SUMMARY OF HYDROLOGIC CONDITIONS IN COLLIER COUNTY, FLORIDA 1974

OPEN-FILE REPORT 75-007

Prepared in cooperation with COLLIER COUNTY and the CITY OF NAPLES

United States Department of the Interior Geological Survey

SUMMARY OF HYDROLOGIC CONDITIONS IN COLLIER COUNTY, FLORIDA, 1974

By

H. Jack McCoy

OPEN FILE REPORT

FL-75007

Prepared
in cooperation with
COLLIER COUNTY
and the
CITY OF NAPLES

Tallahassee, Florida

1975

CONTENTS

P	'age
Introduction	5
Data collection	7
Hydrologic setting	10
Water-level contours of Naples well field	14
Water-level hydrographs	22
Canal flow	23
Water quality	25
Selected references	33
Basic data	35
A Water-level hydrographs	36-37
B Canal discharge hydrographs	67
Chloride concentration graphs	76
D Extended chemical analyses at canal study sites	80
E Pesticide analyses at canal study sites	85
F Coliform, BOD, and carbon analyses at canal study sites	94
G Nutrient analyses	.00

ILLUSTRATIONS

(Asterisk indicates that figure is in pocket at end of report)

	Page
Figure 1 Map showing location of data-collection	
stations in Collier County network	8
*2 Map showing location of data-collection	
stations in Naples network	9
3 Map showing approximate areal extent of the	
shallow aquifer and the area where limestone	
is within 10 feet of the land surface (from	
Klein, 1972, fig. 1)	11
4 Annual pumpage of Naples municipal supply,	
1947-74	16
5-18 Water-table contour map of Naples well-field	
area,	
*5May 7, 1974, shallow zone	17
*6May 7, 1974, pumping zone	18
*7October 8, 1974, shallow zone	19
*8October 8, 1974, pumping zone	20
9 Graph showing dissolved oxygen content of water	c
in selected canals, west Collier County	27

ILLUSTRATIONS

(continued)

			Page
Figure	10.	 Graph showing levels of total coliform bacteria	
		in selected canals, west Collier County	. 31
	11.	 Graph showing levels of fecal coliform bacteria	
		in selected canals, west Collier County	. 32

SUMMARY OF HYDROLOGIC CONDITIONS IN COLLIER COUNTY, FLORIDA, 1974

By H. Jack McCoy

INTRODUCTION

This report is a product of the continuing study of the water resources of Collier County, started in 1968, by the U.S. Geological Survey in cooperation with Collier County and the city of Naples. The report is designed to provide water managers with data on the annual variations of the hydrologic parameters to assist them in planning.

Streamflow and water-level fluctuations are graphed for the 1974 water year (October, 1973 to September, 1974). Water-quality data are presented in table, graph, and diagram forms for their periods of record.

For use of those readers who may prefer to use metric units rather than English units, the conversion factors for the terms used in this report are listed below:

Multiply English unit	<u>B</u> y	To Obtain metric unit
inches (in.)	25.4	millimetres (mm)
feet (ft)	.3048	metres (m)
miles (mi)	1.609	kilometres (km)

Multiply English unit	By	To Obtain metric unit
million gallons (Mgal)	3.785×10^{-3}	cubic hectometres (hm ³)
cubic feet per second (ft ³ /s)	.02832	cubic metres per second (m³/s)
gallons per minute (gal/min)	.06309	litres per second (1/s)
million gallons per day (Mgal/d)	.04381	cubic metres per second (m ³ /s)

DATA COLLECTION

Changes in hydrologic conditions are monitored by a datacollection network mainly in the western half of the county but in
greater detail in the urbanized Naples area. The county-wide
network (fig. 1) consists of 4 streamflow gaging stations (plus 1
station not in network), 16 wells equipped with continuous waterlevel recorders, 32 wells sampled semi-annually for chloride analyses,
and 15 surface-water sites sampled semi-annually for nutrient
analyses. The Naples network (fig. 2) consists of 1 streamflow gaging
station, 3 wells (C-391, C-392, and C-489) equipped with continuous
water-level recorders, 91 wells sampled or measured semi-annually for
chloride analyses or water-level fluctuations, and 4 surface-water
sites sampled quarterly for analysis of chemical, physical, and
bacteriological parameters.

Data from the Naples network are used to prepare water-table contour maps of the municipal well field area (fig. 1) near the end of the dry season (May) and the wet season (October).

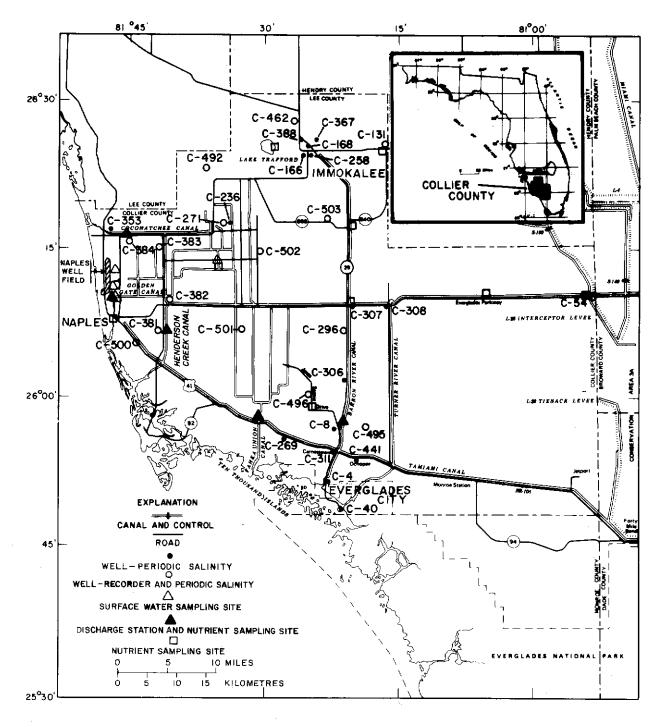


Figure 1.-Location of data-collection stations in Collier County network.

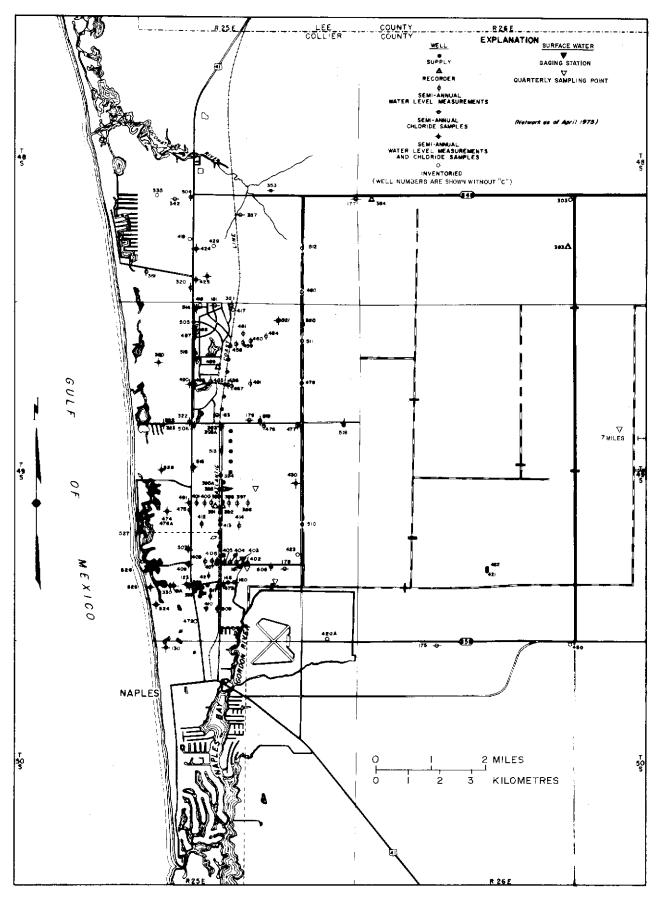


Figure 2. Location of data-collection stations in Naples area.

HYDROLOGIC SETTING

Most of Collier County is underlain by a shallow aquifer (McCoy, 1962, p. 61-82, and Klein, 1972). The aquifer, which has a maximum thickness of about 130 feet in west Collier County (McCoy, 1962, p. 24-25), consists of sand, limestone, and some marl. The aquifer thins eastward and wedges out near Dade and Broward Counties. In the western part, shallow limestone beds of low permeability retard infiltration of rainfall to the deeper and more permeable zones of the aquifer (fig. 3). The aquifer underlying these dense limestone beds has not been adequately flushed of mineralized water originally in the aquifer. The shallow limestone beds in the remainder of the area are of higher permeability and the ground water contained therein is of low mineral content because adequate flushing has taken place.

In the Naples well field area (fig. 1) the shallow aquifer is composed of three parts: 1) a shallow, permeable, unconfined zone, 2) a lower, more permeable, semi-artesian pumping zone, and 3) a confining zone separating the shallow and pumping zones.

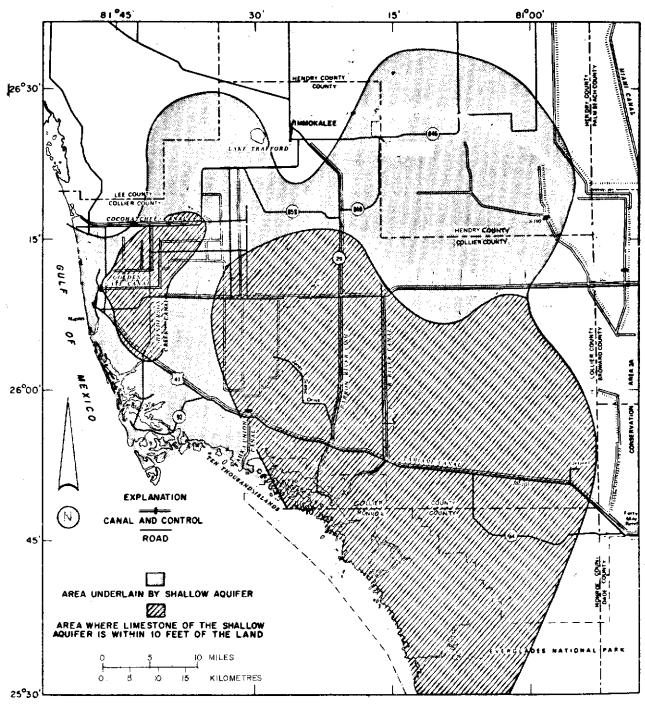


Figure 3.-Approximate areal extent of the shallow aquifer and the area where limestone is within 10 feet of the land surface (from Klein, 1972, fig. 1).

The shallow zone is composed of some limestone and sand. In the southern part of the Naples well field, the zone extends from land surface to a depth of about 32 feet and contains mostly limestone; the northern part increases in thickness to about 60 feet but is composed mainly of less permeable sand. The confining zone is composed of fine sand and marl and immediately underlies the shallow zone. The confining zone is about 8 feet thick in the southern part of the well field and about 15 feet thick in the northern part. The pumping zone, composed of limestone and some sand, immediately underlies the confining zone. Data indicate the permeability increases to the north in the well field area. The pumping zone is the source of water for the Naples municipal supply system and about 90 percent of all domestic, industrial, and irrigation uses in the Naples area.

Under static conditions, the three units act as a single hydrologic unit. When the pumping zone is under little or no stress, the confining zone allows percolation of sufficient water from the shallow zone down to the pumping zone such that only a small differential in water levels of the two zones occur. But as stress is applied to the pumping zone, water levels in the pumping zone decline faster and to greater depths than do water levels in the shallow zone.

Water levels were measured in deep observation wells (55 to 75 feet deep) in 1974 throughout the well field area so that water-level contour maps could be drawn for the pumping zone. Water levels were measured on existing shallow observation wells (15 to 50 feet deep) for contouring water levels in the shallow zone.

WATER-LEVEL CONTOURS OF NAPLES WELL FIELD

Ground-water levels in the Naples area respond rather quickly to recharge to and discharge from the aquifer. Recharge is mainly from rainfall, and is greatest, naturally, during the wet season. Discharge is by evapotranspiration, by ground-water flow to the Gulf and to canals, and by pumping from wells. Discharge by flow to the Gulf and to canals and losses by evapotranspiration are greatest during and shortly after heavy rainfall when water levels are high; discharge by pumping from wells is greatest during the dry period, at the peak of the tourist season, and during the irrigation season. Discharge by wells constitutes only a small part of the total discharge from the area.

Because water levels respond quickly to recharge and discharge, a moderate rain during the dry season may cause water levels to rise several feet in the center of the well field area. This is caused not only by the recharge from the rain but also by the decrease in pumping as a result of sharp reduction in irrigation demand. Two to three weeks of deficient rainfall during the wet season, however, may cause water levels to decline sharply in areas where numerous wells are pumping simultaneously as a result of no recharge and an increase in demand. Therefore, daily rainfall and pumping data are recorded for at least a week before water-level measurements are made to determine if the measured levels reflect the effects of seasonal or short-term hydrologic conditions.

As the rainy season begins, ground-water levels rise correspondingly. In the western part of the county where urbanization is spreading, a canal network conveys potential flood waters to the Gulf of Mexico. After the rainy season, water levels start to decline, but controls in the canals prevent overdrainage. In the eastern and central parts of the county where drainage is somewhat sluggish, water levels rise in response to rain until the water rises above the land surface and slowly flows overland to the south.

The average annual rainfall for western Collier County is 54 inches - 54.40 inches at Everglades City, 54.62 inches at Immokalee, and 53.00 inches at Naples. During 1974 the rainfalls. at these stations were 43.95, 52.59, and 42.38 inches respectively

The combination of deficient rainfall for three of the last five years and a continued sharp increase in annual municipal pumpage through 1974 (fig. 4) increased the already severe stress on the coastal aquifer in the Naples area. During the 1972-73 dry season the stress was so severe that the differential between water levels in the shallow zone and the pumping zone became large enough to necessitate the contouring of both zones.

The altitude of the water level in the shallow zone on May 7, 1974 (fig. 5) was about one foot lower than on May 14, 1973 (McCoy, 1974). However, figure 6 shows that the water level in the pumping zone was 6 feet below mean sea level in the middle of the Naples well field. A comparison of the two maps reveals that the differences in the water levels between the two zones is as much as 13 feet near the middle of the well field. The area enclosed by the zero contour line is the largest ever recorded.

Sometime prior to May 7, 1974, farming was reactivated in the area southeast of the intersection of U.S. Highway 41 and S.R. 846. Large withdrawals of ground water from farm wells similar in depth to municipal wells resulted in a marked depression of the pumping zone water level north of the well field area. This pumpage, in effect, removed large quantities of water which usually replenished the pumping zone in the Naples well field.

Although less than the long-term average, rainfall during

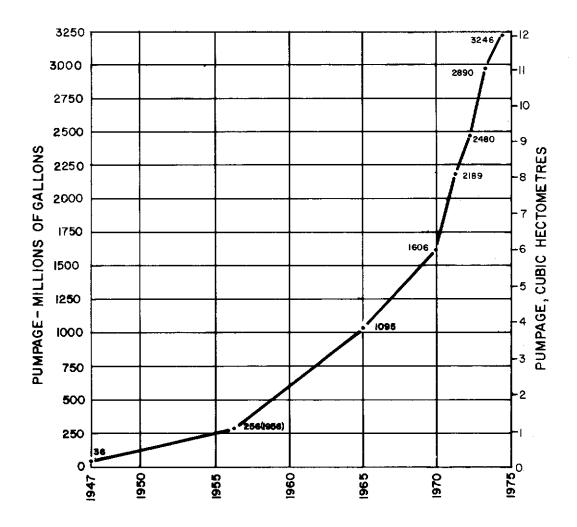


Figure 4. Annual pumpage from Naples municipal wells, 1947-74.

