


#### UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

SOME LIMNOLOGICAL ASPECTS OF 20 SELECTED LAKES IN EAGAN AND APPLE VALLEY, MINNESOTA

By Mark R. Have

### Open-File Report 75-528

Prepared in cooperation with the Minnesota Department of Natural Resources Division of Waters, Soils, and Minerals, and the cities of Eagan and Apple Valley

St. Paul, Minnesota

1975 -

### CONTENTS

| · · ·                                  | Page |
|----------------------------------------|------|
| Glossary                               | VI   |
| Abstract                               | 1.   |
| Introduction                           | . 1  |
| Environmental setting                  | 2    |
| Methods used and parameters determined | . 2  |
| A brief discussion of eutrophication   | 5    |
| Results and discussion                 | 7    |
| Physical and chemical characteristics  | 7    |
| Biological characteristcs              | 15   |
| Summary and conclusions                | 17   |
| References cited                       | 19   |
| Appendix                               | 20   |

### ILLUSTRATIONS

| Figure l. | Eagan and Apple Valley, Minnesota               | lA |
|-----------|-------------------------------------------------|----|
| 2.        | Approximate depth near middle of lakes          | 8  |
| 3.        | Temperature near the top and bottom of selected |    |
|           | lakes sampled in June 1973                      | 9  |
| 4.        | Dissolved oxygen near the top and bottom of     |    |
|           | selected lakes sampled in June 1973             | 9  |
| · 5.      | Specific conductance near the top and bottom    |    |
|           | selected lakes sampled in June 1973             | 9  |
| 6.        | pH values for all lakes                         | 12 |
| 7.        | Percent saturation of dissolved oxygen values   |    |
| ••••••    | for all lakes                                   | 13 |

III

TABLES

./`

|       |     |                                                      | 'age |
|-------|-----|------------------------------------------------------|------|
| Table | 1.  | Lakes and ponds sampled in Apple Valley and Eagan    | 3    |
|       | 2.  | Physical, chemical, and biological characteristics   |      |
|       |     | commonly used to describe oligotrophic and eutrophic |      |
|       |     | lakes (from Ott and others, 1973)                    | 6    |
|       | 3.  | Temperature, specific conductance, and dissolved     |      |
|       |     | oxygen profiles for Holland Lake                     | 11   |
|       | 4.  | Physical and chemical analyses for lakes sampled at  |      |
|       |     | Eagan and Apple Valley, Minn. Except for pH, values  |      |
|       | •   | represent milligrams per litre, unless otherwise     |      |
|       |     | indicated                                            | 21   |
|       | 5.  | Biological analyses for Alimagnet Lake               | 25   |
|       | 6.  | Biological analyses for Blackhawk Lake               | 26   |
|       | 7.  | Biological analyses for Boesel Pond                  | 27   |
|       | 8.  | Biological analyses for Burview Park Pond            | 28   |
|       | 9.  | Biological analyses for Cedar Grove Pond             | 29   |
| :     | 10. | Biological analyses for Donaldson's Pond             | 30   |
|       | 11. | Biological analyses for Farquar Lake                 | 31   |
| :     | 12. | Biological analyses for Fish Lake                    | 32   |
|       | 13. | Biological analyses for Hauser Pond                  | 33   |
|       | 14. | Biological analyses for Holland Lake                 | 34   |
|       | 15. | Biological analyses for Jensen Lake                  | 35   |
|       | 16. | Biological analyses for Lakeside Estate Lake         | 36   |
|       | 17. | Biological analyses for Langhoven Lake               | 37   |
| :     | 18. | Biological analyses for LeMay Lake                   | 38   |
| ,     | 19. | Biological analyses for Long Lake                    | 39   |

IV

TABLES

|       |     |            | -        |     | Pag                   | çe |
|-------|-----|------------|----------|-----|-----------------------|----|
| Table | 20. | Biological | analyses | for | McCarthy Lake 4       | 10 |
|       | 21. | Biological | analyses | for | Shanahan Pond 4       | 11 |
|       | 22. | Biological | analyses | for | Slater's Acres Pond 4 | 2  |
|       | 23. | Biological | analyses | for | Thomas Lake 4         | 3  |
|       | 24. | Biological | analyses | for | Wilderness Lake 4     | 4  |

۱

V

#### GLOSSARY

ALGAE (Alga) - Simple plants, many microscopic, containing chlorophyll.

ALGAL BLOOM - A readily visible concentrated growth or aggregation of phytoplankton.

ALKALINITY - The capacity of water to neutralize acid. Since the sources of alkalinity are many, it is often expressed as calcium carbonate.

**BIODEGRADEABLE** - The breakdown of organic matter to inorganic matter by living organisms.

BIOCHEMICAL OXYGEN DEMAND (BOD) - Indicates the quantity of oxidizable compounds present in a water and will vary with water compositions, temperature, period of contact, and other factors.

BLUE-GREEN ALGAE - A group of algae with a blue-green pigment, in addition to the green chlorophyll. A stench is often associated with the decomposition of dense blooms of blue-green algae in fertile lakes.

COLIFORM, FECAL - Coliform bacteria that are present in the intestine of warmblooded animals. They are often used as indicators of the sanitary quality of water.

COLIFORM, TOTAL - A particular group of bacteria that often are used as indicators of possible sewage pollution.

DIATOMS - Algae that are characterized by the presence of silica in the cell walls which are sculptured with striae and other markings, and by the presence of a brown pigment associated with the chlorophyll.

DISSOLVED SOLIDS - Anhydrous residues of the dissolved substances in water.

ENRICHMENT - Addition or accumulation of nutrients within a body of water.

EPILIMNION - That region of a body of water that extends from the surface to the thermocline and does not have a permanent temperature stratification.

EUTROPHICATION - The natural process of aging a body of water through ecological succession and enrichment.

FALL CIRCULATION - A physical phenomenon that may take place in a body of water during the early autumn. The sequence of events leading to fall circulation include: (1) cooling of surface waters, (2) density change in surface waters producing convection currents from top to bottom, (3) circulation of the total water volume by wind action, and (4) vertical temperature equality, 4°C. The overturn results in a uniformity of the physical and chemical properties of the water.

FLAGELLATTES - Those algae which possess flexible, whiplike appendages used for locomotion.

GENUS - A group (in the classification system for plants and animals) into which are placed species that resemble one another more than they do other species.

GREEN ALGAE - Algae that have pigments similar in color to those of higher green plants. Common forms produce algal mats or floating "moss" in lakes.

HYPOLIMNION - The region of a body of water that extends from the thermocline to the bottom of the lake and is removed from surface influence to a large degree.

ION - An atom or radical that has lost or gained one or more electrons, and has thus acquired an electric charge.

LIMNOLOGY - The study of the physical, chemical, and biological aspects of inland waters.

LITTORAL ZONE - The shoreward region of a body of water.

MESOTROPHIC LAKE - A lake with a moderate content of dissolved nutrients.

NITROGEN FIXATION - The ability of certain bacteria and bluegreen algae to utilize atmospheric or dissolved gaseous nitrogen in their physiological processes.

NUTRIENT - Any substance that is required by an organism for the continuation of growth, for repair of tissue, or for reproduction.

OLIGOTROPHIC WATERS - Waters with a small supply of nutrients; thus, they support little biological production.

ORTHOPHOSPHORUS - The most common ionized form of phosphorus which is available for algae growth.

PH - Indicates the degree of acidity or alkalinity of a solution; pH 7 indicates a neutral solution. PHOTOSYNTHESIS - The process by which simple sugars are manufactured from carbon dioxide and water by living plant cells with the aid of chlorophyll in the presence of light.

PHYTOPLANKTON - Plant microorganisms, such as certain algae floating freely in the water.

**PRODUCTION** (Productivity) - Total amount of organic matter that is formed from raw materials.

RESPIRATION - The exchange of respiratory gases between the organism and the environment.

SPECIES - An interbreeding population or group of populations that is reproductively isolated from other such populations.

SPECIFIC CONDUCTANCE - Is a measure of the ability of a water to conduct an electrical current and is expressed in micromhos per centimeter at 25°C. Because the specific conductance is related to the number and specific chemical types of ions in solution, it can be used for approximating the dissolved-solids content in the water.

SPRING CIRCULATION - A physical phenomenon that may take place in a body of water during the early spring. The sequence of events leading to spring circulation include: (1) melting of ice cover, (2) warming of surface waters, (3) density change in surface waters producing convection currents from top to bottom, (4) circulation of the total water volume by wind action, and (5) vertical temperature equality, 4°C. The circulation results in a uniformity of the physical and chemical properties of the water.

STREPTOCOCCI, FECAL - Bacteria found in the intestines of warmblooded animals. Their presence in water is considered to verify fecal pollution.

SUSPENDED SOLIDS - Those solids which are not dissolved or in solution.

TERMINAL MORAINE - The belt of rock material accumulated at the end of a valley glacier or at the edge of an ice-cap.

TITRATION - A method for determining volumetrically the concentration of a desired substance in solution.

TURBIDITY - An expression of the optical property of water which causes light to be scattered and absorbed rather than be transmitted in straight lines through the water column. Turbidity is caused by the presence of suspended matter.

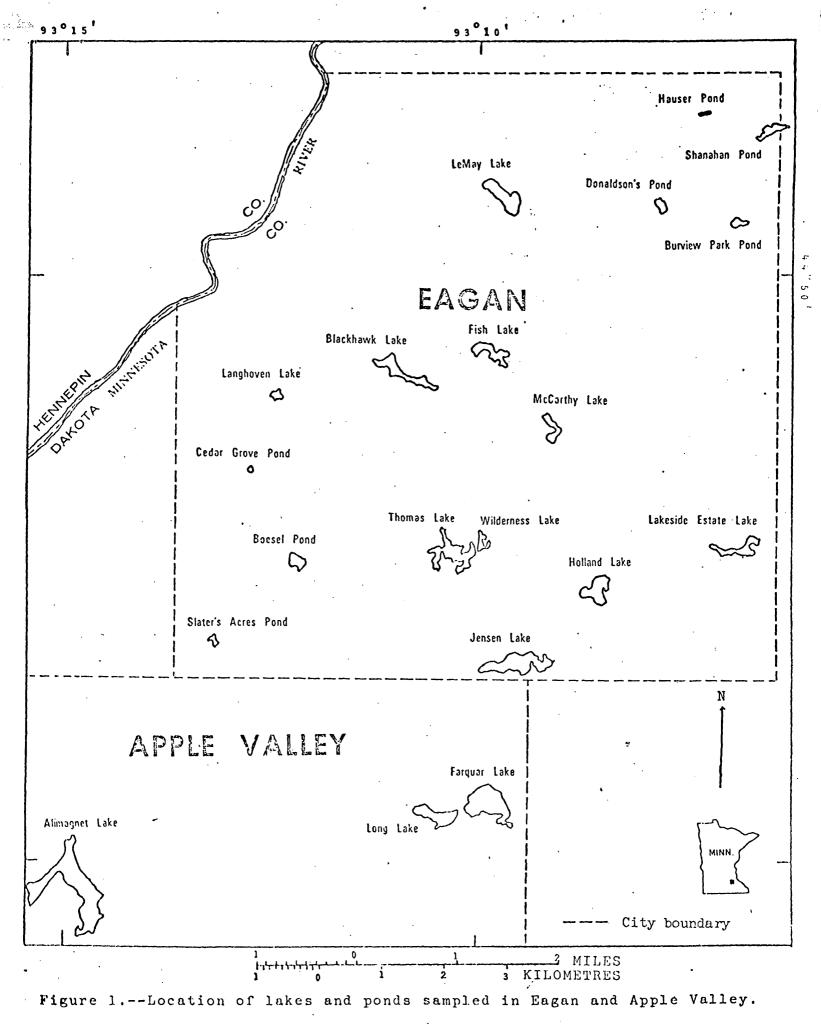
### SOME LIMNOLOGICAL ASPECTS OF 20 SELECTED LAKES

IN EAGAN AND APPLE VALLEY, MINNESOTA

#### By Mark R. Have

#### ABSTRACT

Selected physical, chemical, and biological parameters were determined to assess the quality of 20 lakes in the cities of Eagan and Apple Valley, Minn. All the lakes are eutrophic except Holland and Fish Lakes, which are mesotrophic. Some lakes (including Fish Lake) have storm sewer inlets but are not discernibly different in quality than lakes with no such inlets.


#### INTRODUCTION

Since the late 1950's, the communities of Eagan and Apple Valley (fig. 1) have undergone suburban growth. The effects of

Figure 1 near here.

the growth on the environment, particularly the lake environment had not been studied. Changes in land use and increases in stormsewer and septic-tank effluents in and around lakes can have a decided effect on nutrient loadings in lakes, resulting in accelerated eutrophication. With this in mind, representatives of the communities requested that the U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, monitor 20 selected lakes for quality (fig. 1). Some of the lakes have storm-sewer inlets, some have outlets, some have both, and others have none.

1 (1A fols)



1A (2 fols)

Chemical and biological sampling was begun in 17 lakes in Eagan in October 1972, and in 3 lakes in Apple Valley in September 1973. The objects of the monitoring are to establish base-line limnological data and to study the effects of urbanization and associated land-use changes on lake quality over an extended period. The scope of the project is limited by the selected information that can be derived from sample analyses.

The purpose of this interim report is to describe the activities and findings of the first 2 years of study.

#### EN:VIRONMENTAL SETTING

Eagan and Apple Valley, Dakota County, lie in southeastern Minnesota (fig. 1) and are included in one of the fastest developing areas in the State. Much of the development is of the commercial, industrial, and multiple-family-dwelling types.

Topographic relief in the study area is about 200 ft (feet) or 61 m (metres). Land-surface altitudes range from about 1000 ft (305 m) above mean sea level on the morainal hills to about 800 ft (244 m) in the depressions. Despite the relief, the area is poorly drained and contains numerous ponds and lakes. The area is a terminal moraine, characterized by knob and kettle topography. The lakes sampled, surface areas, and inlet and outlet conditions are shown in table 1.

#### METHODS USED AND PARAMETERS DETERMINED

Semiannual (spring and fall) samples were collected at the surface near the middle of each lake. In addition, some samples were collected at or near the bottom to determine changes in selected parameters with depth. Parameters determined at the

| Lake Name           | Lake Area<br>(acres) | Lake Outlet | Storm Sewer Inlet |
|---------------------|----------------------|-------------|-------------------|
| Apple Valley:       |                      |             |                   |
| Alimagnet           | 113                  |             | x                 |
| Farquar             | 74                   |             | xl                |
| Long                | 36                   | x           | x                 |
| Eagan:              |                      | :           |                   |
| Blackhawk           | 34                   | •           |                   |
| Boesel              | 12                   |             |                   |
| Burview Park        | 3                    | •           | · · ·             |
| <b>Ced</b> ar Grove | 2                    | х           | x                 |
| Donaldson's         | 8                    | •           | х                 |
| Fish                | 14                   |             | x <sup>2</sup>    |
| Hauser              |                      |             |                   |
| Holland             | 34                   |             |                   |
| Jensen              | 52                   | х           |                   |
| Lakeside Estate     | 12                   | •           | x                 |
| Langhoven           | 6                    | x           | x                 |
| LeMay               | 34                   | x           | x                 |
| McCarthy            | 9                    |             |                   |
| Shanahan            | 11                   |             |                   |
| Slater's Acres      | 3                    | •           |                   |
| Thomas              | 35                   |             |                   |
| Wilderness          | 8                    |             | x                 |

Table 1.--Outlet and inlet conditions of lakes and ponds sampled in Eagan and Apple Valley.

Overflow from Long Lake.
 Equipped with siltation pond.

sampling sites included pH, specific conductance, DO (dissolved oxygen), water temperature, and total and fecal coliform bacteria. Parameters determined in the laboratory included phosphorus, nitrogen, silica, suspended and dissolved solids, turbidity, chloride, sodium, potassium, calcium, magnesium, BOD (biochemical oxygen demand), alkalinity, and phytoplankton.

Chloride, sodium, potassium, calcium, and magnesium were analyzed for baseline information and for determining general water type. The bacteria were analyzed to determine the sanitary quality of the lakes. The remaining parameters were analyzed to determine the stage of eutrophication.

Beginning in October 1974, BOD, total coliform, and some of the more common inorganic constituents were deleted from the analysis schedule because of adverse effects by the phytoplankton and lack of significant changes in concentration, respectively. Fecal *Streptococci*, TOC (total organic carbon), inorganic carbon, nitrogen, and phosphorus determinations of bottom sediments were added.

