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nautical miles 

x factor 
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Metric 
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Straight Line Fitting of an Observation Path 

by Least Normal Squares 

W. Kirby 

Abstract 

In curtain hydro graphic problems, and perhaps in other geophysical 

problems, information must be collected as profiles along straight-line 

courses. When the inevitable deviations from perfect linearity occur, 

one must then find the straight line course that best approximates the 

actual observation path. Classical least squares (regression) does not 

solve this proble:], because the line thus fitted depends upon which 

coordinate is taken as the dependent variable. 

A coordinate-free solution is obtained by minimizing the sum of 

squares of normal distances between the line and the observation points. 

As in classical least squares, the line of best fit passes through the 

geometrical centroid of the observation points. The slope of this lino, 

however, is closer to 1.0 than the slope of the classical regression line. 

The least normal squares and classical least squares solutions coincide 

when the observation path is nearly perfectly straight or when it runs 

generally parallel to one of the coordinate axes. 
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Introduction 

Classical regression theory deals with the problem of finding the 

linear function y = mx + b which best approximates a set of observed 

values yi at fixed observation points xi. The criterion is the sum of 

squared errors of approximation, 

q=1 (Eh - Yi)2 (1) 

where yi = mx, + b. The parameters m and b are selected so as to minimize 

this sum, whence the name least squares. This classical regression 

problem has wide applicability to the fitting of functional relationships 

to empirical data. 

Not every curve-fitting problem, however, fits the classical regression 

mold. In estuarine modeling, for example, and no doubt in other hydrograpnic: 

and topographic problems, one sometimes wishes to characterize the bottom 

topography by profiles measured (in the field) along straight lines. There 

exist various systems for collecting such profiles, but inevitably, becau.3e 

of the rigors of field operations, at least some of the observation points 

will deviate from the desired straight line course. 

Figure 1 illustrates typical observation paths followed during 

bathymetric profiling in Tampa Bay, Florida. Observations were taken at 

10-20-ft (3-6-m) intervals along these paths. These cross sections, 

measured at 500-ft (150-m) intervals along the navigation channel, have 

been used, for example, to estimate dredging volumes for a proposed channel 

improvement. 
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Figure 1. Typical bathymetric profiling paths in Tampa Bay, 
Florida. (Courtesy of R. A. Baltzer) 
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The curve-fitting problem here is to find the straight line course 

which best approximates the actual path of the observation 

vehicle. The measured position of the vehicle at each observation point is 

assumed to be given by a pair of coordinate values (xi, yi) relative to 

some arbitrary cartesian coordinate system. What has to be found is the 

straight line y = mx + b which best fits these data points. 

This curve-fitting problem differs from the classical regression 

probleminthatthedatavaluesx.and yi do not represent logically 

distinct variables, one of which is to be represented as a function of 

the other. On the contrary, the xi and yi represent only arbitrary 

coordinates; there is no logical distinction or order of precedence 

between them; and, in fact, any orthogonal linear combination of the xi 

and yi would provide an equally meaningful representation of the obser-

vation points. By the same token, there is no desire to represent one of 

the coordinates as a function of the other, but only to pass the straight 

line y = mx + b as close as possible to all the observed coordinate 

pairs. The classical regression approach fails to deal with this aspect 

of this problem: it is well known that different lines of "best fit" 

are obtained when the roles of the x and y coordinates are interchanged. 

This problem is solved by postulating a coordinate-free definition 

of goodness of fit, in which errors are distances from the obseriration 

points, measured perpendicular to the line. Although we cannot claim 

originality for this concept, we have not seen any development of this 

concept along the elementary and purely geometrical lines reported here. 

2b 



Nonetheless, Cramer (1946, p. 275) has used arguments from analytic 

geometry to derive what he calls the "orthogonal mean square regression 

line," which is precisely the line we derive below by more elementary 

methods. Similarly, in considering linear regression with both the 

ordinates and the abcissas subject to random error, Kenney and Keeping 

(1951, p. 213) use the method of maximum likelihood to arrive at the 

same equations we obtain below, in effect deriving least normal squares 

from maximum likelihood.lh the same vein, Ware (1972) has compared 

methods for estimating the intended course of a particle that randomly 

strays away from a straight line. Ware's work, like Kenny's and Keeping's, 

rests on statistical hypotheses which may or nay not be satisfied in the 

practical problem of fitting a straight line course. What we think is 

important, however, is that the immediate practical course-fittii-Ig 

problem can be resolved and compared and contrasted with the classical 

regression solution without recourse to statistical hypotheses, simply 

by invoking a principlc of least normal squares. 

2c 
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The Normal Distance 

An appropriate objective for this straight-line course fitting problem, 

therefore, is to minimize the sum of squared distances between the line and 

the data points, the distances being measured normal to the line. Referring 

to figure .11 and assuming temporarily that the slope m is finite--that the line 

isnotvertical--thenormaldistance6.from the data point to the line is 

given by 

(2) 

where 

A 
e = y - y. mx. + b - y. (3)1 

The objective function to be minimized by proper choice of m and b, there-

fore, is the sum of the normal squares, 6, as follows: 

y.)2/(m2g111,W=e-(mx. "1- b - .)2/(m2 + 1) (4)a..± 



	

(./ = nrx -Ff.) 