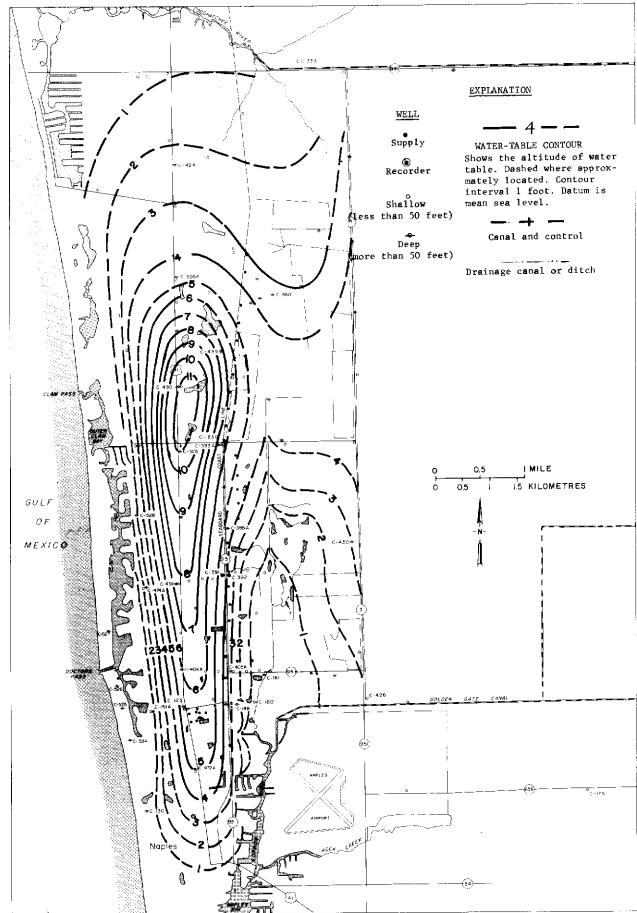


Figure 5. Water-table contour map of Naples well-field area, May 7, 1974, shallow zone.

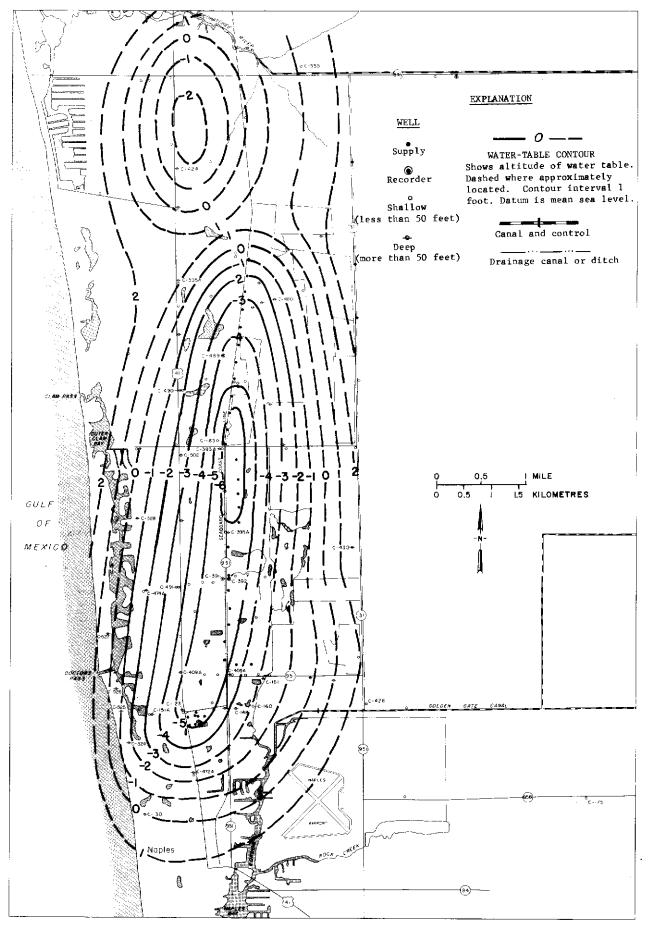


Figure 6. Water-table contour map of Naples well-field area, May 7, 1974, pumping zone.

the early part of the wet season of 1974 was sufficient for the water level in the shallow zone to return to average elevations by October 1974 (fig. 7 and Basic Data). However, the combination of below average rainfall for September and early October resulted in abnormally low water levels in the pumping zone (fig. 8 and Basic Data). The water level in the pumping zone was as much as 4 feet lower than in October 1973. Again, the effects of agricultural use is shown by the depression near the Cocohatchee River. The pumpage for farm use had removed large quantities of water that usually would replenish the north part of the well field.

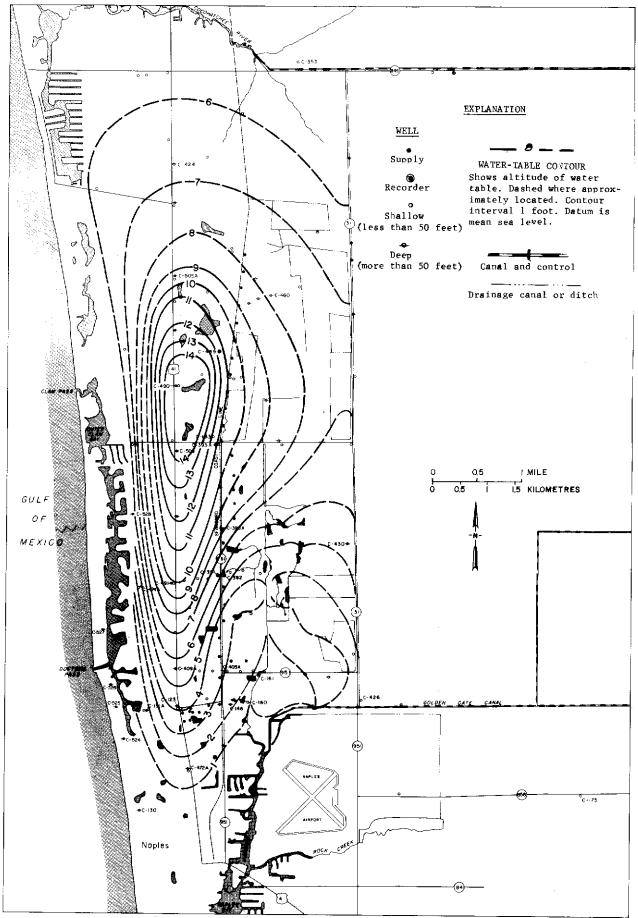


Figure 7. Water-table contour map of Naples well-field area, October 18, 1974, shallow zone.

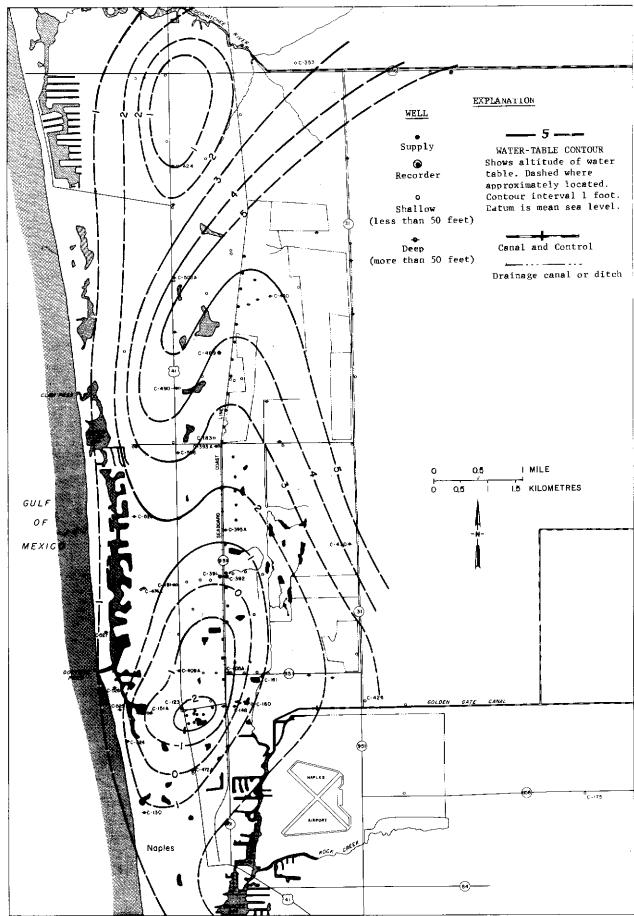


Figure 8. Water-table contour map of Naples well-field area, October 18, 1974, pumping zone.

WATER-LEVEL HYDROGRAPHS

Water-table contour maps may reflect water levels for only an instant in time, but data from continuous water-level recorders on selected wells together with rainfall and pumpage records indicate whether the conditions reflected by the contour maps have resulted from seasonal or from recent changes in the hydrologic system. The wells in Collier County on which water-stage recorders are in operation are shown in figure 1.

Hydrographs of water level in wells equipped with recorders for the 1974 water year are in the Basic Data section. Hydrographs for the period of record, through 1973, are included for wells with more than 5 years of record. Generally, water levels throughout the county were almost 1 foot lower near the end of the 1974 dry season than they were near the end of the 1973 dry season. Although rainfall during the fall of 1974 was sufficient to raise the shallow water table to the 1973 wet-season levels, storage in the coastal aquifer was still below average as reflected by the low water levels in the Naples well field near the end of the 1974 wet season (figs. 7 and 8).

CANAL FLOW

Although short-period overland flow occurs locally during the wet season, most surface-water flow in western Collier County is through the Fahka Union and Golden Gate Canals. The Barron River and Turner River canals plus several large sloughs and strands are the chief routes of surface-water flow in the central part of the county. Surface-water flow is slower there than in the western part of the county and as a result much of the central area is inundated for several months during the wet season.

Drainage in east Collier County is entirely natural except for that through the L-28 Interceptor Canal in the northeast corner and perhaps for some small, short canals near private hunting camps. At the height of the rainy season as much as 90 percent of the area is covered by water to a depth ranging from a few inches to more than 3 feet (Klein and other, 1970, p. 27).

Canal discharge hydrographs for 5 gaging stations in Collier County are shown in the Basic Data section. Although the station on the Barron River Canal is not in the Collier County network, it is shown for comparative purposes. The Gordon River station is affected by tides and only water-level data are collected.

The discharge hydrographs (Basic Data section) exhibit graphically the effects of rainfall throughout the county. Barron River Canal was the only canal in which the flow was substantial during January-March of 1974. The flow was probably the result of normal rainfall in the Immokalee area -- the headwaters of the Barron River Canal. In the Golden Gate Canal flow for this period was average or slightly less than average indicating that the canal received some of the rainfall in the Immokalee area. All canal discharges showed the effects of the heavy rains of late June 1974.

For the 1974 water year (October 1973-September 1974) the Barron River Canal discharge was 1 ft³/s higher than the 22-year average; the Golden Gate Canal was about 100 ft³/s higher than the 10-year average; the Henderson Creek Canal was about 3 ft³/s less than the 6-year average; and the Cocohatchee River Canal was about 12 ft³/s higher than the 6-year average. Average discharge has not been determined for the Fahka Union Canal but inspection of published records reveals the 1974 water year discharge was about 65 ft³/s higher than the 1973 (water year) discharge.

WATER QUALITY

Graphs of chloride concentration of water from selected wells and surface water sites throughout the county indicate that at most sites the chloride concentration fluctuated within the existing concentration range. (See Basic Data,) The notable exceptions were the increases in chloride concentration of water from well C-123 and C-151A along a line running west from the south end of the well field. (See fig. 2). These wells are used to monitor the inland extent of the salt-water front at depth (100-145 feet) in the aquifer and a substantial increase in chloride concentration in water from them would indicate an inland migration of the front. The chloride concentration of water in well G-151A has increased steadily except for a decline in part of 1972 and a sharp decline in 1974. Near the end of the 1973-74 dry season, the chloride concentrations was almost 400 mg/l (milligrams per litre), well above the recommended limit of 250 mg/l (National Academy of Science and National Academy of Engineering, 1973). However, the chloride concentration had decreased to 126 mg/1 by October 1974 (See Basic Data.) Wells C-123 and C-151(A) are sampled weekly by city of Naples during the dry season. If the chloride concentration in water from either increases, municipal pumping schedules are changed to reduce pumping of wells in the south part of the well field.

Water samples have been collected 4 times a year from 4 canal sites in the Naples area since October 1970 as part of a monitoring program to determine changes in water quality resulting from urbanization. Sites 1 and 5 are in the urbanized area, site 2 is in the suburban-agricultural area, and site 4 is in an area virtually uninhabited and is used as a control station (fig. 9). Site 3 was designed to collect adequate data to indicate the general character of water in the Naples Bay estuary and then was replaced by site 5.

Water samples were analyzed for common chemical constituents, trace metals, nutrients, pesticides, coliform bacteria, BOD (biochemical oxygen demand), and carbon. In addition, water temperature, pH, specific conductance, alkalinity, and DO (dissolved oxygen) are determined several times during a 24-hour period at each site for each quarterly sampling. All analyses are given in the Basic Data section.

Many factors affect the DO concentration of canal waters but the most important are the liberation of oxygen by aquatic plant growth (photosynthesis) and the utilization of oxygen in the decomposition of man-made wastes and natural organic matter. Therefore, the DO concentration is usually a reliable indicator of not only the general health of the canal water, but also an indicator of contamination.

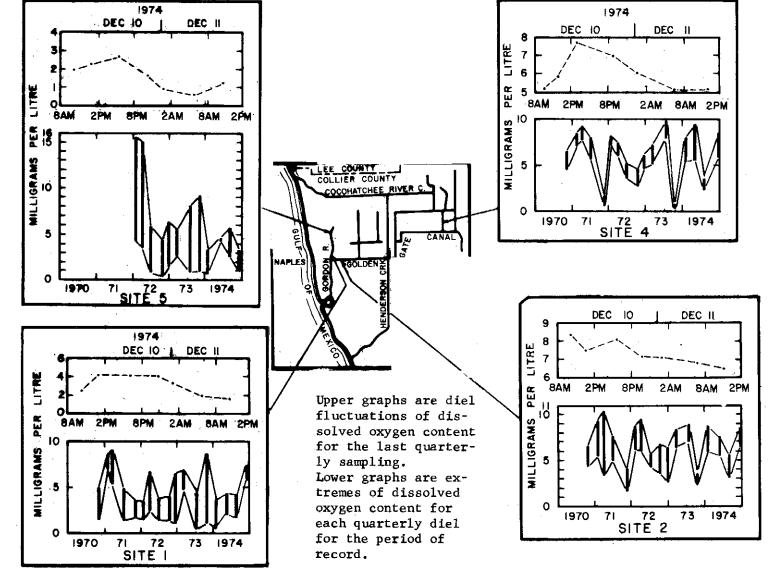


Figure 9. Dissolved oxygen content of water in selected canals, west Collier County.

Aquatic plant growth is most active during that part of the day when sunlight is most intense and least active just before sunrise. Thus, DO concentration plotted for a 24-hour period will generally define a sinusoidal curve with a high point in mid-afternoon and a low point early in the morning. Variations in activities affecting DO concentration can shift these points several hours in either direction and can also reduce or expand the amplitude of the curve.

The utilization of oxygen by man-made wastes and natural organic matter varies chiefly with the type and amount of organic materials in surface runoff and with the amount of sewage effluent or other man-made wastes introduced into the canals. Oxygen-demanding wastes reduce the DO concentration but nutrients associated with the wastes may trigger rapid plant growth causing an algae bloom in the canal. When this happens, the DO is unusually high during the day and unusually low at night.

In 1974 the DO concentration at all four sites fluctuated within the ranges of antecedent data. At the two sites on the Gordon River DO concentration continued to fluctuate more during a 24-hour period than at the two sites on the Golden Gate Canal.

Fecal and total coliform bacteria in a water sample, both individually and together, are regarded as indicators of contamination. Coliforms are bacterial organisms of many different origins such as soils, plants, and feces of warm-blooded animals. In this report coliforms of all origins are labelled "total coliforms"; coliforms originating in warm-blooded animal feces have been separated from the "total" and labelled "fecal coliforms."

High concentrations of coliforms can occur in surface waters at any time depending on local conditions - both natural and man made - but they are most likely to occur during periods of high flow and in effluent-laden canals. High flows in the canals are generally the result of surface runoff after heavy rains. During high runoff urban wastes and road runoff as well as animal wastes from the undeveloped areas are picked up by the canals.

The concentrations of coliforms allowed by Florida Department of Pollution Control 1971 and U.S. Environmental Protection Agency 1973 depend on the classification and use of the waters. In surface waters to be used as sources for public supplies the Environmental Protection Agency lists 10,000 col/100 ml (colonies per 100 millilitres of water) of total and 2,000 col/100 ml of fecal coliforms as permissible limits and 100 total and less than 20 fecal col/100 ml as desirable limits. The Florida Department of Pollution Control requires that in waters used for body contact activities, total coliforms not exceed 1,000 col/100 ml on a monthly average, nor exceed this number

in more than 20 percent of the samples examined during the month.