Samples for the physical and chemical parameters were collected and determined by the methods of Brown and others (1970), and by Goerlitz and Brown (1972). DO concentration was determined by a DO meter. DO concentration and water temperature were used in the calculation of percent saturation of DO, according to Am. Public Health Assoc. and others (1971, p. 480).

Total coliform, fecal coliform, and fecal *Streptococci* were determined by the membrane-filter technique described by Slack and others (1970). Phytoplankton concentration also was determined by the methods described in Slack and others (1973).

#### A BRIEF DISCUSSION OF EUTROPHICATION

Limnologists have paid increasing attention in recent years to eutrophication and accelerated eutrophication of lakes. Greeson (1969) presents a discussion about eutrophication in general. The abstract from his publication is quoted below.

"Lake eutrophication is an economic, recreational, and aesthetic problem that affects every lake of the world. Eutrophication is the natural process of lake aging, and progresses irrespective of man's activities. Pollution, however, can hasten the natural rate of aging and shorten the life expectancy of a body of water. The eutrophication of a lake consists of the gradual progression from one life stage to another based on the degree of nourishment or productivity. The extinction of a lake is attributed to enrichment by nutritive materials, biological productivity, decay, and sedimentation. Presently used methods for retarding eutrophication are the abatement of cultural enrichment, treatment of eutrophic symptoms, and control of fundamental causes."

Ott and others (1973) presented characteristics commonly used to describe oligotrophic and eutrophic lakes (table 2). They state that the classification of lakes based upon the measurement of several trophic indicators is, at best, qualitative.

Many factors complicate eutrophication, recycling of nutrients caused by death and disintegration of algae, for example, nitrogen fixation ability of many algae, and varying nitrogen and phosphorous requirements of different species of algae.

Table 2.--Physical, chemical, and biological characteristics commonly used to describe oligotrophic and eutrophic lakes (from Ott and others 1973).

| Parameter                                     | Oligotrophic lakes         | Eutrophic lakes          |
|-----------------------------------------------|----------------------------|--------------------------|
| Volume to surface ratio                       | High                       | Low                      |
| Volume of hypolimnion to volume of epilimnion | High                       | Low                      |
| Transparency                                  | 10 meters                  | ≦ 10 meters              |
| Color                                         | Blue, blue-green, or green | Green or yellow brown    |
| Dissolved solids                              | Low                        | High                     |
| Algal bloom                                   | Rare                       | Frequent                 |
| Algal species variety                         | Many                       | Variable to few          |
| Dominant algal groups                         |                            | Blue-green               |
| Chlorophyll                                   | ≦ 1 mg per m <sup>3</sup>  | >1 mg per m <sup>3</sup> |
| Cell counts                                   | ≦ 500 per ml               | >500 per ml              |
| Ash-free weight of sestor                     | n ≦ 0.1 mg/l               | >0.1 mg/1                |
| Littoral vegetation                           | Sparse                     | Abundant                 |

6

•

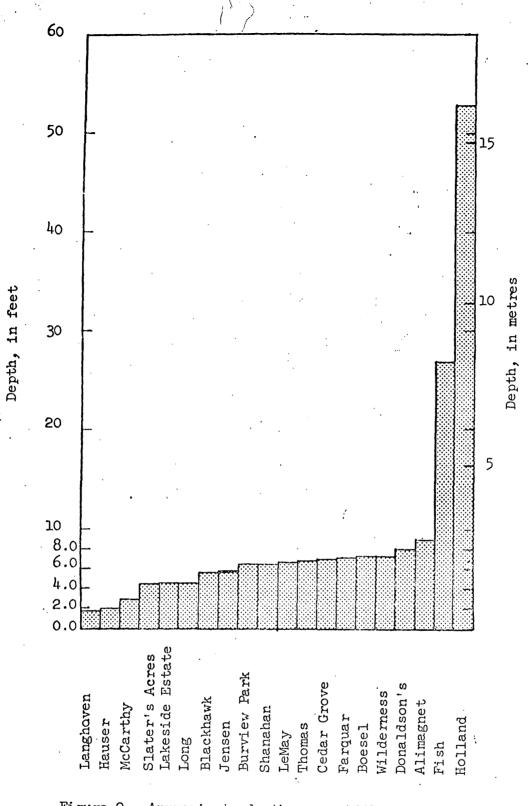
#### RESULTS AND DISCUSSION

Physical and chemical characteristics

Except for Fish and Holland Lakes, all the lakes are shallow. Near the middle of each shallow lake the average depth was less than 10 ft (3 m) (fig. 2). Although most of the lakes are shallow,

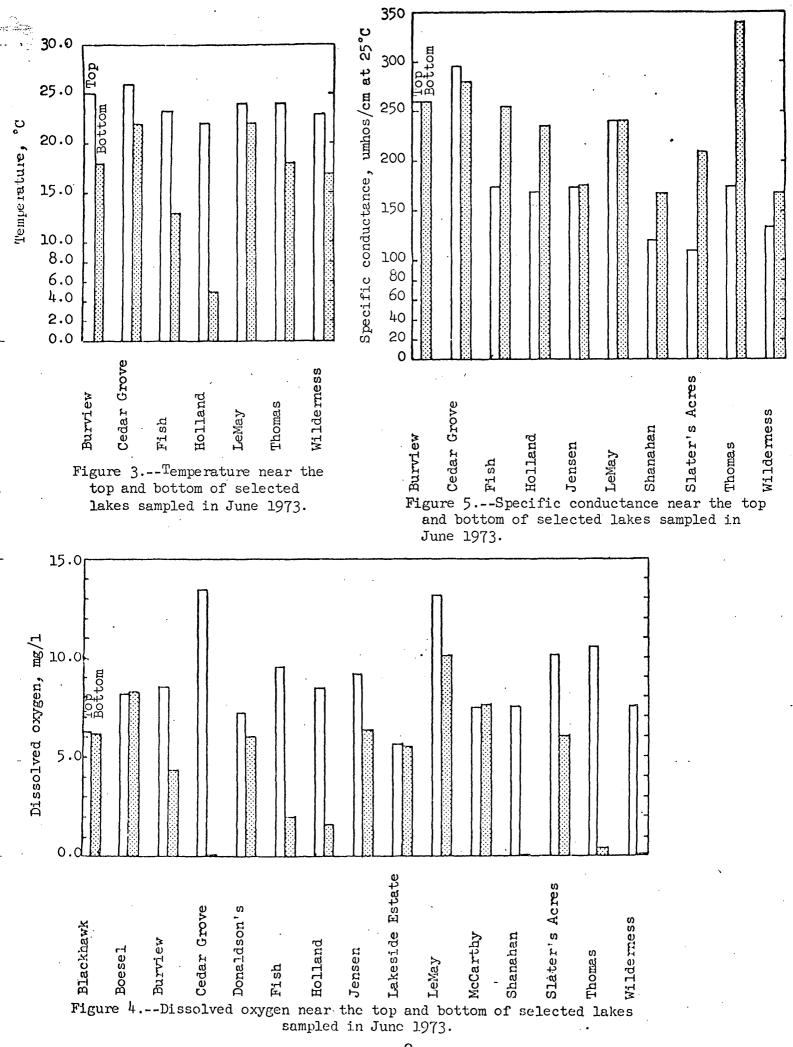
Figure 2 near here.

depth, temperature, DO, and specific conductance differed in some lakes in June 1973. Owing to the hilly terrain, mechanical wind mixing is not as effective as in a flatter and more open terrain. Also, these lakes are not big enough to produce big waves and, hence, effective wind mixing (Greeson, 1971, p. 56).


Figures 3, 4, and 5 show the June 1973 results of measurements

Figures 3, 4, and 5 near here.

of those lakes where temperature, DO, and specific conductance were determined both near the surface and near the bottom.


All the lakes sampled were warmer near the surface than near the bottom in June 1973 (fig. 3), which is not unusual in even relatively shallow lakes. Because of the lack of mixing, the net heat absorbed from solar radiation tends to be retained near the surface.

The lower DO concentrations and higher specific conductances near the bottoms of some of the lakes shown in figures 4 and 5 reflect the bacterial and biochemical decomposition of organic materials. The phytoplankton are continually dying as well as reproducing. As the dead cells fall to the bottom, their simpler decomposition products of inorganic elements cause a higher



:

Figure 2.--Approximate depth near middle of lakes.



specific conductance. These decomposition processes use oxygen, thus producing a lower dissolved oxygen concentration near the bottom.

Burview, Cedar Grove, Jensen, and LeMay Lakes are not much different in specific conductance between top and bottom, but DO concentration is higher near the top. At the time of sampling, conditions may have been such that chemical oxidation and precipitation were significant enough to decrease both the specific conductance and DO.

DO, specific conductance, and temperature profiles were made of Holland Lake because this lake goes through a seasonal cycle of spring and fall circulations and summer stratification. As shown in table 3, Holland was first sampled during the fall circulation on November 14, 1972. It was well mixed both thermally and chemically.

For the other three sampling periods shown in table 3, Holland Lake was stratified, with the epilimnion extending in depth to about 10 ft (3 m) in June 1973 to about 30 ft (6 m) in September 1973. The DO was deficient in the hypolimnion during the fall after stratification had persisted through the summer.

Evidence of photosynthesis is shown in the pH values and percent saturation of DO (figs. 6 and 7). Because algae remove

Figures 6 and 7 near here.

carbon dioxide from solution and convert it into cellular material, the carbonate equilibrium, as it exists in natural waters, is affected in that the carbonate concentration and the pH increase.

Table 3.-- Temperature, specific conductance, and dissolved oxygen profiles for Holland Lake.

.

| Date     | Depth                                                      | Temperature                                                                                                                                    | Specific Conductance                                               | Dissolved Oxygen                                               |
|----------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|
|          | ft                                                         | °C                                                                                                                                             | umhos/cm at 25°C                                                   | mg/l                                                           |
| 11-14-72 | 0.5                                                        | 4.0                                                                                                                                            | 185                                                                | 8.0                                                            |
|          | 10                                                         | 4.5                                                                                                                                            | 185                                                                | 7.7                                                            |
|          | 20                                                         | 4.5                                                                                                                                            | 188                                                                | 7.7                                                            |
|          | 30                                                         | 4.5                                                                                                                                            | 190                                                                | 7.6                                                            |
|          | 40                                                         | 4.5                                                                                                                                            | 190                                                                | 7.5                                                            |
|          | 50                                                         | 4.5                                                                                                                                            | 193                                                                | 7.3                                                            |
| 6-22-73  | 0.5                                                        | 22.0                                                                                                                                           | 172                                                                | 8.5                                                            |
|          | 5.0                                                        | 21.0                                                                                                                                           | 170                                                                | 8.6                                                            |
|          | 10                                                         | 20.0                                                                                                                                           | 170                                                                | 8.7                                                            |
|          | 15                                                         | 13.0                                                                                                                                           | 185                                                                | 8.2                                                            |
|          | 20                                                         | 9.0                                                                                                                                            | 185                                                                | 6.7                                                            |
|          | 25                                                         | 6.0                                                                                                                                            | 185                                                                | 5.9                                                            |
|          | 30                                                         | 5.0                                                                                                                                            | 190                                                                | 5.4                                                            |
|          | 35                                                         | 5.0                                                                                                                                            | 195                                                                | 1.8                                                            |
|          | 40                                                         | 5.0                                                                                                                                            | 205                                                                | 1.6                                                            |
|          | 45                                                         | 5.0                                                                                                                                            | 215                                                                | 1.6                                                            |
|          | 50                                                         | 5.0                                                                                                                                            | 235                                                                | 1.6                                                            |
| 9-20-73  | 0.5<br>5.0<br>10<br>15<br>20<br>22<br>25<br>30<br>40<br>50 | $   \begin{array}{r}     17.0 \\     17.0 \\     17.0 \\     16.5 \\     14.5 \\     12.0 \\     10.0 \\     6.0 \\     5.0 \\   \end{array} $ | 140<br>145<br>145<br>147<br>170<br>180<br>180<br>185<br>215<br>225 | 9.4<br>9.2<br>9.1<br>9.1<br>8.6<br>1.7<br>.8<br>.7<br>.4<br>.3 |
| 10-17-74 | 0.5<br>10<br>15<br>20<br>25<br>30<br>40<br>50              | 10.0<br>10.0<br>10.0<br>8.0<br>5.5<br>5.5<br>5.0<br>5.0<br>5.0                                                                                 | 160<br><br><br><br><br>225                                         | 9.7<br>9.4<br>9.2<br>1.0<br>.7<br>.4<br>.3<br>.3               |

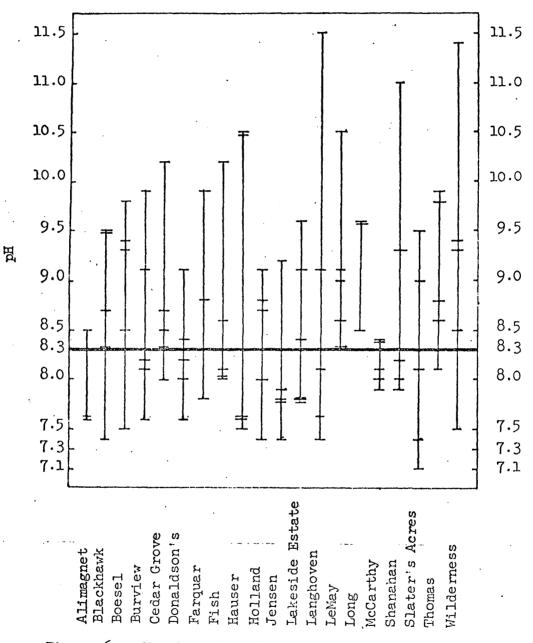
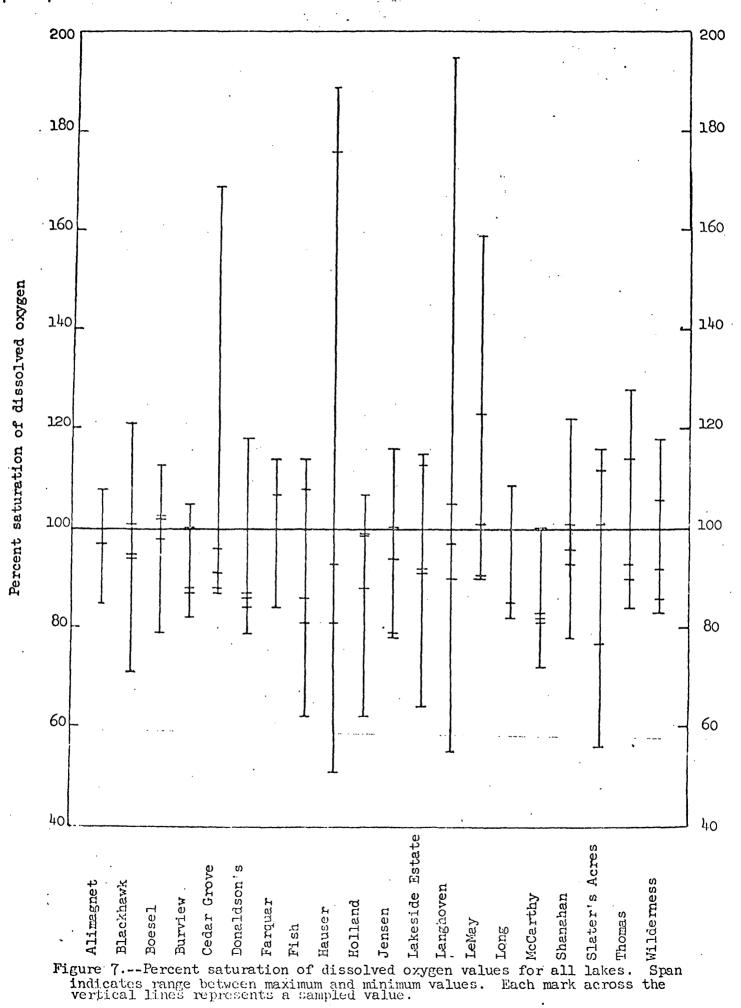




Figure 6.--pH values for all lakes. Span indicates range between maximum and minimum values. Each mark across the vertical lines represents a sampled value. Horizontal line across graph at 8.3 represents carbonate end point.



An upper limit on pH is formed by precipitation of calcium carbonate, which controls the amount of carbonate ion that can coexist in solution with calcium ion (Symons and others, 1964, p. 18).

A pH of 8.3 is generally accepted as the carbonate end point when titrating for alkalinity with a strong acid. More specifically, at a pH of 8.3 carbonate constitutes 1 percent of the total dissolved carbon dioxide species (Hem, 1970, p. 156). Fifty-four percent of the total number of pH values were over 8.3, and 35 percent were 9.0 or greater, as shown in figure 6. At this time in the project, it is difficult to establish the natural background pH range, but the higher pH values are related to photosynthesis.