( 

Mt? 

E 

Figure Definition sketch for calculating the normal distance. 
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Least Normal Squares 

This objective function can be minimized by finding its stationary 

points and testing each one for minimality. The stationary points arc 

found by solving the simultaneous equations 

bA 
= o. (5)am 

From the first of these equations one gets, upon factoring out 
/, 2

2Am + 1), and expanding the sum, 

mEx.-EYi + nb = 0. 

Solving for b and defining the mean values 

x = Ex. n1/ y = Eyi/n (6) 

yields the following functional relationship betveen b and m: 

b* = y - mx. (7) 

It is easy to verify that b* minimizes A(m,b) with respect to b, at 

any value of m. 

In coordinate-free geometric terms, equation 7 makes the fo1lovinL; 

assertion: the line of best fit passes through the centroid (7,7) of the 

data points. 

Because the optimal value of b is now known for any m, it is sufficient 

to consider the restriction of the objective function to the optimal line 

b* = y - mx. Upon substituting equation 7 into equation the restricted 

objective function becomes 

0 
— —LK(m) gm,b*) = E (mx. + [y - mx] - yi) -I- 1) (8) 

1=1 1 
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which is a function of m only, because at any m only th,2 corresponding 

optimal value of b is considered. 

Recognizing in equation 8 the occurrence of deviations from the means 

and denoting them by 

1 - X y= yi 

the sum becomes 

‘2 2 2 2
E(m -) = m 7 - 2111E;+a. 

Recognizing the significance of sums of squares and cross products and 

defining the variances, covariance, and correlation coefficient of the 

data yields the following form of the restricted objective function: 

2 2 2 
m sy - Pmrs s + sx x

A*(m) = n (9)
+ 1 

in which 

2 2 2 2/
s = 7, mn s = .  n 

(10) 

s 
xy 

i/n r = x y 

To minimize 6*(m) on first finds its stationary points by differ-

entiation. The result,:after factoring out 2nAp
2 

1) and canbininr.:, 

terms, is the quadratic equation 

2 2 
(m2- 1)rs xsy + m(s - s ) = 0` x y 

in which m is the unknown and r, s , and s are known geometrical
x 

properties of the set of data points ((x.,y.)1. 
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To solve this equation one first notes that if either s or s is 
x y 

zero, the data all lie on one of the (straight) coordinate links, so 
the solution is trivial. In the contrary case, when both s and syx 
exceed zero, one implements the finite-slope assumption underlying the 

error measure by requiring that the scatter of the data in the y 

direction not exceed that in the x direction, in the sense that 

s < s (12)
y x 

(This condition can be achieved, if necessary, by relabeling the 

coordinate axes.) Then, dividing by s s , one obtains
x y 

(m
2
- 1)r + m(-1( = 0 (13) 

Now if the correlation r is zero, then the slope m must be either 

zero or indeterminate. (In the latter case the objective function is 

constant with respect to m.) If r is nonzero, however, divi,-,ion by r 

yields 

s s2 , x
m + mk--- - I-) - 1 = 0 rs rs 

Y x 

Those who are in the know will recognize the terms 

m = rs /s m = rs /s 
x x y y y x 

as the slopes of classical regressions of x on y and of y on x. A 

more convenient formulation of the equation, however, seems to be in 

terms of what we shall call the scale ratio of y with respect to x, 

defined by 

* = sy/sx (14) 
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By hypothesis Ili < 1. In these terms equation 13 becomes 

2 /1 m '+ TIN - 0/r - 1 = 0. (15) 

The solution of this equation is 

m = (A/r) (16)'11. + (A/r)2 

where 

A - k0/2 (17) 

By laborious evaluation. of a2A*/3m2 at the stationary points, one 

finds that the condition for minimization is that rm exceed - A. 

Thus the minimizing value of m is the upper branch when r is positive 

and the lower one when r is negative. These results may be summarized 

in the following 

Assertion: 

0 if r = 0 

(18)- A +r2 +A2 if r 0 

This completes the solution of the minimum-normal-distance straight-

line-fitting problem. 

Comparison with Classical Least Squares 

The value of m* may be compared with the slope of the classical 

regression line in a special case which can be achieved by proper choice 

of coordinates. The classical regression line has slope m = rs
y 

/s
x 
= r41. 

When * is small, so that the data are nearly horizontal, the following 

approximation may be used for equation 18: 

1 2) o) 
1 - ‘;f 
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In this case m* is slightly larger than the classical regression slope 

m • This approximat:Lon holds also when is fixed and r is very small. 

If 'pis close to 1, and r is made very small, the approximation takes the 

simpler form 

r 
(4f '-2-j 1, r 0)

2(1 -

Finally, in the important special case of r close to 1, the slope is 

given by 

m*(1) = (19) 

2 
d 1 -

ms(1) = (20)2 

1 + llr 

Thus, when r is close to 1, m* agrees with the classical regression 

slope--as it should because all the data lie very close to the line. 

Some numerical computations of m* are illustrated in figure 2. A 

graph of the corresponding classical least squares slopes, 

my = (21) 

would be a family of straight lines radiating from the origin to the 

terminal points (at r = 1) of the m* curves. 

9 
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Figure 3. Least normal squares slope as a function of correlation 
coefficient r and scale ratio i, = sy/s . x 
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