Canals in Collier County are not used for public water supplies and are not generally used for body contact activities.

The total coliform concentrations were within antecedent ranges at all sites (fig. 10). The fecal coliform concentrations recorded a new high at site 5 (fig. 11) and rose sharply at site 1 but were still below early 1971 concentrations.

Flow in the Gordon River was extremely low throughout 1974 and the resulting small amount of water in the channel at site 5 probably accounted for the increase in concentrations.

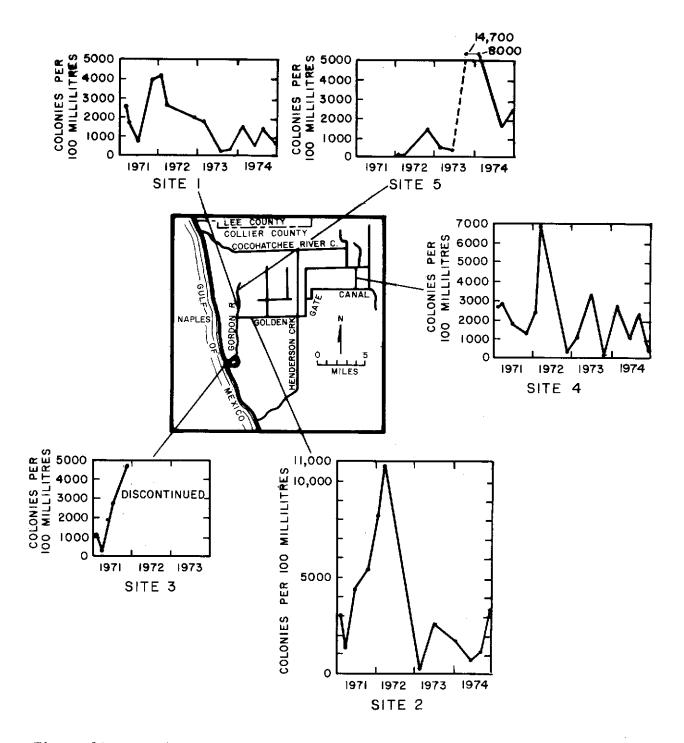


Figure 10.--Levels of total coliform bacteria in selected canals, west Collier County.

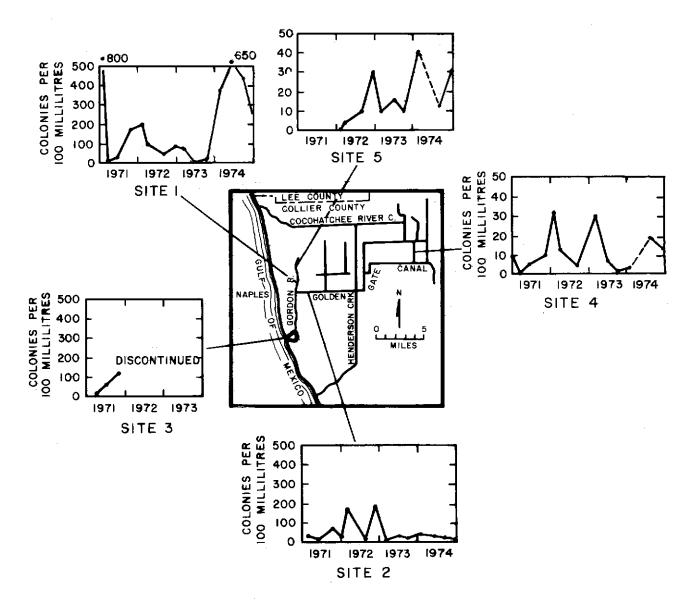


Figure 11.--Levels of fecal coliform bacteria in selected canals, west Collier County.

SELECTED REFERENCES

- Armbruster, J. T., 1972, Land use in the Big Cypress Area, southern

 Florida: Florida Dept. of Natural Resources, Bureau of Geol.

 Map Series No. 50.
- Florida Department of Pollution Control, 1971, Pollution of Waters: Chap. 17-3, Supp. No. 23, p. 7-12.
- Freiberger, H. J., 1972, Nutrient survey of surface waters in southern Florida during a wet and a dry season, September 1970 and March 1971: U. S. Geol. Survey open-file report 72003, 29 p.
 - Big Cypress Watershed during wet and dry periods: Florida

 Dept. of Natural Resources, Bureau of Geol. Map Series No. 45.

, 1972, Streamflow variation and distribution in the

- Klein, Howard, and others, 1970, Some hydrologic and biologic aspects of the Big Cypress Swamp drainage area, southern Florida: U.S. Geol. Survey open-file report 70003, 94 p.
- Klein, Howard, 1972, The shallow aquifer of southwest Florida: U.S. Geol. Survey open-file report 72017, 20 p.
- McCoy, H.J., 1962, Ground-water resources of Collier County, Florida:
 Florida Geol. Survey Rept. Inv. 31, 82 p.
- , 1972, Hydrology of western Collier County, Florida:

 Florida Dept. of Natural Resources, Bureau of Geol. Rept. Inv.
 63, 32 p.
- ______, 1973, Summary of Hydrologic conditions in Collier County,

 Florida, 1972: U. S. Geol. Survey open-file report 73022, 118 p.

SELECTED REFERENCES (Continued)

- McCoy, H.J., 1974, Summary of Hydrologic conditions in Collier County, Florida, 1973: U.S. Geol. Survey open-file report 74030.
- McPherson, B.F., 1973, Vegetation map of southern parts of subarea's

 A and C, Big Cypress Swamp, Florida: U.S. Geol. Survey

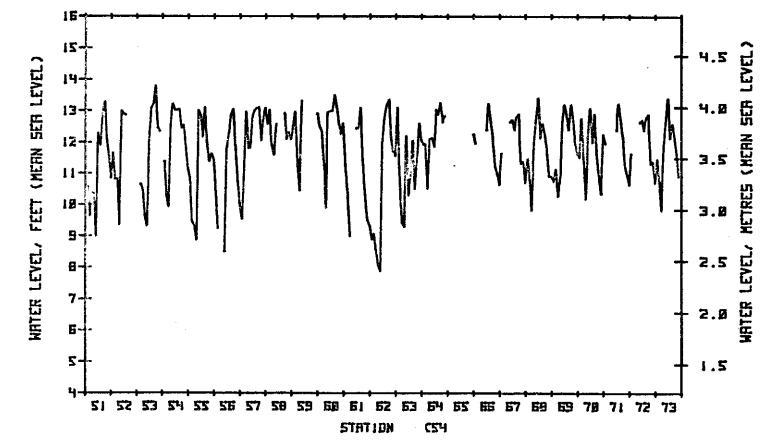
 Hydrologic Atlas HA-492.
- National Academy of Sciences and National Academy of Engineering, 1973, Water quality criteria 1972: (U.S.) Environmental Protection Agency rept. EPA R3 73 033, 594 p.

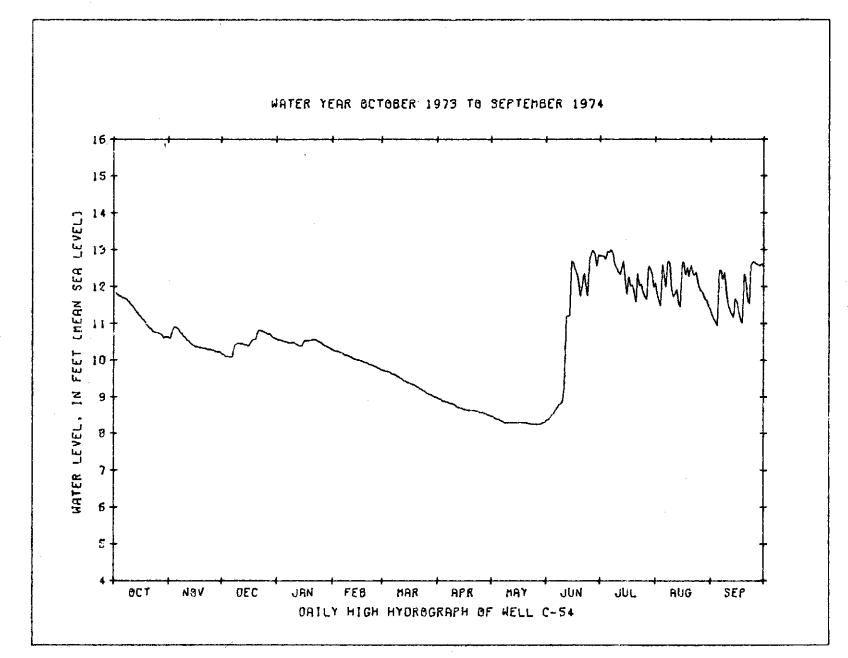
BASIC DATA

		Page
Section A	-	Water level hydrographs
Section B	-	Canal discharge hydrographs 67
Section C	-	Chloride concentration graphs
Section D	-	Extended chemical analyses at canal study sites 80
Section E	-	Pesticide analyses at canal study sites (See
		section D for site locations) 85
Section F	-	Coliform, BOD, and carbon analyses at canal study
		sites (See section D for site locations) 94
Section G	-	Collier County nutrient sampling sites100

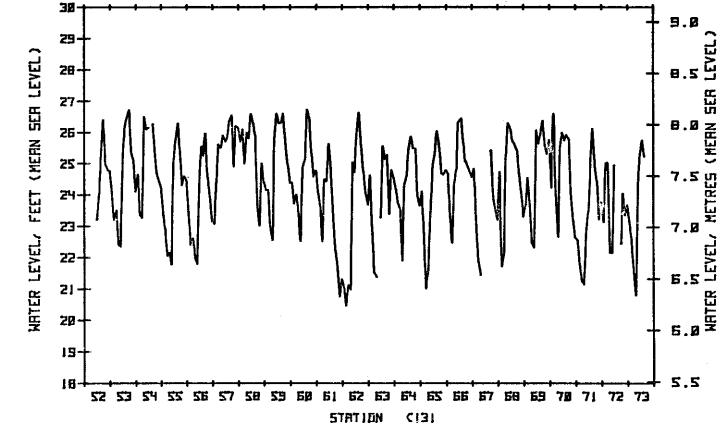
BASIC DATA - Section A

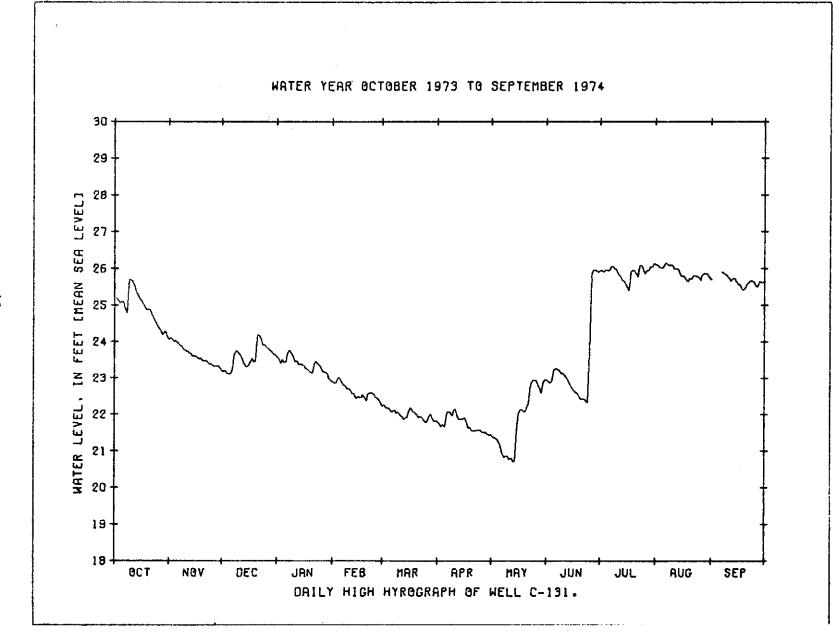
Water-level hydrographs

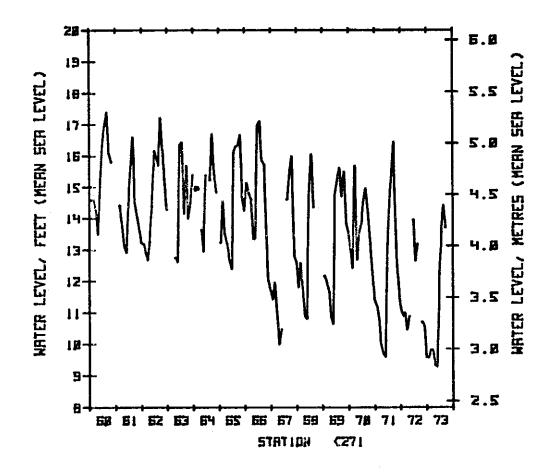

Nineteen wells in the Naples and the Collier County data-collection networks are equipped with continuous recording water-level gages.

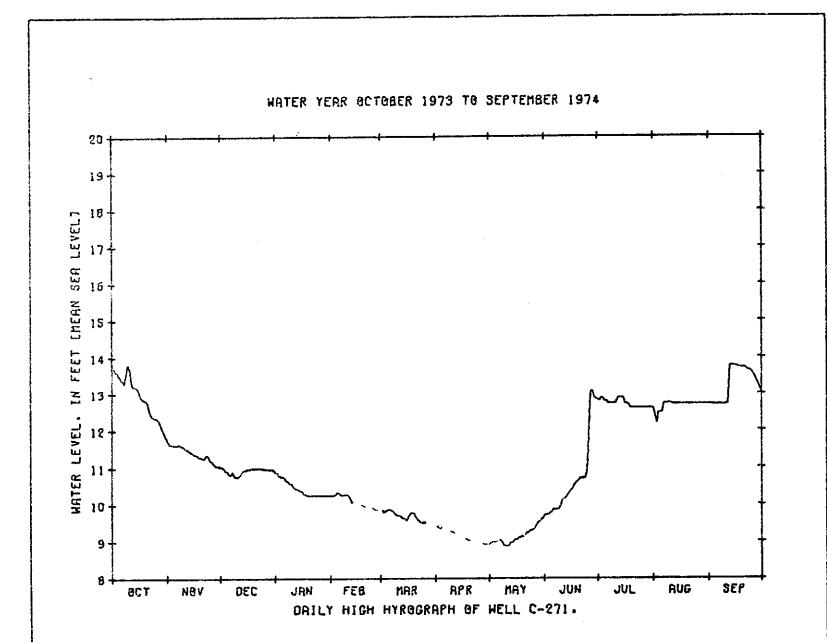

Hydrographs of water levels in these wells for the 1974 water year follows. Also included are water-level hydrographs for the period of

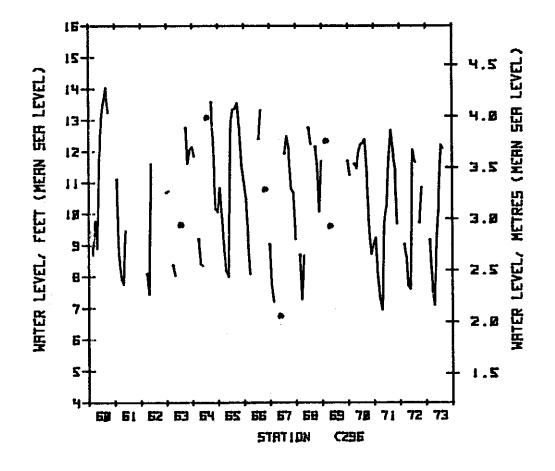
record of wells with more than 5 years of record.