Ranges of the percent saturation of DO are shown in figure 7. Thirty-seven percent of the total number of samples were supersaturated (over 100 percent saturation). Marked supersaturation is attributable to photosynthesis.

Langhoven Lake had the highest pH and percent saturation of DO and one of the lowest pH and percent saturation values. In highly productive lakes, low pH and low DO follow massive algal blooms. Respiration, which is continuous, also can produce detectable variations in the oxygen content of the surface waters of productive lakes (Hutchinson, 1957, p. 599).

The silica values for all lakes were low. This may be why the diatom populations were small.

As shown in table 4 of the appendix, most of the nitrogen is in organic form. The ammonia and especially the nitrite and nitrate are low. This general fractionation is characteristic

of eutrophic lakes, because algae assimilate their essential quantities of nitrogen in the inorganic form.

Both dissolved orthophosphorus and dissolved phosphorus are low in relation to total phosphorus, suggesting that most of the phosphorus is incorporated within the cellular material of the algae (appendix).

Inorganic carbon, nitrogen, and phosphorus were determined on bottom material samples of all the lakes in October and November 1974. Adequate supplies of nutrients are available at the lake bottoms to support bloom conditions (appendix table 4). Algal blooms often follow spring or fall circulation. Note that in Holland and Fish Lakes during the May 1974 sampling period, blooms followed shortly after the spring circulation probably because nutrients from the bottom became available at that time. Bottom nutrients are less available to the algae during summer and winter stratification. In the shallower lakes, however, bottom nutrients are probably continuously available by way of mixing and diffusion.

BOD samples were collected near the bottoms of the lakes in order to determine the oxygen demand of decomposition processes. Fish and Holland Lakes showed relatively low demands compared with the other lakes. The low BOD's indicate low concentrations of biodegradeable matter near the lake bottom.

The BOD of the other lakes were strongly influenced by the respiration and presence of algae. In September 1973 BOD's were commonly high when many of the lakes had large algal blooms.

The suspended solids and turbidities generally varied with the phytoplankton counts. Perfect correlation, however, cannot be expected because turbidity depends on particle size as well as

- 15

concentration, and suspended solid material would vary more with masses rather than the numbers of phytoplankton cells. Phytoplankton vary considerably between species in both size and mass.

Specific conductance, dissolved solids, calcium, magnesium, sodium, potassium, and chloride were collected mainly for base data. The lake waters are calcium bicarbonate types.

#### Biological characteristics

Several species of algae are capable of producing blooms. Some of the types most frequently involved are blue-green algae, green algae, diatoms, and flagellates. Blooms of blue-green algae are particularly obnoxious.

There are many records of acute and often fatal poisoning of livestock which drank from ponds containing dense algal blooms. Animals affected include horses, cattle, hogs, sheep, dogs, rabbits, and poultry. In all cases, the alga implicated in producing the toxic agents is the blue-green *Anacystis (Microcystis*) (Palmer, 1962, p. 53).

Most of the lakes sampled for phytoplankton were typical eutrophic lakes. Blue-green algae were the dominant forms in approximately 78 percent of the samples. Blue-green algae dominated the cell counts 100 percent of the time in Blackhawk, Boesel, Burview, Cedar Grove, Farquar, Lakeside Estate, LeMay, Long, Thomas, and Wilderness Lakes (tables 6-9, 11, 16, 18, 19, 23, and 24 in appendix). Except for the November 1972 samples for Boesel and Lakeside Estate Lakes, all of the samples had cell counts of over 500 cells/ml (millilitre). Oscillatoria, Lyngbya, and Anabaena were the most common genera.

Fish and Holland Lakes seem to be of better quality biologically as indicated by both cell counts and type of algae (tables 12 and 14 in appendix). Blue-green algae were dominant in Fish Lake only in the October 1974 sample. The data do not show blue-greens to be a problem in Holland Lake. Based on phytoplankton cell counts and observations of littoral vegetation, Fish and Holland Lakes seem to be mesotrophic. All other ponds and lakes, based on similar biological characteristics, are categorized as being eutrophic.

Total coliform, fecal coliform, and fecal *Streptococci* counts were generally low (tables 5-24 in appendix). Many factors, such as sunlight, temperature, amount of organic matter, and presence of other microorganisms, affect the concentration and type of bacteria in water. In a literature search of the effects of various environmental factors on bacteria, Rudolfs, Falk, and Ragotzkie (1950) found much contradictory evidence. But, as a general rule, fecal coliform and fecal *Streptococci* counts reflect the degree of fecal pollution.

Ponds and lakes, where water is relatively slow moving, generally act as settling basins. This settles bacteria, especially those adsorbed to particulate matter (Salle, 1961, p. 547).

#### SUMMARY AND CONCLUSIONS

Although not all of the parameters shown in table 2 were determined, it seems that Holland and Fish Lakes are mesotrophic. The other 18 lakes show evidence of being eutrophic.

The lakes with storm sewer inlets show no evidence of being different in quality than the lakes without storm sewer inlets.

This may result from all lakes being subjected to overland runoff from the hilly terrain. Hence, it probably makes little difference, as far as nutrient enrichment is concerned, whether the overland runoff enters the lakes directly or through a storm sewer.

There are no apparent trends in the scant data available concerning the quality of the lakes.

 $\int \sum_{i=1}^{n} di$ 

#### REFERENCES CITED

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1971, Standard methods for the examination of water and wastewater (13th ed.): New York, Am. Public Health Assoc., 874 p.
- Brown, E., Skougstad, M. W., and Fishman, M. J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geol. Survey Techniques Water-Resources Inv., book 5, chap. Al, 160 p.
- Goerlitz, D. F., and Brown, E., 1972, Methods for analysis of organic substances in water: U.S. Geol. Survey Techniques Water-Resources Inv., book 5, chap. A3, 40 p.
- Greeson, P. E., 1969, Lake eutrophication--a natural process: Water Resources Bull., v. 5, no. 4, p. 16-30.
- Greeson, P. E., 1971, Limnology of Oneida Lake with emphasis on factors contributing to algal blooms: U.S. Geol. Survey open-file rept., 185 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water (2nd ed.): U.S. Geol. Survey Water-Supply Paper 1473, 363 p.
- Hutchinson, G., 1957, A treatise on limnology. Geography, physics, and chemistry: New York, John Wiley and Sons, v. l, 1015 p.
- Ott, A. N., Barker, J. L., and Growitz, D. J., 1973, Physical, chemical, and biological characteristics of Conewago Lake Drainage Basin, York County, Pennsylvania: Pennsylvania Dept. of Environmental Resources, Water Resources Bull. 8, 96 p.
- Palmer, C. M., 1962, Algae in water supplies: U.S. Dept. Health, Education, and Welfare, 88 p.
- Rudolfs, W., Falk, L. L., and Ragotzkie, R. A., 1950, Literature review on the occurrence and survival of enteric, pathogenic, and relative organisms in soil, water, sewage and sludges, and on vegetation. 1. Bacterial and virus diseases: Sewage and Indus. Wastes, V. 22, p. 1261-1281.
- Salle, A. J., 1961, Fundamental principles of bacteriology (5th ed.): New York, McGraw-Hill, Inc., 812 p.
- Slack, K. V., Averett, R. C., Greeson, P. E., and Lipscomb, R. G., 1973, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geol. Survey Techniques Water-Resources Inv., book 5, chap. A4, 165 p.
- Symons, J. M., Weibel, S. R., and Robeck, Gordon., 1964, Influence of impoundments on water quality: U.S. Dept. Health, Education, and welfare, 78 p.

. .

.

## APPENDIX

.

•

| · · · · ·                                                        |                         | o, fainceia      | h at sampling<br>c, ft | tite conductance,          | . ebilos bavio | ended solids   | AVA \$ \$2 | ojreg oxA&eu                                                                                        | olved oxygen,     | lintty as CaCO3 | ୍ଷ  | រី ខេទ សំព | negordin sin | eulg ein<br>N ea N sin | aule plus<br>Ne sa N | negorain 1  | כקפת 1ם bottom<br>דמו, בגל/אצ | clved ortho- | errord prosphorus | r. bucebyoina | itel, mg/kg |                    |       | au<br>au lea |          | hemical oxygen .<br>Do | l organic carbon | al aodras sines | an's ilstrorem m |
|------------------------------------------------------------------|-------------------------|------------------|------------------------|----------------------------|----------------|----------------|------------|-----------------------------------------------------------------------------------------------------|-------------------|-----------------|-----|------------|--------------|------------------------|----------------------|-------------|-------------------------------|--------------|-------------------|---------------|-------------|--------------------|-------|--------------|----------|------------------------|------------------|-----------------|------------------|
|                                                                  | 3<br>3                  | -                | u;oi                   | ound                       | -              |                | 1<br>I     | Sela                                                                                                | Disz              |                 | πıs | omaA       | вЪтÓ ,       |                        |                      |             | nt tr<br>NT tr                |              | 321Q              |               | 97.600      |                    |       | 1bo2<br>Ato3 |          | 0140                   |                  | Inorg           | 21100            |
| Aliment Iake at<br>Avole Valley, Mu.                             |                         | 17.5             | 9.4                    | 185                        | 1 11           | 13 9           | 9.1.6      | 10.2                                                                                                | 2 J08             | 71              | લ   | 15.        | 2.5          | ł                      | 70                   | <b>0</b> .0 | ł                             | 8            | 20.               | 91.           | :           | v                  | н     |              | 11 8.    |                        |                  | •               |                  |
|                                                                  | 5-20-74 27              | 5.0              | 8.0<br>8               |                            | 120            | 7 17           | 1 2.8.5    |                                                                                                     |                   | 65              | ι.  | 8          | 1.3          | ł                      | -05                  | 1.5         | :                             | 8            | 8                 | 90.           | , I         | 19 5               | 4.    | 6.2          | ਸ<br>    | 4.2                    | •                | 1               |                  |
|                                                                  | 11-04-11                | 1 00 0<br><br>   | 10.0                   | 215 3                      | 143            | ~ <del>*</del> |            | •                                                                                                   |                   | 1               | 1   | :          | :            | 1.2                    | ю.                   | 1.2         | 700                           | 10.          | 1                 | 8.            | 69          | ;                  | •     |              | ส        | !                      | . 7              | 1.2.1           | ч                |
| Blackhavk leke at<br>Feran. Mn.                                  | 21-69-11                |                  | 6.3 12                 | <sup>1</sup> 233 1<br>2023 | 180 - 4        | 7 L4           | t 8.3      |                                                                                                     |                   | 101             | 1.  | ł          | 2.0          | :                      | 8                    | 2.7         | ł                             | Ľ,           | 5                 | •05           | ;           | 33 8               | 8.7 ] | 1.4 3.       | 3.8      | 3.1 4.6                | i<br>vo          | 1               |                  |
|                                                                  | 6-21-73 2               | 20.0             | 6.5                    |                            | 135 3          | 37 9           | 9.5        | 16.3                                                                                                | 4                 | 81              | :   | .27        | 2.3          | :                      | ъ.                   | 2.6         | ł                             | 5            | 8                 | ਸ਼            | ł           | 21 8               | 8.5 2 | 2.3 3        | 3.9      | 2.1 8.2                | i<br>N           | •               | ``               |
|                                                                  | 9-25-73                 | 17.5             | 6.7                    | 192 3                      | 158 3          | 31 50          | 1.1        |                                                                                                     | T2T               | Х               | 8.8 | . 85       | 7.7          | · <b>I</b>             | 10.                  | 8.5         | :                             | •03          | •03               | -22           | •           | 2 <sup>1</sup> 4 8 | 6.9   | 1.8 4        | 8.4      | 2.2                    | •                | •<br>•          | •                |
| 21                                                               | 5-23-74 <sup>1</sup> 2  | 2,712            | 6.0                    | 159 1                      | 121            | 6 3            | 19.5       |                                                                                                     | 101               | 8               | 1.2 | 60.        | 5.0          | :                      | .03                  | 2.1         | ł                             | 8            | -01               | 60.           | ;           | 16 1               | 7.6 ) | 1.6 3        | 3.8.2    | 2.3 6.9                | •<br>•           | i               |                  |
|                                                                  | 10-21-74                | <br>             | 2.0                    | 230                        | 163 3          | .α             |            |                                                                                                     | 5.5               | ;               | ;   | :          | :            | 5.9                    | 8                    | 5.9         | 3,400                         | 5            | :                 | 11.           | 181         |                    | •     | :            |          | 2.8                    | •                | ដ               |                  |
| Boesel Pond at<br>Freen Wo                                       | 22-20-11                | 6.5 1            | g                      | OTT                        | 8              | 20 3           | 3 7.5      |                                                                                                     | 61 1              | 34              | :   | 71.        | -93          | ł                      | 8                    | 1.2         | :                             | 8            | ષ્ઠ               | -07           | ł           | ้ส                 | 3.2   | 1.7 6        | 6.tr     | 3.7 2.0                | 1<br>0           | i               |                  |
|                                                                  | 6-19-73 2               | 23.0             | 8.1                    | 211                        | 96             | 8              | 4.6 2      | •                                                                                                   | 86<br>86          | <b>F</b> 2      | :   | -05        | 1.1          | ŀ                      | 8                    | 1.1         | :                             | -05          | -07               | 10            | ;           | ส                  | 3.3   | 2.1 6        | 6.5      | 4.2 1.7                | •                | i<br>,          |                  |
| -                                                                | 9-21-73                 | 14.0             | 6.5                    | 136                        | 96<br>1        | 12 20          | 9.3        |                                                                                                     | 13                | 57              | 5.0 | 1.5        | 2.0          | ł                      | 80.                  | 3.6         | :                             | .03          | .03               | . 52.         | 1           | 77                 |       | 2.5 B        | 8.7      | 4.7 17                 | •                | •<br>•          |                  |
|                                                                  | 5-23-74 13              | 0.1              | 1.0                    | . 921                      | 81             | 5              | 19.8       |                                                                                                     |                   | Ş               | 2.6 | -07        | 1.7          | 1                      | -05                  | 1.9         | :                             | 8            | ·03               | ส             | ¦           | 13                 | 3.4   | 2.2          | 6.3      | 4.2 10                 | •                | i<br>•          |                  |
| 1                                                                | 10-30-74                |                  | 5.5                    | 145                        | 76 1           | 14 10          |            | <b>'</b> -                                                                                          |                   | !               | :   | ł          | ;            | ţ.4                    | ,<br>10              | r - 3       | 1,200                         | ц.           | :                 | સ             | ŝ           | 1                  | 1     | •            | •        | r.8                    |                  | 19              | ų                |
| Burview Park Pond at<br>Peren Mn.                                | 21-02-11                | 2 C C            | 6.1 2.                 | 546 J                      | 178 2          | 23 h           | 1.7.6      | 19.6                                                                                                |                   | 103             | ł   | 01.        | 1            | ł                      | 8.                   | 1           | !                             | 10.          | 8.                | 8             | ;           | 27 Y               | ส     | 4.8 3        | 3.0 1    | <b>15</b> 2            | ņ.               | •               |                  |
|                                                                  | 6-14-73 <sup>12</sup>   | 125.0<br>218.0   | 4 ·5                   |                            | 198            | 4              | 6.6 1      |                                                                                                     | 105               | 122             | :   | .08        | 1.4          | ł                      | 8                    | 1.5         | f                             | 8            | 8.                | .10           | :           | ŝ                  | 4.6   | 5.1 4        | а<br>г., | <del>ା</del><br>ମୁ     | •                | •               |                  |
|                                                                  | 9-13-73                 | 0.8              | 7.7                    |                            | 123            | 7<br>8         | 1 8.2      |                                                                                                     | 88                | જ               | 8.  | .10        | 1.5          | ł                      | 10.                  | 1.6         | ł.                            | 8            | 8                 | 11.           | :           | я<br>8             | 2     | 5.5 3        | 3.8 1    | 14 5                   | 5 2 .            | •               |                  |
|                                                                  | 5-30-74 2               | 20.0             | 7.0                    | 275 ]                      | 160            | -1<br>80       | 1.91       |                                                                                                     | ~                 | 711             | .6  | 91.        | 1.4          | ł                      | 10.                  | 1.6         | :                             | 8            | 10.               | ้า            | ł           | ま                  | 9.5   | 5.2 3        | 3.4 1    | 1.<br>д                | • 9.4            | •               |                  |
| <b>.</b> .                                                       | 10-23-74 <sup>1</sup> 3 | 10.0             | 7.7                    | 240 3                      | 161 1          | 27 5           |            | 50.4<br>7<br>7<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |                   | 1               | ł   | 1          | •            | 3.0                    | 8                    | 3.0         | 1,600                         | 10.          | . 1               | , ¶T.         | 8           | ł                  | :     | . '<br>¦     |          | י<br>ת                 | <b>.</b>         |                 | नु               |
| Cedar Grove Pond at<br>Fern, M.                                  | 10-31-72                | 6.0              | 7.5 2                  | •                          | 118 8          | 88 20          | 8.5        |                                                                                                     |                   | 62              | ł   | 1          | 1.3          | :                      | ଞ୍ଚ                  | ب.<br>د.    | 11<br>15                      | 8            | នុ                | 3.            | 1           | 8                  | 5.1   | 5.Ő 2        | 2.2      | 7.8 1                  | 1.7              | •               |                  |
|                                                                  | 6-13-73 <sup>1</sup> 2  | 125.0 .<br>225.0 | 8.4                    |                            | 155 1          | 15 20          | 5 10.2     |                                                                                                     | 5 169             | δ               | 1   | સ          | 2.5          | ;                      | 8                    | 2.6         | :                             | 8            | 8                 | .13           | 1           | 18                 | 3.7 2 | 29           | 3.5 4    | 45 <b>-</b>            | •                | •               |                  |
|                                                                  | 9-18-73                 | 5.5              | 1.2                    |                            | 1 11           | 19 50          | 9.3        | 8.5                                                                                                 | 87                | R               | 2.8 | 12.        | 1.4          | :                      | 8                    | 1.6         | :                             | 8            | 8                 | .26           | ł           | 13                 | 2.6 J | 14 2         | .8       | 23 29                  | •                | •               |                  |
|                                                                  | 5-28-74 J               | 13.0             | 7.0                    | 236 ]                      | 122 1          | 20 8           | 3 18.7     | 18.1                                                                                                |                   | 22              | 2.4 | .10        | 1.4          | ;                      | 30.                  | 1.5         | :                             | 8            | .03               | 11.           | :           | 15                 | 4.2 2 | 8            | 2.9 3    | 3-                     | 4                | •               | •                |
| •                                                                | , η2-η0-ττ              | ,                | 6.0                    | 160 1                      | 108            | *<br>8         |            |                                                                                                     | یگ <sup>و</sup> ر | :               | 1   | :          | :            | 2.7                    | સ                    | 2.8         | 1,200                         | 8            | :                 | .15           | 8           | :                  | ;     | :            | -        | י<br>א                 |                  | 9<br>0          | Ņ                |
| <sup>4</sup> Serpled near wate<br><sup>2</sup> Sarpled near lows | r surface.<br>botting   |                  |                        |                            |                | ·              |            |                                                                                                     |                   |                 |     |            |              |                        |                      |             |                               |              |                   |               |             |                    |       |              |          |                        |                  |                 |                  |

