Schlumberger Soundings and Total Field Measurements in the Raft River Geothermal Area, Idaho

By

Adel A. R. Zohdy, Dallas B. Jackson
and Robert J. Bisdorf

Prepared for cooperation with Energy Research and Development Administration (formerly U.S. Atomic Energy Commission)

Open-File Report No. 75-130
1975

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards.
SCHLUMBERGER SOUNDINGS AND TOTAL FIELD MEASUREMENTS
IN THE RAFT RIVER GEOTHERMAL AREA, IDAHO

By Adel A. R. Zohdy, Dallas B. Jackson and Robert J. Bisdorf

In 1974, the U.S. Geological Survey in cooperation with the Energy Research Development Administration (formerly the U.S. Atomic Energy Commission) made d.c. current measurements in the Raft River geothermal area. Seventy nine symmetric Schlumberger soundings were made and 269 bipole-dipole total field stations were occupied about a current bipole 3.22 km (2 miles) in length. Included in these total field stations are seven repeat stations, and three other stations at which measurements could not be made.

Figure 1 shows the index map for the location, number, and azimuth of the Schlumberger sounding stations. The soundings were numbered from Raft #1 to Raft #43, then from Raft #101 to Raft #136. With the exception of Raft #107 (which was expanded to a maximum electrode spacing, AB/2, of 426 metres (1,400 feet)) the maximum electrode spacing ranged from AB/2 = 914 metres (3,000 feet) to AB/2 = 3,658 metres (12,000 feet). All the sounding curves were automatically processed and interpreted as shown in the graphs given in the appendix. Each graph shows the following:

(1) Field data designated by a segmented solid-line curve with diamond symbols for observed data.
2. A continuous-dashed curve which represents:

(a) the continuous "field" curve obtained by shifting the various segments upwards or downwards generally with respect to the last segment on the segmented field curve (Zohdy and others, 1973)

(b) the digitized curve at the rate of six points per logarithmic cycle. Although the digitized points are not shown on the dashed curve, they were computed using a subroutine in a computer program for bicubic spline functions (Anderson, 1971). The digitized data were then fed into the automatic interpretation program (Zohdy, 1974 and 1975) to obtain the best fitting theoretical sounding curve for a horizontally layered medium.

3. The theoretical best fitting sounding curve is plotted as (+) signs.

4. The detailed layering for which the theoretical curve is calculated.

5. The D.Z. (Dar Zarrouk) curve for the detailed layering. The ordinate values for the D.Z. curves are shifted upward or downward by one logarithmic cycle or they are plotted on a separate sheet of graph paper (as for Raft #40.) to avoid cluttering the graphs. The D.Z. curves can be used to obtain equivalent and simpler solutions containing fewer number of layers and in which certain constraints are imposed on the layer thickness and resistivities (Zohdy, 1974b).
All these graphs were generated on a Hewlett Packard 7203A graphic plotter. The plotter driving subroutines were developed by G. I. Evenden of the U.S. Geological Survey.

Figure 2 shows the simple total-field bipole-dipole apparent resistivity map which is contoured at a logarithmic contour interval, in ohm-m values.

Figure 3 shows the theoretical simple total field bipole-dipole apparent resistivity map that should have been obtained had the ground been horizontally layered over the entire survey area. The calculations (Zohdy and Stanley, 1974) are based on the sounding data obtained at sounding Raft #1 which was made at the center of the current bipole.

Figure 4 shows the normalized (or reduced) apparent resistivity map which is obtained by finding the ratio between the observed values in figure 2 and the theoretical values shown in figure 3. Had the ground been horizontally layered over the entire survey area, all the normalized values should have been equal to unity. In general, areas outlined by values greater than unity indicate that the section contains more resistive
materials or that basement rocks are shallower than at Raft #1 sounding. Conversely areas outlined by contour values less than unity designate the opposite. It should be noted, however, that false lows and highs may be caused by the presence of near vertical faulting separating media of large differences in resistivity. The major use of the normalized apparent resistivity map is that it emphasises lateral variations in the subsurface resistivity and thus outline more clearly the trend of possible faulting.
References cited


APPENDIX
RESISTIVITIES IN OHM-METRES

RAFT #132

AB/2 DEPTH IN METRES

RESISTIVITIES IN OHM-METRES