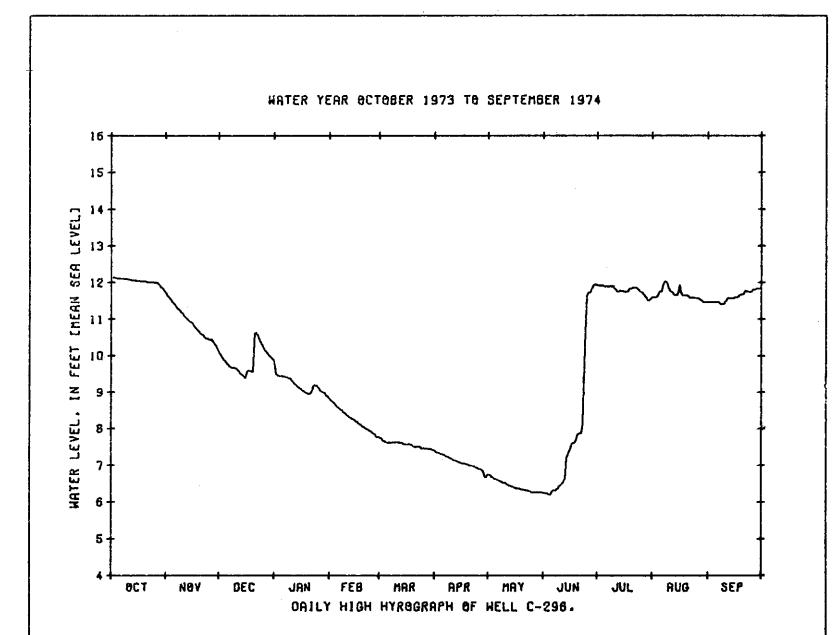

Well Number	Depth (ft)	Page	Well Number	Depth (ft)	Page
C-54	8.5	38-39	C-462	110	58
C-131	54	40-41	C-489	83	59
C-271	38	42-43	C-492	60	60
C-296	45	44-45	C~495	70	61
C-381	58	46-47	C-496	60	62
C-382	58	48-49	C-500	50	63
C-383	22	50-51	C-501	50	64
C-384	58	52-53	C-502	50	65
C-391	80	54-55	C-503	50	66
C-392	30	56-57			

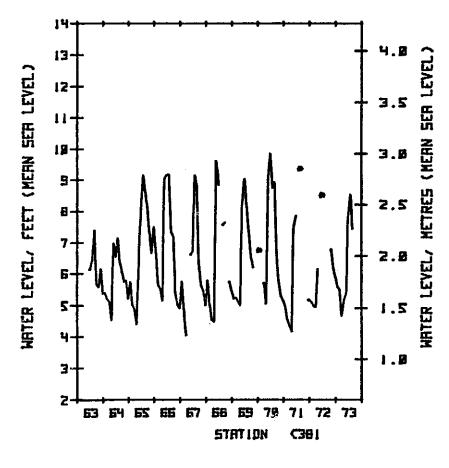

The hydrographs for the period of record were constructed by plotting the end of momth water levels with the inclusion of the annual extremes; the annual hydrographs were constructed by plotting the daily high water levels.