Table <sup>4</sup>.--Physical and chemical analyses for lakes sampled at Eagan and Apple Valley, Minn. Except for pH, values represent milligrams per litre unless otherwise indicated. (JTU, Jackson turbidity units; CaCO<sub>3</sub>, calcium carbonate; N, mirrogen; P, phosphorus)

•

21

۰.

|                                                               | celcium                                 |                        | ca vbona te                    | 1<br>1<br>1<br>1                           | 2                | ri +           | nitrogen:       | <br>              | р.<br>Гд                         | phosphorus       | oyd                 | us)                    | Con         | -Continued    | τ <b>σ</b> .                                   |                               |                                       |                |                   |               |                      |         |           |        |                  |                   |                                              |                     |                     |
|---------------------------------------------------------------|-----------------------------------------|------------------------|--------------------------------|--------------------------------------------|------------------|----------------|-----------------|-------------------|----------------------------------|------------------|---------------------|------------------------|-------------|---------------|------------------------------------------------|-------------------------------|---------------------------------------|----------------|-------------------|---------------|----------------------|---------|-----------|--------|------------------|-------------------|----------------------------------------------|---------------------|---------------------|
|                                                               | 5<br>5<br>5                             | 0° ,enderstagasî       | Pepth at sampling<br>Peint, ft | Spectle conductance,<br>universite at 25°C | , sbilos beviera | solics hendens | Urt (y) ibidant | H                 | Dissolved oxygen                 | resolved oxygen. | Alkallatty as GaCO3 | Silles<br>Armonia da N | กรอกรรม ราย | euld sincernA | organic N sa N<br>Nitrite plus<br>Nitrite as N | n en ontonn<br>nogordin fator | Νίτιοgen in bottom<br>πειειται, mg/kg | Dissphate as P | Bissolved phospic | scal postours | Firsthorns in bottom | autoind | auteensaw | multo2 | mulaes)ol        | Biochemical orgen | demand<br>Total organic carbon               | Inorganic carbon is | porrom merenjej R/R |
| Denaldson's Pond at                                           | 27-50-11                                | 6.0                    | в.2                            | 112                                        | 911              | 53             | ខ្ម             | 0°8               | 2.61<br>2.61                     | 61               | ę.                  | 1                      |             | <br> 2        | .10                                            | 87. 0                         | :                                     | 0              | -05               | .05           | :                    |         | 3.3       | L 4.4  | •                | 7.5 1             | - 6-1                                        | 1                   |                     |
|                                                               | 6-20-73                                 | 23.0                   | 0.0                            | 524                                        | 191              | 9              | m<br>m          | ີ <b>1</b> ຄ      | , i- 0                           | . 85             | 57<br>57            | !                      |             | :<br>92       | 00.                                            |                               | •                                     | 8.             | ଞ                 | 8.            | :                    | 28      | 7. 4.4    | 76 2   | 2.1.2            | 25 2              | 2.9                                          | 1                   |                     |
|                                                               | 9-24-73                                 | 16.0                   | 7.5                            | 230                                        | 145              | œ              | ~<br>~          | 8                 | 0.4.0                            | 87               | 78 4                | 4.5                    | -50 .47     |               | .18                                            |                               | :                                     | 8              | :                 | Ş,            | :                    | 29      | 4.0 Ľ     | ้า     | 1.9 1            | 15 4              | 4.1 · `-                                     |                     |                     |
| •                                                             | 5-22-74                                 | 218.5                  | 8.0                            | 23                                         | 0                | н              | ч<br>5.2        | 1.61<br>5.1.61    | 10.4 1                           | 811              | 63 1                | 2.5                    | 03 .52      | ן<br>ני       | 10.                                            |                               | ;                                     | 8              | ъ,                | чo.           | :                    | 26      | 3.0 2     | 23     | 1.6 3            | ч<br>В            | 1.5 /~                                       | , <b>1</b> ,<br>1   |                     |
| •                                                             | 10-29-74                                | 0.01                   | 8.0                            | 233                                        | 139              | N              | m               | 10                |                                  | 18,5             | 1                   | ł                      | :           | 1.1           | 1.06                                           | •                             | 071                                   | 8              | <b>I</b>          | •05           | 328                  | :       | 1         | •      |                  | r -               |                                              | 9.5 8.9             | 0                   |
| Farquar Lake at                                               | 9-25-73                                 | 16.0                   | 6.3                            | 1165                                       | 108              | 16             | ଛ               | 8.8 <sup>1</sup>  | 5 0 0<br>5 <del>1</del> 2<br>7 1 | 101              | 4<br>12             | 4.3 .1                 | -09 · 3-9   | ·             | .08                                            | 1.1 8                         | 1                                     | 10.            | 8.                | 54            | :                    | 15      | 6.7       | 5.7 7  | 1.0 1            | 11 20             |                                              | 1                   | •                   |
| Apple (alley, MD. )                                           | 5-15-74                                 | 0.21                   | 8.0                            | 163                                        |                  | 16             | ω               | 6.6               | 0. 21                            |                  | 62                  | م                      | .06 2.9     | · 1           | 12                                             | 3.2                           | 1                                     | 10.            | 10-               | 01.           | ;                    | 16      | 6.3       | 5.1.5  | 5.8 1            | 10 13             | <b>,                                    </b> | 1                   |                     |
| 22                                                            | 10-31-74                                | 112.5                  | 7.5                            | 195                                        | 134              | 28             | 02              | 7.8               |                                  | 18<br>18<br>18   | :                   | ł                      | ;           | 0.4           | 70° 0                                          | 4.0                           | 1,600                                 | 8              | 1                 | .13           | \$T1                 | ł       |           | .1     |                  | •<br>ช            | - N<br>-                                     | v<br>N              | ч                   |
| Fish Leve at                                                  | 10-30-72                                | 6.5<br>6.5             | 25                             | 1215                                       | 142              | ł              | ω<br>N          | 8.0 1             |                                  |                  | 86                  | -                      | .05         | - 79.         | 8                                              | Ę.                            | <br> -                                | `8 <u>'</u>    | 8.                | 8.            | ł                    | 56      | 9.8       | 2.0 2  | 2.7              | 4.5 3             | 3.5                                          | 1                   |                     |
|                                                               | 6-14-73                                 | 123.5<br>223.5         | 27                             |                                            | 131              | <b>€ (</b> 1)  | н<br>1          | 10.2              | 1967                             | 114              | 87                  |                        | -03 .7      | - 78          | 8                                              | 18. 0                         | <b> </b>                              | 10.            | 10-               | .05           | :                    | 19      | 9.2       | 3.1 8  | ż.4              | 5.6 -             | . •                                          | 1                   |                     |
| -                                                             | 9-20-73                                 | 16.55                  | 28                             | 1205                                       | 135              | 9              | ч               | 0.8<br>0.0        |                                  | 62               | ۲.<br>۲             | 1.2                    | . oh67      | 57            | 10.                                            | 2.                            | -                                     | 8              | 10.               | 10.           | :                    | 22      | q         | 3.2    | 2.3              | 6.0 3             | 3.5                                          | 1                   |                     |
| -                                                             | 5-10-74                                 | 2.11                   | ,28                            | 259                                        | 155              | ч              | ~<br>н          | <b>8.6</b> ј      |                                  | 1C8 1            | धा                  | •                      | .13         |               | -03                                            | 69. 8                         |                                       | 10.            | 8                 | ର୍            |                      | 33      | 6.6       | 4.7    | 3.1              | 7.7 -             | •                                            | 1                   |                     |
|                                                               | 70-57-74                                | 110.5<br>28.5          | 28                             | 53                                         | 133              | н              | <br>            | 8.1               | 18.8                             | 181              | 1                   | •                      | i<br>!      | - 1.0         | 8.<br>0                                        | 0.1.0                         | ສິ                                    | 8              | :                 | 10.           | 158                  | :       | • 1       | •      | :                | 8.0 -             |                                              | 9.0 2.6             | <b>6</b> • ·        |
| Zeuser Pond af                                                | 11-10-72                                | .0.                    | 1.8                            | 2ţt3                                       | 193              | 20             | 5               | 7.6 3             |                                  |                  | 114                 | •                      | ਭ.<br>ਸ਼    |               | 6                                              | ۲97                           | -                                     | ;              | ł                 | -05           | ł                    | Ř       | 10        | 5.5    | 3.8              | 3.1 3             | 3.0                                          | 1                   |                     |
|                                                               | 6-15-73                                 | 30.5                   | 3.0                            | 3.72                                       | 150              | R              | 20 1(           | 10.5 1            | 13.8                             | 189              | 93                  | •                      | .17 2.2     | :             | 8                                              | 5.4<br>2.4                    | :                                     | .01            | 8                 | สุ            | 1                    | 18      | 4.9       | 2.0    | j.6              | 1.5.              | •                                            | 1.                  | _                   |
|                                                               | 9-12-73                                 | 17.0                   | 1.5                            | 290                                        | 183              | f              | ្ត្             | 7.5               | 4.8                              | 51 3             | 128 16              | न<br>:                 | .4 1.9      | -             | 8                                              | 0, <b>3</b> .3                | 1                                     | -0 <b>-</b>    | -07               | 10            | 1                    | 37 3    | ิส        | 3.2    | 6.4              | 4. L.4            | 8.0                                          | 1                   | •                   |
|                                                               | 5-29-74                                 | 24.0                   | 2.0                            | 167                                        | 113              | N              | ы<br>Ч<br>К     | 10.5 12           | 1 9. 11 1<br>2 7 612             | 176              | 76                  | ب                      | 1.1 60.     | ן<br>ה        | 8                                              | 2.1.2                         | 1                                     | 8              | •03               | .05           | 1                    | 19      | 7.8       | 2.1    | 1.2              | 1.5 2             | 2.4<br>-                                     | 1                   |                     |
|                                                               | 10-22-74                                | 0.11                   | 1.0                            | 240                                        | 159              | 11             | m               |                   |                                  | 56               | !                   | •                      | i           | н             | 9 .03                                          | 3 1.9                         | Ř                                     | ю.<br>0        | ł                 | 8             | 8                    | ł       | ł         |        | :                | 5.1.              |                                              | ×.                  | ન                   |
| Eclicid Lake at                                               | 21-71-11                                | 1 <sup>1</sup><br>21.0 | 58 .                           | 1185                                       | 8                | 9              | m               | 7.4               | 18.0<br>27.3                     | 62               | 83                  | •<br>•                 | 1. 01.      | r<br>I        | 8                                              | 18.                           | <b> </b><br> -                        | 8              | 8                 | SO.           | u<br>t               | 13      |           | 0.5    | - <b>†</b><br>(N | ў.1 -             | •                                            | 1<br>• •            |                     |
|                                                               | 6=22=73                                 |                        | 51.5                           | 1977<br>1975<br>1975                       | BLL              | 50             | N               | 8.8               | - 2, 2                           | 8                | E                   |                        | 8           | 69            | 8                                              | . 75                          | 1                                     | 8              | 8                 | 10.           | ;                    | 20      | 8.0       | 2.5    | 2.2              | 4.1 2             | 4                                            | 1                   |                     |
|                                                               | 9-20-73                                 |                        | 50.0                           | 210                                        | 105              | ч              | л »<br>Н        | 18.7 <sup>1</sup> |                                  | 199              | 66                  | ب                      | 5.<br>73.   | -50           | 8                                              | 4 <b>5</b> • 0                | -                                     | 8.             | 8                 | 8             | · <b>I</b>           | 17      | 7.7       |        | 1.9              | 4.7 2             |                                              | :                   |                     |
| •                                                             | 5-24-74                                 | 15.0                   | 20                             | 136                                        | 83               | ч              | 'n              |                   |                                  | 107              | ß                   | ન્                     | с.          | u             | 6                                              | 1 .23                         | :                                     | 8.             | ·03               | .03           | ł                    | 13      | 1.1       | 3.3    | 4.1              | L 1.4             | ŝ.                                           | •                   |                     |
| •                                                             | 10-17-74                                | 10.01<br>5.0           | 50                             | 1160<br>225                                | 102              | 11             | ч               | 0.0               | 19.7<br>20.3                     | 1<br>83<br>22    | ł                   | •                      | :           |               | 10. 91.                                        | н.<br>1                       | 7 4,900                               | 0.01           | :                 | 5             | 85                   | :       | ;         | ;      | <b>:</b>         | 5.3               |                                              | •<br>9              | ન                   |
| <sup>1</sup> Supled near vat<br><sup>2</sup> Sampled near lak | near veter surface<br>near lake botton. | •                      |                                |                                            | •                |                |                 |                   | •                                |                  |                     |                        |             |               |                                                |                               |                                       |                |                   |               | •                    |         |           |        |                  |                   |                                              |                     |                     |

