicable. The method of approach 

should be the same as that suggested by Harbeck and Meyer (1970) II 
except that the modified log+linear law is used instead of the 

energy-budget method. For conditions similar to those encountered I 
1/ 

at Lake Hefner, it is estimated that 3 years of record would 

be necessary in order to establish the value of the mass-transfer 
I 

II 
I 

coefficient to within 5 percent. 
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