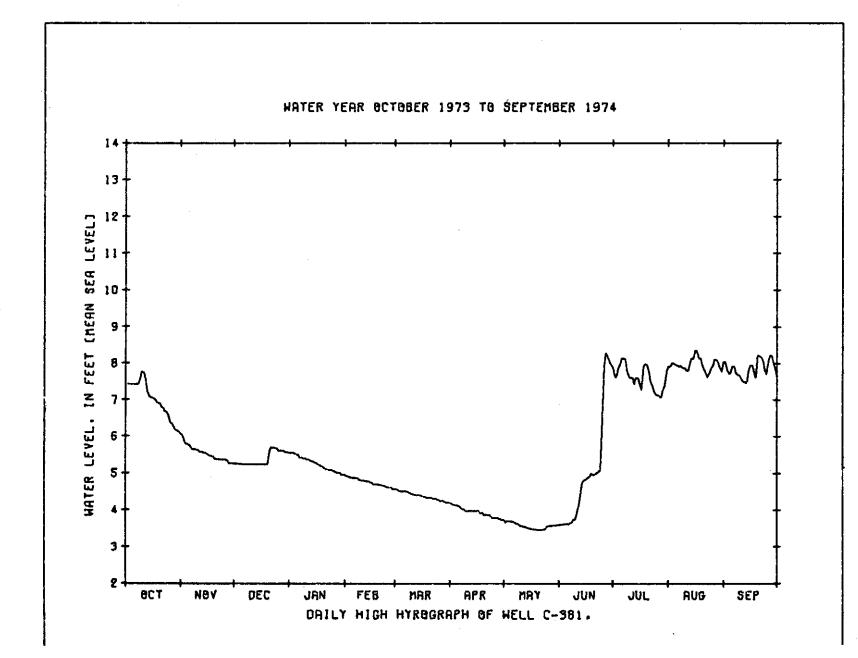


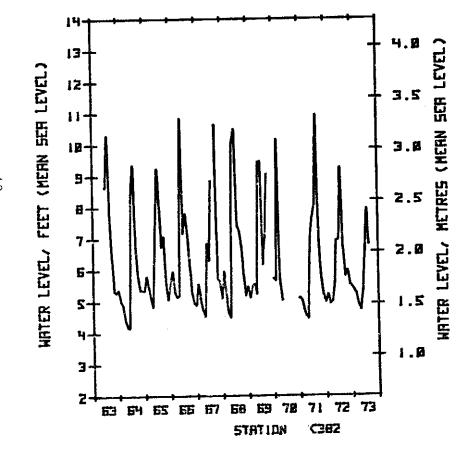


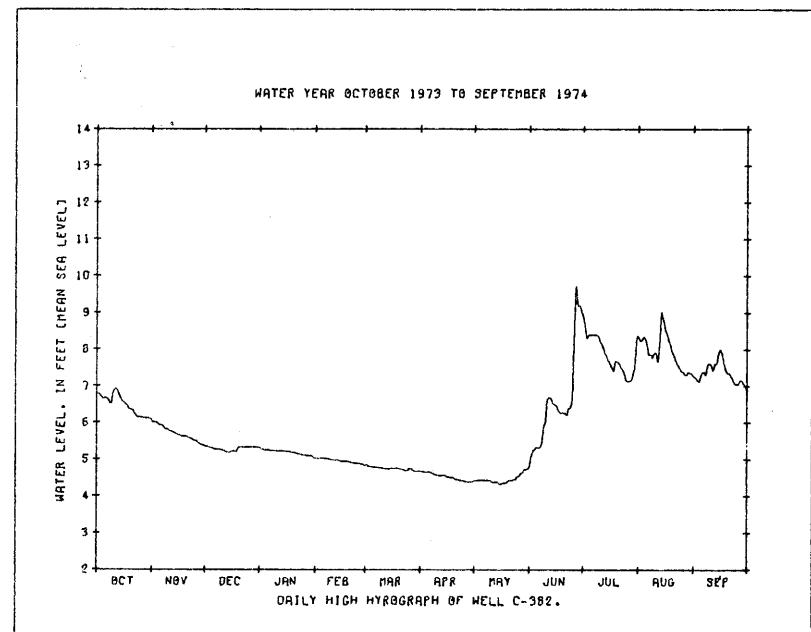


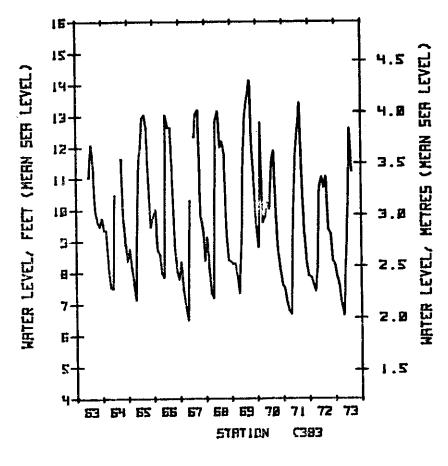


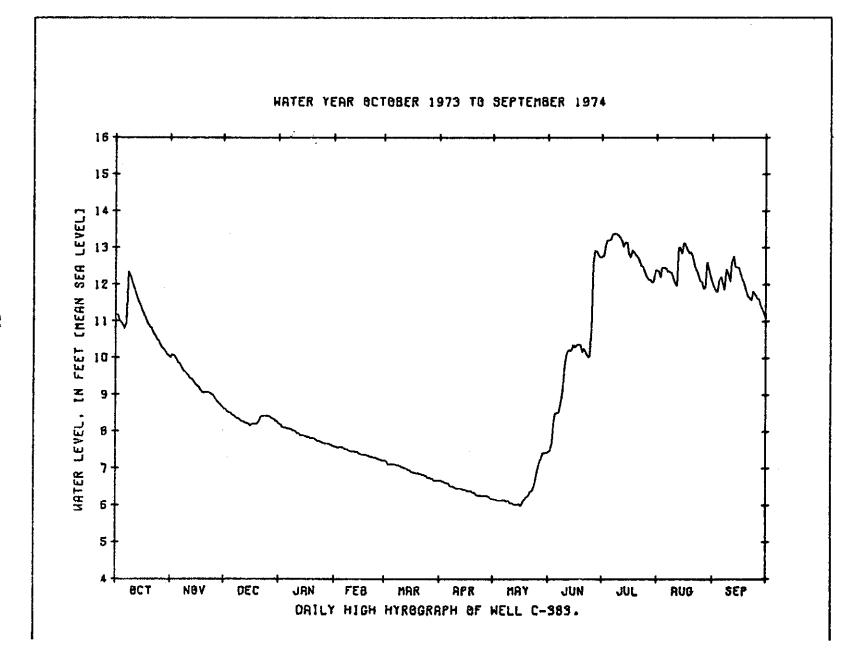


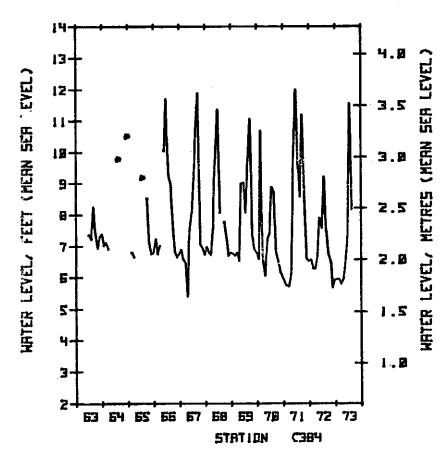


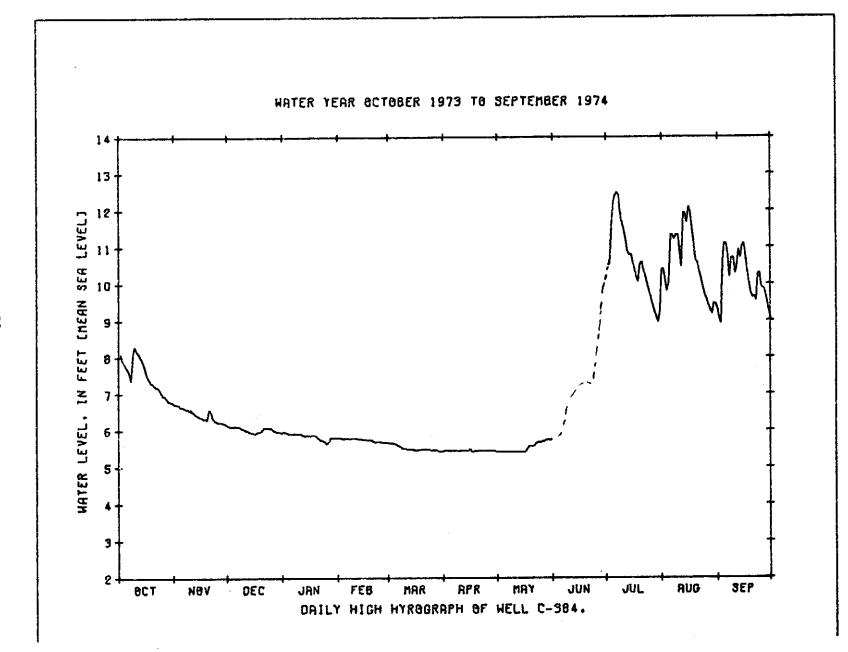


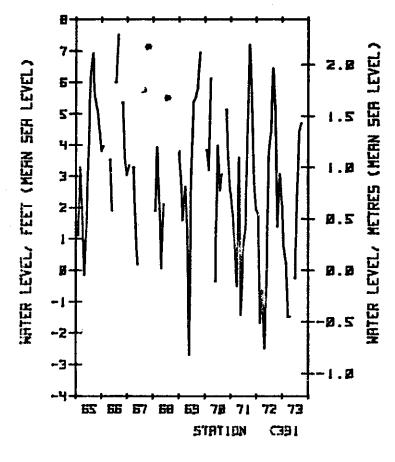


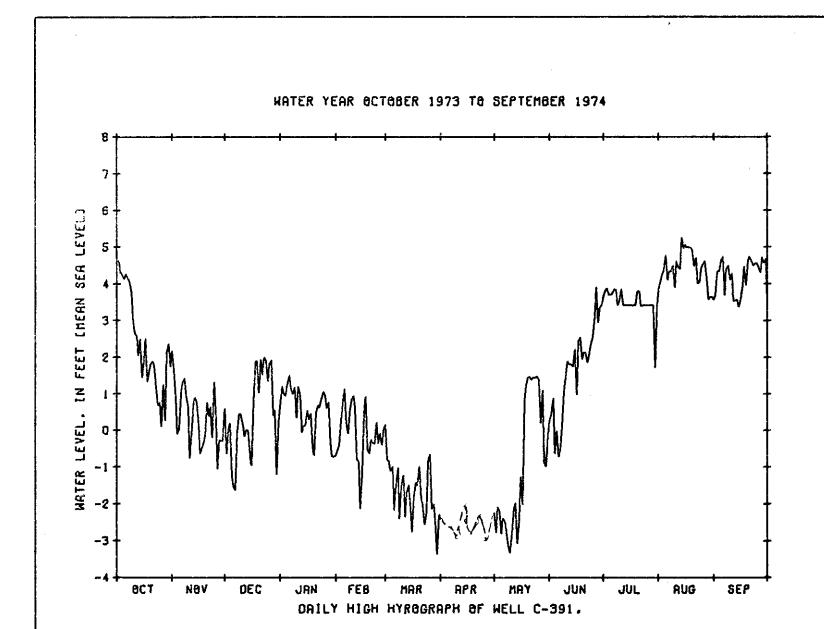


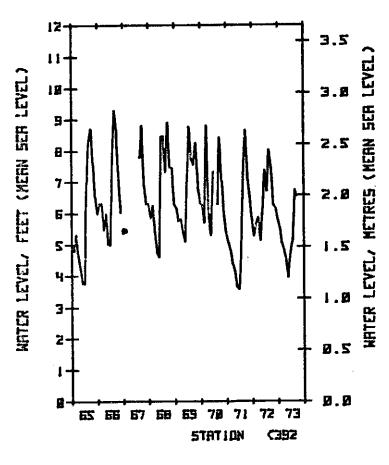


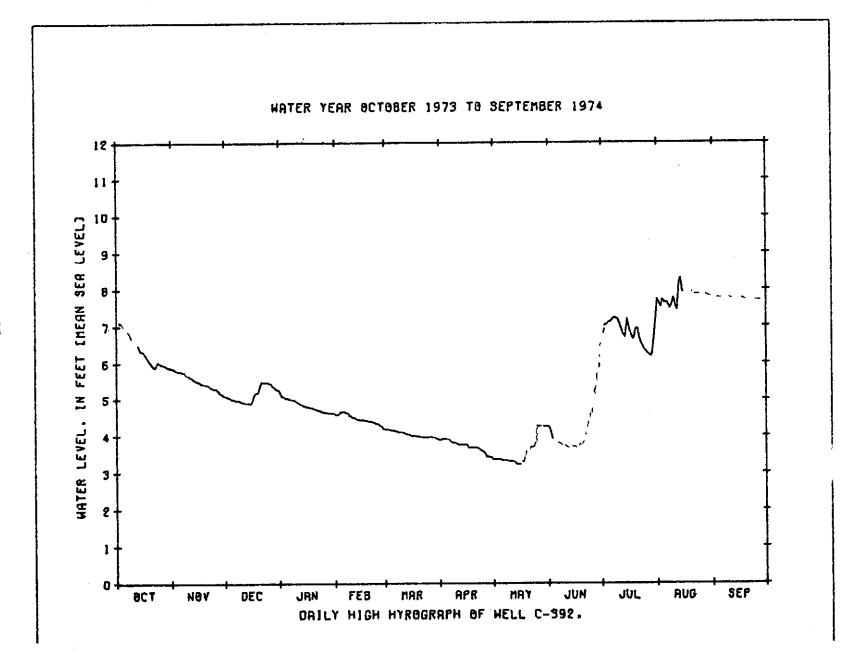


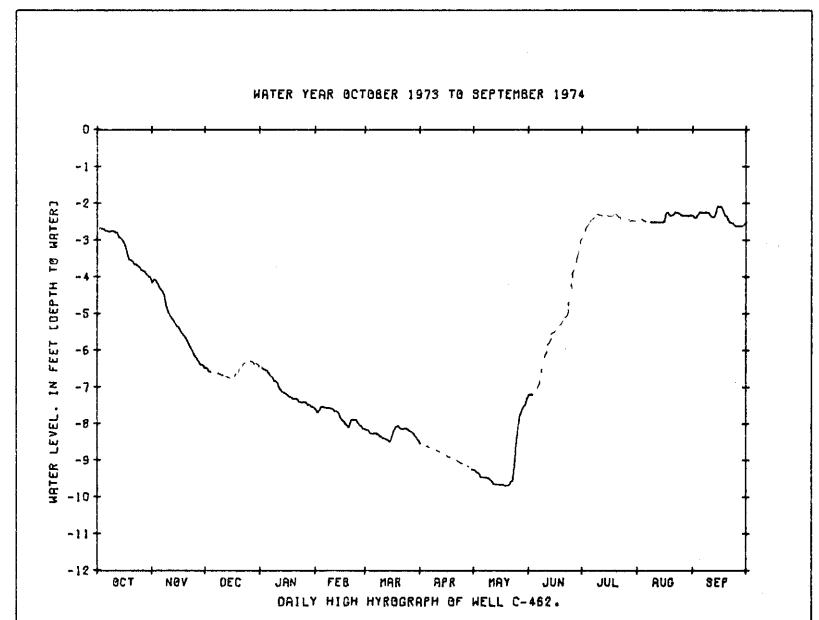


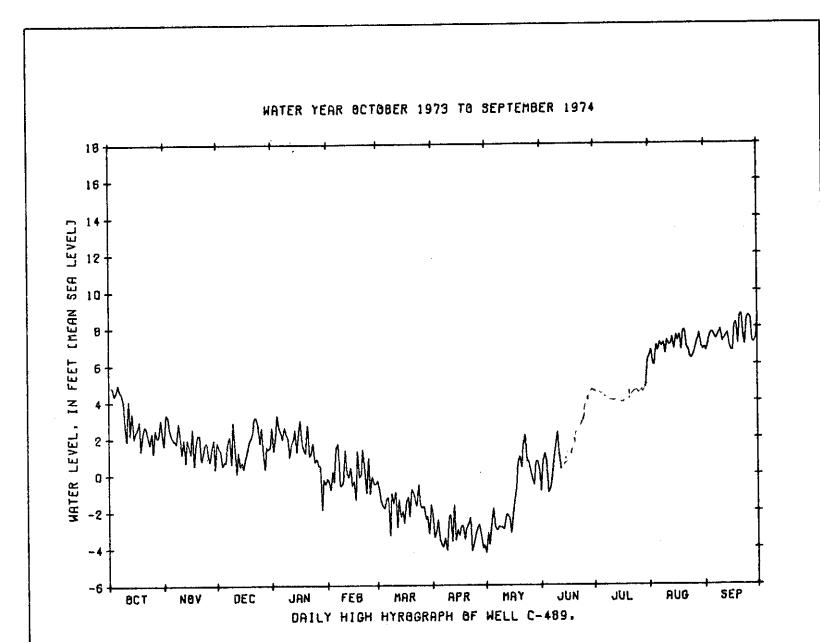


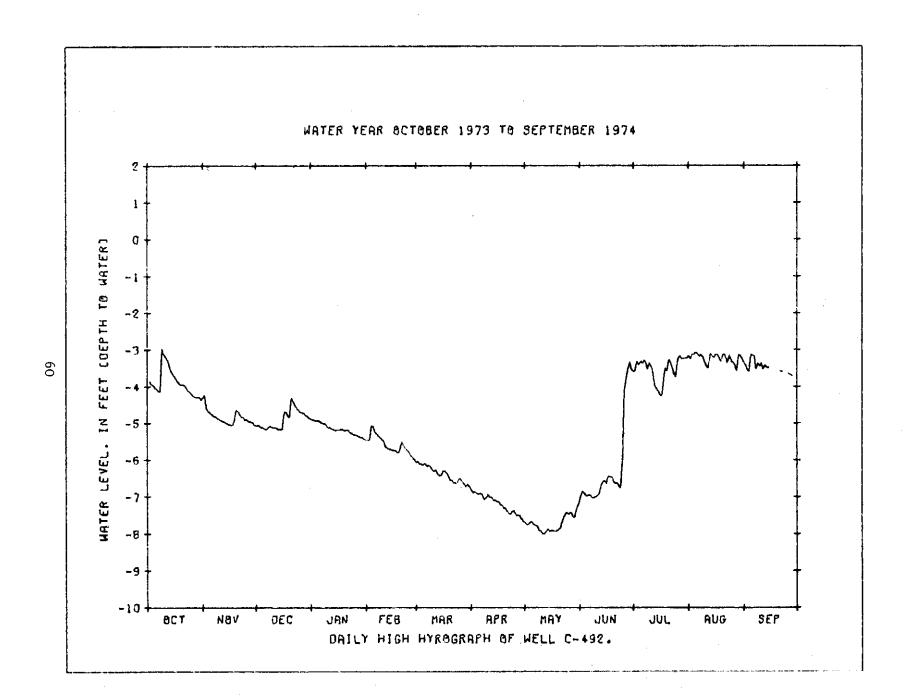


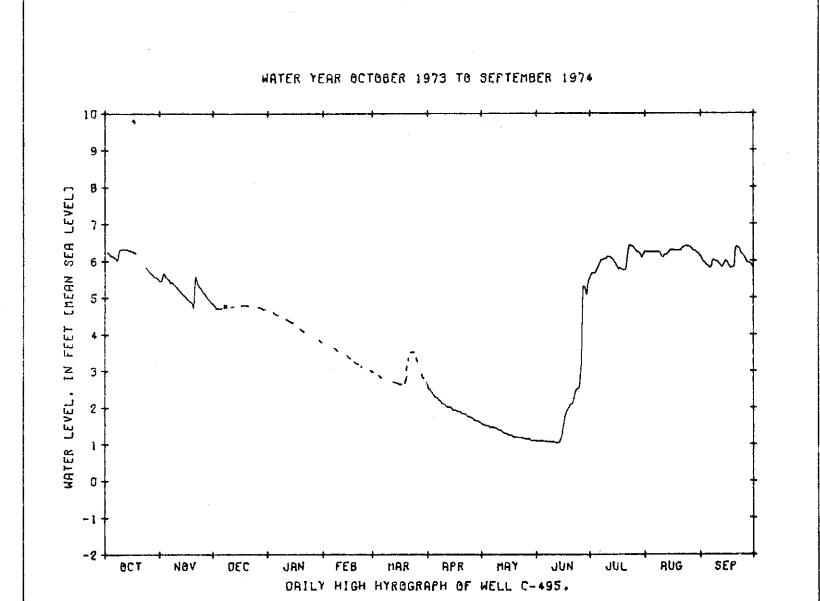


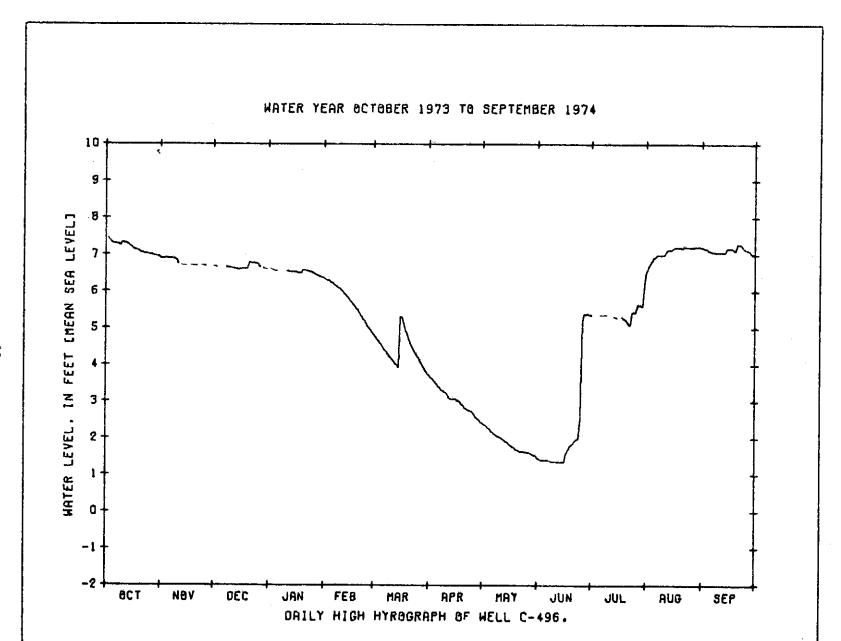


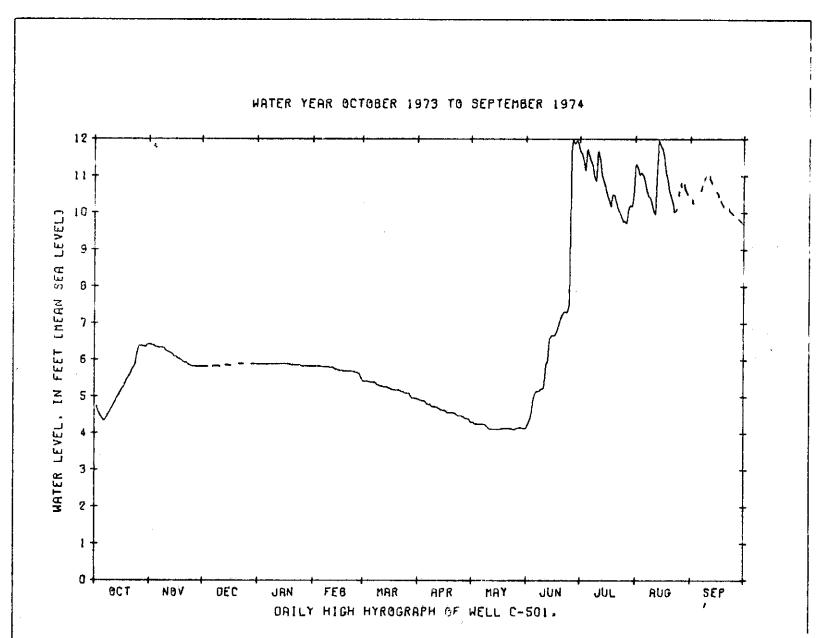


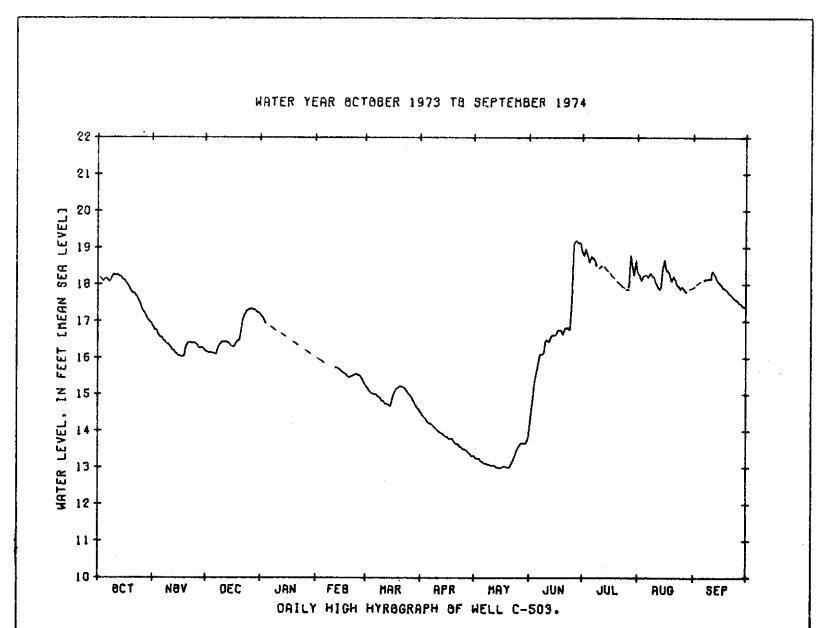


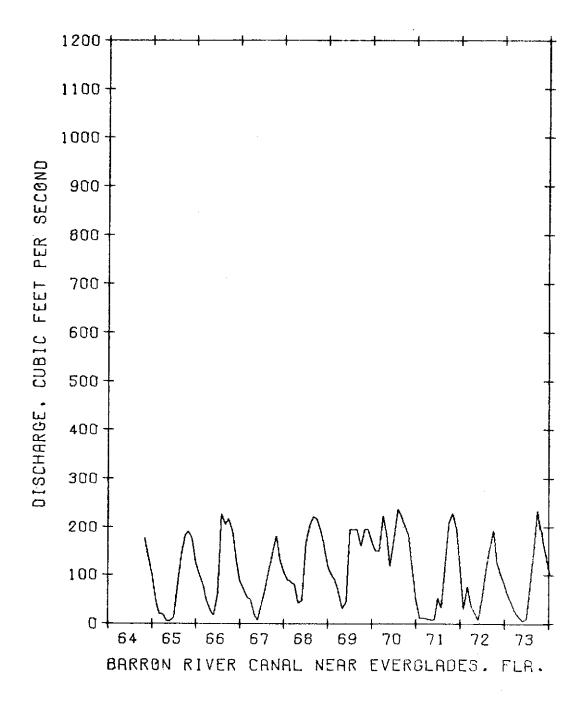


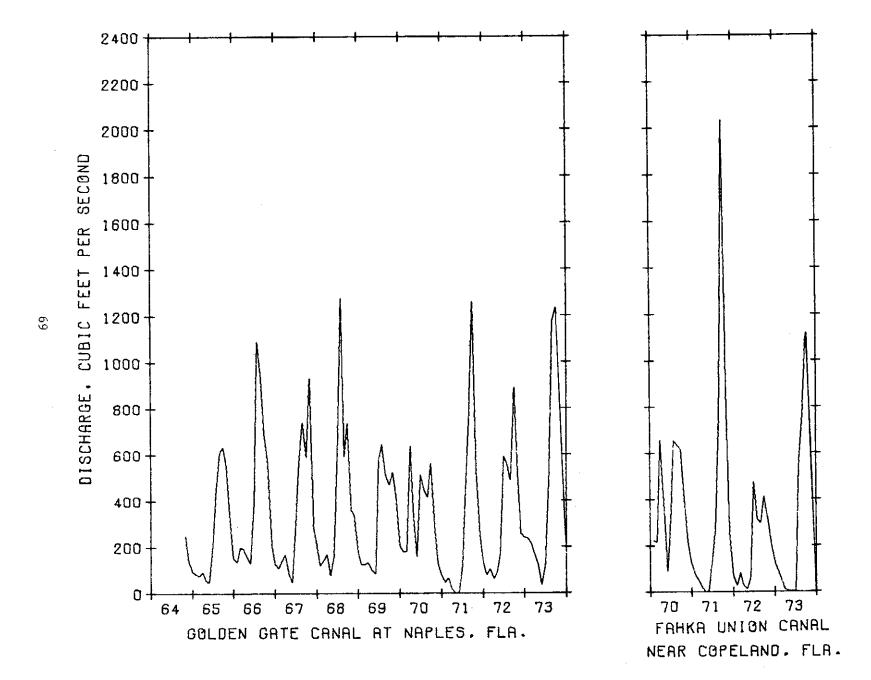


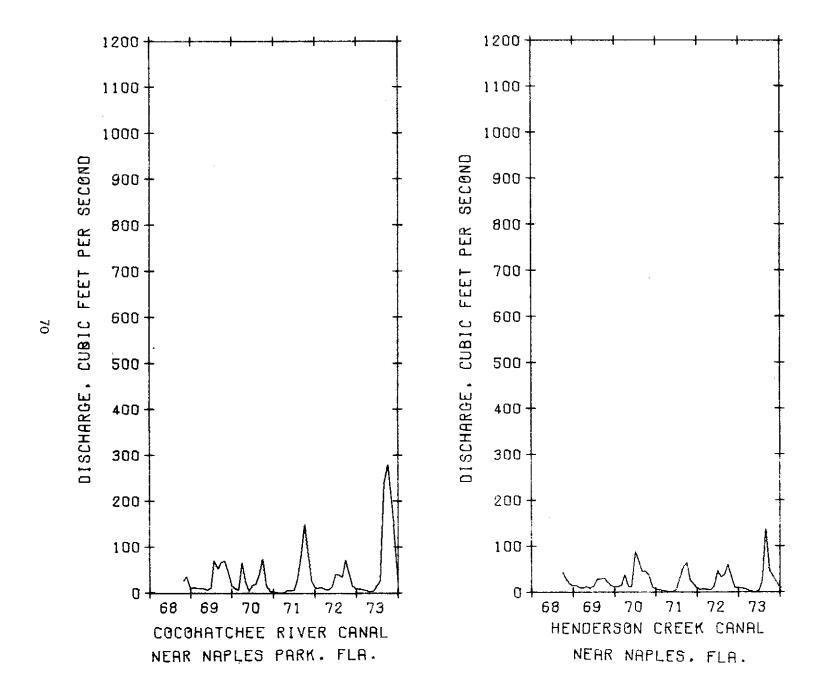


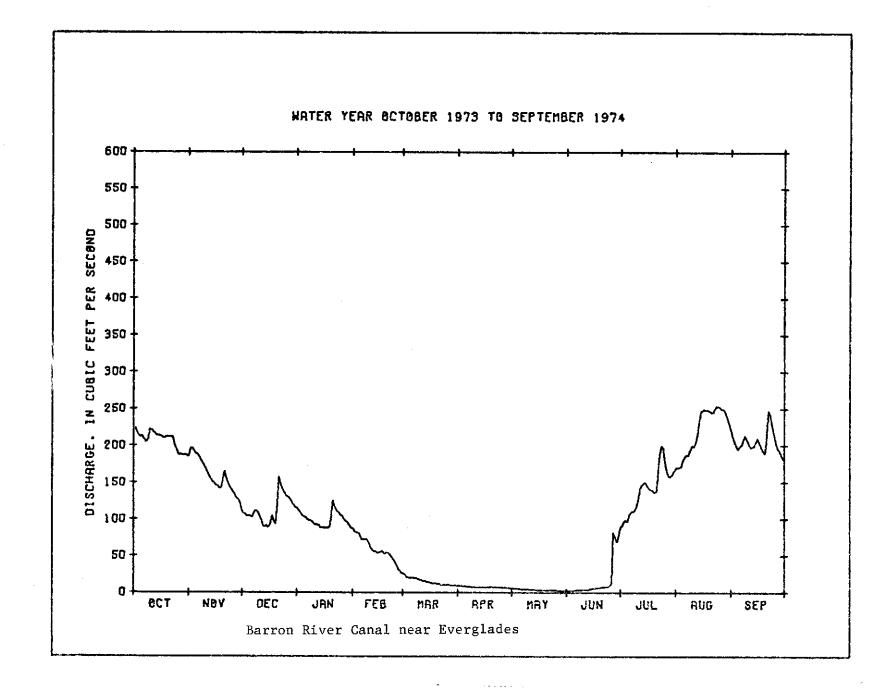


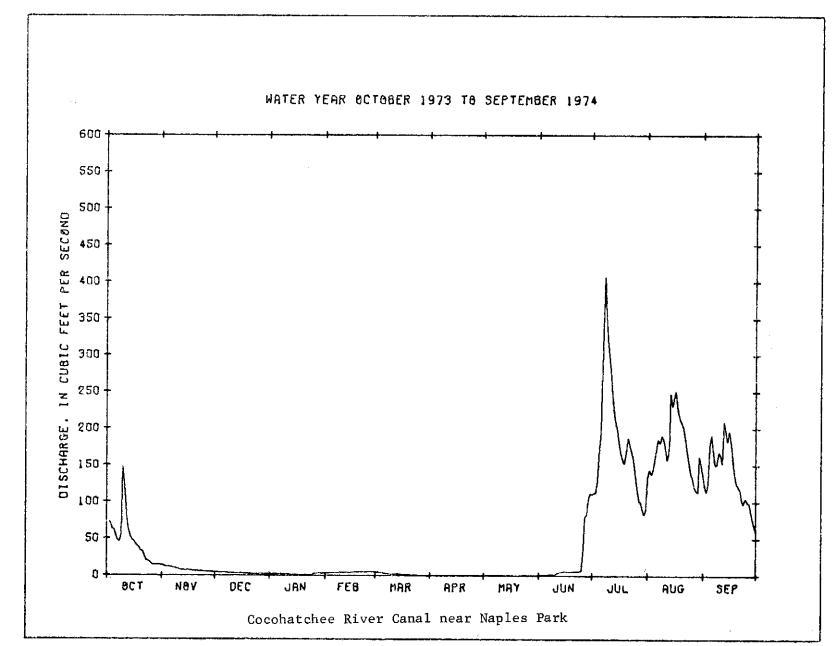


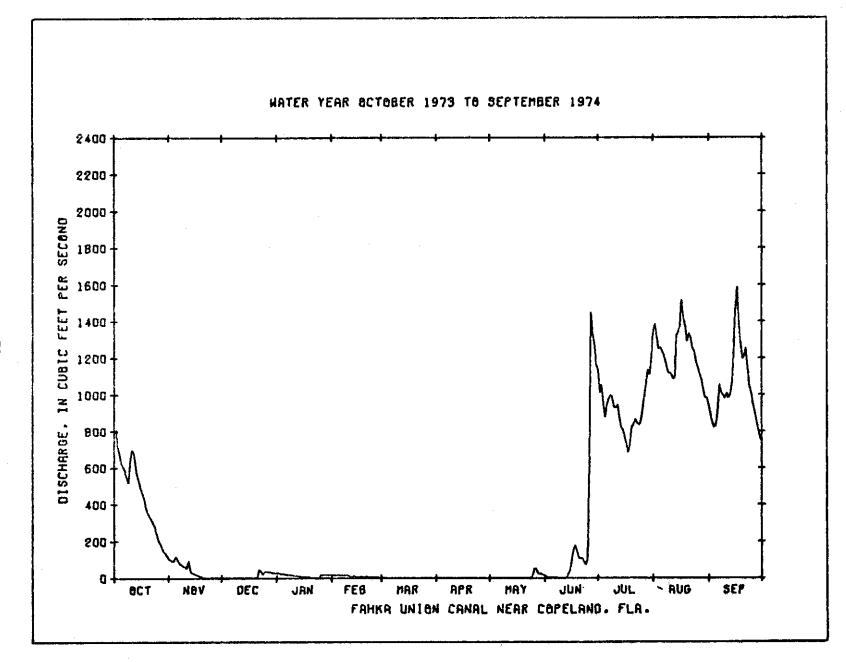


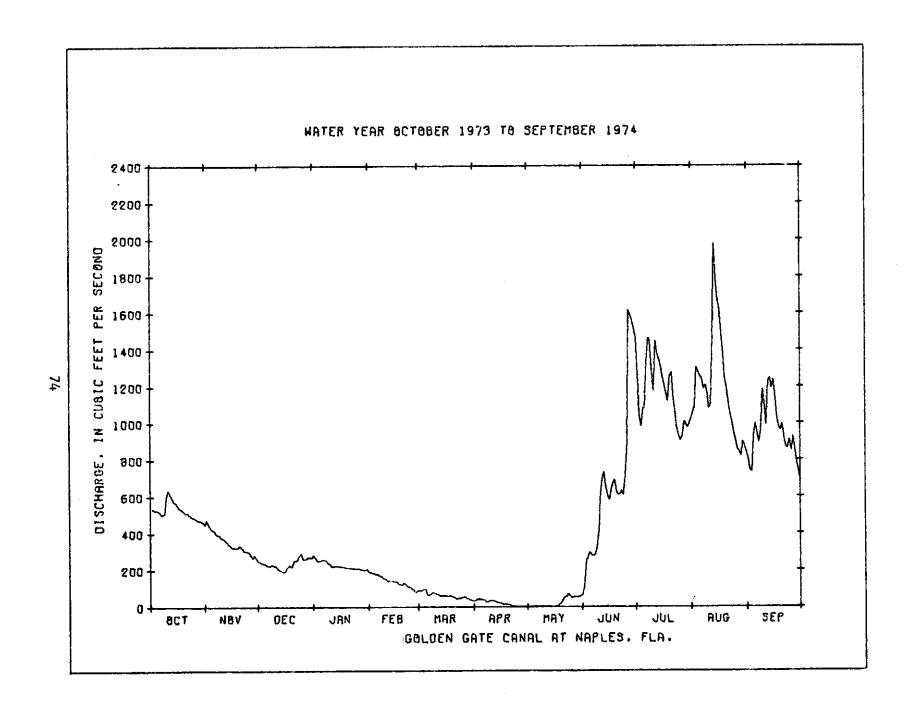


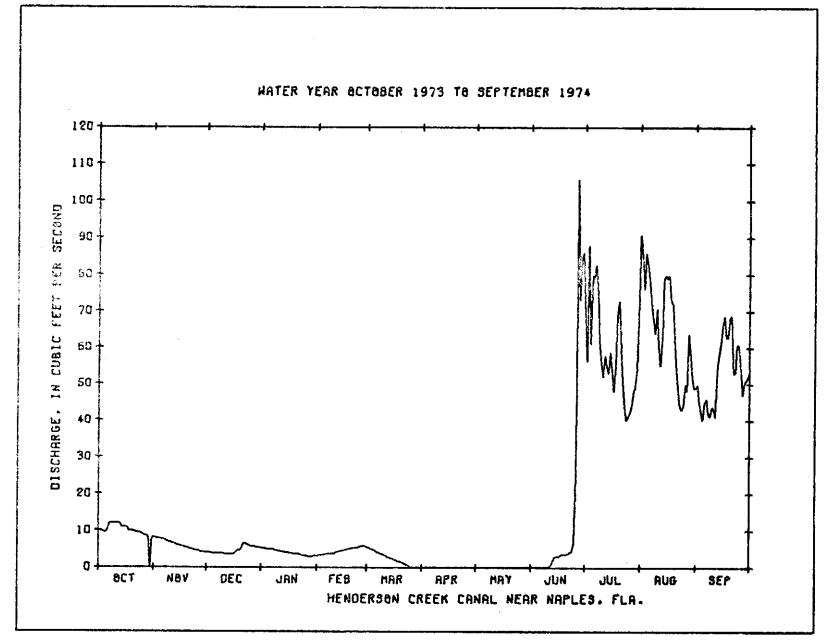


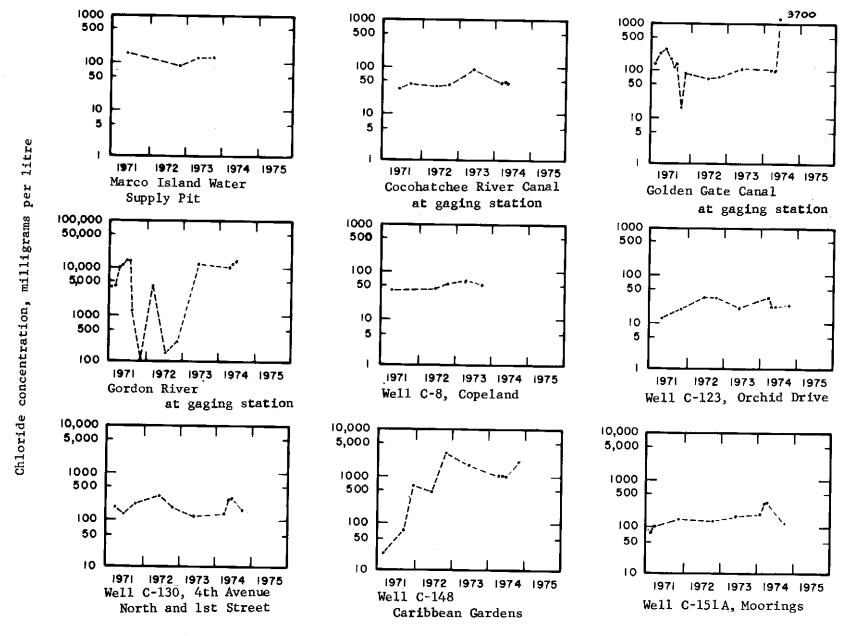

BASIC DATA - Section B Canal Discharge Hydrographs


Canal	Page				
Barron River Canal nr Everglades, Fla., 1964-73 water years	68				