Table 4.--Physical and chemical analyses for lakes sampled at Eagan and Apple Valley, Minn. Except for PH, values represent milligrams per litre unless otherwise indicated. (JTU, Jackson turbidity units; CaCO3, calcium carbonate: N. nitrogen: P. phosphorus)--Continued

| •                                                                                 | celtin               |                           | ce rbona te                                        | e<br>D                | N.              | ni ti            | nitrogen:             |                      | ਯ<br>•                                                                           | hosl               | phosphoru                     | s)-         | -Continued       | inu€                        | بې                                             |                 |                                     |                                   |                      |                  |                                       |          | , .         |                    |         | ſ                                                  |                      | •                                           |                                                                                                                 |
|-----------------------------------------------------------------------------------|----------------------|---------------------------|----------------------------------------------------|-----------------------|-----------------|------------------|-----------------------|----------------------|----------------------------------------------------------------------------------|--------------------|-------------------------------|-------------|------------------|-----------------------------|------------------------------------------------|-----------------|-------------------------------------|-----------------------------------|----------------------|------------------|---------------------------------------|----------|-------------|--------------------|---------|----------------------------------------------------|----------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                   | R<br>S               | <b>)° , vouter sq</b> mol | Bailigans is highling<br>for the standing          | Prestite conductance, | ebilos betagens | abilos bahaquels | UTL (V) LAIdruf<br>Hq |                      | nagyro bevlossic                                                                 | percent saturation | Alkalinity as CaCO3<br>Silica | И св влюшиА | nagoriin sinegrö | Bulg Blues<br>Nesnic N es N | n es n sansgro<br>N trifte plus<br>N es sistin | negorain intere | mottod in bottom<br>Material, mg/kg | -odro bevlossia<br>9 88 erangsong | Dissolved phosphorus | errodgeodg fetci | Frosphorus in bottom<br>Eastel, Eg/kg | eulole3  | en issafter | Eulbo2<br>Eulsso19 |         | Ghlorhenical oxygen<br>Biochenical oxygen<br>demad | Total organic carbon | ai notro carbon in<br>BA/B (intretan antroi | e de la companya de l |
| Jensen Jake at<br>Eagen, Mn.                                                      | 22-10-11             | 6.0                       | 6.3 1                                              | 153 1                 | 156 1           | 105              | 5 7                   | 7.4 1                | 9.6                                                                              | 61                 | - 18                          |             | ы                | :                           | 10.                                            |                 | 1                                   | 8.                                | 05                   | 90.              | :                                     |          | Q.          | e.                 | ъ.      | Ś                                                  |                      | :                                           |                                                                                                                 |
|                                                                                   | . 6-22-73            | 0.91                      | 1, 6.9<br>1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | 1 272                 | 137             | 2 <b>4</b>       | 6                     | 9.2                  | 5.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1. | 81                 | - 91                          |             | 1 1.ĝ            | :                           | 8                                              |                 | :                                   | 8                                 | . 10                 | <b>H</b>         | ;                                     | 3 61     | 8.8         | 3.9 0              | .6.6    | 6.0 25                                             | 1                    | :                                           | ·                                                                                                               |
|                                                                                   | 9-19-73              | 15.5                      | 4.5                                                |                       | 149             | 17               | 7 7                   | 1.8.1                |                                                                                  | 5 9TT              | 94 1.                         | ې<br>د      | .05 1.7          | :                           | 1.0                                            | 1.7             | 390                                 | 0.                                | <b>1</b> 0.          | 01.0             | 8                                     | 23       | 9.3         | 3.9 0              | 4.0     | 5.8 29                                             | ;                    | :                                           | -                                                                                                               |
|                                                                                   | · 5-24-74            | 115.0                     | 6.0 3                                              | 194 ]                 | 122             | N                | 5 11<br>11            | 6.71                 | r 6.01                                                                           | 191<br>191         | <br>18                        | ר.<br>גי    | रू.<br>स         | 1                           | 6                                              | .22             | :                                   | 8                                 | .03                  | .05              | :                                     | 21 8     | 8.8         | 7.1                | ۶<br>۶  | 6.5 3.7                                            | .1                   | 1                                           | -                                                                                                               |
|                                                                                   | 10-17-74             | 10.01                     | 5.0 2                                              | 2001                  | 138             | , <b>4</b>       | 3.7                   |                      |                                                                                  | 5 <sup>62</sup>    | י<br>ן                        | !           | :                | 1.6                         | 8.<br>8                                        | . 1.6           | 809                                 | .01                               | ľ                    | .05              | 69                                    | :        | :           | •                  |         | 1.6                                                | 53                   | <b>1.</b> >                                 |                                                                                                                 |
| Lakeside Estate Lake<br>at Engen, Mn.                                             | 11-03-72             | 6.0                       | 4.2                                                | 1169 1                | 22              | 13               | 67                    | 7.8 <sup>1</sup> 1   |                                                                                  | 6                  | 67 -                          | ् <u>२</u>  | 1.1 60.          | i                           | .03                                            | 3 1.2           | :                                   | <b>1</b> 0.                       | ą                    | <u>е</u> .       | ł                                     | 57       | و.ي<br>ئ    | 2.9 4              | 4.2     | 9 3.2                                              | ;                    |                                             |                                                                                                                 |
|                                                                                   | 6-20-73              | 20.0                      | 5.8                                                |                       | 122             | 8                | 4 7                   | ຜ                    | 1.5.                                                                             | 61                 | •<br>61                       |             | 09 1.2           | :                           | 8                                              | 0 1.3           | ł                                   | 8                                 | 8                    | 8                | ł                                     | 50       | 6.4         | 2.4 3              | 3.6. 1  | 1.4 4.4                                            | ľ                    | 1                                           |                                                                                                                 |
|                                                                                   | 9-13-73              | 19.0                      | 1.0 1                                              | 191                   | 711             | 9                | ł, 8                  | 8.1                  | •                                                                                | 8                  | 88<br>3.                      | ر.<br>و     | 51               | <b>!</b>                    | 10.                                            | <b>:</b>        | ł                                   | 10.                               | 10.                  | .10              | :                                     | ส        | 1.1         | 3.6 4              | r.1     | 5.1 6.8                                            | .1                   | :                                           |                                                                                                                 |
| 23                                                                                | · 5-23-74            | 19.0                      | 5.0 ]                                              | ב יארב                | . 111           | 91               | <b>وا</b><br>وا       |                      | -                                                                                |                    | 76 2.                         | ي.<br>ح     | .58 3.1          | :                           | Ъ.                                             | + 3.7           | ł                                   | 10.                               | .13                  | ę,               | ;                                     | 18       | 6.4         | 3.8                | 3.8     | 4.2                                                | I                    | 1                                           |                                                                                                                 |
| <b>.</b> .                                                                        | 10-23-74             | 0.11                      | 3.8                                                | 195 1                 | 125             | ដ                | , 9                   | 5.1.<br>5.1.<br>6.1. | י רו<br>סי אן<br>הי או                                                           | គ្ន                | 1.                            | 1           | 1                | 3.5                         | 5 .01                                          | L 3.5           | 1,600                               | 6                                 | 1                    | .19              | 182                                   | ļ        | ł           | . <b>1</b>         | 1       | 5.2                                                | 14                   | 1.2                                         |                                                                                                                 |
| Lenghoven Lake at<br>Eagen, Mn.,                                                  | 20-25-72             | 4.8                       | 1.6 <sup>1</sup>                                   | <sup>1</sup> 275      | סיונ            | 5<br>11          | 30 7                  | 7.4 10               | 10.3                                                                             | ห<br>8             | - 131                         | •           | .09 .13          | -                           | द्य.                                           | 45. 2           | ł                                   | 8                                 | 10.                  | 60.              | :                                     | 31       | 6.6         | 3.8                | 3.4     | 6.7 6.4                                            | 1                    | 1                                           |                                                                                                                 |
| <b>.</b> .                                                                        | 6-13-73              | 23.0                      | 5.0                                                |                       | 191             | 8                | 11 01                 | זו 2.1נ              | 16.4 1                                                                           | 195 10             | 105 -                         | -01         | 7.1.70           | . 1                         | 10.                                            |                 | ł                                   | 5                                 | સ                    | .20              | ţ                                     | 72       | 6.1         | 5.8                | 3.6 LI  | ;                                                  | 1                    | 1                                           |                                                                                                                 |
|                                                                                   | • 9-18-73            | 0.21                      | 1.6                                                | 58                    | 193             | 6 1              | 10 8                  | 8.1 J                | 10.2                                                                             | 97 I               | 137 6.                        | ч           | 3.L SL           |                             | 8                                              | 9.1.6           | :                                   | 8                                 | ·05                  | •23              |                                       | тъ<br>тъ | 9.5         | 4.5 5              | ۲۰۶     | 7.8 13                                             | :                    | 1                                           | •                                                                                                               |
|                                                                                   | 5-22-73              | 23.0                      | 2.0                                                | 230                   | 242             | ß                | 6 9                   | 1.6                  | 8.9 I                                                                            | 105                | ۲.<br>8                       | t. T        | 13 -91           | -                           | 41.                                            | 1.2             | ł                                   | ц.                                | 8                    | .16              | ł                                     | 27       | 6.5         | 8.5                | 2.8 1   | 13 k.k                                             | •                    |                                             |                                                                                                                 |
|                                                                                   | 10-30-74             | 13.5                      | 1.5 2                                              | 285 ]                 | 747             | ជ                | 7 7                   | 7.6                  | 5.6                                                                              | 55                 | 1                             | 1           | :                | 2.6                         | 6 .03                                          | 3 2.6           | 0LT                                 | 10.                               | :                    | .28              | <u>%</u>                              | ł        | ł           | • .                | •       | 9.4                                                | 21                   | 5.5                                         | -                                                                                                               |
| levey leke at<br>Eegen, Yn.                                                       | 10-25-72             | 6.5                       | 7.2                                                |                       | 178             | 23               | 5 . 8                 | 8.3 11.              | 1.00                                                                             |                    | .•<br>139                     |             | 01. 71.          | :                           | .13                                            | 3 .40           | :                                   | 8                                 | 0.                   | 8                | ł                                     | %<br>7   | 13 1        | .ז<br>ב            | 4.3 1   | 1.4 71                                             | 1.                   | .1                                          | •                                                                                                               |
|                                                                                   | 6-12-73              | 24.0                      | 8.0                                                | ુર્જુ<br>કુર્જુ       | 136             | 7                | 3 10                  | 10.5 11              | 2.011<br>2.011<br>2.012<br>2.012                                                 | 129                | י<br>ב                        | •           | .05 1.1          | ł                           | 8                                              | 1.1 0           | 1<br>. 1                            | 8                                 | 5                    | ō.               | ł                                     | 74 7     | า ส         | ะส                 | 2.3 1   | 19                                                 | 1                    | 1                                           |                                                                                                                 |
| ÷                                                                                 | 9-17-73              | 17.0                      | <b>6.1</b>                                         |                       | 173             | 18 2             | 20 9                  | 6.1                  | 1.0.6                                                                            |                    | - 201                         |             | .16 2.5          | ł                           | .13                                            | 3 2.Y           | :                                   | .03                               | 5                    | .16              | ł                                     | 22 1     | า<br>ผ      | 15                 | 5 6.1   | ۰ ۲۹                                               | 1                    | 1                                           | 1.1                                                                                                             |
|                                                                                   | 5-21-74              | 120.0                     | 7.5                                                | 1 212                 | 169             | 8                | 5 19                  |                      |                                                                                  | 1,123 L            | 111 2.                        | י.<br>ד     | -07 1.2          | :                           | 50.                                            | ы.<br>г Ы.      | <b>I</b>                            | 10.                               | <b>0</b>             | 60.              | ł                                     | 29 I     | า<br>ผ      | 57                 | 3.3 2   | 23. 5.                                             | . <b>!</b>           | 1                                           |                                                                                                                 |
|                                                                                   | 10-29-74             | 0.51                      | 2.0                                                | 355                   | 2011            | 9                | 20<br>+<br>+          | 0 cc<br>2 v v        | 20<br>20<br>1                                                                    | 38<br>28           | •                             | 1           | <b>¦</b>         | 5                           | 0.<br>0                                        | 0 2.0           | 50                                  | 10.                               | 1                    | .10              | 519                                   |          | ł           | ľ                  | ei<br>1 | 2ŀ, ==                                             | 51                   | 5                                           | ھي                                                                                                              |
| Long Lake at Apple<br>Valley, MD.                                                 | 9-26-73              | 20.02                     | L 1                                                | 189                   | 142             | R                | 20 9                  | 9.                   | 7.6                                                                              | 85                 | 73 2.                         | л.<br>о     | .4.5 4.6         | ł                           | .03                                            | 3 5.0           | 1                                   | 8                                 | .03                  | .25              | ł                                     | 19       | 6.9         | 6.3                | 1.3     | S<br>8                                             | 1                    | 1                                           |                                                                                                                 |
|                                                                                   | 5-25-74              | 10.0                      | 2.0                                                | 8                     | 118             | ส                | 8                     | 9.6                  | 12.0                                                                             | 109                | 20                            | ч.          | .07 2.5          | ł                           | 8.                                             | 2 2.6           | :                                   | 6.                                | .03                  | <b>1</b>         | ;                                     | 19       | 7.0         | 5.9                | 3.1     | 4 13                                               | :                    | •                                           | 1997                                                                                                            |
|                                                                                   | 10-31-74             | <u> २</u> .दा             | h.o                                                | 510                   | 139             | ដ                | <b>6</b>              | 8.5                  | 8.5                                                                              | ୍ଷ<br>ଝ            | •<br>•                        | i<br>!      | . <b>1</b>       | 4                           | 10. 0.                                         | 1 4.0           | 70                                  | 8                                 | ł                    | 91.              | 143                                   | ţ        | ł           | :                  | -       | 11                                                 | \$                   |                                             | -4                                                                                                              |
| <sup>1</sup> Sarpled near vater surface<br><sup>2</sup> Sarpled near lake botton. | r surface.<br>bottom |                           |                                                    |                       |                 |                  |                       |                      |                                                                                  |                    |                               |             |                  |                             |                                                |                 |                                     |                                   |                      |                  |                                       |          |             |                    | •       |                                                    |                      |                                             |                                                                                                                 |

Table 4.--Physical and chemical analyses for lakes sampled at Eagan and Apple Valley, Minn. Except for pH, values represent milligrams per litre unless otherwise indicated. (JTU, Jackson turbidity units: CaCO<sub>3</sub>. .