1974 water year	71				
Golden Gate Canal at Naples, Fla., 1964-73 water years	69				
1974 water year	74				
Fahkas Union Canal nr Copeland, Fla., 1970-73 water years	69				
1974 water year	73				
Cochatchee River Canal nr Naples Park, Fla., 1968-73 water					
years	7 0				
1974 water year	72				
Henderson Creek Canal nr Naples, Fla., 1968-73 water years	7 0				
1974 water year	75				



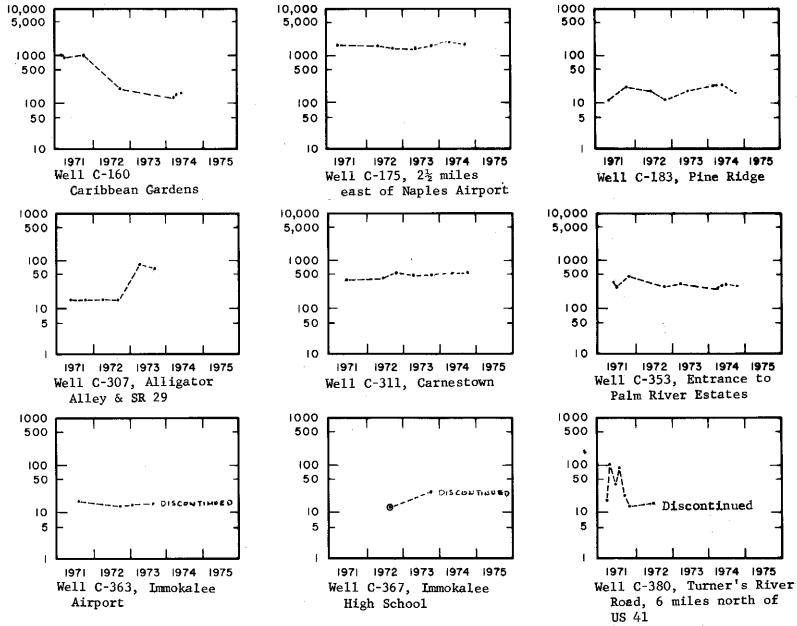




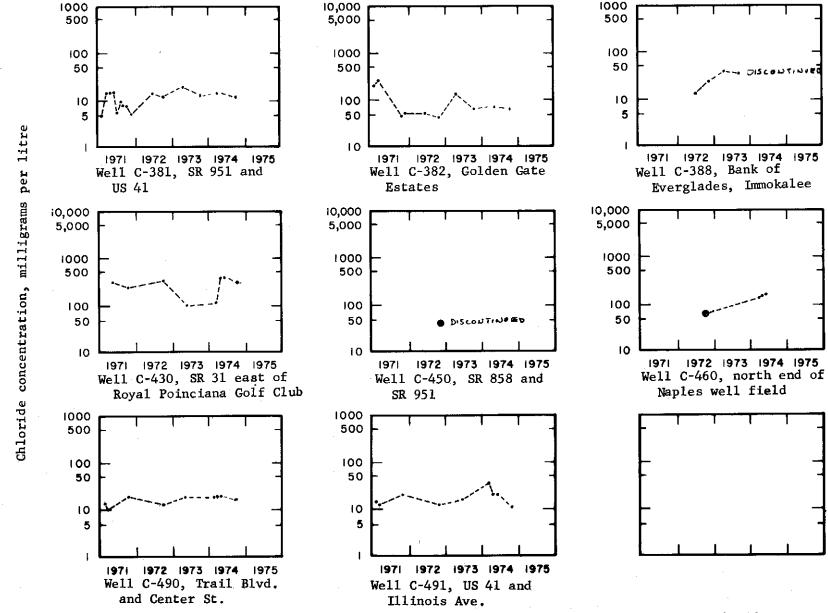


BASIC DATA - Section C
Chloride Concentration Graphs

Chloride content of water from ground- and surface-water sites, Collier County, Fla.


litre

per


milligrams

concentration,

Chloride

Chloride content of water from ground- and surface-water sites, Collier County, Florida

Chloride content of water from ground- and surface-water, sites, Collier County, Florida

BASIC DATA - Section D Extended Chemical Analyses at Canal Study Sites

Site

Site		
Number	Location	Page
1	GORDON RIVER, upstream of control at SR 951	81
2	GOLDEN GATE CANAL, at SR 858 Bridge	82
4	GOLDEN CATE CANAL TRIBUTARY, at Golden Gate	83
	Blvd. Bridge, 12 miles NE of Naples	
5	GORDON RIVER CANAL, at Solano Rd. Ext.	84
	Bridge (Royal Poinciana Golf Course)	
Note:	Site 3, GORDON RIVER, at US Hwy 41 was replaced	
	by Site 5.	

SELECTED WATER-QUALITY PARAMETERS AT CANAL SITES IN NAPLES VICINITY, 1974, WITH AVERAGES AND EXTREMES.

Canal Site: GORDON RIVER, upstream of control at SR 951 (#1)

					OI COMOI		es Prior		
PARAMETER		19	74		Maxim	um	Mini	mum	Average
(Milligrams per litre except where noted)	Jan 30	May 7	July 31	Dec 11	Value	Date	Value	Date	
Specific conductance (micromhos)	12,700	41,500	770	1,200	34,000	6/71	745	6/72	9,760
рH	7.6	7.6	7.5	7.5	8.3	12/72	7.2	10/71	,
Color (Cobalt-platinum units)	1	40	50	30	120	6/72	20	2/71	48
Iron 1/		0.43	0.18	0.38	0.34	9/73	0.02	2/71	0.13
Calcium	ŀ	190	100	130	370	6/71	80	6/72	177
Magnesium	}	1,200	10	20	820	9/73	9	9/72	230
Strontium	1	7.2	0.63	0.78	4	9/73	0.5	6/72	1.6
Sodium	i	9,500	56	110	7,000	6/73	48	2x	2,070
Potassium	•	400	3, 2	6.5	270	6/73	1.4	9/72	74
Bicarbonate	284	192	216	276	276	12/73	188	6/72	240
Sulfate		2,500	77	100	1,700	2x	56	10/70	530
Ch1oride	I	17,000	110		12,000	3x	95	6/72	3,645
Fluoride		1.0	0.1	0.2	2.0	9/72	0.1	9/73	0.6
Phosphorus (ortho)	0.06	0.20	0.04	0.01	0.30	6/71	0.01	6 x	0.06
Do (total)	0.08	0.23	0.06	0.02	0.33	6/71	0.01	9/72	0.08
Alkalinity (as CaCO ₂)	ļ	157	177	226	227	12/72	154	6/72	196
Hardness (as CaMg)		5,400	. 290	410	4,200	2x	240	6/72	1,397
Do (as noncarbonate)		5,300	110	180	4,000	2x	83	6/72	1,195
Dissolved solids (residue @ 180°C)		32,500	506	830			480	6/72	
Do (calculated sum)		30,900	471	731	22,100	6/73	401	6/72	6,876
Zinc		0.11	0.03	0.5	0.09	6/71	0	2x	0.03
Lead		0.015		0.012	0.01	2/71	0	5 x	0.002
Copper		0.005	0.006	0.011	0.050	3/71	0	4x	0.012
Chromium		0	0.001	Ö	0	·	0		0
Arsenic		0.002	0	0.002	0.04	6/71	0.01	6 x	0.02
MBAS (detergents)		0.62	0.06	0.10	0.36	3/71	0	2x	0.09
Ammonium nitrogen	0.08	0.24	0.04	0.02	0.30	6/72	0	10/70	0.08
Nitrate nitrogen	0.08	0.02	0.09	0	0	-	0	,	0
Nitrite nitrogen	0.01		0.02	0	0.03	10/70	0	6 x	0.01
Total organic nitrogen	. 0.73	1	0.75	0.70	1.10	3/73	0.36	2/71	0.70
<pre>1/values for all metals are report ed in the dissolved state</pre>									

Ö

SELECTED WATER-QUALITY PARAMETERS AT CANAL SITES IN NAPLES VICINITY, 1974, WITH AVERAGES AND EXTREMES.

Canal Site: GOLDEN GATE CANAL, at SR 858 Bridge (#2)

						Valu	es Prior	to 1974	
PARAMETER		19	74		Maxim	um	Mini	mum	Average
(Milligrams per litre except where noted)	Jan 30	May 7	July 31	Dec 11	Value	Date	Value	Date	
Specific conductance (micromhos)	810	2,840	655	700	990	1/72	670	10/71	805
он	7.5	7.7	7.4	6.4	8.4	12/72	7.2	10/71	İ
Color (Cobalt-platinum units)	80	50	80	90	160	6/12	35	6/71	66
Iron 1/	0.78	0.58	1.2	1.5	1.36	6/72	0.04	2/71	0.55
Calcium	130	75	130	140	140	1/72	98	6/73	121
Magnesium	7.1	51	6.8	4.8	11	6/71	4.8	10/71	7.6
Strontium	1.0	0.83	0.5	0.40	1.3	3/73	0.44	10/71	0.65
Sodium	36	430	22	20	66	6/73	21	10/71	39
Potassium	1.3	18	1.1	0.7	1.8	6/72	0.8	10/70	1.3
Bicarbonate	328	324	280	334	348	2/71	288	6/73	312
Sulfate	68	140	75	68	89	1/71	60	6/72	69
Chloride	61	700	38	32	120	6/71	34	10/71	70
Fluoride	0.3	0.3	0.2	0.2	0.3	7x	0.2	6 x	0.25
Phosphorus (ortho)	0.02	0.01	0.03	0.01	0.02	6/73	0.0	10/7 0 9 / 7:	3 0.01
Do (total)	0.04	0.03	0.06	0.01	0.06	2/71	0.1	4x	0.03
Alkalinity (as CaCO ₂)	268	266	230	274	285	2/71	236	6/73	257
Hardness (as CaMg)	350	400	350	370	391	1/72	280	6/73	333
Do (as noncarbonate)	86	130	120	96	108	1/72	44	6/73	76
Dissolved solids (residue @ 180°C)	553	1,800	352	532	650	1/72	412	10/71	530
Do (calculated sum)	473	1,580	419	438	555	1/72	397	10/71	471
Zinc	1 0	0.04		0.37	0.07	6/71	0.0	3x	0.02
Lead		0.015		0.016	0.030	3/71	0.00	3 x	0.01
	0	0.005		0.01	0.01	3x	0.00	8x	0.00
Copper Chromium	l ő	0	0	0	0.010	2/71	0.000	10x	0.000
	0	1 -	0.005	0.002	0.02	3&6/71	0.00	4x	0.01
Arsenic		0.18		0.1	0.09	3/71 3/72		10/7012/7	20.04
MEAS (detorgents)	0.05	0.06	1	0.05	7.8	3/71	0.01	10/70	0.70
Ammonium nitrogen	0.08	0	0.36	0.07	0.1	3 x	0.0	6 x	0.04
Nitrate nitrogen	0.03	_	0.02	0.01	0.03	3/73		t	ì
Nitrite nitrogen	0.69	0.81	0.02	0.66	1.20	$\frac{3}{1}$	0.0 0.31	4x 2/71	0.01 0.75
Total organic nitrogen $\frac{1}{2}$ /values for all metals are report ed in the dissolved state	į.	0.01	0.00	0,00	1,20	1,12	0.51	2,11	3.,3

SELECTED WATER-QUALITY PARAMETERS AT CANAL SITES IN NAPLES VICINITY, 1974, WITH AVERAGES AND EXTREMES.

Canal Site: GOLDEN GATE CANAL TRIBUTARY, at Golden Gate

	Blvd.	Bridge,	12 mile	s NE of	Naples (#4) Value	es Prior	to 1974	
PARAMETER		19			. Maxim		Mini		Average
(Milligrams per litre except where noted)	Jan 30	May 7	July 31	Dec 11	Value	Date	Value	Date	
Specific conductance (micromhos)	620	735	525	640	694	1/72	500	6/73	632
pH	7.3	7.3	7.3	7.4	8.4	12/72	7.0	10/71	
Color (Cobalt-platinum units)	100	60	100	100	160	6/72	60 3	/ 7 1 6/73	
Iron 1	4.8	2.6	1.2	1.9	1.9	9/73	0.12	2/71	0.86
Calcium	120	78	120	140	130	2/71	92	6/75	112
Magnesium	4.2	5.3	4.0	5.2	5.2	2/71	3.1	9/72	4.0
Strontium		0.67	0.50	0.43	0.74	9/72	0.02	3/72	0.45
Sodium	15	19	8	13	30	9/72	12	9/73	16
Potassium	0.6	0.4	0.6	0.6	1.2	9/73	0.2	6/73	0.6
Bicarbonate	324	376	308	324	348	2/71	244	6/73	305
Sulfate	47	88	59	60	84	10/71	34	9/73	50
Chloride	19	22	16	18	28	10/70	15	6/73	21
Fluoride	0.3	0.3	0.2	0.3	0.4	2&6/73	0.2	6 x	0.3
Phosphorus (ortho)	0.02	0.01	0.03	0.01	0.1	8x	0.0	5 x	0.01
Do (total)	0.06	0.04	0.06	0.01	0.5	2/71	0.01	0/703/73	
Alkalinity (as CaCO ₂)	263	308	253	266	285	2/71	200	6/73	252
Hardness (as CaMg)	320	220	320	370	350	2/71	250	6/73	297
Do (as noncarbonate)	54	0	63	100	91	10/71	8	7/72	46
Dissolved solids (residue @ 180°C)	424	490	366	502	468	10/70	313	6/73	406
the contract of the contract o	370	480	372	404	420	2/71	300	6/73	367
•	Ō	0.03	0.05	1.7	0.11	3/71	0.00	3 x	0.03
Zinc		0.012	0.004	0.009	0.011	1/72	0.000	5 x	0.003
Lead	0	0.005	0.006	0.011	0.01	3x	0.00	10x	0.00
Copper	0	0	0	Ö	0.05	2/71	0.00	11x	0.00
Chromium	0.00	0	0.002	0.001	0.01	8x	0.00	4x	0.00
Arsenic		0.11	0.07	0.1	0.11	3/72	0.00 1	0/71 12/7	
MEAS (detergents)	0.05	0.03	0.04	0.05	7.5		0.00	10/70	0.62
Ammonium nitrogen	0.03	0	0.06	0.07	0.1		0.00	10x	0.02
Nitrate nitrogen	0.01	0	0.02	0.01	0.3	1	0.00	6 x	0.01
Nitrite nitrogen	0.84	1.1	0.9	0.85	2.7	3/71	0.37	2/71	0.94
Total organic nitrogen	1 i	1.1	0.9	0.00]	'''' \		
1/values for all metals are report						1			
ed in the dissolved state	Į '	•			-	-	-	-	•

SELECTED WATER-QUALITY PARAMETERS AT CANAL SITES IN NAPLES VICINITY, 1974, WITH AVERAGES AND EXTREMES.

Canal Site: GORDON RIVER CANAL, at Solano Rd. Ext. Bridge

	,	(KOY	ir roruci	Lana GOI	f Course)	VI VE	lues Pri	or to 19	74
PARAMETER		19	74		Maxim	ım	Mini	mum	Average
(Milligrams per litre except where noted)	Jan 30	May 7	July 31	Dec 11	Value	Date	Value	Date	
Specific conductance (micromhos)	990		535	920	920	3/73	405	6/72	699
pH	7.2		7.6	7.4	8.3	12/72		/72 3/73	
Color (Cobalt-platinum units)	10		40	8	160	6/72		7 2 12/72	
Iron $\frac{1}{}$	0		0.15	0.250	0.43	6/72	0.02	3/73	0.18
Calcium	110		85	120	100	6/73	53	6/72	7 9
Magnesium	26		5	12	18	6/73	3.4	6/72	9.0
Strontium	1.0		0.53	0.70	1.0	6/73	0.36	72 9/72	0.6
Sodium	170	- -	24	58	78	6/73	17	6/72	48
Potassium	6.3		2	2.5	6.0	3/72	16	9/73	2.8
Bicarbona te	244		208	208	256	12/72	140	6/72	199
Sulfate	25		57	38	39	9/73	23	6/72	30
Chloride	190		45	140	190	6/73	35	6/72	103
Fluoride	0.2		0.2	0.2	0.6	3/73	0.2	9/73	0.3
Phosphorus (ortho)	0.01		0.02	0	0.07	6/72	0.0	6x.	0.01
Do (total)	0.04		0.06	0,01	0.10	6/72	0.0	3/73	0.03
Alkalinity (as CaCO ₂)	198		171	230	210	12/72	115	6/72	163
Hardness (as CaMg)	380		230	350	320	6/73	150	6/72	234
Do (as noncarbonate)	180		63	120	120	6/73	32	6/72	70
Dissolved solids (residue @ 180°C)	614		392	526	668	6/73	267	6/72	454
Do (calculated sum)			328	522	570	6/73	210	6/72	381
Zinc	0		0.040	0.44	0.03	9/72		/72 12/72	
Lead				0.008	0.008	9/73	0.000	3x	0.002
Copper	0		0.006	0.007	0.01	9/73	0.00	7x	0.00
Chromium	0		0 1	0	0.002	3/73	0.000	6 x :	0.000
Arsenic	0		.16	0.005	0.02	6/72	0.00	3x	0.01
MBAS (detergents)			0.07	0	0.09	6/73		72 12/7	
Ammonium nitrogen	0.01		0.02	0.04	0.09	6/72	0.01	3/72	0.04
Nitrate nitrogen	0		0.06	0	0		0		0
Nitrite nitrogen	0.01		0.01	0	0.02	6/72	0	6 x	0.00
Total organic nitrogen	0.47		0.78	0.41	1.50	3/73	0.29	1/72	0.93
1/values for all metals are report ed in the dissolved state		i							

84

BASIC DATA - Section E

Pesticide Analyses at

Canal Study Sites

(See section D for

site locations)

PESTICIDE ANALYSES Water samples in micrograms per litre (ug/1)

																				······	
SITE	DATE	Aldrin	ممم	DDE	DÙT	Dieldrin	Diazinon	Endrin	Heptachlor	Lindane	Malathion	Parathion	Methyl- parathion	Ethion	Trithion	2,4-D	2,4,5-T	Silvex	Methyl- trithion	Chlordane Estimate	PCB Estimate
# 1 Gordon River @ SR 951 Bridge	2- 4-71 6-22-71 1-20-72 6-26-72 12- 7-72 6- 7-73 1-30-74 7-31-74	0.00	0.00	0.0000000000000000000000000000000000000	0.0000000	0.0	.0.0.01	0.0	0.0	0.0			. 00000	00000		0.0	0.00	0.0		.000000	- 0 00 0

PESTICIDE ANALYSES Bottom sediments in micrograms per kilogram (ug/kg)

SITE	DATE	Aldrin	מממ	DDE	DDT	Dieldrin	Diazinon	Endrin	Heptachlor	ไว้บิงอิกะ	Malathion	Parathion	Methyl- parathion	Ethíon	Trithion	2,4-D	2,4,5-T	Silvex	Methyl- trithion	Chlordane Estimate	PCB Estimate
# 1 Gordon River @ SR 951 Bridge	2- 4-71 6-22-71 1-20-72 6-26-72 6- 7-73 / 1-30-74 7-31-74	0.00	0.00 9.0 .4 .5 3.0	0.6 2.9 Trace .6 3.3 1.4	0.0 1.2 0 0 .9	0.0 .0 .1 .1 .2 .6		0.0	0.0	0000000						0.0	,0.0			12.0 13 24 3 330	O trace O
87																					٠

PESTICIDE ANALYSES

Water samples in micrograms per litre (ug/1)

SITE	DATE	Aldrin	موم	DDE	DDT	Dieldrin	Diazinon	Endrin	Heptachlor	Lindane	Malathion	Parathion	Methyl- parathion	Ethion	Trithion	2,4-D	2,4,5-T	Silvex	Methyl- trithion	Chlordane Estimate	PCB Estimate
# 2 Golden Gate Canal @ SR 858 Bridge	2- 4-71 6-22-71 1-20-72 6-26-72 12- 7-73 1-30-74 7-31-74	.0.0.0	0.00.00.00.000.000000000000000000000000	0.000.000000000000000000000000000000000	0.000.000.00000000000000000000000000000	000000000000000000000000000000000000000	0	.00.00.00	000000000000000000000000000000000000000	.00.0	.0.0.0	.00.0	- - .06	.00		.01	.0 .0	.0.00	00	- 00 00	

PESTICIDE ANALYSES Bottom sediments in micrograms per kilogram (ug/kg)

SITE	DATE	Aldrín	ססס	DDE	DDT	Dieldrin	Diazinon	Endría	Heptachlor	Lindane	Malathion	Parathion	Methyl- parathion	Ethion	Trithion	2,4-D	2,4,5-T	Silvex	Methyl- trithion	Chlordane Estimate	PCB Estimate
# 2 Golden Gate Canal @ SR 858 Bridge	2- 4-71 6-22-71 1-20-72 6- 7- 73 1-30-74 7-31-74	0.0000		6.3 .4 4.7 17 3	8.1 .0 .2 7.4	0.0 .0 1.1 0.2 .0		0.0	0.0	0.0						0.0 - - -	0.0 - -	0.0		- - 15 8	trace
89																					
[:															