|                                                                                    | Inorganio carbon in<br>pottom material, g/k           | 1                 | 1             | :       | 1           | 2.4             | 1                | ;       | 1          | 1          | <b>*.1</b>  | 1                   | ł                    | 1        | 1                    | <b>V</b>    |                     | :                     | 1          | ł                   | <b>v</b>  | ł                            | 1                            | ł       | 1            | v <sup>.</sup> |                    |
|------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|---------------|---------|-------------|-----------------|------------------|---------|------------|------------|-------------|---------------------|----------------------|----------|----------------------|-------------|---------------------|-----------------------|------------|---------------------|-----------|------------------------------|------------------------------|---------|--------------|----------------|--------------------|
|                                                                                    | notes olnegro lator                                   | :                 | 1             | :       | <b>1</b>    | ្ព              |                  | 1       | ·  <br>    |            | 8           | •                   | •                    | -        | 1                    | ສ           |                     | I                     | i          | 1                   | સ         | 1                            | 1                            |         | i            | 61             |                    |
| tor pH,<br>CaCO3,                                                                  | gewung<br>Biochemical oxygen<br>Chloride              | 6.2 3.0           | 3.5 2.9       | 2.6 8.2 | 5.5 2.1     | <del></del> 6.9 | 3.2 10           | 3.6     | 4.5 15     | 3.9 4.6    | 4.7         | 21 7.7              | 6.5 9 <b>.5</b>      | 8.4 3.3  | 4.8 9.6              | <b></b> 1.2 | 15 16               | 14                    | 16 23      | 15 >24              | 19        | 1.1                          | 6.5                          | 6.7 27  | 5.8 23       | 8.2            |                    |
| P ••                                                                               | <i>811</i> ] 88 87 07                                 | 4.7               | 5.5           | 2.9     | ۳.<br>•     | :               | 9.4              | 5.4     | 4.5        | 1.1        | :           | 5.5                 | 7.6                  | 9.8      | 5.4                  | :           | 7.1                 | ł.6                   | 5.3        | <b>h.</b> 6         | :         | 3.6                          | 2.0                          | 5.3     | 3.9          | ;              |                    |
| <b>Excep</b><br>units                                                              | em i bos                                              | 3.5 4             | 3.1           | 2.9     | 3.6         | ;               | 2.9              | 2.8     | 3.1        | 2.8        | ;           | 1.9                 | 2.4                  | 5.9      | 5.0                  | 1           | . 6.5               | 7.4                   | Υ.3        | 7.5                 | ł         | 3.1                          | 2.9                          | 1.4     | 3.2          | :              |                    |
| ьtу                                                                                | ណា <b>រ</b> ទេទបូ <i>រ</i> ារ                         | ឌ                 | ដ             | ជ       | 6.6         | 1               | 5.1              | 2.7     | 5.6        | 4.3        | ţ           | 3.4                 | 3.6                  | 4.2      | 5.1                  | ł           | 5.9                 | 5.9                   | 9.9        | 5.7                 | ł         | 4.8                          | 4.1                          | 4.2     | 3.5          | 1              |                    |
| , winn<br>urbidit                                                                  | ewisia).                                              | æ                 | ရ             | 25      | 31          | ;               | g                | я       | น          | <b>a</b> ' | 1           | ង                   | ខ្ព                  | 53       | 4.6                  | :           | 71                  | 19                    | 19         | 11                  | 1         | 17                           | 15                           | 76      | 77           | ł              |                    |
| ນີ້                                                                                | Flosphorus in bottom<br>Esterisi, Eg/kg               | ;                 | :             | ł       | :           | 170             | . 1              | :       | ł          | :          | <b>.</b> 33 | . 1                 | ł                    | 1        | •                    | 233         | :                   | :                     | 1          | ł                   | 53        | ;                            | 1                            | :       | :            | 151            |                    |
| ackson t                                                                           | Burodzaodz LatoT                                      | , <sup>10</sup> . | .05           | 60.     | •02         | .03             | .05              | .08     | સં         | લ          | ٠١4         | 40.                 | .25                  | -20      | .13                  | .23         | ц.                  | .15                   | .18        | 57.                 | .13       | -05                          | 90.                          | .13     | .17          | ĸ              |                    |
|                                                                                    | Diasolved phosphorus                                  | .03               | 03            | 8       | .03         | , ¦             | :                | 8       | .03        | 8          | ł           | 5.                  | .08                  | .16      | <b>1</b> .           | ł           | 8                   | .03                   | 8.         | Ŗ                   | :         | 8.                           | 10.                          | 10.     | 8            | :              |                    |
| ≮ B                                                                                | phosphate as P                                        | 10.               | 10.           | 03      | 8           | 10.             | :                | 8       | 10.        | 8          | 70,<br>0    | 10-                 | -03                  | <b>ਸ</b> | 8                    | 10.         | .02                 | 8                     | 8          | 8                   | 8         | 1                            | 8                            | 8.      | 8            | 8              |                    |
| an anu<br>d. (J'                                                                   | Nitrogen in bottom<br>material, mg/kg                 | !                 | 1             | 1       | ł           | 3               | ł                | :       | ·ł         | ł          | 91          | ł                   | ł                    | ł        | ł                    | 6,200       | ł                   | ł                     | 1          | ;                   | 6,700     | :                            | ł                            | :       | ł            | 2,100          | •                  |
| 50 V<br>10 V                                                                       | nogortin IntoT                                        | .91               | Ŀ.            | 1.0     | .73         | 1.5             | 1.9              | 2.3     | 2.8        | 2.9        | 3.2         | 1.5                 | 2.8                  | 2.1      | 1.5                  | 1.4         | 3.7                 | 3.1                   | 5.7        | ۰.4<br>۲.0          | 6.8       | 2.0                          | 1.7                          | r.4     | 3.5          | 6.5            |                    |
| 。<br>い<br>う<br>す<br>行                                                              | eulg etitiN<br>N ee etertin                           | 20.               | 8             | 8       | <b>1</b> 0. | ଞ               | 8                | .03     | 8          | 5.         | \$ <b>?</b> | ë.                  | 8                    | .07      | 8.                   | 8           | .03                 | 8                     | -01        | .08                 | .16       | 8                            | 8                            | 8       | .13          | .33            | 1                  |
| n a f                                                                              | eulq sinocmA<br>W as N pinegro                        | 1                 | 1             | ł       | ١           | 1.5             | ł                | ł       | . <b>I</b> | ţ          | 3.1         | I.                  | 1                    | 1        |                      | η·Γ         | ł                   | :                     | ł          | 1                   | 6.6       | :                            | ł                            | :       | :            | 6.2            |                    |
| samt<br>rwis<br>onti                                                               | asgorila sinsged                                      | 83.               | <b>67.</b>    | .93     | .67         | ł               | 1.8              | 2.2     | 2.7        | 2.6        | 1           | 1.0                 | 2.5                  | 1.0      | 1.3                  | ł           | 3.2                 | 3.0                   | 5.1        | 3.8                 | :         | 1.8                          | 1.6                          | 3.6     | 3.1          | 1              |                    |
| atres<br>othe<br>s)C                                                               | N 28 stroomA                                          | 10.               | 70.           | -07     | 02          | ì               | સં               | .15     | .13        | .26        | 1           | .10                 | .56                  | .98      | સં                   | 1           | 54.                 | 8                     | .65        | द्य.                | ł         | .16                          | 8.                           | .46     | .33          | :              |                    |
| ารถ                                                                                | 211162                                                | ł                 | ł             | 2.7     | 4           | 1               | ţ                | :       | ¢.         | .7         | ł.          | 1                   | ł                    | 1.0      | 4.                   | 1           | ł                   | :                     | 4.5        | 1.3                 | ł         | ł                            | ł                            | 2.5     | ຸ່           | :              |                    |
| re unle<br>phospho                                                                 | EODAD as vitalishta                                   | 140               | 121           | ш       | 811         | ł               | 45               | 52      | 56         | 37         | ł           | Я                   | 17                   | 53       | 3                    | 1           | 66                  | 63                    | 52         | 64                  | ;         | 66                           | 53                           | 61      | F.8          | 1              |                    |
|                                                                                    | percent saturation                                    | เอ                | 83            | 82      | 001         | R               | IOI              | 33      | 122        | •          | 38          | 77                  | 977                  | 56       | 1011                 |             | 33                  | 128                   | 5c         |                     | с.<br>У 8 | 106                          | 8                            | 83      | 1118<br>237  | -              |                    |
| La tra                                                                             | Dissolved oxygen                                      | 0.01 0            | -             | . 7.7   | 1 9.0       | 9 7.8           |                  | 1.6     | 3 10.5     |            | 0.01        |                     | 0.01<br>0.01<br>0.01 |          |                      | 5 13.0      | 5.11, 5.            |                       | •          | 0.21, 6.            |           |                              | 1.7.7                        |         | 1.12.0       | 01             |                    |
| s per<br>Ogen;                                                                     | Rd                                                    | 8.0               | 8.4           | 8.4     | 8.1         | 7.9             | 8.2              | ०.<br>ध | 9.3        |            | 7.9         | 7.4                 | 0.6                  | 1.7      |                      |             | ж                   | 9.8                   | 8.8        | 0.0                 | 2, œ      | 9.3                          | <b>†</b> .ц.                 | 8.5     | 4.91<br>4.82 |                |                    |
|                                                                                    | UTL (Y)lblduT                                         | а<br>З            | 62            | о<br>С  | л<br>л      | 17 2            | 39 7             | 18 8    | 20 10      | 9          | 13 h        | 4<br>1              | 10 20                | 5 6      | њ<br>Б               | 7 2         | ೧೯<br>ಪ             | 26 30                 | ନ<br>ଜ     | 14 20               | 16 8      | у<br>К<br>К                  | 1                            | 18 20   | 16 6         | 38 20          |                    |
| lligr<br>N, ni                                                                     | suspended solids                                      |                   |               |         |             |                 |                  |         | 85 2       | 91         |             | 411 40              |                      | 8        | 59                   | 69          | 138 8               | 2 821                 | 130        | 130                 | 140       | 8                            | -<br>12<br>12                | 601     | 96<br>L      | 5 Ett          |                    |
|                                                                                    | Dissolved solide                                      | j 160             | 8 16 <b>3</b> | 0ZT T   | 917 5       | 5 174           | 0 105            |         |            |            | 0 120       | 401 60              | TOT O                |          |                      |             |                     |                       |            |                     |           | 152 9                        |                              |         | m            |                |                    |
| 2 0 1<br>2 0 1<br>2 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 | point, ft<br>57251515 conductance,<br>5 25 35 molecul | 2 2ŷj             | 4 248         | 0 221   | 5 255       | 5 295           |                  |         | 121, 0.1   |            | 5 120       | 103                 | (1, 0.9              | 3.8 132  | 1.0 10 <sup>4</sup>  | 1.5 105     | 6.3 <sup>1</sup> 18 | 8.2 174<br>174<br>174 | 1.0<br>1.0 | 7.0 <sup>1</sup> 18 | 5.5 230   | 8.0 19                       | 9.6 <sup>1</sup> 137<br>2167 | 7.5 20  | 7.0 12       | 4.9 155        |                    |
| epresent<br>carbonate                                                              | 8011qmos 78 http://gmag.                              | 0 3.2             | 5 4.4         | 5 3.0   | 0 2.5       | 0 1.5           | 5 6.5            | 5 9.0   |            | 0 7.0      | 0 6.5       | 5 4.2               |                      |          |                      |             | •                   |                       |            |                     |           |                              |                              |         |              |                |                    |
| 54                                                                                 | 9° , 9103.67.97.67.67                                 | 2.0               | 19.5          | 27.5    | 20.0        | 0.11            | 5.5              | 24.5    | 22.0       | 20.0       | 10.0        | 5.5                 | 120.                 | 0.21     | 20.0                 | 9.0         | s 6.0               | 1211.0                |            | 0.51                | 10.0      | 6.0                          | 3 <sup>1</sup> 23.0          |         | 114.0        |                |                    |
| values<br>calcium                                                                  | 5<br>5                                                | 21-51-11          | 6-21-73       | 9-26-73 | 5-22-74     | 10-18-74        | 22-01-11         | 6-25-73 | 9-12-73    | 5-30-74    | 10-22-01    | 21-12-01            | 6-19-73              | 9-21-73  | \$-28-7 <sup>4</sup> | 10-21-74    | 10-30-72            | 6-11-73               | 9-14-73    | 5-16-74             | 10-18-74  | 10-30-72                     | 6-12-73                      | 9-19-73 | 5-16-74      | 10-24-74       | r surface          |
|                                                                                    |                                                       | Necerthy lake at  | leen, m.      |         |             |                 | Cheneken Pond at |         |            | 24         | •           | Slater's Acres Pood |                      |          |                      | •           | Thomas lake at      | amy for Day           | •          |                     | •<br>•    | Wildemess Iaka at Essan, Ma. |                              |         | -            |                | Satpled sear water |
|                                                                                    | · · · · · · · · · · · · · · · · · · ·                 |                   |               |         |             |                 |                  |         | •          |            |             |                     |                      |          |                      |             |                     |                       |            |                     |           |                              |                              |         |              |                |                    |

Table  $^{\mu}$ .--Physical and chemical analyses for lakes sampled at Eagan and Apple Valley, Minn. Except for pH,

.

•

Sarpled near Jeve Print.

# Table 5.--Biological analyses for Alimagnet Lake.

# PHYTOPLANKTON ANALYSES

| Group:                                                                                                                                                                                                            | Sample<br>No.:                                                                  | Date:                                                                                                | Total<br>cells/ml:.                                                                                                      | Dominant<br>group(s):   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate                                                                                                                                                         | 1.<br>2.<br>3.                                                                  | Sept. 26, 73<br>May 20, 74<br>Nov. 4, 74                                                             | 9,900<br>220,000<br>76,000                                                                                               | G<br>BG<br>BG           |
| Alga name<br>Oocystis<br>Pediastrum<br>Anabaena<br>Gomphosphaeria<br>Cyclotella<br>Anacystis<br>Ochromonas<br>Coelastrum<br>Scenedesmus<br>Selenastrum<br>Fragilaria<br>Pandorina<br>Ankistrodesmus<br>Tetrastrum | Group<br>G<br>G<br>BG<br>D<br>BG<br>F1<br>G<br>G<br>G<br>F1<br>G<br>G<br>G<br>G | Percent of tot:<br>27, 3<br>21, 3, 20<br>81<br>14<br>1<br>57<br>5<br>5<br>3<br>1<br>2<br>2<br>1<br>1 | al Sampl<br>1, 3<br>1, 2,<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | <u>es found in</u><br>3 |

## BACTERIA ANALYSES

| Date                           | Total             | Fecal             | Fecal               |
|--------------------------------|-------------------|-------------------|---------------------|
|                                | coliform          | coliform          | <i>Streptococci</i> |
|                                | (colonies/100 ml) | (colonies/100 ml) | (colonies/100 ml)   |
| 9-26-73<br>5-20-74<br>11-04-74 | 180<br>0<br>      | 25<br>0<br>. 4    | <br>31              |

# Table 6.--Biological analyses for Blackhawk Lake.

## PHYTOPLANKTON ANALYSES

| Group:                                                    | Sample<br>No.:             | Date:                                                                  | Total<br>cells/ml:                                    | Dominant<br>group(s): |
|-----------------------------------------------------------|----------------------------|------------------------------------------------------------------------|-------------------------------------------------------|-----------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate | 1.<br>2.<br>3.<br>4.<br>5. | Nov. 9, 72<br>June 21, 73<br>Sept. 25, 73<br>May 23, 74<br>Oct. 21, 74 | 3,800<br>410,000<br>9,000,000<br>710,000<br>2,500,000 | BG<br>BG<br>BG<br>BG  |

| Alga name         | Group | Percent of total | Samples found in |
|-------------------|-------|------------------|------------------|
| Anacystis         | BG    | 35, 3, 2         | 1, 4, 5          |
| Lyngbya contorta  | BG    | 36               | 2                |
| Aphanizomenon     | BG    | 27               | 2                |
| Lyngbya           | BG    | 16, 68           | 2,5              |
| Anabaena          | BG    | 99, 8            | 3, 5             |
| Oscillatoria      | BG    | 97               | 4                |
| Anacystis incerta | BG    | 18               | 5                |
| Agmenellum        | BG    | 3                | 5                |
| Gomphosphaeria    | BG    | ì                | 5                |
|                   |       |                  | -                |

## BACTERIA ANALYSES

| Date            | Total<br>coliform<br>(colonies/100 ml) | Fecal<br>coliform<br>(colonies/100 ml) | Fecal<br><i>Streptococci</i><br>(colonies/100 ml) |
|-----------------|----------------------------------------|----------------------------------------|---------------------------------------------------|
| 11-09-72        | 96                                     | 8                                      |                                                   |
| 6-21-73         | 8                                      | 0                                      |                                                   |
| <b>9-</b> 25-73 | 290                                    | 32                                     |                                                   |
| <b>5-</b> 23-74 | б .                                    | _ 4                                    |                                                   |
| 10-21-74        |                                        | 0                                      | 8                                                 |

# Table 7.--Biological analyses for Boesel Pond.

## PHYTOPLANKTON ANALYSES

| Group:                                                                                         | Sample<br>No.:                           | Date:                                                                   | Total<br>cells/ml:                              | Dominant<br>group(s):                    |
|------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate                                      | 1.<br>2.<br>3.<br>4.<br>5.               | Nov. 2, 72<br>June 19, 73<br>Sept. 21, 73<br>May 23, 74<br>Oct. 30, 74  | 42<br>16,000<br>233,000<br>820,000<br>7,600,000 | BG<br>BG<br>BG<br>BG                     |
| <u>Alga name</u><br>Oscillatoria<br>Lyngbya<br>Anabaena<br>Anacystis<br>Scenedesmus<br>Synedra | <u>Group</u><br>BG<br>BG<br>BG<br>G<br>D | Percent of tot<br>50, 8<br>85, 92, 91<br>93, 3<br>50, 3, 1<br>1, 1<br>1 | tal San<br>1,<br>2,<br>3,<br>1,<br>4            | nples found in<br>5<br>4, 5<br>4<br>4, 5 |

| Date                                                  | Total               | Fecal                   | Fecal               |
|-------------------------------------------------------|---------------------|-------------------------|---------------------|
|                                                       | coliform            | coliform                | <i>Streptococci</i> |
|                                                       | (colonies/100 ml)   | (colonies/100 ml)       | (colonies/100 ml)   |
| 11-02-72<br>6-19-73<br>9-21-73<br>5-23-74<br>10-30-74 | 35<br>7<br>140<br>2 | 0<br>3<br>16<br>2<br>14 | <br><br>12          |

## Table 8.--Biological analyses for Burview Park Pond.

## PHYTOPLANKTON ANALYSES

| Group:         | Sample<br>No.: | Date:        | Total .<br>cells/ml: | Dominant<br>group(s): |
|----------------|----------------|--------------|----------------------|-----------------------|
| D, diatom      | 1.             | Nov. 2, 72   | 520                  | G                     |
| G, green       | 2.             | June 14, 73  | 43,000               | BG                    |
| BG, blue-green | 3.             | Sept. 13, 73 | 1,100,000            | BG                    |
| Fl, flagellate | 4.             | May 30, 74   | 300,000              | BG                    |

| Alga name            | Group | Percent of total | Samples found in |
|----------------------|-------|------------------|------------------|
| Dactylococcopsis     | G     | . 47             | 1                |
| Rhodomonas           | Fl    | 28               | 1                |
| Anacystis            | BG    | 49, 21, 48       | 2,4,5            |
| Anabaena             | BG    | 19, 1            | 2, 5             |
| Schroederia setigera | G     | 18               | 2                |
| Gomphosphaeria       | BG    | 87               | 3                |
| Agmenellum           | BG    | 33, 51           | 4, 5             |
| Anacystis incerta    | BG    | 33, 51<br>38     | 4                |
| Oscillatoria         | BG    | 1                | 5                |