PESTICIDE ANALYSES Water samples in micrograms per litre (ug/l)

SITE	DATE	Aldrin	מממ	DDE	Dór	Dieldrin	Díazinon	Endrin	Heptachlor	Lindane	Malathion	Parathion	Methyl- parathion	Ethlon	Trithion	2,4-D	2,4,5-T	Silvex	Methyl- trithion	Chlordane Estimate	PCB Estimate
# 4 Golden Gate Tributary Canal	2- 4-71 6-22-71 1-20-72 6-26-72 12- 7-72 6- 7-73 1-30-74 7-31-74	.0 .0 .0 .0 .0	.0	000000000000000000000000000000000000000	.0	.0	.0.0.0.0.00	.00.00.00.00	.0	.0	.00.0	.0.0	.00.0	.00	.0	.0 - .55 .02 .02	.0	.01	.0.0.0	000000000000000000000000000000000000000	.0.0.0

PESTICIDE ANALYSES Bottom sediments in micrograms per kilogram (ug/kg)

					,			<u> </u>			·		gram (-61 **67							
SITE	DATE	Aldrin	ववव	DDE	DDT	Dieldrin	Diazinon	Endrin	Heptachlor	Lindane	Malathion	Parathion	Methyl- parathion	Ethion	Trithion	2,4-D	2,4,5-T	Silvex	Methyl- trithion	Chlordane Estimate	PCB Estimate
# 4 Golden Gate Tributary Canal	2- 4-71 6-22-71 1-20-72 6-26-72 6- 7-73 1-30-74 7-31-74	.0 .0 .0	2.1 5.2	3.0 .4 .0	200	.0 1.5 .0 .3 .0 .0	0.0	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0						0.0	0.0	0.0	- - - -	- - - 150.0 .0 150 .0	.0.0.0

PESTICITE ANALYSES

Water samples in micrograms per litre (ug/l)

										-											
SITE	DATE	Aldrin	מממ	DDE	DD/C	Dieldrin	Diazinon	Endrin	Heptachlor	Lindane	Malathion	Parathion	Methyl- parathion	Ethion	Trithion	2,4-D	2,4,5-T	Silvex	Methyl- trithion	Chlordane Estimate	PCB Estimate
# 5 Gordon River Canal @ Solarno Rd Ext.	1-20-72 6-26-72 12- 7-72 6- 7-73 1-30-7, 7-31-74	0.0	0.0	0.0	.00.00	0.0	.0 .0 .0 .0	.0.0	.0	.0	.0.0	.0 .0 .0	.0.0.0	.0 .0 .0	.00.00	.0		.0	.00.11.0	0.0	- .0 .0

PESTICIDE ANALYSES Bottom sediments in micrograms per kilogram (ug/kg)

SITE	DATE	Aldrin	מממ	DDE	DDT	Dieldrin	Diazinon	Endrin	Heptachlor	Lindane	Malathion	Parathion	Methyl- parathion	Ethion	Trithion	2,4-D	2,4,5-I	Silvex	Methyl- trithion	Chlordane Estimate	PCB Estimate
# 5 Gordon River Canal @ Solarno Rd Ext.	1-20-72 6-26-72 6-27-73 1-30-74	0.0		0.5 .9 1.7 .0	0.0	0.5	0.0	.0	0.0	.0	-	-		1	5 1 1	-	-	-	-	150.0	-

BASIC DATA - Section F

Coliform, BOD, and Carbon

Analyses at Canal Study Sites

(See section D for site locations)

GORDON RIVER	STATION CORDON RIVER at S.R.951 bridge		Colo	BACTERL in. nies per 100			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BIOCHEMICAL OXYGEN DEMAND (BOD) in		Milligran	CARBON in is per litre	
I.D. NUMBER	site number	DATE	Total Coliform	Fecal Coliform	Fecal Strop- tococci	FC/FS Ratio	DATE	Milligrams per litre		Total	Organic	Inorganic
022912.80	#1	2- 5-71 3-30-71 6-22-71 10-14-71 1-20-72 3-30-72	2,600 1,750 750 4,000 4,200 2,640	800 10 30 170 200 100			2- 4-71 6-22-71 10-14-71 1-20-72	0.9 7.3 1.5 2.9	2- 4-71 3-30-71 6-22-71 1-20-72 3-30-72	61 73 60 67 77	11 36 21 12 19	50 37 39 55 58
		9- 6-72 12- 7-72 3- 5-73 3- 6-73 6- 7-73 9 20-73 1 30-74 5- 7-74 7-31-74 12-11-74	2,000 1,700 2,800 120 180 1,700 650 1,600 800	50 80 90 50 0 10 370 88 432 260	330 80 40 12 240 134 4 432 62	0.2	12- 7-72 3- 5-73 6- 7-73 9 20-73 1-30-74 5-7-74 7-31-74 12-11-74	3.6 3.9 2.5 1.4 2.1 1.6 1.8	12- 7-72 6- 7-73 9 20-73 1-30-74 5-7-74 7-31-74 12-11-74	75 59 54 76 47 57 68	18 6 14 10 4 33	67 41 48 62 37 53 35

STATION GOLDEN CATE CANAL at S.R.858 bridge			EACTERIA in. Colonies per 100 millilitræ;					BIOCHEMICAL OXYGEN DEMAND (BOD) in		CARBON in Milligrams per litcm		
I.D. NUMBER	SITE NUMBER	DATE	Total Coliform	Fecal Coliform	Fecal Strep- tococci	FC/FS Ratio	DATE	Milligrams per litre	DATE	Total.	Organic	Inorganic
022913.00	#2	2-5-71 3-30-71 6-22-71 10-14-71 1-20-72 3-30-72 9-6-72 12-7-72 3-5-73 3-6-73 6-7-73 9-20-73 1-30-74 5-7-74 7-31-74 12-11-74	3,000 1,300 4,450 5,400 8,200 10,800 220 720 2,600 -1,900 850 1,100 3,300	10 40 20 75 32 179 15 190 0 10 32 20 36 30 28 10	320 10 40 232 60 18 20 100 8	0.5 .2 .13 .33 2.0 1.5	2- 4-71 6-22-71 10-14-71 1-20-72 12- 7-72 3- 5-73 6- 7-73 9-20-73 1-30-74 5-7-74 7-31-74 12-11-74	1.1 1.2 .8 .8 .44 1.3 .7 1.4 .9	2- 4-71 3-30-71 6-22-71 1-20-72 3-30-72 12- 7-72 6- 7-73 9-20-73 1-30-74 5-7-74 7-31-74 12-11-74	53 70 66 120 84 74 68 72 88 80 74 83	16 20 15 50 14 1 1 14 5 18 18 12 14	37 50 51 70 70 73 54 67 70 62 62 69

STATION GOLDEN CATE TRIBUTARY CANAL at Colden Gate Blvd, bridge,			BACTERIA in Colonies per 100 millilitres					BIOCHEMICAL OXYGEN DEMAND (BOD) in	,	CARBON in Milligrams per litre		
(I.D. NUMBER S	ITE NUMBER	DATE	Total Coliform	Fecal Coliform	Fecal Strop- tococci	FC/FS Ratio	DATE	Milligrams per litre	DATE	Total.	Organic	Inorganic
2613350811352.00	#4	2- 5-71 3-30-71 6-22-71 10-14-71 1-20-72 3-30-72 9- 6-72 12- 7-72 3- 5-73 3- 6-73 3- 6-73 3- 6-73 3- 7-74 5- 7-74 7-31-74 12-11-74	2,600 2,800 1,800 1,250 2,450 6,900 380 1,080 740 3,500 90 2,700 1,100 2,300 300	10 0 6 10 32 13 5 0 30 0 8 0 2 -	0 10 0 20 10 4 4 310 10	3.0 .\.	2- 4-71 6-22-71 10-14-71 1-20-72 3- 5-73 6- 7-73 9-20-73 1-30-74 5-7-74 7-31-74 12-11-74	0.4 .6 1.3 .9 1.1 .9 1.2 .7 2.7 1.1 1.2	2- 4-71 3-30-71 6-22-71 1-20-72 12- 7-72 6- 7-73 9-20-73 1-30-74 5-7-74 7-3174 12-11-74	80 74 69 200 74 62 78 92 130 88 90	18 21 22 144 6 21 13 22 54 22 21	62 53 47 56 68 41 65 70 76 66 69

GORDON RIVER CAN	STATION GORDON RIVER CANAL atSolano Rd. Ext. bridge		BACTERIA in. Colonies per 100 millilitres					BIOCHEMICAL OXYGEN DEMAND (BOD) in		CARBON in Milligrams per litræ		
(I.D. NUMBER	SITE NUMBER	DATE	Total Coliform	Fecal Coliform			DATE	Milligrams per litre		Total	Organic	Inorgani
2611470814704.00	# 5	1-20-72 3-30-72 9- 6-72	100 32	0 4 10		-	1-20-72	6.9	1-20-72 3-30-72	80 48	16 22	64 26
		12- 7-72 3- 5-73 3- 6-73	1,500 540 4,600	30 10 70	190 500 3,750	0.16 .02 .02	12- 7-72 3- 5-73	.9	12- 7-72 -	63	10	53
		6- 7-73 9-20-73 1-30-74	380 14,700 8,000	16 10 40	360 220 4	-04 -04 10	6- 7-73 9-20-73 1-30-74	1.9 2.2 .5	6- 7-73 9-20-73 1-30-74	64 47 64	14 6 10	50 41 54
		5- 7-74 7-31-74 12-11-74	1,800 2,500	WATER TO CO	LLECT SAMPLE 370 114		5-7-74 7-31-74 12-11-74	1.6	7-31-74 12-11-74	52 68	. 10 . 10	42 58
98-99							<u> </u> - -				·	
v												
			, .									1

BASIC DATA - Section G

COLLIER COUNTY NUTRIENT SAMPLING SITES

SITE	LOCATION	PA GI
1	Fahka Union Canal @ U.S. Hwy 41	101
2	Barron River Canal @ Copeland	101
3	Barron River Canal @ SR 840	101
4	Barron River Canal @ Alligator Alley	101
5	Alligator Alley Canal east of SR 29	101
6	Cocohatchee River Canal near Naples	102
7	Golden Gate Tributary Canal 8 miles east of SR 858	102
8	Henderson Creek Canal @ Amity Road	102
9	Naples Bay @ U.S. Hwy 41	102
10	Golden Gate Canal @ SR 858	103
11	Gordon River @ SR 951	103
12	Canal about 8 miles east of Immokalee on SR 846 near ground-water gage C-131	103
13	Lake Trafford	103
14	Fahkahatchee Strand @ Janes Scenic Drive	103
15	L-28 Interceptor Canal @ Alligator Alley	103

NUTRIENT CONTENT IN SURFACE WATERS OF COLLIER COUNTY, FLORIDA (milligram per litre).

001000	DATE	PHOSPHORU	S AS P	AMMONIA	NITROGEN	N	ITRITE	NIT	LAŢE
STATION DESCRIPTION	& TIME	Dissolved inorganic	Total	As N	As NH ₄ +	As N	As NO ₂ -	As N	NO3-
1	9-17-70 3-13-72 1-16-73 9-13-73 1-15-74		0.00 .00 .00 .00	0.09 .13 .01 .10	0.12 .17 .01 .13	0.00 .00 .00 ≃ .005	0.00 .00 .00	0.01 .00 .09 .04	0.04 .00 .40 .18
101	9-17-70 9-23-71 3-13-72 1-16-73 9-13-73 1-15-74		.00 .00 .00 .00 .03	.09 .01 .06 .03 .21	.12 .01 .08 .04 .27	.00 .00 .00 .00 ≥ .005	.00	.03 .00 .02 .13 .01	.13 .00 .09 .58 .04
3	9-17-70 9-23-71 3-13-72 1-16-73 9-13-73 1-15-74		.06 .12 .00 .06 .35	.17 .07 .12 .08 .70	.22 .10 .15 .10 .90	.00 .00 .00 .00 ≅ .005	.00	.00 .00 .04 .03 .01	.00 .00 .18 .13 .04 .53
4 ,	9-17-70 9-23-71 3-13-72 1-16-73 9-13-73 1-15-74		.01 .06 .03 .05 .06	.08 .01 .12 .05 .32	.10 .01 .15 .06 .41	.00 .00 .00 .00 ≃ .005	.00	.00 .00 .03 .10 .01	.00 .00 .13 .44 .04
5	9-17-70 9-23-71 3-13-72 1-16-73 9-13-73 1-15-74		.02 .00 .00 .01 .01	.11 .02 .00 .02 .19	.14 .02 .00 .02 .24 .24	.00 .00 .00 .00 ≅ .005	.00 .00 .00	.00	.00

NUTRIENT CONTENT IN SURFACE WATERS OF COLLIER COUNTY, FLORIDA (milligram per litre)

	_		PHOSPHORE	S AS P	AMMONIA	NITROGEN	N.	TRITE	NIT	RATE
STATION DESCRIPTION		DATE & Time	Dissolved inorganic	Total	As N	As NH ₄ +	As N	As NO ₂ -	As N	As NO3-
	6	9-17-70 9-23-71 3-13-72 1-16-73 9-13-73 1-15-74		.18 .35 .01 .04 .10	.12 .00 .08 .02 .30	.15 .00 .10 .02 .39 .23	.00 .00 .00 .00 .00 .00	.00 .00 .00	.02 .00 .01 .16 .04	.09 .00 .04 .71 .18
102	7	9-17-70 9-23-71 3-13-72 1-16-73 9-13-73 1-15-74		0.01 .15 .00 .02 .00	0.11 .12 .12 .22 .17 .13	0.14 .15 .15 .28 .22 .17	0.00 .00 .00 .00 은 .005	0.00 .00 .00	0.07 .01 .01 .00 .00	0.31 .04 .04 .00 .00
	8	9-17-70 9-23-71 3-13-72 1-16-73 9-13-73 1-15-74		.00 .03 .00 .00 .01	.12 .03 .06 .06 .17	.15 .04 .08 .08 .22	.00 .00 .00 .00 ≅ .005	.00	.03 .04 .01 .03 .05	.13 .17 .04 .13 .22 :09
	9	9-17-70 9-23-71 3-13-72 9-13-73		.09 .15 .10	.15 .08 .25	.19 :09 .32	.00 .00 .00 음 .005	.00 .00 .00	.07 .06 .02 .00	.31 .26 .09

	**	DAMM	PHOSPHOR	US AS P	AIMOMIA	NITROGEN	N:	TRITE	NIT	RATE
STATION DESCRIPTION		DATE & Time	Dissolved inorganic	Total	As N	As NH ₄ +	As N	As NO ₂ -	As N	As NO3-
	10.	9-17-70 9-23-71 3-13-72 1-16-72 9-13-73 1-15-74		.00 .10 .00 .00 .02	.08 .12 .00 .10 .15	.10 .15 .00 .13 .20	.00 .00 .00 .00 ≅ .005	.00 .00 .00	.08 .05 .04 .10 .05	.35 . .22 . .17 .44 .22 .35
103	11	9-17-70 9-23-71 3-13-72 1-16-73 9-13-73 1-15-74		.09 .30 .04 .00 .04	.16 .03 .10 .05 .17 .22	.21 .04 .13 .06 .22 .28	.00 .00 .00 .00 ≅ .005	.00	.01 .14 .00 .13 .04	.04 .62 .00 .58 .18
	12	9-23-71 3-13-72 1-16-73 9-13-73		1.7 1.8 .25 .03	.01 .00 .03 .26	.01 .00 .04 .33	.00 .00 .00 2 .005	.00	.00	.00 .00 .00
	13	1-16-73 3-13-72 1-16-73 9-13-73 1-15-74		0.10 .00 .00 .03 .03	0.09 .00 .02 .35	0.12 .00 .02 .45	0.00 .00 .00 ≅ .005	0.00 .00 .00	0.00 .00 .00	0.00
	14	1-16-73 9-13-73 1-15-74		.00	.02 .19 .40	.02 .24 .52	≅ .02 .005 .00	.00	.00	:88
	15	1-16-73 9-13-73 1-15-74		.00 .02 .01	.01 .14 .11	.01 .18 .14	2 .00 2 .005 .00	.00	:00	:82