### BACTERIA ANALYSES

| Date                  | Total             | Fecal             | Fecal               |
|-----------------------|-------------------|-------------------|---------------------|
|                       | coliform          | coliform          | <i>Streptococci</i> |
|                       | (colonies/100 ml) | (colonies/100 ml) | (colonies/100 ml)   |
| 11-02-72              | 150               | 4                 |                     |
| 6-14-73               | 6                 | 1                 |                     |
| 9-13-73               | 230               | 20                |                     |
| . 5-30-74<br>10-23-74 | <u>8</u>          | 0<br>0            | 4                   |

# Table 9.--Biological analyses for Cedar Grove Pond.

## PHYTOPLANKTON ANALYSES

| Group:                                                                                                | Sample<br>No.:                     | Date:                                                                                     | Total<br>cells/m                    | 1:                         | Dominant<br>group(s):                        |        |
|-------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|----------------------------------------------|--------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate                                             | 1.<br>2.<br>3.<br>4.<br>5.         | Oct. 31, 7<br>June 13, 7<br>Sept. 18,<br>May 28, 7 <sup>1</sup><br>Nov. 4, 7 <sup>1</sup> | 73 740,0<br>73 7,700,0<br>4 2,400,0 | 00<br>00<br>00             | BG<br>BG<br>BG<br>BG                         |        |
| <u>Alga name</u><br>Oscillatoria<br>Lyngbya<br>Anabaena<br>Gomphosphaeria<br>Anacystis<br>Actinastrum | Group<br>BG<br>BG<br>BG<br>BG<br>G | Percent of<br>93, 38, 7<br>31, 46, 2<br>28, 1, 2<br>25<br>6<br>3<br>BACTERIA ANA          | 71, 53, 68<br>22                    | $\frac{1}{2}, \frac{2}{4}$ | eles found in<br>, 3, 4, 5<br>, 5<br>, 5     | •<br>• |
| Date                                                                                                  | Total<br>coliform<br>(colonies/    | 100 ml)                                                                                   | Fecal<br>coliform<br>(colonies/100  |                            | Fecal<br><i>Streptococci</i><br>(colonies/10 |        |
| 10-31-72<br>6-13-73<br>9-18-73<br>5-28-74<br>11-04-74                                                 | 20<br>45<br><br>9<br>              |                                                                                           | 18<br>0<br>11<br>1<br>40            |                            | <br><br>28                                   |        |

## Table 10.--Biological analyses for Donaldson's Pond.

### PHYTOPLANKTON ANALYSES

| Group:                                                    | Sample<br>No.:             | Date:                                                                  | Total<br>cells/ml:                       | Dominant<br>group(s): |
|-----------------------------------------------------------|----------------------------|------------------------------------------------------------------------|------------------------------------------|-----------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate | 1.<br>2.<br>3.<br>4.<br>5. | Nov. 3, 72<br>June 20, 73<br>Sept. 25, 73<br>May 21, 74<br>Oct. 29, 74 | 7<br>120,000<br>13,000<br>5,400<br>2,100 | G<br>BG<br>BG<br>Fl   |

| Alga name             | Group | Percent of total | Samples found in |
|-----------------------|-------|------------------|------------------|
| Dactylococcopsis      | G     | 100              | 1                |
| Oscillatoria          | BG    | 84               | 2                |
| Anabaena              | BG    | 99, 94           | 3, 4             |
| Ankistrodesmus        | G     | 3                | 4                |
| Oedogonium            | G     | 2                | 4                |
| Cyclotella            | D     | l                | 4                |
| Ochromonas            | Fl    | 74               | 5                |
| <b>Sc</b> hroederia   | G     | 9                | 5                |
| Cryptomonas           | Fl    | 7                | 5                |
| Quadrigula            | G     | 5                | 5                |
| <b>Chl</b> amydomonas | Fl .  | 4                | 5                |
| Trachelomonas         | Fl    | 1                | 5                |
| Phacus                | Fl    | 1 · · ·          | 5                |

#### BACTERIA ANALYSES

| Date     | Total<br>coliform<br>(colonies/100 ml) | Fecal<br>coliform<br>(colonies/100 ml) | Fecal<br><i>Streptococci</i><br>(colonies/100 ml) |
|----------|----------------------------------------|----------------------------------------|---------------------------------------------------|
| 11-03-72 | 150                                    | 2                                      |                                                   |
| 6-20-73  | 20                                     | · 4                                    |                                                   |
| 9-24-73  | 20                                     | 1                                      |                                                   |
| 5-21-74  | 5                                      | 0                                      |                                                   |
| 10-29-74 | , tong, mark                           | 42                                     | 700                                               |

## Table 11.--Biological analyses for Farquar Lake.

PHYTOPLANKTON ANALYSES

| Group:                                                                                                                                     | Sample<br>No.:                                  | Date:                                                                    | Total<br>cells/ml:                                              | Dominant<br>group(s):                        |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate                                                                                  | 1.<br>2.<br>3.                                  | Sept. 25, 73<br>May 15, 74<br>Oct. 31, 74                                | 7,900,000<br>1,100,000<br>1,700,000                             | BC<br>BC<br>BC                               |
| <u>Alga name</u><br>Gomphosphaeria<br>Oscillatoria<br>Lyngbya<br>Anacystis incerta<br>Anabaena<br>Aphanizomenon<br>Anacystis<br>Agmenellum | Group<br>BG<br>BG<br>BG<br>BG<br>BG<br>BG<br>BG | Percent of t<br>49<br>40, 62, 1<br>20, 30<br>15, 5<br>2<br>44<br>20<br>1 | otal Samp<br>1<br>1, 2<br>2, 3<br>2, 5<br>2<br>3<br>3<br>3<br>3 |                                              |
| · · · ·                                                                                                                                    |                                                 | BACTERIA ANALY                                                           | SES                                                             | a                                            |
| С                                                                                                                                          | otal<br>oliform<br>colonies/l                   | - <b>c</b> o                                                             | cal<br>liform<br>olonies/100 ml                                 | Fecal<br>Streptococci<br>) (colonies/100 ml) |
| 9-25-73<br>5-15-74<br>10-31-74                                                                                                             | 35<br>2<br>                                     |                                                                          | 0<br>0<br>8                                                     | 12                                           |

## Table 12.--Biological analyses for Fish Lake.

## PHYTOPLANKTON ANALYSES

| Group:                                                    | Sample<br>No.:             | Date:                                                                   | Total<br>cells/ml:                 | Dominant<br>group(s) | • |
|-----------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|------------------------------------|----------------------|---|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate | 1.<br>2.<br>3.<br>4.<br>5. | Oct. 30, 72<br>June 14, 73<br>Sept. 20, 73<br>May 10, 74<br>Oct. 24, 74 | 810<br>940<br>190<br>11,000<br>520 | Fl<br>Fl<br>Fl<br>BG |   |

| Alga name          | Group | Percent of total | Samples found in |
|--------------------|-------|------------------|------------------|
| Ochromonas         | Fl    | 74               | 1                |
| Cryptomonas        | Fl    | 31,5             | 2,4              |
| Anacystis          | BG    | 16               | 2                |
| Chlamydomonas      | Fl    | 47               | 3                |
| Dinobryon          | Fl    | 72               | 4                |
| Trachelomonas      | Fl    | 11, 3            | 4,5              |
| <b>Scenedesmus</b> | G     | 6                | 4                |
| Lyngbya            | BG    | 4                | 4                |
| Ankistrodesmus     | G     | 1                | 4                |
| Euglena            | Fl    | 1                | 4                |
| Gomphosphaeria     | BG    | 82 .             | 5                |
| Aphanizomenon      | BG    | 10               | 5                |
| Quadrigula         | G     | 5                | 5                |

### BACTERIA ANALYSES

| Date     | Total<br>coliform<br>(colonies/100 ml) | Fecal<br>coliform<br>(colonies | Fecal<br>Streptococci<br>/100 ml) (colonies/100 | O ml) |
|----------|----------------------------------------|--------------------------------|-------------------------------------------------|-------|
| 10-30-72 | 2                                      | . 2                            | <b>ee</b> ee                                    |       |
| 6-14-73  |                                        | · U                            | •••• •••                                        |       |
| 9-20-73  | 10                                     | 4                              |                                                 |       |
| 5-10-74  | ~-                                     |                                |                                                 |       |
| 10-24-74 |                                        | Ó                              | 2                                               |       |
| •        |                                        | · .                            |                                                 |       |

## Table 13.--Biological analyses for Hauser Pond.

## PHYTOPLANKTON ANALYSES

| Group:                                                    | Sample<br>No.:             | Date:                                                                   | Total<br>cells/ml:                    | Dominant<br>group(s):    |
|-----------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|---------------------------------------|--------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate | 1.<br>2.<br>3.<br>4.<br>5. | Nov. 10, 72<br>June 15, 73<br>Sept. 12, 73<br>May 29, 74<br>Oct. 22, 74 | 290<br>7,600<br>1,100<br>3,200<br>380 | F1<br>BG<br>G<br>D<br>BG |

| Alga name<br>Euglena<br>Anabaena | <u>Group</u><br>Fl<br>BG | Percent of total<br>64, 2<br>33 | Samples found in<br>1, 5 |
|----------------------------------|--------------------------|---------------------------------|--------------------------|
| Oocystis                         | G                        | 22                              | 2                        |
| Chlorella                        | G                        | 37                              | 3                        |
| Chlamydomonas                    | Fl                       | 25                              | 3                        |
| Fragilaria                       | D                        | 32                              | 4                        |
| Oscillatoria                     | BG ·                     | 23                              | 4                        |
| Anacystis incerta                | BG                       | 13                              | 4                        |
| Synedra                          | D                        | 11, 3                           | 4,5                      |
| Sphaerocystis                    | G                        | 9                               | 4                        |
| Spirogyra                        | G                        | 4                               | 4                        |
| Agmenellum                       | BG                       | 4.                              | 4                        |
| Melosira                         | D                        | 1                               | 4                        |
| Cyclotella                       | D                        | 1                               | 4                        |
| Ankistrodesmus                   | G                        | 1                               | 4                        |
| Anacystis                        | BG                       | 63                              | 5                        |
| Cryptomonas                      | Fl                       | 21                              | 5                        |
| <b>Sc</b> enedesmus              | G                        | 7                               | 5                        |
| Navicula                         | D                        | 3                               | 5                        |
| Trachelomonas                    | Fl                       | 1                               | 5                        |
| Closterium                       | G                        | 1                               | 5                        |

### BACTERIA ANALYSES

| Date                | Total<br>coliform<br>(colonies/100 ml) | Fecal<br>coliform<br>(colonies/100 ml) | Fecal<br><i>Streptococci</i><br>(colonies/100 ml) |
|---------------------|----------------------------------------|----------------------------------------|---------------------------------------------------|
| 11-10-72            | 16                                     | 2                                      | ew ee                                             |
| 6-15-73             | 90                                     | 0                                      | ·                                                 |
| 9-12-73             | 160                                    | 60                                     |                                                   |
| 5-29-74             | 0                                      | 0                                      |                                                   |
| 5-29-74<br>10-22-74 |                                        | 20                                     | 4                                                 |

## Table 14.--Biological analyses for Holland Lake.

### PHYTOPLANKTON ANALYSES

| Group:                                                    | Sample<br>No.:             | Date:                                                                   | Total<br>cells/ml: <sup>.</sup>     | Dominant<br>group(s):             |
|-----------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|-------------------------------------|-----------------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate | 1.<br>2.<br>3.<br>4.<br>5. | Nov. 14, 72<br>June 22, 73<br>Sept. 20, 73<br>May 24, 74<br>Oct. 17, 74 | 520<br>110<br>150<br>5,600<br>1,000 | BG, G, Fl<br>BG<br>Fl<br>Fl<br>Fl |

| Alga name      | Group | Percent of total | Samples found in |
|----------------|-------|------------------|------------------|
| Anabaena       | BG    | 36, 2            | 1, 4             |
| Selenastrum    | G     | 27               | 1                |
| Dinobryon      | Fl    | 21, 59, 42       | 1, 3, 4          |
| Anacystis      | BG    | 78               | 2                |
| Ochromonas     | Fl    | 39               | 4                |
| Palmellococcus | G     | 14               | 4                |
| Quadrigula     | G     | 2                | 4                |
| Mallomonas     | Fl    | 54               | 5                |
| Cryptomonas    | Fl    | 30               | 5                |
| Chlamydomonas  | Fl    | 14               | 5                |
| Synedra        | D     | 3                | 5                |

#### BACTERIA ANALYSES

| Date     | Total<br>coliform<br>(colonies/100 ml) | Fecal<br>coliform<br>(colonies/100 ml) | Fecal<br><i>Streptococci</i><br>(colonies/100 ml) |
|----------|----------------------------------------|----------------------------------------|---------------------------------------------------|
| 11-14-72 | 10                                     | 6                                      |                                                   |
| 6-22-73  | 8                                      | 3                                      | 640 Feb                                           |
| 9-20-73  | 88                                     | 1                                      |                                                   |
| 5-24-74  | 2                                      | 0                                      |                                                   |
| 10-17-74 | <b></b>                                | 0                                      | 12                                                |

### PHOTOPLANKTON ANALYSES

| Group:                                                                                                                                                                                                                                                                                                   | Sample<br>No.:                                                                                                   | Date:                                                                                                                                       | Total<br>cells/ml:                              | Dominant<br>group(s):                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate                                                                                                                                                                                                                                                | 1.<br>2.<br>3.<br>4.<br>5.                                                                                       | Nov. 17, 72<br>June 22, 73<br>Sept. 19, 73<br>May 24, 74<br>Oct. 17, 74                                                                     | 5,400<br>31,000<br>2,400,000<br>79,000<br>9,400 | G<br>G<br>BG<br>BG<br>BG                                                                                                                                              |
| Alga name<br>Dictyosphaerium<br>Lyngbya<br>Oscillatoria<br>Gomphosphaeria<br>Anacystis incerto<br>Anacystis<br>Scenedesmus<br>Kirchneriella<br>Uroglenopsis<br>Ochromonas<br>Ankistrodesmus<br>Crucigenia<br>Chlamydomonas<br>Dinobryon<br>Oocystis<br>Tetraedron<br>Synedra<br>Cyclotella<br>Quadrigula | Group<br>G<br>BG<br>BG<br>BG<br>G<br>G<br>G<br>F1<br>F1<br>G<br>G<br>F1<br>F1<br>G<br>G<br>G<br>D<br>D<br>G<br>G | Percent of tot<br>35, 51, 27<br>21<br>69<br>20<br>77, 33<br>6, 12<br>5, 6<br>3<br>1<br>1, 1<br>1, 1<br>1<br>4<br>2<br>1<br>1<br>1<br>1<br>1 | <u>al</u>                                       | Samples found in<br>1, 2, 5<br>2<br>3<br>4, 5<br>4, 5<br>4, 5<br>4, 5<br>4<br>4<br>4<br>4<br>4, 5<br>4, 5<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |

#### BACTERIA ANALYSES

| Date     | Total<br>coliform<br>(colonies/10 | O ml) | Fecal<br>coliform<br>(colonies | /100 ml) | Fecal<br><i>Streptococci</i><br>(Colonies/100 | ml).   |
|----------|-----------------------------------|-------|--------------------------------|----------|-----------------------------------------------|--------|
| 11-17-72 | 76                                |       | 2                              |          |                                               |        |
| 6-22-73  | 68                                |       |                                |          |                                               |        |
| 9-19-73  | <br>                              |       | 11                             |          | , and and a set                               | •••••• |
| 5-24-74  | 2                                 |       | 0                              |          | . an un                                       |        |
| 10-17-74 |                                   |       | 0                              | •        | 0                                             |        |

Table 16.--Biological analyses for Lakeside Estate Lake.

### PHYTOPLANKTON ANALYSES

| Group:                                                                                                                                                                                         | Sample<br>No.:             | Date:                                                                                                   | Total<br>cells/ml:                            | Dominant<br>Group(s):                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate                                                                                                                                      | 1.<br>2.<br>3.<br>4.<br>5. | Nov. 3, 72<br>June 20, 73<br>Sept. 13, 73<br>May 29, 74<br>Oct. 23, 74                                  | 410<br>6,100<br>200,000<br>800,000<br>450,000 | BG<br>BG<br>BG<br>BG                                                                             |
| Alga name<br>Dactylococcopsis<br>Anabaena<br>Cryptomonas<br>Anacystis<br>Oscillatoria<br>Lyngbya<br>Trachelomonas<br>Anacystis incerte<br>Scenedesmus<br>Ochromonas<br>Nitzschia<br>Tetraedron | BG<br>F1<br>BG<br>BG<br>F1 | Percent of tot<br>28<br>14, 96, 10<br>24<br>18, 2<br>80, 1<br>1, 64<br>1<br>15<br>3<br>2<br>1<br>1<br>1 | <u>al</u>                                     | Samples found in<br>1<br>1, 4, 5<br>1<br>2, 5<br>3, 4<br>4, 5<br>4<br>5<br>5<br>5<br>5<br>5<br>5 |

•

#### BACTERIA ANALYSES

| Date     | Total<br>coliform<br>(colonies/100 ml) | Fecal<br>coliform<br>(colonies/100 ml) | Fecal<br><i>Streptococci</i><br>(colonies/100 ml) |
|----------|----------------------------------------|----------------------------------------|---------------------------------------------------|
| 11-03-72 | 72                                     | 0                                      |                                                   |
| 6-20-73  | 36                                     | 10                                     |                                                   |
| 9-13-73  | 46                                     | 2                                      |                                                   |
| 5-29-74  | 0                                      | 0                                      |                                                   |
| 10-23-74 | Date and                               | 0                                      | 44                                                |
|          | •                                      | •                                      |                                                   |

36

## Table 17.--Biological analyses for Langhoven Lake.

PHYTOPLANKTON ANALYSES

| • | Group:                                                                                                                                                                                                                  | Sample<br>No.:                                                        | Date:                                                                                                          | Total<br>cells/ml:                      | Dominant<br>group(s):                                                                   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|
|   | D, diatom<br>G, green<br>BG, Blue-green<br>Fl, flagellate                                                                                                                                                               |                                                                       | Oct. 26, 72<br>June 13, 73<br>Sept. 18, 73<br>May 22, 74<br>Oct. 30, 74                                        | 440<br>230<br>26,000<br>2,100<br>15,000 | Fl<br>BG<br>G & Fl<br>BG<br>BG & Fl                                                     |
|   | Alga name<br>Euglena<br>Chlamydomonas<br>Aphanizomenon                                                                                                                                                                  | <u>Group</u><br>Fl<br>Fl<br>BG                                        | Percent of tota<br>38, 5, 12<br>21, 2<br>77                                                                    | a <u>l</u>                              | Samples found in<br>1, 4, 5<br>1, 4<br>2                                                |
|   | flosaquae<br>Ankistrodesmus<br>Eudorina<br>Lyngbya<br>Cryptomonas<br>Cyclotella<br>Trachelomonas<br>Anacystis<br>Synedra<br>Glenodinium<br>Tetraedron<br>Kirchneriella<br>Uroglena<br>Spirulina<br>Gomphonema<br>Phacus | G<br>F1<br>BG<br>F1<br>BG<br>D<br>F1<br>G<br>G<br>F1<br>BG<br>D<br>F1 | 22, 5, 1<br>20<br>59, 37<br>10, 22<br>5, 5<br>5, 1<br>4<br>2<br>1, 6<br>1<br>1<br>14<br>2<br>1<br>14<br>2<br>1 | ·                                       | 3, 4, 5<br>3<br>4, 5<br>4, 5<br>4, 5<br>4, 5<br>4, 5<br>4<br>4<br>4<br>5<br>5<br>5<br>5 |

### BACTERIA ANALYSES

| Date             | Total<br>coliform<br>(colonies/100 m1) | Fecal<br>coliform<br>(colonies/100 ml) | Fecal<br>Streptococci<br>(colonies/100 ml) |
|------------------|----------------------------------------|----------------------------------------|--------------------------------------------|
| <b>10-</b> 26-72 | 105                                    | 40                                     |                                            |
| 6-13-73          | 34                                     | 3                                      |                                            |
| 9-18-73          | 26,000                                 | 92                                     | ·                                          |
| 5-22-74          | 460                                    | 460                                    | -                                          |
| 10-30-74         |                                        | 116                                    | 900                                        |

ан алан айтай алан айтай айт

## Table 18.--Biological analyses for LeMay Lake.

### PHYTOPLANKTON ANALYSES

| Group:                                                                                                                                                                                | Sample<br>No.:                                                      | Date:                                                                                                      | Total<br>cells/ml:                                 | Dominant<br>group(s):                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate                                                                                                                             | 1.<br>2.<br>3.<br>4.<br>5.                                          | Oct. 26, 72<br>June 12, 73<br>Sept. 17, 73<br>May 21, 74<br>Oct. 29, 74                                    | 3,400<br>47,000<br>6,600,000<br>230,000<br>250,000 | BG<br>BG<br>BG<br>BG                                                                              |
| Alga name<br>Anacystis<br>Aphanizomenon<br>Lyngbya<br>Gomphosphaeria<br>Oscillatoria<br>Anabzena<br>Dinobryon<br>Kirchneriella<br>Synedra<br>Coelastrum<br>Cryptomonas<br>Scenedesmus | Group<br>BG<br>BG<br>BG<br>BG<br>BG<br>F1<br>G<br>D<br>G<br>F1<br>G | Percent of tot<br>27, 43, 28<br>44<br>35, 8, 40<br>44<br>29, 38, 18<br>18<br>6, 1<br>4<br>1<br>8<br>3<br>1 | <u>cal</u>                                         | Samples found in<br>1, 4, 5<br>2<br>2, 4, 5<br>3<br>3, 4, 5<br>3<br>4, 5<br>4<br>4<br>5<br>5<br>5 |

#### BACTERIA ANALYSES

| Date             | Total<br>coliform<br>(colonies/100 ml) | Fecal<br>coliform<br>(colonies/100 ml) | Fecal<br><i>Streptococci</i><br>(colonies/100 ml) |
|------------------|----------------------------------------|----------------------------------------|---------------------------------------------------|
| <b>10-2</b> 6-72 | 10                                     | 0                                      |                                                   |
| 6-12-73          | 8                                      | 0                                      |                                                   |
| <b>9-1</b> 7-73  | 40                                     | 8                                      |                                                   |
| 5-21-74          | 0                                      | 0                                      | 00                                                |
| 10-29-74         |                                        | 5                                      | 52                                                |

## Table 19.--Biological analyses for Long Lake.

### PHYTOPLANKTON ANALYSES

|                                  | Sample |              | Total     | Dominant  |
|----------------------------------|--------|--------------|-----------|-----------|
| Group:                           | No.:   | Date:        | cells/ml: | group(s): |
| D. diatom                        | 1.     | Sept. 26, 73 | 4,000,000 | BG        |
| G, green                         | 2.     | May 15, 74   | 400,000   | BG        |
| BG, blue-green<br>Fl. flagellate | 3.     | Oct. 31, 74  | 60,000    | BG        |

| Alga name         | Group | Percent of total | Samples found in |
|-------------------|-------|------------------|------------------|
| Lyngbya limnetica | BG    | 78               | 1                |
| Oscillatoria      | BG    | 90, 9            | 2, 3             |
| Lyngbya           | BG    | 8, 87            | 2, 3             |
| Anabaena          | BG    | 1, 2             | 2, 3             |
| Protococcus       | G     | .1               | 2 .              |
| Anacystis         | BG    | ः <b>1</b>       | 3                |
| Gomphosphaeria    | BG    | · 1              | 3                |

#### BACTERIA ANALYSES

| Date                           | Total<br>coliform<br>(colonies/100 ml) | Fecal<br>coliform<br>(colonies/100 ml) | Fecal<br>Streptococci<br>(colonies/100 ml) |  |
|--------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------|--|
| 9-26-73<br>5-15-74<br>10-31-74 | 520<br>2                               | 42<br>2<br>8                           | 30                                         |  |

## Table 20.--Biological analyses for McCarthy Lake.

¢.r

## PHYTOPLANKTON ANALYSES

| Group:                                                                                                                                                                                                   | Sample<br>No.:                                                                        | Date:                                                                                                   | Total<br>cells/ml: .                                                                                                                                                                                                                                                                                                      | Dominant<br>group(s):      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate                                                                                                                                                | 1.<br>2.<br>3.<br>4.<br>5.                                                            | Nov. 13, 72<br>June 21, 73<br>Sept. 26, 73<br>May 22, 74<br>Oct. 18, 74                                 | 110<br>2,500<br>740<br>1,400<br>2,400                                                                                                                                                                                                                                                                                     | Fl<br>BG<br>BG<br>Fl<br>BG |
| Alga name<br>Glenodinium<br>Oscillatoria<br>Anabaena<br>Uroglenopsis<br>Navicula<br>Euglena<br>Tetrastrum<br>Selenastrum<br>Lyngbya<br>Cryptomonas<br>Achromonas<br>Trachelomonas<br>Nitzschia<br>Phacus | Group<br>Fl<br>BG<br>BG<br>Fl<br>D<br>Fl<br>G<br>G<br>BG<br>Fl<br>Fl<br>Fl<br>D<br>Fl | Percent of tot<br>77, 1<br>74, 32<br>58<br>63<br>1, 1<br>2, 2<br>1<br>1<br>74<br>10<br>5<br>4<br>2<br>1 | Sampl         1, 5         2, 4         3         4         4, 5         4, 5         4, 5         4, 5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5 | <u>es found in</u>         |

### BACTERIA ANALYSES

| Date     | Total<br>Coliform<br>(colonies/100 r | nl) | Fecal<br>Coliform<br>(colonies/100 | Fecal<br><i>Streptococci</i><br>(colonies/100 | ml) |
|----------|--------------------------------------|-----|------------------------------------|-----------------------------------------------|-----|
| 11-13-72 | 1                                    |     | 0                                  | -                                             | •   |
| 6-21-73  | 13                                   | •   | 12                                 |                                               |     |
| 9-26-73  |                                      |     | 0                                  |                                               | •   |
| 5-22-74  | 10                                   |     | 3                                  |                                               |     |
| 10-18-74 |                                      |     | 8                                  | 20                                            |     |
|          |                                      |     |                                    |                                               |     |

# Table 21.--Biological analyses for Shanahan Pond.

PHYTOPLANKTON ANALYSES

| Group:                                                                                                                                                                                                                                                                             | Sample<br>No.:                                                                                           | Date:                                                                                                                                 | Total<br>cells/ml:                                 | Dominant<br>group(s):                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate                                                                                                                                                                                                                          | 1.<br>2.<br>3.<br>4.<br>5.                                                                               | Nov. 10, 72<br>June 15, 73<br>Sept. 12, 73<br>May 30, 74<br>Oct. 22, 74                                                               | 6,300<br>210,000<br>5,200,000<br>620,000<br>61,000 | BG<br>BG<br>BG<br>G                                                                                                                 |
| Alga Name<br>Anacystis<br>Lyngbya<br>Gomphosphaeria<br>Oscillatoria<br>Anacystis incerto<br>Scenedesmus<br>Kirchneriella<br>Oocystis<br>Ochromonas<br>Pediastrum<br>Anabaena<br>Dinobryon<br>Coelastrum<br>Ankistrodesmus<br>Cryptomonas<br>Nitzschia<br>Navicula<br>Trachelomonas | Group<br>BG<br>BG<br>BG<br>BG<br>G<br>G<br>G<br>F1<br>G<br>G<br>F1<br>G<br>F1<br>G<br>F1<br>D<br>D<br>F1 | Percent of tot<br>19, 1<br>15, 72<br>52, 23<br>42, 10<br>92<br>4, 41<br>1<br>6<br>5<br>3<br>3<br>2<br>2<br>2<br>2<br>1<br>1<br>1<br>1 | <u>al</u>                                          | Samples found in<br>1, 4<br>1, 2<br>3, 5<br>3, 5<br>4<br>4, 5<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |

### BACTERIA ANALYSES

| Date     | Total<br>coliform<br>(colonies/100 | ml)                                   | Fecal<br>coliform<br>(colonies/100 | ml) | Fecal<br>Streptococci<br>(colonies/100 ml) |
|----------|------------------------------------|---------------------------------------|------------------------------------|-----|--------------------------------------------|
| 11-10-72 | 64                                 |                                       | 0                                  |     | -/                                         |
| 6-15-73  | 20                                 |                                       | 4                                  |     |                                            |
| 9-12-73  | 33                                 | · · · · · · · · · · · · · · · · · · · | 6                                  |     | · · · · · · · · · · · · · · · · · · ·      |
| 5-30-74  | 44                                 |                                       | 44                                 |     |                                            |
| 10-22-74 |                                    |                                       | 0                                  |     | 60                                         |
|          |                                    |                                       |                                    |     | •                                          |

## Table 22.--Biological analyses for Slater's Acres Pond.

-036 **\*** 

### PHYTOPLANKTON ANALYSES

| Group:<br>Group:                                                                                                                                                                            | Sample<br>No.:                                               | Date:                                                                   | Total<br>cells/ml:                     | Dominant<br>group(s):                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate                                                                                                                                   |                                                              | Oct. 31, 72<br>June 19, 73<br>Sept, 21, 73<br>May 28, 74<br>Oct. 21, 74 | 21<br>540,000<br>190<br>2,400<br>2,400 | F1<br>BG<br>F1 & G<br>BG<br>F1                           |
| Alga name<br>Trachelmonas<br>Chlamydomonas<br>Ochromonas<br>Aphanizomenon<br>flosaquae<br>Uroglenopsis<br>Schroederia<br>ancora                                                             | Grou<br>Fl<br>Fl<br>BG<br>Fl<br>G                            | 33, 5<br>33<br>33, 46<br>99<br>17, 10<br>17                             | <u>total</u>                           | <pre>Samples found in 1, 5 1 1, 5 2 3, 4 3</pre>         |
| Lyngbya<br>Cryptomonas<br>Scenedesmus<br>Ankistrodesmus<br>Pinnularia<br>Euglena<br>Staurastrum<br>Cosmarium<br>Gomphosphaeria<br>Chrysochromulin<br>Anacystis<br>Navicula<br>Centritractus | BG<br>F1<br>G<br>D<br>F1<br>G<br>G<br>BG<br>D<br>D<br>D<br>D | 14<br>12, 1<br>12<br>4<br>2<br>2<br>2<br>2<br>42<br>37<br>8<br>1<br>1   |                                        | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>4<br>4<br>4<br>4<br>4 |

## BACTERIA ANALYSES

| Date     | Total<br>coliform<br>(colonies/100 ml) | Fecal<br>coliform<br>(colonies/100 ml) | Fecal<br>Streptococci<br>(colonies/100 ml) |
|----------|----------------------------------------|----------------------------------------|--------------------------------------------|
| 10-31-72 | 36                                     | 6                                      | *** ***                                    |
| 6-19-73  | 15                                     | 7                                      |                                            |
| 9-21-73  | 40                                     | 4 .                                    |                                            |
| 5-28-74  | 28                                     | 28                                     | ~~                                         |
| 10-21-74 |                                        | 0                                      | 2                                          |

Table 23.--Biological analyses for Thomas Lake.

### PHYTOPLANKTON ANALYSES

| Group:                                                                                                 | Sample<br>No.:                            | Date:                                                                    | Total<br>cells/ml:                                          | Dominant<br>group(s):                                               |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|
| D, diatom<br>G, green<br>BG, blue-green<br>Fl, flagellate                                              | 1.<br>2.<br>3.<br>4.<br>5.                | Oct. 30, 72<br>June 11, 73<br>Sept. 14, 73<br>May 16, 74<br>Oct. 18, 74  | 13,000<br>1,000,000<br>18,000,000<br>2,300,000<br>1,100,000 | BG<br>BG<br>BG<br>BG                                                |
| <u>Algo name</u><br>Oscillatoria<br>Anabaena<br>Lyngbya<br>Anacystis incert<br>Anacystis<br>Ochromonas | Group<br>BG<br>BG<br>BG<br>BG<br>BG<br>F1 | Percent of to<br>92, 84, 35, 6<br>15, 99, 14<br>60, 11<br>3<br>1, 8<br>1 |                                                             | Samples found in<br>1, 2, 4, 5<br>2, 3, 5<br>4, 5<br>4<br>4, 5<br>5 |

BACTERIA ANALYSES

| Date     | Total<br>coliform<br>(colonies/100 ml) | Fecal<br>coliform<br>(colonies/100 ml) | Fecal<br><i>Streptococci</i><br>(colonies/100 ml) |
|----------|----------------------------------------|----------------------------------------|---------------------------------------------------|
| 10-30-72 | 18                                     | 5                                      | Even grap                                         |
| 6-11-73  | 18                                     | . 1                                    | <u></u>                                           |
| 9-14-73  | 55                                     | 0                                      | 540 Proj                                          |
| 5-16-74  | 4                                      | 4                                      |                                                   |
| 10-18-74 |                                        | 0.                                     | 0                                                 |